DYNAMIK HÜPFENDER BÄLLE Proseminar: Theoretische Physik

Florian Döhle

2. Juli 2014

Video Chaotische Bewegung

Video Periodische Bewegung

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

1 MOTIVATION

- 2 Aufstellen und Fixpunktanalyse der Abbildung
- **3** HUFEISEN-ABBILDUNG
- 4 Hufeisen-Abbildung in der Dynamik hüpfender Bälle
- 5 Seltsamen Attraktor in der Dynamik Hüpfender Bälle

MOTIVATION

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

pädagogischer Wert:

 einfache, numerisch leicht zu berechnende Abbildung, die unglaublich große Vielfalt an nichtlinearen Verhaltensweisen zeigt (Sattel-Knoten-Bifurkation, Periodenverdopplung, Hufeisen-Abbildung, Seltsamer Attraktor)

MOTIVATION

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

pädagogischer Wert:

- einfache, numerisch leicht zu berechnende Abbildung, die unglaublich große Vielfalt an nichtlinearen Verhaltensweisen zeigt (Sattel-Knoten-Bifurkation, Periodenverdopplung, Hufeisen-Abbildung, Seltsamer Attraktor)
- praktischer Wert:
 - ingenieurstechnische Anwendungen

GLIEDERUNG

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

1 MOTIVATION

2 Aufstellen und Fixpunktanalyse der Abbildung

- 3 HUFEISEN-ABBILDUNG
- 4 Hufeisen-Abbildung in der Dynamik hüpfender Bälle

6

5 Seltsamen Attraktor in der Dynamik Hüpfender Bälle

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ANNAHME 1:

Impulsbeziehung:
$$V(t_j) - W(t_j) = -\alpha(U(t_j) - W(t_j))$$

- V = Geschwindigkeit des Balles nach Aufprall
- U = Geschwindigkeit des Balles vor Aufprall
- $W = \mathsf{Geschwindigkeit} \ \mathsf{des} \ \mathsf{Tisches}$
- $t_j =$ Zeit des j-ten Aufpralls
- $\alpha = \mathsf{D\ddot{a}mpfungsparameter}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ANNAHME 1:

Impulsbeziehung:
$$V(t_j) - W(t_j) = -\alpha(U(t_j) - W(t_j))$$

- V = Geschwindigkeit des Balles nach Aufprall
- U = Geschwindigkeit des Balles vor Aufprall
- W = Geschwindigkeit des Tisches
- $t_j =$ Zeit des j-ten Aufpralls
- $\alpha = \mathsf{D\ddot{a}mpfungsparameter}$

ANNAHME 2:

zurückgelegte Strecke des Balles \gg Auslenkung des Tisches $\Rightarrow U(t_{j+1}) = -V(t_j)$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Bewegung des Tisches:

 $x(t) = -\beta \sin(\omega t)$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Bewegung des Tisches:

 $x(t) = -\beta \sin(\omega t)$

EINFÜHREN DIMENSIONSLOSER GRÖSSEN

 $\phi = \omega t \cong$ Phase des Tisches $v = 2\omega \frac{V}{g} \cong$ zusätzliche Phase durch Zeit zwischen Aufprällen $\gamma = 2\omega^2 (1 + \alpha) \frac{\beta}{g} \cong$ Kraftamplitude

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Bewegung des Tisches:

 $x(t) = -\beta \sin(\omega t)$

EINFÜHREN DIMENSIONSLOSER GRÖSSEN

 $\phi = \omega t \cong$ Phase des Tisches $v = 2\omega \frac{V}{g} \cong$ zusätzliche Phase durch Zeit zwischen Aufprällen $\gamma = 2\omega^2 (1 + \alpha) \frac{\beta}{g} \cong$ Kraftamplitude

