HomeWork 7 : The weakly interacting Bose gas

The theory of the weakly interacting Bose gas was originally developed by Bogoliubov in the late 1940s. It was meant to be a theory of superfluid helium, although for 4He the interatomic interactions are very strong. In this case the theory has some qualitative features which agree with experimental properties of 4He, most notably the linear phonon like quasiparticle excitation spectrum, $\epsilon_k = ck$, at small wave vectors. But it fails to reproduce other important phenomena, such as the roton minimum in the spectrum. On the other hand, the theory is believed to give a good description of atomic BEC, since the conditions under which it is derived are close to the experimental ones.

1. Mean-field approach, the Gross-Pitaevskii equation

Suppose that the many particle state is a coherent state (ie : eigenstate of the annihilation operator):

$$\hat{\psi}(r)|\psi\rangle = \psi_0(r)|\psi\rangle$$

The Hamiltonian of the interacting Bose gas is:

$$H = \int \hat{\psi}^\dagger(r) \left(-\frac{\hbar^2\nabla^2}{2m} + V_1(r) \right) \hat{\psi}(r) d^3r + \frac{1}{2} \int V(r - r') \hat{\psi}^\dagger(r) \hat{\psi}^\dagger(r') \hat{\psi}(r') \hat{\psi}(r') d^3rd^3r'$$

here $V_1(r)$ is an external potential.

Using $|\psi\rangle$ as a trial function, find that the dynamics of the system is ruled by the following equation:

$$\left(-\frac{\hbar^2\nabla^2}{2m} + V_1(r) + V_{eff}(r) - \mu \right) \psi_0(r) = 0$$

Hint : apply a variational principle like we did in Homework 6 ... and do not forget the normalization of ψ_0 that will be chosen as $N_0 = \int |\psi_0(r)|^2 d^3r$;

$$V_{eff}(r) = \int V(r - r')|\psi_0(r')|^2 d^3r'$$

The equation so derived is called the Gross-Pitaevskii equation.

2. Beyond mean-field, the Bogoliubov transformation

Up to second order in perturbation theory and in the simple case of no external potential ($V_1(r) = 0$), the Hamiltonian of the Bose liquid becomes:

$$H_2 = \sum_k \left(-\frac{\hbar^2k^2}{2m} - \mu \right) a_k^\dagger a_k + \frac{n_0g}{2} (a_k^\dagger a_{-k}^\dagger + 4a_k^\dagger a_k + a_{-k}a_k)$$

where $\mu = n_0g$

We introduce the Bogoliubov transformation:

$$a_k = u_k \alpha_k + v_k \alpha_{-k}^\dagger$$
$$a_k^\dagger = u_k \alpha_k^\dagger + v_k \alpha_{-k}$$
where \(u_k \) and \(v_k \) are real and obey \(u_k^2 - v_k^2 = 1 \).

The idea is to rewrite the Hamiltonian in terms of these new operators and then to vary the parameters \(u_k \) and \(v_k \) to make it diagonal.

a) Writing the Bogoliubov transformation in the matrix form,

\[
\begin{pmatrix}
 b_k \\
 b_{-k}^\dagger
\end{pmatrix} = \begin{pmatrix} u_k & v_k \\
 v_k & u_k \end{pmatrix} \begin{pmatrix} a_k \\
 a_{-k}^\dagger \end{pmatrix}
\]

show that the pair of equations can be inverted to yield

\[
\begin{pmatrix}
 a_k \\
 a_{-k}^\dagger
\end{pmatrix} = \begin{pmatrix} u_k & -v_k \\
 -v_k & u_k \end{pmatrix} \begin{pmatrix} b_k \\
 b_{-k}^\dagger \end{pmatrix}
\]

b) Rewrite the Hamiltonian \(H_2 \) in the matrix form

\[
H_2 = \sum_k \left(\begin{array}{cc} a_k^\dagger & a_{-k} \end{array} \right) \left(\begin{array}{cc} \epsilon_k + n_0 g & n_0 g/2 \\
 n_0 g/2 & 0 \end{array} \right) \left(\begin{array}{c} a_k \\
 a_{-k}^\dagger \end{array} \right)
\]

where \(\epsilon_k = \hbar^2 k^2 / 2m \).

c) Use the inverse of the Bogoliubov transformation to express \(H_2 \) in terms of the \(b' \)s operators, namely you should find :

\[
H_2 = \sum_k \left(\begin{array}{cc} b_k^\dagger & b_{-k} \end{array} \right) \left(\begin{array}{cc} M_{11} & M_{12} \\
 M_{21} & M_{22} \end{array} \right) \left(\begin{array}{c} b_k \\
 b_{-k}^\dagger \end{array} \right)
\]

where the coefficients \(M_{ij} \) have to be computed explicitly.

d) Show that the condition for the transformed matrix to be diagonal is that

\[
\frac{2 u_k v_k}{u_k^2 + v_k^2} = \frac{n_0 g}{\epsilon_k + n_0 g}
\]

e) Show that the trace of the \(M \) matrix is

\[
E = (\epsilon_k + n_0 g)(u_k^2 + v_k^2) - 2 n_0 g u_k v_k.
\]

Using the representation \(u_k = \cosh(\theta) \) and \(v_k = \sinh(\theta) \), show from d) that

\[
\tanh(2\theta) = \frac{n_0 g}{\epsilon_k + n_0 g}
\]

and hence prove that

\[
E = \sqrt{\epsilon_k (\epsilon_k + 2 n_0 g)}
\]

consistent with the Bogoliubov quasiparticle dispersion given in the lecture.