Seminar lll & IV for the course ®OUPTHEORY IN PHYSICS Michael Flohr
Example:f-electron in an octahedral crystal 5. and 19. June 2003

SYMMETRIC GROUP ON FOUR ELEMENTS

A first absolutely non-trivial example for all the stuff we went through is the symmetric group on four elements,
&,. It acts in a natural way on the four corners of a terahedron by permutation. You can create these permutations
by reflections, rotations and combinations of both. However, we would like to look at the acttnaf a cube.

Conjugacy classes.The conjugacy classes of symmetric groups can be obtained very easily: Thesgydas precisley
n! elements, which fall intgp(n) conjugacy classes. Herg(n) denotes the number of partitions of the natural
numbern in sums of natural numbers. For examplé4) = 5, since 4 can be written as

{4341,2414+1,1+1+1+1,2+2}.

ThereforeG 4 should have five conjugacy classes. Typically, you just give a representative of the class. To obtain
one, note that you can define for a partition= n, + . .. + ny the group element

ng+...ng— (1...on)(ni+1...np+mn2)...(n+...ng_1+ 1. ong + . 0ong—g + ng)

made out of: disjunct cycles. Cycle of one element only are trivial, and are therefore often omitted in the notation.
A cylce (iyiz . .. i,,) describes the permutatic(gfizg'_'_:2::;271). In our example5 4, we find representatives of
the five conjugacy classes as follows:

Partition | representative g c(g) [d]
1+1+1+1 1 = Q@GB! 1 e
2+1+1 (12) = (12)(3)4) | 6 Cy
3+1 (123) = (123)(4) 8 Cs
4 (1234) 6 O
2+2 (12)(34) 3 c2 .

Itis important to understand that each representative of a class is maped under conjugation with any group element
into an element which has an equivalent decomposition into cycles. Consider for example the repregestative
(123) for the conjugacy class of the 3-cycles. Under conjugatiohgh, this goes to("'2%3°4) (123) (fﬂiii) =
(7’2“’5’1314)(1.1”.225;2) = (i (21”22233;44) = (Pue) = (iriziz), which indeed is again a 3-cycle. In the same
manner, we can understand how many elements a given class possessesyélag has per definition orden,

i.e.¢g"™ = 1. Therefore, there argn — 1)! (;) distinctm-cycles onn elementes. It gets a bit more complicated to
compute this for classes which consist out of several non-trivial cycles. The result for a conjugacy class, which is
built out of p; 1-cycles,ps 2-cylces etc., which hence belongs to the partition

n=1+...4142+...424+... 4+ n_ +— g=CNcC¥...Ct",

P1 P2 Pn

is given by

n —1
c(g) =n! (H mp’"pm!> .
m=1

In this way you find the numbexg) of elements of a conjugacy clalgs for our examples,, as given in the above
table.

Character table. With the conjugacy classes as found above, we can now compute the characters of the irreps. The
character table fo®, reads

64 (& 602 803 654 302’2
v |1 1 1 1 1
U |1 -1 1 -1 1
V |3 1 0 -1 -1
V' 13 -1 0 1 -1
W |2 0 -1 0 2.

The first three irreps are easily identified, they are the trivial, the alternating and the standard irrep, respectively,
U =Trv, U’ = Alt, undV = Std Note that the standard irrep &, is given by the quotient of the permutation



representation on elements with the diagonal invariant subspace (equivalent to the trivial representation). Thus,

it has dimensiom — 1. Now, the character of the permutation representations is very easy to compute, it is simply
the number of elements fixed by the action of the group element considered, because these are the only non-zero
diagonal matrix elements. ThuS:y = X Permut — X Tro- ONE Might guess that the representalin= V @ U’

is irreducible, with charactexy-(g) = xv(g)xu (g9), and indeed xv+, xv+) = 1. Moreover,xy is linearly
independet from the other three characters. So, since there can only be five irreps, we must find détiedirrep
dimension two, since4 = 12 4 12 + 3% + 32 + 22, such thatr = 2. Now, since the regular representation of any

finite groupG is complete, we can determine the fifth character by simply using

Yoxloxe) =

2 x(@x(h) = 0 fir h¢lg].

