ROOTS

The weights of the adjoint representation of a Lie algebra g are called roots. One can reconstruct the entire Lie algebra out of them.

- **Multiples.** In the lecture, it was stated that the only multiples of a root α , which also are roots, are α and $-\alpha$. Prove this.
- **Further properties.** Roots (as also weights) are foremost the multiple eigen values of simultaneous eigen vectors of the Cartan sub-algebra. Just as well, we can consider them as linear functionals, via $ad(H)(X) = \alpha(H) X$, when X lies in the eigen space \mathfrak{g}_{α} to α . If α and β are roots, then we can form the quantity $\eta_{\beta\alpha} = \beta(H_{\alpha})$. This quantity can be expressed in terms of the Killing form, $\eta_{\beta\alpha} = 2g(\beta, \alpha)/g(\alpha, \alpha)$. Note that $\eta_{\beta\alpha}$ is not symmetric! To begin with, discuss why the Killing form $g(X, Y) \equiv tr(ad(X), ad(Y))$ is obviously also defined for roots. For α, β roots, we have $\eta_{\beta\alpha} \in \mathbb{Z}$. (It might be helpful to recapitulate from the lecture, why this is so.)
- Angles. Contemplate how you can express the cosine of the angle between two roots in terms of the Killing form. Use this in order to express $\eta_{\beta\alpha}$ only in terms of the norms g(X, X) and this angle. What do you therefore find for $\eta_{\beta\alpha}\eta_{\alpha\beta}$? This must be an integer, as well! Which angles between two roots are hence the only possible ones? Write down a table with all possibilities for the cosine of the angle between two roots α, β , the angle itself, as well as the values of $\eta_{\alpha\beta}$ and $\eta_{\beta\alpha}$. Since there is an asymmetry, assume for your convenience $g(\beta, \beta) \ge g(\alpha, \alpha)$.
- Long and short roots. Disucss, which ratios of lengths of two roots are possible according to your above results.
- **Examples.** Construct all root systems of dimensions one and two. It is helpful to take the following property to heart: A root system must be symmetric with respect to reflections in the planes α^{\perp} for all roots α .

WEIGHTS

The weights do characterize an irrep V uniquely. We wish to discuss a few basic properties of weights as well. We denote with W(V) the set of all weights of V.

- **Representation from the weights.** Ponder that obviously $V = \bigoplus_{\alpha \in W(V)} V_{\alpha}$ with V_{α} the weight spaces, i.e. the eigen spaces to the weights α , such that for all $v \in V_{\alpha}$ and for all H from the Cartan sub-algebra $H(v) = \alpha(H) v$.
- Action of the roots. Let \mathfrak{g}_{β} be the root space to the root β . This space operates on the weight space in an obvious manner, $\mathfrak{g}_{\beta} : V_{\alpha} \to V_{\alpha+\beta}$. Argue that this implies for all $\alpha, \alpha' \in W(V)$, that $\alpha \alpha'$ must be an integer linear combination of roots, i.e. that it must be an element of the root lattice.