Revision Exam

March 21st, 2003

1 Addition of angular momenta

(18 points)

Do the addition of angular momenta for $j_1 = 1$, $j_2 = \frac{1}{2}$ explicitly. Start with the states $|1, m_1\rangle \otimes |\frac{1}{2}, m_2\rangle$ and use the action of the raising and lowering operators.

2 Wigner-Eckart theorem

- (1) What is a spherical tensor operator of rank r? State an example for r=1.
- (2) Give the statements of the Wigner-Eckart theorem and illustrate them briefly.
- (3) Which operator is responsible for magnetic dipole transitions? Show which values for $\Delta \ell$ are possible due to the Wigner-Eckart theorem.
- (4) Deduce a further restriction on $\Delta \ell$ from the invariance under parity.

3 Landé factor

(5+2+10+2=19 points)

Consider an atom in a magnetic field $\vec{B} = B\vec{e}_3$ (constant in time, homogeneous in space). Let the magnetic field be so weak that the perturbation Hamiltonian is given by $H' = \omega(L_3 + 2S_3)$, where $\omega = \frac{eB}{2mc}$ is called Larmor frequency.

(1) Let the Hamiltonian H of the atom contain the spin-orbit coupling. Why are

- then $H, \vec{L}^{\,2}, \vec{S}^{\,2}, \vec{J}^{\,2}$ and J_3 a complete set of commuting observables?
- (2) Why does an energy level have the degeneracy 2j + 1 at least?
- (3) With the projection theorem, show that $H' = g_L \omega J_3$ holds on the subspace of states with fixed E, j, ℓ and s. Compute the Landé factor g_L .
- (4) How do the energy eigenvalues of the full Hamiltonian H + H' look like?
- # 4 Scattering theory

(3+10+13+2=28 points)

- (1) How does the differential cross section for elastic scattering on a potential $V(\vec{r})$ look like in Born approximation?
- (2) Perform the angular integration in (1) for a radially symmetric potential and compute $\frac{d\sigma}{d\Omega}$ for a spherically symmetric potential well (depth V_0 , radius r_0).
- (3) A particle with mass m is scattered on an idealised (i.e. infinitely thin) spherical shell $V(r) = V_0 \delta(R - r)$. We consider S wave scattering only. Compute the scattering phase $\delta_{\ell=0}(k)$ by solving the Schrödinger equation exactly.
- (4) State the scattering amplitude and the differential cross section for (3).
- # 5 Many particle theory

(8+6=14 points)

- (1) Which algebraic relations do creation and annihilation operator for fermions satisfy? State the occupation number operator. Show which eigenvalues are possible.
- (2) Consider a many particle system with dispersion relation $\varepsilon(\vec{p})$ and a two-particle interaction V, i.e. V depends only on the relative distance of the particles. State the Hamiltonian, written in terms of creation and annihilation operators.
- # 6 Questions on relativistic quantum mechanics

(5+7+8+7+4+6+13+3=53 points)

- (1) Which algebra do the γ matrices satisfy? Show $\operatorname{Tr} \gamma^{\mu} = 0$ in general. Which γ^{μ} are hermitian or antihermitian in standard representation, respectively?
- (2) Give the covering map for the Lorentz group. State the two inequivalent representations of the Lorentz group for spin $\frac{1}{2}$ on two-component spinors.
- (3) Deduce from the Lorentz covariance of the Dirac equation: $\psi'(x') = S\psi(x)$ and the properties of the matrix S. Give S explicitly in Weyl representation.

