
Lecture Theoretical Physics III – fall term 2002/2003 – Michael Flohr

Exercises VIII
December 10th

E8.1 Foundations of statistical physics, Bose–Einstein condensation

Particle with Spin S confined to a box B = {~r ∈ R3
∣

∣ 0 ≤ xk ≤ L} with length L and

volume V = L3 have wave functions (χ(σ) a spinor):

ψ
(σ)
~n (~r ) =

1√
V
e−

i
h̄
~p~rχ(σ), ~p = ~n

2πh̄

L
, ~n ∈ ZZ3, σ = −S, . . . , S.

The ψ
(σ)
~n are periodic: ψ

(σ)
~n (L~n) = ψ

(σ)
~n (0) and form an orthonormal basis for the func-

tions in B:
∫

V
d3r(ψ

(σ)
~n (~r ))∗ψ(σ′)

~n′ (~r ) = δ~n~n′δσσ′ . The N−particle states in 2nd quanti-

sation are 1√
N !

(
∏N

i=1 a
+
~ni,σi

)|0〉. Number and energy operator read N =
∑

~n,σ a
+
~n,σa~n,σ

and H =
∑

~n,σ ε(~n)a
+
~n,σa~n,σ. The statistical operator % (density operator) is given by

% =
1

Z
e−β(H−µN), Z = Spur e−β(H−µN) (⇒ Spur % = 1).

Z is called partition function, µ chemical potential and with the temperature T and
Boltzmann’s constant k one has β = 1

kT . The two “Lagrange multipliers” µ and β
adjust the particle number and the energy. µ is the energy one needs (or gains) to
add a particle to the system. In general, every thermodynamic quantity is given by
the expectation value of an operator O as 〈O〉 := Tr(O%).
In H7.2 we had: Z =

∏

~n(1± e−β(ε(~n)−µ))±g, g = 2S + 1 and 〈n~n,σ〉 = 1
eβ(ε(~n)−µ)±1 for

the average occupation of the state (~n, σ), where“+” is taken for fermions. We define
the mean particle number N =

∑

~n,σ〈n~n,σ〉 and energy E =
∑

~n,σ ε(~n)〈n~n,σ〉.
(1) Why is µ ≤ 0 for bosons? Is there a restriction on µ in the fermionic case?
(2) Establish the replacement

∑

~n,σ → g V
(2πh̄)3

∫

d3p in the continuum limit V →∞.

Show that the limits for V → ∞ of E
V , N

V and lnZ
V do exist and compute them

for ε(~p ) = 1
2m~p

2. Introduce the Fermi and Bose functions

{

fν(z)

gν(z)

}

=
1

Γ(ν)

∫ ∞

0

dxxν−1

1
z e

x ± 1
.

Which famous function of n ∈ N from number theory is gn(z = 1)?
(3) Show E = 3

2β lnZ and compute the classical limit, defined in such a way that

z := eµ/kT ¿ 1. z is called fugacity. State this condition in the form λ3 ¿ V

N

with the thermal wave length λ = h̄
√

2πβ/m and interpret it.
(4) Show that for the grand canonical potential Φ := −β−1 lnZ one has Φ = −pV .

p := − ∂E
∂V is the pressure. For that purpose show p = 2E

3V , before taking V →∞.
(5) In the fermionic case at T = 0 the lowest energy levels are occupied once. The

maximal momentum is called Fermi momentum ~pF , the energy
|~pF |2
2m Fermi energy

EF . Show N = gV |~pF |3
6π2h̄3

and deduce E = 3
5EFN . Argue that µ = EF .



As an important application of the general considerations we consider a nonrelativistic
Bose gas with spin 0 for small temperatures T .

(6) Why is the fugacity bounded by z ≤ 1? Show that λ3N
V = g3/2(z).

(7) Show that z = 1 is reached at a critical temperature Tc, defined by

kTc =
2πh̄2N

2/3

m(g3/2(1)V )2/3
.

(8) By considering the ground state separately, show that

N = N0 +N ′ =
1

1
z − 1

+N

(

T

Tc

)3/2 g3/2(z)

g3/2(1)
.

(9) Deduce that for T < Tc the ground state is occupied macroscopically, i.e.

lim
N→∞, N

V
fest

N0

N

{

= 0 T > Tc
> 0 T < Tc

(“thermodynamic limit”).

Also show that the other states can never be occupied macroscopically.
(10) Why is this condensation possible only for spatial dimension d ≥ 3?
This effect was predicted in 1924 by A. Einstein following statistical observations of
S. Bose. It was observed experimentally in 1995 using alcali atoms (mostly rubidium)
in a quadrupole trap with T = 0.17µK, in 1998 also with atomic hydrogen.

Homework VIII
Return: Dezember 17th

H8.1 Bardeen–Cooper–Schrieffer theory

This theory (nobel price 1972) explains the superconductivity of 1st kind by so-called
Cooper pairs, i.e. correlated electrons pairs with spin 0, for which the electric resistance
vanishes. The model considers two–electron excitations |Φ〉 of the vacuum |0〉.
The Hamiltonian of a many electrons system in a solid state reads

H =
∑

~k,σ

ε(~k)a+~k,σ
a~k,σ −

1

2

∑

~k,~k′, ~w,σ,σ′

v~k,~k′, ~w a+~k+~w,σ
a+~k′,σ′

a~k′+~w,σ′
a~k,σ.

