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HomeWork 2 : Representation of the spin

Convention

If nothing is precised, I will used a, a† for bosonic annihilation, creation operators,
such that they fulfil the commutation relation [aα, a†β ] = δαβ (α, β being any quantum
label of my states). And c, c† will in principle refer to fermionic annihilation, creation
operators, governed by an anticommutation relation {cα, c†β} = δαβ .

1 Natural representation of the spin

Making use of the Pauli matrix identity σαβ · σγδ = 2δαδδβγ − δαβδγδ (where “.” denotes
the scalar or dot product), prove that

Ŝm · Ŝn = −1
2

∑
αβ

c†mαc†nβcmβcnα − 1
4
n̂mn̂n

where Ŝn = (1/2)
∑

αβ c†mασαβcmβ denotes the spin operator, and n̂m =
∑

α c†mαcmα

represents the total number operator on site m. (NB : here we assume that lattice sites
m and n are distinct).

2 The Holstein-Primakoff transformation

In several problems of magnetism where the spin S is large, it exists a useful representation
of the spin known as the Holstein-Primakoff transformation. Within this representation,
the spin raising and lowering operators are specified in terms of boson creation and anni-
hilation operators a† and a. Starting from the definition

Ŝ− = (2S)1/2a†
(

1 − a†a

2S

)1/2

and
Ŝz = S − a†a

confirm the validity of the Holstein-Primakoff transformation by explicitly checking the
commutation relations of the spin raising and lowering operators ([Ŝ+, Ŝ−] = 2Ŝz).

3 The Jordan-Wigner transformation

In exercice 2, we have seen a way to express the quantum spin algebra in terms of boson
operators. In this exercice, we show that a representation for spin 1/2 can be obtained in
terms of fermion operators. Specifically, let us formally represent an up spin as a particle
and a down spin as the vaccum, namely :

| ↑〉 ≡ |1〉 = f †|0〉
| ↓〉 ≡ |0〉 = f |1〉



Statistical Physics M. Flohr & G. Palacios Return date : 04.26.2005 2

In this representation the spin raising and lowering operators are expressed in the form
Ŝ+ = f † and Ŝ− = f , while Ŝz = f †f − 1/2

3.1 With this definition, confirm that the spins obey the SU(2) algebra [Ŝ+, Ŝ−] = 2Ŝz.

However, there is a problem : spins on different sites commute while fermion operators
anticommute, e.g.

Ŝ+
i Ŝ+

j = Ŝ+
j Ŝ+

i , but f †i f †j = −f †j f †i .

To obtain a faithful spin representation, it is necessary to cancel this unwanted sign.
Although a general procedure is hard to formulate, in one dimension this can be achieved
by a non-linear transformation :

Ŝ+
l = f †l eiπ

P
j<l n̂j , Ŝ−l = e−iπ

P
j<l n̂jfl, Ŝz

l = f †l fl − 1/2.

This looks complicated but it’s not. Have in mind this picture : in one dimension, the
particles can be ordered on a line. By counting the number of particles “to the left” we
can assign an overall phase of +1 or -1 to a given configuration and thereby transmute
the particles into fermions. (In other words, the exchange of two fermions induces a sign
change which is compensated by the factor arising from the phase - the so-called “Jordan-
Wigner string”.)

3.2 Using the Jordan-Wigner representation, show that

Ŝ+
mŜ−m+1 = f †mfm+1.

3.3 Application : the Heisenberg quantum chain

For the spin 1/2 anisotropic quantum Heisenberg spin chain, the Hamiltonian is of the
form :

H = −
∑

n

[
JzŜ

z
nŜz

n+1 +
J⊥
2

(Ŝ+
n Ŝ−n+1 + Ŝ−n Ŝ+

n+1)
]

Turning to the Jordan-Wigner representation, show that the Hamiltonian can be cast in
the form :

H = −
∑

n

[
J⊥
2

(f †nfn+1 + f †n+1fn) + Jz(
1
4
− f †nfn + f †nfnf †n+1fn+1)

]
3.4 The mapping above shows that the one-dimensional quantum spin 1/2 XY model
(i.e. Jz = 0) can be diagonalized as a non-interacting theory of spinless fermions. In this
case, establish the dispersion relation (relation energy-momentum).