- (4) How do the two Weyl equations look like? Show, which particles are described by them in very good approximation.
- (5) State the Pauli equation. What does that equation predict for the energy of a particle with spin $\frac{1}{2}$ in a magnetic field?
- (6) State the parity operator for the Dirac equation. Give reasons for the answer.
- (7) Give the Dirac pseudo scalar and the Dirac vector current. Show how they transform under proper orthochrone Lorentz transformations and under parity.
- (8) Sketch the energy levels for the solution of the Dirac equation for the hydrogen atom. Which degeneracy is not broken until the Lamb shift is taken into account?
- # 7 Gauge invariance of the Dirac equation (8 points) Consider a charged particle with spin $\frac{1}{2}$ in an electromagnetic potential $A^{\mu}(x)$. Show how the Dirac spinor of the particle has to transform under gauge transformations $A^{\mu}(x) \to A^{\mu}(x) + \partial^{\mu}\lambda(x)$ such that the Dirac equation remains valid.
- # 8 Particle in a light pulse (2+6+4+3+4+11+5+5+2=42 points) Consider a particle with spin $\frac{1}{2}$ and mass m in an electromagnetic four-potential $A_0 = A_1 = A_3 = 0, A_2 = \phi(x^1 - x^0)$. We define $u := x^1 - x^0$.
 - (1) Why can one take $\psi(x) = \psi_0(u) \exp(i(k_+(x^1 + x^0) + k_2x^2 + k_3x^3))$ as an ansatz?
 - (2) Using the ansatz (1), convert the Dirac equation to the form $(\alpha^k = \gamma^0 \gamma^k, \beta = \gamma^0)$:

$$-i(1-\alpha^1)\frac{\partial\psi_0}{\partial u} - k_+(1+\alpha^1)\psi_0 = \left(\alpha^2\left(k_2 - \frac{q}{\hbar c}\phi(u)\right) + \alpha^3k_3 + \beta\frac{mc}{\hbar}\right)\psi_0.$$

(3) Why is it possible to choose the following form for the matrices α^i and β ?

$$\alpha^1 = \begin{pmatrix} \mathbb{1} & 0 \\ 0 & -\mathbb{1} \end{pmatrix}, \quad \alpha^2 = \begin{pmatrix} 0 & \sigma^1 \\ \sigma^1 & 0 \end{pmatrix}, \quad \alpha^3 = \begin{pmatrix} 0 & \sigma^2 \\ \sigma^2 & 0 \end{pmatrix}, \quad \beta = \begin{pmatrix} 0 & \sigma^3 \\ \sigma^3 & 0 \end{pmatrix}.$$

(4) Using (3) and the decomposition $\psi_0 = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ into two-component spinors, show:

$$-2i\frac{\partial \eta}{\partial u} = \lambda \xi \quad \text{und} \quad -2k_{+}\xi = \lambda \eta, \quad \text{where} \quad \lambda = \sigma^{1}(k_{2} - \frac{q}{\hbar c}\phi(u)) + \sigma^{2}k_{3} + \sigma^{3}\frac{mc}{\hbar}.$$

(5) Show that

$$\eta(u) = \exp\left(-\frac{\mathrm{i}}{4k_{+}}\left(\left(k_{3}^{2} + \left(\frac{mc}{\hbar}\right)^{2}\right)u + \int_{0}^{u}\mathrm{d}u'\left(k_{2} - \frac{q}{\hbar c}\phi(u')\right)^{2}\right)\right)\chi$$

is a solution of (4), where χ is a two-component spinor depending on k_+, k_2, k_3 .

(6) For $\phi = 0$, one naturally gets a free spinor $\psi_{\vec{k}}$ with wave vector \vec{k} . Show that

$$k_1 = k_+ - \frac{1}{4k_+} \left(k_2^2 + k_3^2 + \left(\frac{mc}{\hbar} \right)^2 \right)$$
 and $k_0 = k_+ + \frac{1}{4k_+} \left(k_2^2 + k_3^2 + \left(\frac{mc}{\hbar} \right)^2 \right)$

and check that the four-vector k is on the mass shell. How does the sign of k_0 depend on k_+ , k_2 and k_3 ? What happens for $k_+ = 0$?

- (7) Let $\phi(u) = 0$ for large negative u and $\phi(u) = a = \text{const.}$ for large positive u. Why does such a ϕ correspond to a light pulse? Apparently, $\psi(u) = \psi_{\vec{k}}$ for large negative u. Show for large positive u: $\psi(u) = e^{i\frac{q}{\hbar c}ax^2}\psi_{\vec{k}'}$ with $\vec{k}' = \vec{k} \frac{q}{\hbar c}a\vec{e}_2$.
- (8) Interpret the phase factor and the change in momentum in (7).
- (9) Can such a pulse produce particles? Give reasons for the answer.

Good Luck!