ABBILDUNG

$$f = f_{\alpha,\gamma} : \begin{pmatrix} \phi_{j+1} \\ v_{j+1} \end{pmatrix} = \begin{pmatrix} \phi_j + v_j \\ \alpha v_j - \gamma \cos(\phi_j + v_j) \end{pmatrix}$$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ABBILDUNG $f_{\alpha,\gamma}(\phi_j, v_j) = \begin{pmatrix} \phi_j + v_j \\ \alpha v_j - \gamma \cos(\phi_j + v_j) \end{pmatrix}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

$$f_{lpha,\gamma}(\phi_j, \mathbf{v}_j) = egin{pmatrix} \phi_j + \mathbf{v}_j \ lpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Inverse:
$$f_{\alpha,\gamma}^{-1}$$
: $\begin{pmatrix} \phi_{j-1} \\ v_{j-1} \end{pmatrix} = \begin{pmatrix} \phi_j - \frac{1}{\alpha} (\gamma \cos \phi_j + v_j) \\ \frac{1}{\alpha} (\gamma \cos \phi_j + v_j) \end{pmatrix}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

-

$$f_{lpha,\gamma}(\phi_j, \mathbf{v}_j) = egin{pmatrix} \phi_j + \mathbf{v}_j \ lpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Inverse:
$$f_{\alpha,\gamma}^{-1}: \begin{pmatrix} \phi_{j-1} \\ v_{j-1} \end{pmatrix} = \begin{pmatrix} \phi_j - \frac{1}{\alpha} (\gamma \cos \phi_j + v_j) \\ \frac{1}{\alpha} (\gamma \cos \phi_j + v_j) \end{pmatrix}$$

Jacobimatrix: $Df = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\phi_j + v_j) & \alpha + \gamma \sin(\phi_j + v_j) \end{bmatrix}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

-

$$f_{lpha,\gamma}(\phi_j,\mathsf{v}_j) = egin{pmatrix} \phi_j+\mathsf{v}_j\ lpha \mathsf{v}_j-\gamma\cos(\phi_j+\mathsf{v}_j) \end{pmatrix}$$

Inverse:
$$f_{\alpha,\gamma}^{-1}: \begin{pmatrix} \phi_{j-1} \\ v_{j-1} \end{pmatrix} = \begin{pmatrix} \phi_j - \frac{1}{\alpha}(\gamma \cos \phi_j + v_j) \\ \frac{1}{\alpha}(\gamma \cos \phi_j + v_j) \end{pmatrix}$$

Jacobimatrix: $Df = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\phi_j + v_j) & \alpha + \gamma \sin(\phi_j + v_j) \end{bmatrix}$

Jacobideterminante: $det(Df) = \alpha$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

• für den elastischen Fall $\alpha = 1$ kann man zeigen, dass beschränkte periodische und aperiodische Orbits existieren

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Für den elastischen Fall $\alpha = 1$ kann man zeigen, dass beschränkte periodische und aperiodische Orbits existieren

17

• im Folgenden sei $\alpha < 1$, so gilt:

THEOREM

Alle Orbits sind beschränkt.

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Theorem

Alle Orbits sind beschränkt.

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Theorem

Alle Orbits sind beschränkt.

BEWEIS.

$$|v_{j+1}| = |\alpha v_j - \gamma cos(\phi_j + v_j)| \le \alpha |v_j| + \gamma$$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Theorem

Alle Orbits sind beschränkt.

BEWEIS.

$$\begin{aligned} |\mathbf{v}_{j+1}| &= |\alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j)| \le \alpha |\mathbf{v}_j| + \gamma \\ \Rightarrow \mathsf{Falls} \ |\mathbf{v}_j| > \frac{\gamma}{1-\alpha}, \text{so ist } |\mathbf{v}_{j+1}| < |\mathbf{v}_j| \end{aligned}$$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Theorem

Alle Orbits sind beschränkt.

BEWEIS.

$$\begin{aligned} |v_{j+1}| &= |\alpha v_j - \gamma cos(\phi_j + v_j)| \le \alpha |v_j| + \gamma \\ \Rightarrow \text{Falls } |v_j| > \frac{\gamma}{1-\alpha}, \text{so ist } |v_{j+1}| < |v_j| \end{aligned}$$

■ d. h. alle Orbits gelangen immer wieder in Streifen begrenzt durch $v_j = \pm \frac{\gamma}{1-\alpha}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

• f ist invariant unter $\phi \rightarrow \phi + 2\pi \Rightarrow$ nehmen ϕ modulo 2π

