Lecture Theoretical Physics III — fall term 2002/2003 — Michael Flohr

Exercises VIII
December 10th

E8.1 Foundations of statistical physics, Bose—FEinstein condensation
Particle with Spin S confined to a box B = {i € R?" 0 <z < L} with length L and

volume V = L3 have wave functions (x(?) a spinor):
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The ng) are periodic: 7,[1(0)( *) 1/)(0) (0) and form an orthonormal basis for the func-
tions in B: i, d3r( (U)( )* w )(7) = 8i471/650:. The N—particle states in 2nd quanti—

sation are \/iv_' (HN »,)|0). Number and energy operator read N =} a

zlnZ n,o ncrna

and H = Z e(fM)at a. . The statistical operator o (density operator) is given by
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0= Ee_B(H_“N), Z = Spur e PH=#N) (= Spurp = 1).
Z is called partition function, p chemical potential and with the temperature T and
Boltzmann’s constant k one has 3 = % The two “Lagrange multipliers” p and (3
adjust the particle number and the energy. p is the energy one needs (or gains) to
add a particle to the system. In general, every thermodynamic quantity is given by
the expectation value of an operator O as (O) := Tr(Op).
In H7.2 we had: Z = [[;(1 £ e PEM=m)E g — 29+ 1 and (ns.) = e
the average occupation of the state (77, o), where“+” is taken for fermions. We define
the mean particle number N = . (ns,) and energy £ =) _ _&(7)(ng,q).
(1) Why is pu < 0 for bosons? Is there a restriction on y in the fermionic case?
(2) Establish the replacement > . = — gﬁ [ d3p in the continuum limit V — oo.

for

Show that the limits for V' — oo of g, % and % do exist and compute them
for e(p) = 5=p2. Introduce the Fermi and Bose functions

fuz)1 1 /oo dx zv~1
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Which famous function of n € N from number theory is g, (z = 1)?
(3) Show E = ?)ﬂan and compute the classical limit, defined in such a way that

z = el/FT « 1. 7 is called fugacity. State this condition in the form A3 <

ﬁ
with the thermal wave length A = h\/27(3/m and interpret it.
(4) Show that for the grand canonical potential ® := —ﬁ_l In Z one has ® = —pV.
p = —g—‘b; is the pressure. For that purpose show p = 3\/’ before taking V — oc.
(5) In the fermionic case at T' = 0 the lowest energy levels are occupled once. The

\PF|

maximal momentum is called Fermi momentum pg, the energy Fermi energy

. Show N = 27z and deduce E = $EpN. Argue that p = EF.



As an important application of the general considerations we consider a nonrelativistic
Bose gas with spin 0 for small temperatures 7.

(6) Why is the fugacity bounded by z < 17 Show that @ = g3/2(2).
(7) Show that z = 1 is reached at a critical temperature T, defined by
27?7’12N2/3
m(gs/2(1)V)%/3
(8) By considering the ground state separately, show that
+N <£)3/2 93/2(Z).
1-1 T. g3/2(1)
(9) Deduce that for T' < T, the ground state is occupied macroscopically, i.e.

ﬂ{:o T>T,

lim —
N—m)o,gfest N >0 T<TC

kKT, =

N =Ny,+ N =

(“thermodynamic limit”).

Also show that the other states can never be occupied macroscopically.
(10) Why is this condensation possible only for spatial dimension d > 37
This effect was predicted in 1924 by A. Einstein following statistical observations of
S. Bose. It was observed experimentally in 1995 using alcali atoms (mostly rubidium)
in a quadrupole trap with "= 0.17u K, in 1998 also with atomic hydrogen.

