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TENSOR PRODUCTS

The Classification of all irreps of a Lie algebra g is teh first step in understanding the representation theory of
g. The next step consists in understanding, how arbitrary representations can be decomposed into irreps. The
most common type of reducible representations in physics are tensor products of irreps. Some aspects of what
happens with tensor products can already be inferred from the example of angular momentum addition in quantum
mechanics. The key point is, that a physical system transforms in such a way under a symmetry, that it may possess
quantum numbers for different irreps of the symmetry algebra. For instance, a particle with spin s and angular
momentum ` can be described by a Hilbert space whose states have independent quantum numbers with respect
to the irreps ρ(`) and ρ(s) of su(2), respectively. The states can hence be given in the form |`,m〉 ⊗ |s,ms〉 ≡
|`,m〉|s,ms〉, where it is conventional to omit the symbol for the tensor product. Another common notation is
|`,m; s,ms〉.

Transformation properties. In order to understand how a Lie algebra acts on a tensor product, we change our notation
a little bit. We denote the representation of a Lie group on vector spaces V and W with ρV and ρW , and in
general representation of the group with ρ. The representations of the corresponding Lie algebra g are denoted
correspondingly with dρV , dρW and dρ, respectively. This emphasizes that the linear operators dρ(uaXa) can be
considered as the linear differentials of the linear operators ρ(g), g = exp(iuaXa).

Realize that the Lie group acts in a natural way as follows on the tensor product V ⊗W with states |v〉⊗|w〉,
namely:

ρV⊗W (g)|v〉 ⊗ |w〉 =
∑
v′,w′

|v′〉 ⊗ |w′〉
(
ρV⊗W (g)

)
(v′w′)(vw)

=

(∑
v′

|v′〉
(
ρV (g)

)
v′v

)
⊗

(∑
w′

|w′〉
(
ρW (g)

)
w′w

)
.

This means nothing else than that the factors of the tensor products transform independently under the group action.

Show now by expanding
(
1l + iuadρV⊗W (Ja)

)
|v〉 ⊗ |w〉 to first order in u, that we have correspondingly

for the action of the Lie algebra on V ⊗W that(
dρV⊗W (Ja)

)
(v′w′)(vw)

=
(
dρV (Ja)

)
v′v

δw′,w + δv′,v

(
dρW (Ja)

)
w′w

A shorter way to write this is dρV⊗W (Ja) = dρV (Ja) ⊗ 1lW + 1lV ⊗ dρW (Ja). Often it is rather cumbersome
to explicitly refer to the tensor product and the various representations in the notation. Therefore, one also finds
notations as

Ja (|v〉|w〉) = (Ja|v〉) |w〉+ |v〉 (Ja|w〉) .

The representation dρ of the Lie algebra g therefore acts as a derivation, i.e. it satisfies the Leibniz rule.

Decomposition of tensor products. One of the easier tasks with tensor products is, to determine the eigen values of
generaotrs which can be diagonalized. Let g = su(2) and let us choose in the representations ρ(j1) and ρ(j2) eigen
bases to J3. Show that the eigen values of J3 in the tensor product representation simply add:

J3 (|j1,m1〉|j2,m2〉) = (m1 +m2) (|j1,m1〉|j2,m2〉) .

The knowledge of the action of the Lie algebra on the tensor product suffices completely, to decompose the
tensor product representation in to irreps. All you have to do is to apply the highest weight construction to the
states of the tensor product. Then, make use of the fact that dρ acts like a derivation. Show this in the example
j1 = 1 and j2 = 1/2, by starting with the (unique) highest weight state |3/2, 3/2〉 = |1, 1〉|1/2, 1/2〉.

Tensor operators. From quantum mechanics, we do know some things such as tensor operators and the Wigner Eckart
theorem, which we wish to recapitulate briefly. Hopefully, this makes a few things more clear.. A tensor operator
O(r) of rank r simply is an operatos which transforms in the spin r irrep, i.e.

