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Abstract

In this thesis, a constructive method is presented to obtain boundary states in confor-
mal field theory. It is compatible to the usual approach via Ishibashi states in ordinary
conformal field theories but extendible to cases that have a more complicated structure,
such as rank-2 indecomposable Jordan cells as in logarithmic conformal field theories.
In particular, it allows to study boundary states keeping the structure of the underlying
bulk theory visible. Using this method the logarithmic conformal field theory with central
charge c = −2 is studied in detail, deriving the maximal set of boundary states in this
case. The analysis shows the existence of states corresponding to indecomposable rep-
resentations as well as their irreducible subrepresentations. Furthermore, a new kind of
boundary states emerges. So-called mixed boundary states glue together the two different
irreducible representations of the c = −2 theory at the boundary. A relation between the
boundary states is deduced that implies a deeper connection to the unique local loga-
rithmic conformal field theory studied by M.R. Gaberdiel and H.G. Kausch. Both, the
three-dimensional and the five-dimensional representation of the modular group are found
when calculating the cylinder amplitudes, the latter one by introducing additional states
that serve as duals to certain boundary states. Finally, the symplectic fermion model is
studied to link the results to the coherent state approach of S. Kawai and J. F. Wheater.

The scientific results underlying this thesis are content of two publications that can be
found in [56, 57].



Zusammenfassung

In dieser Arbeit wird eine konstruktive Methode zur Gewinnung von Randzuständen
in konformen Feldtheorien aufgezeigt. Diese Methode ist kompatibel zu der Herange-
hensweise mittels Ishibashi-Zuständen in gewöhnlicher konformer Feldtheorie. Sie kann
jedoch auch auf komplizierter strukturierte Fälle, beispielsweise unzerlegbare Rang-2 Jor-
danzellen, wie sie in logarithmisch konformer Feldtheorie auftreten, angewendet werden.
Insbesondere ist es möglich, bei der Untersuchung von Randzuständen die innere Struk-
tur der zugrundeliegenden Theorie zu berücksichtigen. Diese Methode wird im weiteren
Verlauf auf die logarithmisch konforme Feldtheorie mit zentraler Ladung c = −2 zur
Gewinnung des maximalen Satzes an Randzuständen angewendet. Damit kann die Exi-
stenz von Randzuständen für die unzerlegbaren Darstellungen und solchen, die den darin
enthaltenen irreduziblen Unterdarstellungen zuzuordnen sind, gezeigt werden. Deswei-
teren tritt eine neuartige Klasse von Zuständen in Erscheinung. Sogenannte gemischte
Randzustände

”
verkleben“ die beiden unzerlegbaren Darstellungen der c = −2-Theorie

auf dem Rand. Der relative Bezug der gefundenen Zustände zueinander läßt einen tiefe-
ren Zusammenhang zwischen der Randtheorie und der einzigartigen lokalen logarithmisch
konformen Feldtheorie nach M.R. Gaberdiel und H.G. Kausch vermuten. Sowohl die drei-
dimensionale als auch die fünf-dimensionale Darstellung der modularen Gruppe können
über die Zylinderamplituden identifiziert werden, die letztere jedoch nur unter Zuhilfenah-
me zusätzlicher Zustände, die als Duale zu einigen der Randzustände eingeführt werden.
Schließlich wird das Modell der symplektischen Fermionen untersucht, um eine Verbin-
dung zwischen den präsentierten Ergebnissen und dem Lösungsansatz von S. Kawai und
J. F. Wheater über kohärente Zustände herzustellen.