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

- f ist invariant unter $\phi \rightarrow \phi + 2\pi \Rightarrow$ nehmen ϕ modulo 2π
- suchen eine attraktive Menge A, d. h. ∃ Umgebung U von A (A invariant) : $f^n(U) \rightarrow A$ für $n \rightarrow \infty$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

$$f_{lpha,\gamma}(\phi_j, \mathsf{v}_j) = egin{pmatrix} \phi_j + \mathsf{v}_j \ lpha \mathsf{v}_j - \gamma \cos(\phi_j + \mathsf{v}_j) \end{pmatrix}$$

- f ist invariant unter $\phi \rightarrow \phi + 2\pi \Rightarrow$ nehmen ϕ modulo 2π
- suchen eine attraktive Menge A, d. h. ∃ Umgebung U von A (A invariant) : $f^n(U) \rightarrow A$ für $n \rightarrow \infty$
- mit dem Theorem ergibt sich die Trapping Region $D = \{(\phi, v) : |v| \le \epsilon + \frac{\gamma}{1-\alpha}\} \subset S^1 \times \mathbb{R}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

$$f_{lpha,\gamma}(\phi_j, \mathsf{v}_j) = egin{pmatrix} \phi_j + \mathsf{v}_j \ lpha \mathsf{v}_j - \gamma \cos(\phi_j + \mathsf{v}_j) \end{pmatrix}$$

- f ist invariant unter $\phi \rightarrow \phi + 2\pi \Rightarrow$ nehmen ϕ modulo 2π
- suchen eine attraktive Menge A, d. h. ∃ Umgebung U von A (A invariant) : $f^n(U) \rightarrow A$ für $n \rightarrow \infty$
- mit dem Theorem ergibt sich die Trapping Region $D = \{(\phi, v) : |v| \le \epsilon + \frac{\gamma}{1-\alpha}\} \subset S^1 \times \mathbb{R}$
- damit haben wir attraktive Menge $A = \bigcap_{n \ge 0} f^n(D)$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

• durch Lösen von $f(\bar{\phi}, \bar{v}) = (\bar{\phi}, \bar{v})$ erhält man die Fixpunkte

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

 $n=0,\pm 1,\pm 2,...,\pm N,$ wobei N das größte $n\in\mathbb{N}$ ist, sodass $2N\pi(1-lpha)<\gamma$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

• durch Lösen von $f(\bar{\phi}, \bar{v}) = (\bar{\phi}, \bar{v})$ erhält man die Fixpunkte

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

 $\begin{array}{l} n=0,\pm 1,\pm 2,...,\pm N,\\ \text{wobei N das größte }n\in \mathbb{N} \text{ ist, sodass } 2N\pi(1-\alpha)<\gamma\\ \bullet \text{ für }\gamma<2n\pi(1-\alpha) \text{ existieren keine Fixpunkte} \end{array}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

• durch Lösen von $f(\bar{\phi}, \bar{v}) = (\bar{\phi}, \bar{v})$ erhält man die Fixpunkte

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

 $n=0,\pm 1,\pm 2,...,\pm N,$ wobei N das größte $n\in\mathbb{N}$ ist, sodass $2N\pi(1-lpha)<\gamma$

- für $\gamma < 2n\pi(1-\alpha)$ existieren keine Fixpunkte
- beschränken uns auf den Zweig arccos: $[-1,1] \rightarrow [\frac{\pi}{2},\frac{3\pi}{2}]$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Fixpunkte

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

■ zur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1\\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

■ zur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

zur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1\\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

zur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1\\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

ur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1\\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) > 0$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

ur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1\\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) > 0 \Rightarrow \tau > 0$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

zur Betrachtung der Stabilität benutze die Jacobimatrix
 $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix}$ mit
 $\Delta = \alpha > 0$ und $\tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) > 0 \Rightarrow \tau > 0$ $n < 0 \Rightarrow \bar{\phi}_n > \pi$
FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

zur Betrachtung der Stabilität benutze die Jacobimatrix
 $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix}$ mit
 $\Delta = \alpha > 0$ und $\tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) > 0 \Rightarrow \tau > 0$ $n < 0 \Rightarrow \bar{\phi}_n > \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) < 0$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FIXPUNKTE