[ρ(r)(Ja),O(r)
m ] =

∑
m′

O(r)
m′

(
ρ(r)(Ja)

)
m′m

.
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From here on, we again use the symbol ρ for the representation of the Lie algebra, instead of dρ. Furthermore,
we consider the particular example g = su(2). Of course, a tensor operator has components, as otherwise it could
never transform in the spin r representation for r > 0. Consider as an example a particle in a radially symmetric
potential. Angular momentum is given as La = ε bc

a rbpc. The operators La form a representation of the Lie
algebra su(2). The coordinate operator rb essentially is a rank one tensor operator (i.e. a tensor operator, which
transforms in the spin one irrpep), as it transforms under the adjoint representation:

[ρ(Ja), rb] = ε cd
a [rcpd, rb] = −iε cd

a rcδb,d = −iε cb
a rc = rc(Ta)

c
b = rc ad(Ja)

c
b .

Note that rb does not transform in the canonical way, as the representation matrices of the adjoint representation do
not have the standard form of the spin one irrep, which was given in the lecture. If we have a generic operator Ob,
such that [ρ(Ja),Ob] =

∑
b′ Ob′ (ρ(Ja))b′b whth ρ equivalent to a spin r irrep, then we can find a matrix S, such

that Sρ(Ja)S−1 = ρ(r)(Ja). We then can use this matrix S to redefine the tensor operator, O(r)
m = Ob(S

−1)bm.
The such redefined operator now transforms precisely in the irrep ρ(r), i.e.

[ρ(r)(Ja),O(r)
m ] = [Sρ(Ja)S

−1, (OS−1)m] = Ob′(S
−1) b′

m S c′

b′ (ρ(Ja))c′d′(S−1) d′

m′ = O(r)
m′ (ρ

(r)(Ja))m′m .

Often it is not necessary to compute S explicitly. If we can find a linear combination of the componentsOb, which
is an eigen state to J3 with eigen value r′, then we can use this component as component of O(r) and construct
the remaining components simply by applying J±. For the coordinate operator, this is very simple. Realize that
[ρ(J3), r3] = 0. Identify r3 with the component r(1)0 . Find the remaining two components by computation of
[ρ(1)(J±), r

(1)
0 ] = r

(1)
±1 . Give, for this example, the matrix S explicitly.

Wigner Eckart theorem. Tensor operators have the great advantage that their matrix elements are fixed by the symme-
try, here su(2), up to a constant, which is independent of the symmetry (this constant is typically determined by
the dynamics of the physical system under consideration). If a tensor operatorO(r)

k acts of a state |j,m〉, the whole
object transorms in the tensor representation ρ(r)⊗(j). Let us denote the coefficients of the base change from the
basis {|r, k〉|j,m〉 : k = −r, . . . , r , m = −j, . . . , j} to the basis {|J,M〉 : J = |r−j|, . . . r+j , M = −J, . . . J}
for the decomposition (r) ⊗ (j) =

⊕r+j
J=|r−j|(J) by 〈J,M |r, k; j,m〉, the Clebsh Gordan coefficients. These co-

efficients are completely fixed by the su(2) structure, and can easily be computed by applying the highest weight
construction to both sides and using the derivation property of the tensor representation. In essence, this results in
the two following recurrence relations, which fix the coefficients up to a common normalization and a few signs:√

(j ∓m)(j ±m+ 1)〈j1,m1; j2,m2|j,m± 1〉 =
√

(j1 ∓m1 + 1)(j1 ±m1)〈j1,m1 ∓ 1; j2,m2|j,m〉
+

√
(j2 ∓m2 + 1)(j2 ±m2)〈j1,m1, j2,m2 ∓ 1|j,m〉 ,

where one has to observe the condition m1 +m2 = m± 1. Note that we used the inverse base change here just in
order to increase the general bewilderment ;-). Compute with all this the Clebsh Gordon coefficients for j1 = 1
and j2 = 1/2.

If these coefficients are known (once and for all), we can write the matrix elements of tensor operators in a
much simpler form:

〈J,m′, x′|O(r)
k |j,m, x〉 = δm′,k+m〈J, k +m|r, k; j,m〉 〈J, x′||O(r)||j, x〉 ,

where 〈J, x′||O(r)||j, x〉 is called the reduced matrix element of the tensor operatod. It only depends on the con-
tributing irrpes and, possibly, further dynamical degrees of freedom, which we denoted here with x′ and x. How-
ever, it does not depend on the components, i.e. the magnetic quantum numbers, at all. Therefore, the reduced
matrix element depends neither on the inner structure of the contributing irreps, nor on the specific states in the
irreps. This statement is known as the Wigner Eckart theorem. Actually, it holds for any Lie algebra g, not only
for the example su(2), which we devoured here in length.
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