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Handout VI for the course GOUP THEORY IN PHYSICS Michael Flohr
Dynkin diagrams and classification of semi-simple Lie algebras 27.June and 4. July 2003

IRREDUCIBLE REPRESENTATIONS OF A SEMBIMPLE LIE ALGEBRA

The method with which we found the finite-dimensional irrepsl(63, C), or su(3), respectively, can immediately
be generalized to any semi-simple Lie algebra. This yields a procedure in eight steps, which | will sketch here very
briefly. The semi-simple Lie algebra is denotedgoy

Cartan subalgebra. Find the maximal Abelian subalgebljacC g.

Cartan decomposition. Perform the Cartan decompositign= h & (@QGR ga) for the adjoint representation,
where theroot spaceg,, are defined by the condition

VH € §,YX € g, : ad(H)(X) = a(H) X

for a € R C h*, the set of theootsof g. We have:

(1) dimg, = 1;

(2) rankg = rankAr = dimb with Ar = span, R theroot lattice;
(3) € R<— —a €R.

Let V be a finite-dimensional irrep af. Perform the Cartan decomposition fgranalogously, i.e. decompose
V= EBQGW(V) V., where theveight space¥, are defined by the condition

VH eh,YVweV,: Hv)=a(H)v

fora € W(V') C b*, the set of theveightsof the representatioli. We have:
(1) dimV, = mult(«) in the representatioW’;

(2) the root spaces act on tfrg in such a way thags : V, — Vs forall 3 € R. Then, obviously, it is true that
Va,o e W(V):a— o € Ag.

Root subalgebras. Find for each root: the corresponding subalgelra= g, B g—a D [ga, §—a] = s1(2,C). we
have:
(1) [8a,9-a] # 0, such thafg,, g—a] C b, dim[ga, g-a] = 1;
(2) [[9a;8-al)s 8a)] # 0, so that one can find generators, which satisfy the standard Lie bracke(®,d). In
particular, there exists H, € [ga, 9—o] With a(H,,) = 2.

Weight lattice. Make use of the rather simple representation theory o§the sl(2, C) in order to construct the
lattice Ay = {8 € b* : B(H,) € Z Yo € R}, since all eigen values df,, have to be integers. Obviously, for

any finite-dimensional irrefy’ is the set of weight¥V (V') C Ay . In particular,R C Ay, thereforeAr C Ay is
a sublattice with finite index.

Weyl group. Use the fact that the weights of representations,0f sl(2, C) possess a reflection symmetry by
introducing the reflectiong/,,,

25(Ha)a
O‘(Ha)
which map the hyperplaned, = {8 € b* : (H,,3) = 0} into themselves, and reflect the lin€s into

themselves, i.6V, (o) = —«. The groupl generated from th&/,, o € R, is calledWeyl group In particular,
one has that the set of weights of a representation is invariant under the Weyl grotpii&1)) = W (V).

Wa(B)=5-2 =0 - B(Ha)o,

Killing form.  Define the Killing formg(X,Y") = tr(ad(X) o ad(Y")) as Scalar product o thus also orfy C g,
which naturally extends to a scalar productign= . The Weyl group is then nothing else than the orthogonal
group,20 = O(Aw), i.e. (W (8), Wo(8')) = g(8, 8') for all W,, € 25, 3, 3’ € Aw C bh*. With respect to this
scalar product the lin€« and the hyperplan®,, are orthogonal, i.ex L Q. The scalar produgf(-, -) is positive
definite onh.

[VII] Highest weights and highest weight vectors. Choose a direction i* by choosing a real linear functiof :

Agr — R, which divides the roots into two equally sized subdets R™ U R~. Here,R" = {a € R: ¢(a) > 0}
is the set ofpositive roots and analogoush?~ = {a € R : ¢(a) < 0} is the set ofnegative rootsFor a
representatio’ of g we call a vecton € V, which is eigen vector to alH € b, and which simultaneously is
in the kernel of all root spaces of the positive roothjghest weight vector.e.v € V is a highest weight vector



with highest weighbr dominant weighty < H(v) = o(H) v forall H € b, andg,(v) = 0 for all « € RT. We
have:

(1) Any finite-dimensional representatidnof g possesses a highest weight vector;

(2) To any finite dimensional representatibhof g with highest weight vectov € V' is the subrepresentation
W = span{v, g4(v), gafo (v),... : a,a’,... € R~} C Virreducible;

(3) Any finite-dimensional irred/ of g has (up to normalization) a unique highest weight vector.

