ADJUNGIERTE DARSTELLUNG DER LIE-ALGEBRA

In der Vorlesung wurde die adjungierte Darstellung ad einer Lie-Algebra $\mathfrak g$ auf sich selbst als Vektorraum eingeführt. Diese Darstellung hat einige besonders praktische Eigenschaften. Am Beispiel der Lie-Algebra $\mathfrak s\mathfrak u(2)$ soll die adjungierte Darstellung hier genauer studiert werden. Dazu erinnern wir uns an die letzte Übung, in der die Generatoren von SU(2), die Pauli-Matrizen, angegeben wurden. Es sei hier bereits erwähnt, dass die Pauli-Matrizen genau genommen die Generatoren von SU(2) in der fundamentalen Darstellung auf einem zwei-dimensionalen Vektorraum sind.

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Adjungierte Generatoren. Die Strukturkonstanten von $\mathfrak{su}(2)$ mit den oben gegebenen Generatoren sind $f_{jk}{}^l=2\varepsilon_{jk}{}^l$. Geben Sie die Generatoren T_j in der adjungierten Darstellung an, für die $(T_j)_k{}^l=-if_{jk}{}^l$ gilt. Überzeugen Sie sich davon, dass auch die T_j die richtige Algebra erfüllen, indem Sie $[T_j,T_k]$ berechnen.
- Die Algebra als Vektorraum. Die Generatoren T_j spannen in natürlicher Weise den Vektorraum der Algebra auf. Definieren Sie sich eine den Generatoren zugeordnete Basis $|T_j\rangle=e_j$ mit e_j dem j-ten Basisvektor einer Standardbasis. Somit ist e_j der Spaltenvektor, dessen Komponenten durch $(e_j)_k=\delta_{jk}$ gegeben sind. Berechnen Sie die Aktion der Algebra auf sich als Vektorraum, in dem Sie $T_j|T_k\rangle=T_j\cdot e_k$ berechnen. Das Ergebnis sollten Sie wieder in der Basis der $|T_j\rangle$ ausdrücken, also $T_j|T_k\rangle=a^l|T_l\rangle$ mit von Ihnen zu bestimmenden a^l . Vergleichen Sie Ihr Ergebnis mit der folgenden Definition der Aktion der Algebra auf sich als Vektorraum:

$$T_j|T_k\rangle = |[T_j, T_k]\rangle$$
.

- Adjungierte Darstellung der Gruppe. Mit der adjungierten Darstellung der Algebra $\mathfrak g$ aus sich als Vektorraum liegt es nahe, auch eine Darstellung der Gruppe G auf dem Vektorraum ihrer Algebra zu betrachten. Führen Sie nun die Operation der Konjugation ein, $\Psi_g(h) = ghg^{-1}$ für $g,h \in G$. Offensichtlich ist Ψ_g für jedes $g \in G$ ein Automorphismus der Gruppe G. Wählen Sie für h ein Element mahe der Eins, also $h = 1 + du^a X_a$. Damit können Sie leicht ablesen, wie die Ableitung von einem Ψ_g an der Stelle der Eins aussieht, d.h. an der Stelle h = 1l. Diese Ableitung an der Eins definiert die adjungierte Darstellung der Gruppe G auf ihrer Algebra $\mathfrak g$. Die Ableitung von Ψ_g wird Ad_g bezeichnet und ist für jedes $g \in G$ ein Automorphismus der Algebra $\mathfrak g$.
- Wieder unser Beispiel. Mit den Notationen aus der letzten Übung ist $g = \exp(-i\frac{\phi}{2}\vec{n}\cdot\vec{\sigma})$ ein allgemeines Element der Gruppe SU(2). Berechnen Sie $\mathrm{Ad}_g(\sigma_j)$.
- Von der Gruppe zur Algebra. Sie können nun von der adjungierten Darstellung der Gruppe zur adjungierten Darstellung der Algebra kommen, indem Sie nun die Ableitung von Ad_g an der Stelle g=1l nehmen. Dies definiert die Operation ad_X , wobei der Generator X derjenige ist, durch den das Gruppenelement g in der Form $g(\lambda) = \exp(\lambda X)$ gegeben ist (dies ist natürlich nicht eindeutig, X wird damit nur bis auf eine multiplikative Konstante festgelegt). Zeigen Sie also mit $\mathrm{Ad}_g(Y) = gYg^{-1}$ und g=1l + $\mathrm{d} u^a X_a$, $g^{-1}=1$ l $\mathrm{d} u^a X_a$, dass $\mathrm{ad}_X(Y) = [X,Y]$.
- **Killing-Form.** In der Vorlesung wurde die Killing-Form $g_{ab} = \operatorname{tr}(T_a T_b)$ eingeführt. Berechnen Sie die Killing-Form für $\mathfrak{su}(2)$ mit den oben berechneten Generatoren in der adjungierten Darstellung. Diagonalisieren sie anschließend g_{ab} , bringen Sie die Killing-Form also in die Gestalt $g_{ab} = k_a \delta_{ab}$. Zum Abschluß bestimmen Sie nun $g'_{ab} = \operatorname{tr}(\sigma_a \sigma_b)$, also eine Form für die fundamentale Darstellung der Algebra $\mathfrak{su}(2)$, und vergleichen Sie diese mit Ihrer ursprünglichen Lösung für g_{ab} . Diagonalisieren Sie zuletzt auch g'_{ab} .