$$\begin{pmatrix} \bar{\phi}_n \\ \bar{v}_n \end{pmatrix} = \begin{pmatrix} \arccos(\frac{2n\pi(\alpha-1)}{\gamma}) \\ 2n\pi \end{pmatrix}$$

a zur Betrachtung der Stabilität benutze die Jacobimatrix $Df(\bar{\phi}_n, \bar{v}_n) = \begin{bmatrix} 1 & 1 \\ \gamma \sin(\bar{\phi}_n + \bar{v}_n) & \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n) \end{bmatrix} \text{ mit}$ $\Delta = \alpha > 0 \text{ und } \tau = 1 + \alpha + \gamma \sin(\bar{\phi}_n + \bar{v}_n)$ $\tau^2 > 4\Delta \forall_{\gamma,\alpha}$ $n > 0 \Rightarrow \bar{\phi}_n < \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) > 0 \Rightarrow \tau > 0$ $n < 0 \Rightarrow \bar{\phi}_n > \pi \Rightarrow \sin(\bar{\phi}_n + \bar{v}_n) < 0$ $\Rightarrow \tau > 0 \text{ für } \gamma > 2\sqrt{n^2\pi^2(1 - \alpha)^2 + (1 + \alpha)^2}, \text{ sonst } \tau < 0$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Fixpunktanalyse

39

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- keine Fixpunkte für $\gamma < 2n\pi(1-\alpha)$
- $\bar{\phi}_n < \pi \Rightarrow (\bar{\phi}_n, \bar{\nu}_n)$ ist instabiler Knoten

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- keine Fixpunkte für $\gamma < 2n\pi(1-\alpha)$
- $\bar{\phi}_n < \pi \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma < 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{\nu}_n)$ ist stabiler Knoten

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- keine Fixpunkte für $\gamma < 2n\pi(1-\alpha)$ ■ $\bar{\phi}_n < \pi \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma < 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{\nu}_n)$ ist stabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma > 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- keine Fixpunkte für $\gamma < 2n\pi(1-\alpha)$
- $\bar{\phi}_n < \pi \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma < 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist stabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma > 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- Bifurkationspunkte $\gamma_n = 2n\pi(1-\alpha)$ (Sattel-Knoten-Bifurkation)

und
$$\gamma'_{n} = 2\sqrt{n^{2}\pi^{2}(1-\alpha)^{2} + (1+\alpha)^{2}}$$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Schlussfolgerungen:

- keine Fixpunkte für $\gamma < 2n\pi(1-\alpha)$
- $\bar{\phi}_n < \pi \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma < 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist stabiler Knoten
- $\bar{\phi}_n > \pi$ und $\gamma > 2\sqrt{n^2\pi^2(1-\alpha)^2 + (1+\alpha)^2} \Rightarrow (\bar{\phi}_n, \bar{v}_n)$ ist instabiler Knoten
- Bifurkationspunkte $\gamma_n = 2n\pi(1-\alpha)$ (Sattel-Knoten-Bifurkation)

und
$$\gamma'_{n} = 2\sqrt{n^{2}\pi^{2}(1-\alpha)^{2} + (1+\alpha)^{2}}$$

■ berechnen von $f(f(\phi_j, v_j)) = (\phi_j, v_j)$ zeigt, dass für $\gamma > \gamma'_n$ zwei stabile Orbits mit Periode 2 existieren, d. h. bei γ'_n liegt eine Flip-Bifurkation vor

BIFURKATIONSDIAGRAMM

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Bifurkationsdiagramm der Bewegungen der Periode 1 und 2 für $\alpha = 0.9$ und $n = 0, \pm 1, \pm 2, ..., \pm 5$,

BALLBEWEGUNGEN

Florian Döhle - Dynamik hüpfender Bälle

BALLBEWEGUNGEN

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Exemplarische reale Bewegungen der Periode 1 und 2

47

GLIEDERUNG

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

1 MOTIVATION

2 Aufstellen und Fixpunktanalyse der Abbildung

3 HUFEISEN-ABBILDUNG

- 4 Hufeisen-Abbildung in der Dynamik hüpfender Bälle
- 5 Seltsamen Attraktor in der Dynamik Hüpfender Bälle

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

DEFINITION

Hufeisen-Abbildung: Eine nichtlineare Abbildung f wird Hufeisen-Abbildung genannt, wenn diese die Urbildmenge in Form eines Quadrates zunächst staucht, dann streckt und schließlich zu einem Hufeisen formt.