In these formulae, the sum runs over the characters of all irreps. To determine the dimension of the sought fifth

irrep, one has to solve the equatipi x(e)x(e) = 24. In an analogous way, you obtain the valuescaf for all
the other conjugacy classes.

Remark. The irreplV has forC3 the character valug(C3) = 2. Now, C3 is an involution, which has o trace two.
SinceW has dimension two, it follows that? acts as identity oi’. We can make a general remark here: Let
N C G anormal subgroupi.e.gN € N andNg € N for all ¢ € G. Let a representatiop : G — GL(W)
be trivial on N. Then we have a faktorizatio — G/N — GL(W), i.e. we can identify representations of
G/N with representations aF, which are trivial onN. In our exampleN = (e, (12)(34), (13)(24), (14)(23)),
andW is a representation of the quotient gra&ip/N ~ &3. More precisely, one can see th&tis the standard
representation 063. One also says thdt’ is thepull backof G to &4.

Interpretation. The symmetric grou®, can be viewed as the group of movements of a cube, which map it onto itself.
This includes movements one can perform in real space, such as rotations and translations, but not reflections! The
group acts on the four main diagonals of the cube. Tlggris the quotient group which operates on the three pairs
of opposed faces. To explain this a bit better, here some pictures:
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Please note that the corresponding rotations around the main diagonals act correctly as they should, but they
automatically induce a representation of the group acting on the faces. Of course, they also induce a represen-
tation on the edges or the corners, respectively. These are permutation representations of dirfiersems

8, respectively. The best thing is to take a dice and check it out for yourself. On an admissible dice, the oppo-
sing faces show the number pairs (1,6), (2,5) and (3,4). You can check yourself where these faces are maped
to under rotations around the main diagonals. Since these are premutation representations, the character values
are simply the numbers of faces left invariant under such a rotation. It follows{l@at) = x(Cs) = 0 and

x(Cy) = x(C%) = 2. Thus, we find the character for the representation on the facesas = (6,0,0,2,2).
Furthermore(y, x) = 2;(1-62+6-048-0+6-2%+3-22) = 3, such that the representation on the faces is a sum

of three irreps. With the help of the character table, one easily finds outthat;) = (x, xv/) = O xw) = 1,

and that all other scalar produtspfvith another irreducible character vanish. Thus, the face representation is iso-
morphic toU & V' @ W. Therefore, ths six-dimensional representation has a three-dimensional subrepresentation,
which is spaned by the sums of the three opposing pairs of faces. Since it obviously contains the sum of all faces, it



contains the trivial irrep. Thus, it must Bé® W. The differences of the opposing pairs of faces must hence span
the remaining 3-dimensional irrep, whichlig.

Representation in detail. Assign to each facea base vectofi) of a ortho-normal base @°, since the face represen-
tation is 6-dimensional. As on any regular dice, the opposing pairs of faces show the nyimbers2, 5) and
(3,4). In order to make it possible to compare configurations, our starting position in the following will be a dice
where the one is on the front, the two on the left side, and the three on top. This looks as follows:
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The representatives of the conjugacy classes shown in the pictures are then given by the followingsexplicit

matrices:
000001 000010
001000 001000
010000 000001
pFléchen((lz))_ 0000 10| pFléchen((134))_ 100 0 0 0 |
000100 000100
100000 010000
001000 000001
010000 010000
000001 000100
pFléchcn((1243)) = 1000 0 0 ) pFléchcn((14)(23)) - 0O 01 0 0 O
000010 000010
000100 100000

Choose now a new base in this 6-dimensional vector space by using the sums and differences of the base vectors
corresponding to the opposing face pairs, i.e.|puf) = |1) + |6), |s25) = |2) + |5), |s34) = [3) + |4), |d1s) =

[1) —[6), |dos) = |2) — |5), |d3a) = |3) — |4). One checks easily that all the;;) are orthogonal to thes, ;).