Here, ~k,~k′ are electron momenta, σ, σ′ their spin directions and ~w phonon momenta,
these are the quasi particles corresponding to the lattice oscillations. v~k,~k′, ~w gives the
electron interaction induced by the interactions of the electrons and phonons, i.e. an
electron with momentum ~k′ + ~w gives the momentum ~w to the lattice, which is taken
by an electron with momentum ~k. The spin is not changed by this interaction. With
(real) coefficients u~k and v~k that will be arranged – taking care of the normalization
|u~k|2 + |v~k|2 = 1 – such that the energy expectation value of |Φ〉 becomes minimal at
the end of the day, the BCS ansatz for |Φ〉 reads:

|Φ〉 =
∏

~k

(u~k + v~ka
+
~k,↑a

+

−~k,↓)|0〉.

(1) Show 〈Φ|N |Φ〉 = 2
∑

~k v
2
~k
for the expectation value of the particle number op-

erator. Since we want a fixed particle number, we have to add N to H using a
Lagrange multiplier, the chemical potential µ, i.e. H ′ = H − µN .



(2) Using V~k~k′ =
v~k,−~k′,~k′−~k+v−~k,~k′,~k−~k′

2 , show that

E0 := 〈Φ|H ′|Φ〉 = 2
∑

~k

(ε(~k)− µ)v2~k −
∑

~k,~k′

V~k~k′u~kv~ku~k′v~k′ .

(3) Show: with the gap ∆~k =
∑

~k′ V~k~k′u~k′v~k′ the condition for a minimum of (2) is:
{

u2~k
v2~k

}

=
1

2



1± ε(~k)− µ
√

(ε(~k)− µ)2 +∆2
~k



 .

In order to understand this gap better, we consider the quasi particles of this system.
(4) Show that the ansatz |Φ〉 for the ground state is annihilated by the operators

A(~k) = u~ka~k,↑ − v~ka
+

−~k,↓, B(~k) = u~ka−~k,↓ + v~ka
+
~k,↑

(5) Show that the only nonvanishing anticommutation relations of the operators de-

fined in (4) are {A(~k), A+(~k′)} = {B(~k), B+(~k′)} = δ~k~k′ .

(6) Show that H ′ − E01l is diagonal in the one-quasiparticle states A+(~k)|Φ〉 and
B+(~k)|Φ〉 and that E(~k) =

√

(ε(~k)− µ)2 +∆2
~k
is the quasiparticle energy:

〈Φ|A(~k)(H ′ − E01l)A
+(~k′)|Φ〉 = 〈Φ|B(~k)(H ′ − E01l)B

+(~k′)|Φ〉 = E(~k)δ~k~k′ ,

i.e. the quasiparticles have a nonvanishing energy ∆~k even for ~k at the Fermi edge
(which corresponds to a free particle at rest).

But now back to the determination of ∆~k, for which we make use of a simple model.

(7) Show that (3) is equivalent to ∆~k = 1
2

∑

~k′
V~k~k′∆~k′

√

(ε(~k′)−µ)2+∆2
~k′

.

(8) Take the ansatz V~k~k′ = V0 for |ε(~k)− µ| < h̄ω and |ε(~k′) − µ| < h̄ω, in all other
cases zero, i.e. the interaction only takes place in the neighbourhood of the Fermi
sphere (radius=EF=µ). Deduce that

∑

~k
1

2
√

(ε(~k)−µ)2+∆2
= 1

V0
, where ∆ is the

now ~k independent value of ∆~k for |ε(~k)− µ| < h̄ω, otherwise one has ∆~k = 0.

(9) Replace the sum by an integral in (8). For that, take the ansatz d3k = (2π)3

V D(E−
µ)d(E − µ). with the density of states D(E − µ). Assume that h̄ω ¿ µ, i.e.
D(E − µ) ≈ D(0) and deduce ∆ = h̄ω

sinh( 1
D(0)V0

)
≈ 2h̄ωe−1/D(0)V0 for D(0)V0 ¿ 1.

(10) Show that the electron interaction actually lowers the energy by 1
2D(0)∆2 com-

pared to a filled Fermi sphere (assume ∆¿ h̄ω).

(24 points)

H8.2 Squeezed States

(1) By deriving with respect to α, show that (eαx
∂
∂x f)(x) = f(eαx) for f : R→C.

(2) For a one dimensional harmonic oscillator, consider the normalised state |ψα〉 =
Cαe

α
2 ((a

+)2−a2−1)|ϕ〉i where ϕ ∈ L2(R). Use (1) and the explicit representation
of a and a+ in position space in order to represent ψα(x) by ϕ(x′), i.e. find the
relation x′(x). Why is |ψα〉 called squezzed?

(3) Show that S := ez(a
+)2−z∗a2 for z ∈C is unitary. How does that effect Cα?

(6 points)