Abbildung: Veranschaulichung der Hufeisen-Abbildung Abbildung

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

 bei wiederholter Anwendung von f verlassen meiste Punkte das Ursprungsquadrat

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- bei wiederholter Anwendung von f verlassen meiste Punkte das Ursprungsquadrat
- Punkte, die im Quadrat bleiben, bilden ein Fraktal

${\rm Hufeisen-Abbildung}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- bei wiederholter Anwendung von f verlassen meiste Punkte das Ursprungsquadrat
- Punkte, die im Quadrat bleiben, bilden ein Fraktal
- inverse Abbildung bildet Hufeisen auf ein um 90 Grad gedrehtes Hufeisen ab

${\rm Hufeisen-Abbildung}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- bei wiederholter Anwendung von f verlassen meiste Punkte das Ursprungsquadrat
- Punkte, die im Quadrat bleiben, bilden ein Fraktal
- inverse Abbildung bildet Hufeisen auf ein um 90 Grad gedrehtes Hufeisen ab

• invariante Menge Λ erhält man durch $\Lambda = \bigcap_{k=-\infty}^{\infty} f^k(Quadrat)$

Video Hufeisen-Abbildung 54

GLIEDERUNG

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

1 MOTIVATION

- 2 Aufstellen und Fixpunktanalyse der Abbildung
- **3** HUFEISEN-ABBILDUNG
- 4 Hufeisen-Abbildung in der Dynamik hüpfender Bälle
- 5 Seltsamen Attraktor in der Dynamik Hüpfender Bälle

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

 im Folgenden sei der Einfachheit halber α = 1, die Beschreibung der Dynamik in diesem Abschnitt gilt qualitativ auch für kleinere α

HUFEISEN IN DER DYNAMIK HÜPFENDER BÄLLE

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- im Folgenden sei der Einfachheit halber α = 1, die Beschreibung der Dynamik in diesem Abschnitt gilt qualitativ auch für kleinere α
- betrachten Parallelogramm im (ϕ , v)-Phasenraum mit Grenzen $\phi + v = 0$ (*AB*), $\phi + v = 2Pi$ (*CD*), $\phi = 0$ (*AD*), $\phi = 2\pi$ (*BC*)

Abbildung: Entstehung eines Hufeisens bei $\gamma = 3\pi$

57

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ABBILDUNG

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Abbildung: Entstehung eines Hufeisens bei $\gamma = 3\pi$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ABBILDUNG

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Abbildung: Entstehung eines Hufeisens bei $\gamma = 3\pi$

Bilder von Linien $\phi + v = k$ sind vertikale Linien $\phi = k, v \in [k - 2\pi - \gamma \cos k, k - \gamma \cos k]$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

ABBILDUNG

$$f_{\alpha,\gamma}(\phi_j, \mathbf{v}_j) = \begin{pmatrix} \phi_j + \mathbf{v}_j \\ \alpha \mathbf{v}_j - \gamma \cos(\phi_j + \mathbf{v}_j) \end{pmatrix}$$

Abbildung: Entstehung eines Hufeisens bei $\gamma = 3\pi$

Bilder von Linien φ + ν = k sind vertikale Linien φ = k, ν ∈ [k - 2π - γ cos k, k - γ cos k]
Bilder von vertikalen Linien φ = 0 und φ = k sind Kurven ν = φ - γ cos φ und ν = φ - 2π - γ cos φ

Florian Döhle - Dynamik hüpfender Bälle

■ falls γ groß genug ist wie in voriger Abbildung, so bilden $Q \bigcap f(Q)$ zwei disjunkte Streifen V_1, V_2