We can now explicitly perform the reduction of the reducible 6-dimensional face representation intaliriess.
1-dimensional vector space and is spanetiy= |si6) + |s25) + [s34) = [1) + [2) +|3) + |4) +|5) + |6). The
3-dimensional subspace, which is spaned by the vefigns decomposes therefore into the direct stire W,
where the 2-dimensional spalE is spaned, for instance, by the tow vect@rs) = |sig) + |s25) — 2|s34) =

[1) + [2) — 2|3) — 2|4) + |5) + |6) and|ws) = |s16) — |s25) = 1) — |2) — |5) + |6). Indeed,w; ), |wy) are both
orthogonal tou), and also mutually orthogonal. The representatio/as, of course, trivial, i.epy (g) = 1 for

all g € &,. Itisinteresting to compute the representatioriBrexplicitly. Using again the same representatives of
the conjugacy classes, we find in the basg), |w-) the matrices

pW«n)):(}ﬁ i’ﬁ) pw<<134>>=(_}f§ ffﬁ)v
i) = (12 IR pwanesy= (5 9.

This confirms thatC2 acts indeed trivially ori¥. The traces of these matrices yield precisely the values which
would expect from the character table, as it should be. If you wish, you can now go on and compute the matrices

for py/(g).

Exercise. Redo the above analysis for the edges and corners of the cube. You can check your results with these data:

Representation Decomposition | Dimensions
face representation =U® V' oW 1+3+2 = 6
corner representation =UaVaoU oV’ 1+3+1+3 = 8
edge representation =U®2Vae V' eW | 1+2-3+3+2 = 12.



Alternating group. For completeness, we briefly consider the alternating subg®aup &4, which is generated as
A, = (e, (123),(12)(34)). Note first thatdl,/ (e, (12)(34), (13)(24), (14)(23)) =~ Zs. With w = ¢27/3 a third
root of unity, we easily find the character table:

A | e 4(123) 4(132) 3(12)(34)
U 1 1 1 1
U |1 w w? 1
U’ |1 w? w 1
1% 3 0 0 -1.

The first three rows are clear, singlg again contains the normal subgroup mentioned above. The last row is then
again obtained from the completeness releations for the characters. The relations between theSiepsldf,
are given by the following restrictions to the subgroup:

representation of &4 restriction representation of %Ay

g/ — Ua
“i/ - Vv
w — UaU”.

According to this, the representatiobisU’, V andV"’ of &, remain irreducible under restriction 2, while the
representatiofil” decomposes under restriciton to the subgriyjn two irreducible subrepresentations,® U”.
Note for this thaty + w? = —1. Furthermore, the pair§, U’ andV, V' become isomorphic, respectively, under
the restriction.

Octaherdon and cube — duality. The cube has 6 faces,12 edges and 8 corners. The octahedron has 8 faces, 12 edges
and 6 corners. There is a formal duality between the cube and the octahedron which is obtained by replacing the
center points of the faces by corners and vice versa. A consequence of this is that the groups of rigid movements
of cube and octahedron are identical. We can use this to work out the symmetry constrainfsedéaton in an
octahedral crystal. To clarify this a bit, we show the corresponding rotations as acting on the octahedron:
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The natural permuation representation on the cube, namly the one acting on the four main diagonals, transforms
into the natural permutation representation on the octahedron acting on the four pairs of opposing faces, which
are penetrated by the four main diagonals of the cube in which the octahedron is embedded. Note that again the
numberc(g) of elements per conjugacy class is correct.

The electron. We need to know the character of an arbitrary rotaffos exp(ip-L). Now, we know that such a rotation
acts asR : Yy, = e™?Py(cosf) — e™PY,,, wherep = . This follows from the explicit representation
of the generators in the bage and LE. Thus, x,(¢) = try(e¥rs) = Y20 eme = S0 cos(me) =
sin((2¢+1)p/2)/sin(p/2). Thus, we find for the particular anglesassociated with the allowed discrete rotations
in the octahedron, i.e) for e, 7 for 6Cs, %77 for 8C3, 7/2 for °C, and againr for 3Cy o, that x—3(¢) =
(7,—1,1,—1,—-1), where/ = 3 is the angular momentum of afrelectron. This can be reduced into irreps
sincex¢—3 = xv’ + xv + xv. Thus the sevenfold degeneracy splits into three lines, two of them still threefold
degenerate, and one is not degenerate.

Selection rules. Determine now which of the matrix elements of the position operattan be non-zero. It is sufficent
to determine this for states transforming in irreps, (&% |»|¥(*)) wherea, 3 denote irrpes.