Contents I

Contents

Introduction 1

Chapter 1. Modern conformal field theory 5

1.1 Logarithmic conformal field theory . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Boundaries, boundary conditions and boundary conformal field theory . . 7

Chapter 2. Construction of boundary states: A general procedure 9

2.1 Standard approach in ordinary conformal field theories . . . . . . . . . . . 9

2.2 A general procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 3. Boundary states in c = −2 logarithmic conformal field theory 17

3.1 The triplet model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Boundary states – previous works . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 A generalisation of the standard formalism – The matrix approach . . . . 21

3.4 Via the general procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Modular properties (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Modular properties (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Chapter 4. Symplectic fermion model 35

4.1 Symplectic fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Coherent boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Chapter 5. Discussion 41

Appendix A. Virasoro indecomposable representations 43

A.1 The representation R0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.2 The representation R1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Mixed boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.4 Weak boundary states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Appendix B. Symplectic fermion boundary equation 49

Appendix C. The local theory at c = −2 51



II Contents

Bibliography 53



Introduction 1

Introduction

Since its discovery, conformal field theory in two dimensions [1] has become one of the
most important tools in modern theoretical physics. It has a huge number of applications
both in string theory and in condensed matter physics, describing, e. g. two-dimensional
critical phenomena [2]. The current interests in conformal field theory can be divided into
two different directions:

In reality, physical systems are finite. Therefore, it is interesting to study theories on sur-
faces with a boundary [3, 4, 5]. Also, in string theory, these so-called boundary conformal
field theories are assumed to provide the spectra of D-branes [6].

A second, independent field of interest are conformal field theories that contain logarithmic
operators leading to divergent correlation functions [7, 8, 9]. Reasons for the emergence
of such operators can be found, for example, in various condensed matter problems. In
1992, H. Saleur analyzed dense polymers and observed that systems involving disorder
can contain density fields of scaling dimension zero [10]. These fields allow the existence
of logarithmic operators. On the other hand, there are also contributions from string
theory. V. Knishnik revealed already in 1987 that twist fields in ghost systems exhibit
logarithmically diverging correlators [11]. Finally, also puncture operators in Liouville
theory show such a behaviour as pointed out by I. I. Kogan and A. Lewis in the discussion
of Coulomb gas models [12]. Applications were found also in conformal field theory
approaches to the quantum Hall effect [13, 14, 15]. In particular, the famous Haldane-
Rezayi quantum Hall state is described by a logarithmic conformal field theory at central
charge c = −2 [16]. Two-dimensional turbulence yields such a behaviour [17] and recently,
logarithmic correlators appeared in two-dimensional abelian sandpile models studied by
S. Mathieu and P. Ruelle [18, 19]. Finally, there are contributions to Seiberg-Witten
models [20]. A very extensive list of references is given by A. Nichols [21]. Lecture notes
can be found in [8, 9, 22, 23].

The aim of this thesis is to combine these two different directions to a single boundary
logarithmic conformal field theory. In this context, rationality plays an important role.
For ordinary (rational) conformal field theories, N. Ishibashi [5] prescribed a generic way
towards the computation of boundary states: A cylinder, for example, has two bound-
aries. These boundaries can be understood as the initial and final state of a propagating
closed string. This was extended by J. L. Cardy [3] in order to obtain the set of physical
relevant boundary conditions relating the coefficients of the boundary partition functions
to the fusion rules of the bulk theory. Many concepts of rationality can be generalised to
logarithmic conformal field theories, such as characters, fusion rules, partition function,
etc. Detailed discussions are conducted in [24, 25, 26, 27, 28, 29, 30, 31, 32, 33].

Boundary states in a c = −2 logarithmic conformal field theory were first examined by
I. I. Kogan and J. F. Wheater [34]. More recently, S. Kawai and again J. F. Wheater [35]
studied boundary states of the same model using the method of symplectic fermions [30],
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see also [36]. A third approach towards this problem was investigated by Y. Ishimoto [37].
Logarithmic conformal field theories in the vicinity of a boundary were also discussed by
A. Lewis [38] and by S. Moghimi-Araghi and S. Rouhani [39].

The results of the former three works on boundaries in the c = −2 case are all different
and partially contradictory. This demonstrates that the much more complicated represen-
tation theory of logarithmic conformal field theories poses a major obstacle to a rigorous
and consistent description of boundary states. For example, they naturally contain zero-
norm states which cannot be neglected. This and their non-trivial inner structure make
it impossible to obtain a normalised orthogonal basis of states which usually is assumed
in Ishibashi-like constructions of boundary states.