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- falls γ groß genug ist wie in voriger Abbildung, so bilden $Q \bigcap f(Q)$ zwei disjunkte Streifen V_1, V_2
- Urbilder dieser disjunkter Streifen sind disjunkte horizontale Streifen H₁, H₂

Abbildung: Entstehung disjunkter Streifen V_1, V_2 bei $\gamma = 5\pi$

62

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Qualitatives Verhalten von f bei genügend großem γ

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Qualitatives Verhalten von f bei genügend großem γ

• haben für ausreichend große γ Hufeisen-Abbildung vorliegen

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Qualitatives Verhalten von f bei genügend großem γ

haben für ausreichend große γ Hufeisen-Abbildung vorliegen
 gilt auch für kleinere α, es muss dann γ höher gewählt werden

HUFEISEN IN DER DYNAMIK HÜPFENDER BÄLLE

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Qualitatives Verhalten von f bei genügend großem γ

- haben für ausreichend große γ Hufeisen-Abbildung vorliegen
- silt auch für kleinere α , es muss dann γ höher gewählt werden
- allerdings machen wir nur Aussagen über Parallelogramme Q

DEFINITION $\Lambda_{v}^{n} := \bigcap_{k=0}^{n} f^{k}(Q) \text{ (gelb)}$ $\Lambda_{h}^{n} := \bigcap_{k=0}^{n} f^{-k}(Q) \text{ (grün)}$ $\Lambda := \Lambda_{v}^{\infty} \cap \Lambda_{h}^{\infty}$

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: gegen invariante Menge konvergierende Menge

Haben damit unter f invariante Menge $\Lambda = \bigcap_{k=-\infty}^{\infty} f^k(Q)$ 67

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Theorem

(A) Die unter f invariante Menge enthält eine abzählbare Menge periodischer Orbits aller Perioden.

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

- (A) Die unter f invariante Menge enthält eine abzählbare Menge periodischer Orbits aller Perioden.
- (B) Alle periodischen Orbits liegen dicht in Λ und sind instabil.

- (A) Die unter f invariante Menge enthält eine abzählbare Menge periodischer Orbits aller Perioden.
- (B) Alle periodischen Orbits liegen dicht in Λ und sind instabil.
- (C) Diese enthält eine überabzählbare Menge nichtperiodischer Orbits.

- (A) Die unter f invariante Menge enthält eine abzählbare Menge periodischer Orbits aller Perioden.
- (B) Alle periodischen Orbits liegen dicht in Λ und sind instabil.
- (C) Diese enthält eine überabzählbare Menge nichtperiodischer Orbits.
- (D) Jeder Punkt von Λ kommt Punkt eines periodischen Orbits beliebig nahe (man sagt Λ enthält einen dichten Orbit).
Florian Döhle - Dynamik hüpfender Bälle

Florian Döhle - Dynamik hüpfender Bälle

Was können wir durch das Theorem über die invariante Menge über die Dynamik unseres Systems aussagen?

• Λ ist kein Attraktor, da alle periodischen Orbits instabil sind

Florian Döhle - Dynamik hüpfender Bälle

- \blacksquare Λ ist kein Attraktor, da alle periodischen Orbits instabil sind
- in der Praxis ist es unmöglich zwischen unendlich langen periodischen Orbits und nichtperiodischen Orbits zu unterscheiden, da Λ dichten Orbit enthält

Florian Döhle - Dynamik hüpfender Bälle

- \blacksquare Λ ist kein Attraktor, da alle periodischen Orbits instabil sind
- in der Praxis ist es unmöglich zwischen unendlich langen periodischen Orbits und nichtperiodischen Orbits zu unterscheiden, da Λ dichten Orbit enthält
- stabile Mannigfaltigkeit (das sind Punkte p mit $\{f^n(p)\}$ asymptotisch zu Λ für $n \to \infty$) verhält sich wie überabzählbare Menge von Separatrizen