Homework VIII
Return: Dezember 17th

H8.1 Bardeen—Cooper—Schrieffer theory
This theory (nobel price 1972) explains the superconductivity of 1st kind by so-called
Cooper pairs, i.e. correlated electrons pairs with spin 0, for which the electric resistance
vanishes. The model considers two—electron excitations |®) of the vacuum |0).
The Hamiltonian of a many electrons system in a solid state reads
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H = Ze(k’)a;{aalzﬁ ~3 ] AZ Vg B agm’aaaalag,wﬁ,aag.
k,o k,k' 0,0,0'

Here, lg, k' are electron momenta, 0,0’ their spin directions and @ phonon momenta,
these are the quasi particles corresponding to the lattice oscillations. v RRng gives the
electron interaction induced by the interactions of the electrons and phonons, i.e. an
electron with momentum &’ + @ gives the momentum w to the lattice, which is taken
by an electron with momentum k. The spin is not changed by this interaction. With
(real) coefficients uj and vy that will be arranged — taking care of the normalization
luz|® 4 |vz]?> = 1 — such that the energy expectation value of |®) becomes minimal at
the end of the day, the BCS ansatz for |®) reads:

D) = H(UE + vgag’TatE,l)]O).

i
(1) Show (®|N|®) = 2> ;v2 for the expectation value of the particle number op-
erator. Since we want a %Xed particle number, we have to add N to H using a
Lagrange multiplier, the chemical potential u, i.e. H' = H — uN.



(2) USiIlg Vk‘k:’ = UE,7§(E/,E;U N y show that

Ey = (Q|H'|®) =2 (e(k) — p)vi — Y Vipugvpug, vg-
k k&

(3) Show: with the gap Ay = > 7 Vi uz, vz, the condition for a minimum of (2) is:
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VEE) = )2 + A2
In order to understand this gap better, we consider the quasi particles of this system.
(4) Show that the ansatz |®) for the ground state is annihilated by the operators

A(k) = URay = U,;aj:];l, B(k) = uga_j |+ UEGE’T
(5) Show that the only nonvanishing anticommutation relations of the operators de-
fined in (4) are {A(k), A*(K')} = {B(k), BT (K')} = 0z
(6) Show that H' — Ey1 is diagonal in the one-quasiparticle states A+ (k)|®) and
B*(k)|®) and that E(k) = \/(8(12) — )%+ A% is the quasiparticle energy:

(BA(R)(H' — Eo1) A (F)|®) = (@|B(R)(H' — Eo1)B* (F)|®) = E(K)

i.e. the quasiparticles have a nonvanishing energy A;- even for k at the Fermi edge
(which corresponds to a free particle at rest).
But now back to the determination of Az, for which we make use of a simple model.

. . Ag
7) Show that (3 lent to Ay = 1 Vi .
(7) Show that (3) is equivalent to Az = 5> &, NEGE u)2+A2E,
(8) Take the ansatz Viz, = Vo for le(k) — p| < hw and |e(K') — p| < hw, in all other
cases zero, i.e. the interaction only takes place in the neighbourhood of the Fermi

h ius=Ep=p). D h . . = here A is th
sphere (radius=Ep=p). Deduce that ) N RS Vo’ where A is the

now k independent value of A i for le(k) — p| < hw, otherwise one has A p=0.
(9) Replace the sum by an integral in (8). For that, take the ansatz d3k = @D(E—

p)d(E — p). with the density of states D(E — u). Assume that hw < u, i.e.

D(E — p) = D(0) and deduce A = —"9—— ~ 2hwe=/POVo for D(0)V < 1.

1nh(m)
(10) Show that the electron interaction actually lowers the energy by 3D(0)A? com-
pared to a filled Fermi sphere (assume A < hw).
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(24 points)
H8.2 Squeezed States
(1) By deriving with respect to o, show that (e®*3z f)(z) = f(e®x) for f: R — C.
(2) For a one dimensional harmonic oscillator, consider the normalised state [1,) =
Cret (@) =a*=1)|0)i where ¢ € £L2(R). Use (1) and the explicit representation
of a and a™ in position space in order to represent 1, (x) by ('), i.e. find the
relation z'(z). Why is |¢,) called squezzed?
(3) Show that S := e*(¢")*=2"a" for » € C is unitary. How does that effect Cy?
(6 points)



