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ADJOINT REPRESENTATION OF THE LIE ALGEBRA

In the lecture, we introduced the adjoint representation ad of a Lie algebra g on itself as a vector space. This
representation has some remarkable and useful properties. We wish to study the adjoint representation in the
example of the Lie algebra su(2) in some detail. Remember the last tutorial, where the generators for SU(2),
the Pauli matrices, were introduced. We note here in advance, that the Pauli matrices are, more precisely, the
generators of SU(2) in the fundamental representation on a two-dimensional vector space.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Adjoint generators. The structure constants of su(2) with respect to the above given generators are f l
jk = 2ε l

jk . Write
down the generators Tj in the adjoint representation, for which we must have(Tj)

l
k = −if l

jk . Convince yourself
that the Tj do indeed satisfy the correct algebra by computing [Tj , Tk].

Algebra as vector space. The generators Tj span in a natural way the vector space of the algebra. Define a basis
|Tj〉 = ej associated with the generators, such that ej is the j-th basis vector of a standard basis. Thus, ej is the
column vector, whose components are given by (ej)k = δjk. Derive the action of the algebra on itself as vector
space by computing Tj |Tk〉 = Tj · ek. Express the result again in the basis |Tj〉, i.e. compute the coefficients al in
Tj |Tk〉 = al|Tl〉. Compare your result with the following definition of the action of the algebra on itself as vector
space:

Tj |Tk〉 = |[Tj , Tk]〉 .

Adjoint representation of the group. With the adjoint representation of the algebra g on itself as vector space at hand,
it seems natural to also introduce a representation of the group G on the vector space of its algebra. To do so, we
first introduce the operation of conjugation, Ψg(h) = ghg−1 for g, h ∈ G. Obviously, Ψg is an automorphism of
the group G for each g ∈ G. Choose for h an element close to the identity, i.e. h = 1l + duaXa. Then you can
easily read off, how the derivative of any Ψg looks like at the identity, i.e. at the point h = 1l. This derivative at the
identity defines the adjoint representation of the group G on its algebra g. The derivative of Ψg is usually denoted
Adg and is an automorphism of the algebra g for each g ∈ G.

Our example again. With the notation from the last exercise sheet we have that g = exp(−iφ2~n ·~σ) is a generic element
of the group SU(2). Compute Adg(σj).

From the group to the algebra. It is now possible to go from the adjoint representation of the group to the adjoint
representation of the algebra. All you have to do is to take the derivative of Adg at the point g = 1l. This defines
the operation adX , where the generator X is precisely the one, which yields the group element g in the from
g(λ) = exp(λX). Remark: Obviously, this is not unique. This fixes X only up to a multiplicative constant. Show
that with Adg(Y ) = gY g−1 and g = 1l + duaXa, g−1 = 1l− duaXa, we have adX(Y ) = [X,Y ].

Killing form. In the lecture, we will introduce the Killing form gab = tr(TaTb). Compute the Killing form for su(2)
with the generators computed above in the adjoint representation. Then, diagonalize gab, i.e. bring the Killing form
into the form gab = kaδab. Finally, compute now the form g′ab = tr(σaσb) associated to the fundamental repre-
sentation of the algebra su(2). Compare your result with what you obtained for the Killing form gab. Diagonalize
g′ab as well.
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