Florian Döhle - Dynamik hüpfender Bälle

- \blacksquare Λ ist kein Attraktor, da alle periodischen Orbits instabil sind
- in der Praxis ist es unmöglich zwischen unendlich langen periodischen Orbits und nichtperiodischen Orbits zu unterscheiden, da Λ dichten Orbit enthält
- stabile Mannigfaltigkeit (das sind Punkte p mit $\{f^n(p)\}$ asymptotisch zu Λ für $n \to \infty$) verhält sich wie überabzählbare Menge von Separatrizen \Rightarrow starke Abhängigkeit von Anfangsbedingungen

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Separatrix eines Sattelpunktes

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: Separatrix eines Sattelpunktes

Abbildung: Stabile und instabile Mannigfaltigkeiten des Sattelpunktes mit n = +1 für $\alpha = 0.8$ und $\gamma = 3.5$

GLIEDERUNG

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

1 MOTIVATION

- 2 Aufstellen und Fixpunktanalyse der Abbildung
- 3 HUFEISEN-ABBILDUNG
- 4 Hufeisen-Abbildung in der Dynamik hüpfender Bälle
- 5 Seltsamen Attraktor in der Dynamik Hüpfender Bälle

Erhöhung von γ

Florian Döhle - Dynamik hüpfender Bälle

• wollen wie schon anfangs Abhängigkeit der Dynamik des Systems von γ betrachten, nun insbesondere den Übergang zur Hufeisen-Abbildung unter Perioden-Verdopplung (es ist nun wieder $\alpha < 1$)

Erhöhung von γ

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

• wollen wie schon anfangs Abhängigkeit der Dynamik des Systems von γ betrachten, nun insbesondere den Übergang zur Hufeisen-Abbildung unter Perioden-Verdopplung (es ist nun wieder $\alpha < 1$)

82

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

■ bei Erhöhen von γ erreicht die Mitte von f(Q) bei $(\phi, v) = (\pi, 2n\pi)$ die Linie $v = 2n\pi$, wobei $\gamma = 2n\pi(1 - \alpha) = \gamma_n$

Florian Döhle - Dynamik hüpfender Bälle

• bei Erhöhen von γ erreicht die Mitte von f(Q) bei $(\phi, v) = (\pi, 2n\pi)$ die Linie $v = 2n\pi$, wobei $\gamma = 2n\pi(1 - \alpha) = \gamma_n$ \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

• bei Erhöhen von γ erreicht die Mitte von f(Q) bei $(\phi, v) = (\pi, 2n\pi)$ die Linie $v = 2n\pi$, wobei $\gamma = 2n\pi(1 - \alpha) = \gamma_n$ \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

• hatten festgestellt, dass bei $\gamma = \gamma'_n$ Flip-Bifurkation auftritt

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

■ bei Erhöhen von γ erreicht die Mitte von f(Q) bei $(\phi, v) = (\pi, 2n\pi)$ die Linie $v = 2n\pi$, wobei $\gamma = 2n\pi(1 - \alpha) = \gamma_n$ \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und

 \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

• hatten festgestellt, dass bei $\gamma = \gamma'_n$ Flip-Bifurkation auftritt

 für größere γ treten weitere Flip-Bifurkationen auf: erhalten stabile Orbits mit Perioden 2ⁿ

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

• bei Erhöhen von γ erreicht die Mitte von f(Q) bei

$$(\phi, \mathbf{v}) = (\pi, 2n\pi)$$
 die Linie $\mathbf{v} = 2n\pi$, wobei

$$\gamma = 2n\pi(1-\alpha) = \gamma_n$$

 \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

- hatten festgestellt, dass bei $\gamma = \gamma'_n$ Flip-Bifurkation auftritt
- für größere γ treten weitere Flip-Bifurkationen auf: erhalten stabile Orbits mit Perioden 2ⁿ
- ist γ so groß, dass Q∩f(Q) zwei disjunkte Streifen bilden, liegt Hufeisen vor (chaotisches Verhalten, kein Attraktor)