The so-called (positiveprimitive or simple rootsare those positive roots, which are not the sum of two other
positive roots, i.eR = {a € RT : a # o'+a” fora’,o” € R*}. Analogously one defines negative simple roots
R, . Then, the above definition 67 C V' simplifies tolV" = span{v, go(v), ga 8o/ (v),... : @, ;... € R}

The (closed) Weyl chamberV is the region ing*, within which all possible highest weights must reside. It is
defined a8V = {a € spanyR : a(H,) > 0V~ € RT}. An equivalent definition is as the closure of a connected
component of the complement of the union of the hyperpl&ahes

[11X] Classification of irreps. Now, we have everything in place to completely describe all finite-dimensional irreps of
a semi-simple Lie algebra
THEOREM: For anya € W N Ay, there is exactly one finite-dimensional irrEp with « its highest weight. Let
¢ denote the closure of the open convex hull, whose vertices are given by the imagasaér the action of the
Weyl group28. Then, the set of weights of the irr@p, are given by (T',) = {f € Aw NC: 8 —a € Ag}.
Let the positive simple roots be labeled in an arbitrary manndeas. .., a,} = R;, n = rankg. Then there
exist weightsv; € b*, 1 <1i < n, such thatv;(H,;) = ¢;;. These weights are calléddndamental weight€ach
highest weight can be written in a unique way as linear combinatiena;w; + . .. + a,wy,, Where alla; € Z ..
Thus, often the notatioh, = I's,w,+.. +anw, = Lay....a, IS USEd.

.....

DYNKIN DIAGRAMS

If rankg > 2, it is not very well possible to explicitly draw weight diagrams as we didsidi3). Fortunately,

there is a much more efficient way to graphically denote representations, which has been developed mainly by
Dynkin. I will sketch here briefly, how all (semi-)simple Lie algebras can easily be classified with the help of a
graphical notation, the so-called Dynkin diagrams, which encodes all the information on the Lie algebra. If one
adds, in addition, the numbetds, . .. a,, a; = g(a, «;), then the diagram also encodes all the information about

the representatioris,, where | use the notation from [l1X].

Root systems.Let g be a semi-simple Lie algebrg,its Cartan subalgebra,its Killing form, etc. The Euclidian space
E = spangR is a real subvectorspace hf, on whichg is positive definite. To characterize a Lie algebra, it
suffices to classify the possible root systeRis” E up to rotations und scalar multiplicationen. A root system has
the properties:
[l |R| < oo, spangR = E;
[l o€ R= —a < R,and more strictlyx € R = RN {Ra} = {«o, —a};
[il o€ R= W, : R — Rwith W, the reflection in thex"-plane;
V] «,8 € R= ng. = B8(H,) € Z. The quantitynz, and the Weyl reflectiodV’,, can be expressed via the
Killing form,

9(f, a)
9(a, @)

Nga = 2 , Wa(B) =8 —ngacr.

Condition [iv] is very restrictive, since it restricts the angldetween to rootsy, 5 to a very few possibilities.

With cos 0 = g(8,a)/\/g(a, a)g(3, B), it follows thatns, = 21/9(3,3)/g(ca, @) cosd € Z, thusdcos?§ =
NapNsa € Z. This leaves only the possibilitiescos® 0 € {0,1,2, 3,4}, where the last casecos® § = 4 occurs
only in the trivial settingd = +«. Without loss of generality one can assume §@, 3) > g(«, ), Or [nga| >
Inas|, respectively. This leads to the following table of non-trivial possibilities:

4 cos? 6 3 2 1 0 1 2 3
cos® | V3/2 V2/2 1/2 0 —1/2 —/2/2 —/3/2
0| n/6 w/4 w/3 w/2 2n/3 3n/4 57/6

NBa 3 2 1 0 -1 -2 -3
Nap 1 1 1 0 -1 -1 -1
P O S S T B



Let nown = dimgE = dimch = rankg. Below, all root systems far < n < 3 are sketched:

n=1 -
A1=Sl2C

n= 2 - | - - x - E + z E%S
Aix Aq Ay= sl3C By=505C=5sps,C Gy

:

A3= Sl4C = SOGC Bg: SO7C C3= sp5C

With a suitable but otherwise arbitrary semi-ordering® — R we divide the roots into two halff = RTUR™.
The positive simple roots for the classical Lie algebras are given in terms of the basic wgigistéollows:

{LifLH_l :i:l,...,n} for 5[(n+1,C) = A",

Rt — {L;—Liy1:i=1,...,n—1}U{L,} for so(2n+1,C) = B,,
P ) {Li—Lij1:i=1,...,n—1}U{2L,} for sp(2n,C) = Cp,
{Li_Li+1 = ,.../ﬂ—l}U{Ln,l—‘an} for 50(27’1,@) = Dn

