NACHKLAUSUR zu den Rechenmethoden der Physik II

Dienstag, 30.09.2008, PD Michael Flohr, M. Otto

Bitte beachten Sie:

- Auf jedem Blatt sind Name und Vorname sowie Matrikelnummer zu vermerken.
- Schreiben Sie Ihre Lösungen mit Tinte (Kugelschreiber, Füller) auf.
- Bitte beginnen Sie jede Aufgabe mit einem neuen Blatt.
- Es sind alle Aufgaben zu lösen und zwar allein.
- Das Abschreiben oder die Verwendung nicht ausdrücklich zugelassener Hilfsmittel während der Klausur wird als Betrugsversuch gewertet und führt zum Nichtbestehen der Klausur!
- Bearbeitungszeit: 1 Stunde.

Es gibt insgesamt 18 Punkte. Sie brauchen **8 Punkte** um die Klausur zu bestehen. Ein eventuelles Herabsetzen der Bestehensgrenze behalten wir uns vor.

Vorname:
Vorname

Matrikelnummer:

Studiengang:

Aufgabe	[K1]	[K2]	[K3]	[K4]	\sum
max. Punkte	6	4	4	4	18
err. Punkte					
Korrektor					

[NK1] 6 Kurzfragen

$$(6 \times 1 = 6 \text{ Punkte})$$

(a) Bestimmen Sie die Metrik g..der parabolischen Zylinderkoordinaten für $z=0,\,$ gegeben via

$$\vec{x}(u,v) = \left(\frac{u^2 - v^2}{2}, uv, 0\right)$$

- .
- (b) Bestimmen Sie die Taylorentwicklung von $V(x,y) = \ln\left(1 + \frac{xy}{R^2}\right)$ um den Ursprung bis einschließlich zweite Ordnung!
- (c) $v = -t^2 \cdot (1+v)$, v(0) = 0, v(t) = ?
- (d) $\delta(x) = \alpha \frac{\varepsilon}{x^2 + \varepsilon^2}$ soll δ -Funktion sein, dann ist $\alpha = ?$
- (e) Wie lautet die Stromdichte eines halbkreisförmig angeordneten Leiters in der x-y-Ebene, welcher von einem Strom I_0 durchflossen wird? Der Halbkreis habe den Radius R.
- (f) Wie lauten die Fourier-transformierten Maxwell-Gleichungen im Vakuum?

$[{f NK2}]$ Rotationsparaboloid

(1 + 3 = 4 Punkte)

Ein Körper sei durch die Randflächen

$$z(x,y) = h \left[1 - \left(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 \right)^2 \right]$$
 und $z(x,y) = 0$

gegeben.

- (a) Skizzieren Sie den Körper und wählen Sie eine geeignete Parametrisierung $\vec{x}(\vec{u})$.
- (b) Bestimmen Sie das Volumen des Körpers!

[NK3] Maxwell-Gleichungen

$$(1+1+1+1=4 \text{ Punkte})$$

Im Vakuum hat das elektrische Feld $\vec{E}(\vec{x},t)$ einer ebenen, elektromagnetischen Welle die Form

$$\vec{E}(\vec{x},t) = \mathfrak{Re}\left(\vec{E}_0 \cdot e^{\mathrm{i}(\vec{k}\vec{x} - \omega t)}\right)$$

- (a) Welche Bedingung erfüllen die komplexe Amplitude \vec{E}_0 und der Ausbreitungsvektor \vec{k} ?
- (b) Welches magnetische Feld $\vec{B}(\vec{x},t)$ gehört mindestens dazu?
- (c) Unter welcher Bedingung ist die Wellengleichung $\Box \vec{E} = \vec{0}$ mit $\Box := \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \Delta$ erfüllt?
- (d) Probe: Sind alle Maxwell-Gleichungen erfüllt?

[NK4] Fourier-Transformation

(4 Punkte)

Gegeben sei die (dimensionslose) Verteilung

$$T(\vec{x}) = \frac{e^{-|\vec{x}|}}{|\vec{x}|}.$$

Berechnen Sie die 3D-Fourier-Transformierte $\tilde{T}(\vec{k})$ durch Wahl geeigneter Koordinaten und skizzieren Sie \tilde{T} über $|\vec{k}|$.