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

 \blacksquare bei Erhöhen von γ erreicht die Mitte von f(Q) bei

$$(\phi, v) = (\pi, 2n\pi)$$
 die Linie $v = 2n\pi$, wobei

$$\gamma = 2n\pi(1-\alpha) = \gamma_n$$

 \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

• hatten festgestellt, dass bei $\gamma = \gamma'_n$ Flip-Bifurkation auftritt

- für größere γ treten weitere Flip-Bifurkationen auf: erhalten stabile Orbits mit Perioden 2ⁿ
- ist γ so groß, dass Q∩f(Q) zwei disjunkte Streifen bilden, liegt Hufeisen vor (chaotisches Verhalten, kein Attraktor)
- für γ'_n < γ < γ^h_n, wobei ab γ^h_n das Hufeisen vorliegt, müssen unendlich viele Flip-Bifurkationen stattfinden (vgl. Logistische Abbildung)

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

 \blacksquare bei Erhöhen von γ erreicht die Mitte von f(Q) bei

$$(\phi, v) = (\pi, 2n\pi)$$
 die Linie $v = 2n\pi$, wobei

$$\gamma = 2n\pi(1-\alpha) = \gamma_n$$

 \Rightarrow Sattel-Knoten-Bifurkation liegt vor (stabile und instabile Fixpunkte entstehen)

• hatten festgestellt, dass bei $\gamma = \gamma'_n$ Flip-Bifurkation auftritt

- für größere γ treten weitere Flip-Bifurkationen auf: erhalten stabile Orbits mit Perioden 2ⁿ
- ist γ so groß, dass Q∩f(Q) zwei disjunkte Streifen bilden, liegt Hufeisen vor (chaotisches Verhalten, kein Attraktor)
- für γ'_n < γ < γ^h_n, wobei ab γ^h_n das Hufeisen vorliegt, müssen unendlich viele Flip-Bifurkationen stattfinden (vgl. Logistische Abbildung)
- haben dann seltsamen Attraktor vorliegen

NUMERISCHE ITERATIONEN

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: 10000 Iterationen von f bei $\alpha = 0.8$ und $\gamma = 1.68$

Abbildung: 10000 Iterationen von f bei $\alpha = 0.8$ und $\gamma = 10$

90

NUMERISCHE ITERATIONEN

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Abbildung: 10000 Iterationen von f bei $\alpha = 0.8$ und $\gamma = 10$

Abbildung: Vergrößerung von 100000 Iterationen von f bei $\alpha = 0.8$ und $\gamma = 10$ 91

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Wir haben an der Dynamik hüpfender Bälle beobachtet:

Florian Döhle - Dynamik hüpfender Bälle

Wir haben an der Dynamik hüpfender Bälle beobachtet:

 im inelastischen Fall sind alle Bahnen beschränkt, für sehr kleine Kraftamplituden der Tischschwingung existieren keine Fixpunkte, ab γ_n existiert ein stabiler und ein instabiler Fixpunkt (Sattel-Knoten-Bifurkation)

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Wir haben an der Dynamik hüpfender Bälle beobachtet:

- im inelastischen Fall sind alle Bahnen beschränkt, für sehr kleine Kraftamplituden der Tischschwingung existieren keine Fixpunkte, ab γ_n existiert ein stabiler und ein instabiler Fixpunkt (Sattel-Knoten-Bifurkation)
- eine Hufeisen-Abbildung ist typisch für chaotisches Verhalten, auch hier liegt eine Hufeisen-Abbildung ab γ_n^h vor

FLORIAN DÖHLE - DYNAMIK HÜPFENDER BÄLLE

Wir haben an der Dynamik hüpfender Bälle beobachtet:

- im inelastischen Fall sind alle Bahnen beschränkt, für sehr kleine Kraftamplituden der Tischschwingung existieren keine Fixpunkte, ab γ_n existiert ein stabiler und ein instabiler Fixpunkt (Sattel-Knoten-Bifurkation)
- eine Hufeisen-Abbildung ist typisch für chaotisches Verhalten, auch hier liegt eine Hufeisen-Abbildung ab γ_n^h vor
- ab γ'_n treten unendlich viele Flip-Bifurkationen auf und es entsteht ein seltsamer Attraktor

Vielen Dank für Eure Aufmerksamkeit!

QUELLEN

- John Guckenheimer, Philip Holmes: "Nonlinear Oscilations, Dynamical Systems, and Bifurcations of Vector Fields"
- Wikipedia
- chaos-math.org
- youtube.com/watch?v=pnHtuilMgTY