The properties [i] to [iv] have immediate consequences, which must be satisfied by root sistems

[vl Foralla,f € R, # +a,thewhole strind 5—pa, —(p—1)a, ..., B—a, B, B+a, f+2a, ..., B+qa} C
R must belong to the root system. Since we must also havéithét + qo) = 8 — pa = (6 — nga) — qo, it
follows thatp = ng. + ¢. This yields the restrictiop + ¢ < 3, p — ¢ = 1ga-

[vil Forall o,8 € R, 3 # *a, it follows with the help of the Killing form that

g(ﬁaa)>0 - a_ﬁeR,
g(B,a) <0 = a+pER,
9(8,a) =0 = «a— f,a+ Beither both € Rorboth ¢ R;

il If a#p0€ R; are simple positive roots, then— 6 ¢ R, 5 — a ¢ R cannot be roots;

[iix] If o #£ B € R; are simple positive roots, then the anlge between them cannot be shatjps le=
V g(a, a)/g(B, ﬁ)7][304/2 <0

[iX] The simple positive roots are linearly independent;

[X] |Rf| = n = rankg, such that each. € R* has a unique decompositien= a,a; + ... + a,a,, where
o; € R} unda; € Z.

Dynkin diagrams. Label the positive simple roots in an arbitrary manr}éj', = {ai,...,a,}. It follows from [iix]
thato;, a; € R, can only from the angle € {r/2,2r/3, 37 /4, 57/6}. Correspondinglyy., ., takes the values
{0, -1, -2, —3}. Draw a graph with one node for each and with exactly),, «,7a; ., lines linking the nodes;
anda;. To make it even more beautiful, draw an arrow on the linking lines from the longer root to the shorter one, if
g(ai, i) # g(aj, o). One can proove that only the connected graphs listed below correspond to irreducible root
systems which satisfy the properties [i] to [iv] (and therefore also [v] to [x]). These ai@ythkin diagramf the
semi-simple Lie algebras. This classifies all semis-simple Lie algebras! Furthermore, ady,irtep's, o, a,
can be completely characterized by a Dynkin diagram by simply denoting the numibear the nodey;. These
coefficientsa; were obtained by introducing the fundamental weightsvith g(w;, ;) = d;;, such that obviously
a; = g(a,a;). Indeed, any irrep, i.e. its weight diagram including all multiplicities, can be reconstructed from
the Dynkin diagram of the underlying Lie algebra together with the weight coefficign®he Dynkin diagram
contains, for instance, all values of the so-calaftan matrixn; ; = 74, «,. In the diagrams below, the labeling



goes from left to right following the lists f(ﬂ%; ={ay,...,a,} given earlier in the text for the classical groups,
and further below for the exceptional ones.
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Finally, | make some comments regarding the restrictions concerning the minimal rank for Lie algebras in the
seriesA, B, C, D. These restrictions avoid that the same graph appears multiple times in different series.

Forn = 1 we find By = Cy = A, which corresponds to the isomorphieg3,C) = sp(2,C) = sl(2,C). All

these Dynkin diagrams consist of just one single node. The Base so(2, C) must be excluded, because this

Lie algebra is not semi-simple.

Forn = 2 we find Dy = A; x A; corresponding to the isomorphy (4, C) = s[(2,C) x sl(2,C). The Dynkin
diagrams consist out of two disjunct nodes without a joining line. Further, wefing B, corresponding to the
isomorphysp(4, C) = so(5, C). The associated Dynkin diagrams are equal, since the direction of the arrow on the
linking line is irrelevant in the case of just two nodes.

Forn = 3 we finally find Ds = A3 corresponding to the isomorphky (6, C) = sl(4, C).

If one wishes, one can successively eliminate nodes from right to left to formally obtain the equivdlgredss,
Ey=Ay, B3 =Ao x Ay, E5 = A X Ay andE; = A;.

The root systems for the exceptional Lie algebras read as follows:

{L1, =501 + S Lo} fir Gy,
{LQ —L3,L3 — L4,L47 %(Ll — L2 — L3 —L4)} fﬁl" F4,
R;_: {%(Ll—LQ—L3—L4—L5—|—\/§L6),L1—‘y—LQ,}U{LH_l—LiIizl,...,4} fir EG,
{%(Ll—LQ—...—L6+\/§L7),L1+L2}U{Li+1—LiZizl,...,5} fir E7,
{E(Ll—LQ—...—L7+L8)7L1+L2}U{Li+1—LiIZ‘:].,.‘.,G} fir Eg.