This work is positioned exactly at this point. It is intended to provide a general procedure
for deriving the set of boundary states in the rational c = −2 logarithmic conformal field
theory in a mathematically consistent way. However, it is applicable to other conformal
field theories as well.

Chapter 1 presents an overview of the main ideas and concepts of both logarithmic and
boundary conformal field theory.

Then, chapter 2 focusses on the construction of boundary states. Therein, the above-
mentioned Ishibashi and Cardy approach for ordinary rational conformal field theories
is shortly revised. In the second part, this chapter is devoted to introduce an algorithm
to directly calculate a complete set of boundary states from first principles, i. e. very
basic features of conformal field theories. It does not make explicit use of any special
features of logarithmic conformal field theory. Also, assumptions are made neither on
normalisability nor orthogonality of a basis of states. Thus, it should be appropriate for
applications towards generic logarithmic conformal field theories. The way the algorithm
is designed, a boundary state is computed iteratively. Finally, it is shown that it produces
results consistent to the Ishibashi approach in the case of ordinary conformal field theories.
It is important to mention that the states derived by both Ishibashi and with the help of
the presented method do not correspond to the physical boundary conditions themselves
but rather form a suitable basis.

Chapter 3 begins with a short introduction to the c = −2 logarithmic conformal field the-
ory under the influence of the maximally extended chiral symmetry algebra W(2, 3, 3, 3).
This theory is closest to the notions of a rational theory. In two different approaches,
the boundary states for this theory are derived: The first one is intended to give a very
intuitive picture on how to deal with boundaries in this theory and leads to a direct gen-
eralisation of the Ishibashi basis of boundary states. By applying the machinery invented
in chapter 2, it turns out that this theory contains more boundary states than assumed
up to now. So-called mixed boundary states emerge which interconnect two different rep-
resentations at the boundary. Starting in section 5, a deeper discussion of the structure
of the newly derived boundary states is conducted. Their existence is manifested and a
one-to-one correspondence between the structure of the boundary states on the one side
and the bulk states on the other side is derived. This yields a possible relation between
the boundary theory and the structure of the unique local logarithmic c = −2 conformal
field theory constructed by M.R. Gaberdiel and H.G. Kausch [29]. It is remarkable that
the set of boundary states shows a very similar structure, although for the construction,
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no relations to the local theory were assumed. The problem of a degenerate metric of the
natural pairings in the space of boundary states is attempted to be fixed by introducing
additional so-called weak boundary states. These serve as duals to some of the proper
boundary states. Two propositions are made for the application of Cardy’s formalism
in this situation. First, a subset of four boundary states is considered that corresponds
to the three-dimensional space spanned by the characters of the rational c = −2 theory.
This set is well defined and the induced metric is non-degenerate. For this setup, it is
shown that Cardy’s formalism can be applied precisely as for ordinary rational conformal
field theories. Secondly, taking the full space of boundary states and the above-mentioned
additional states into account, Cardy’s formalism still works to some extent. The parti-
tion functions are now related not to the physical characters, but to functions forming a
five-dimensional representation of the modular group, the elements of which can presum-
ably be interpreted as the torus amplitudes [40]. Interestingly, Cardy’s formalism fails at
precisely the same point where a Verlinde formula like computation of fusion coefficients
within the five-dimensional representation of the modular group breaks down. A way out
seems to be a limiting procedure, which eliminates the weak boundary states. Unfortu-
nately, the result of this limit is a bit ambiguous and its physical interpretation is not yet
completely clear.

Chapter 4 is devoted to boundary states in the symplectic fermion model [30, 35]. After
a short introduction to this theory, the results of Kawai and Wheater [35] are presented.
Then, the derivation of the boundary states obeying the fermion symmetry is performed
using the general procedure introduced in chapter 2. It is shown that the space of bound-
ary states is exactly the same as the one derived for the W(2, 3, 3, 3) algebra. Thus, the
two theories are equivalent. Furthermore, the result is connected to Kawai/Wheater in
order to show that the two different approaches are equal.

A brief discussion concludes this work, where especially the results are compared to earlier
works. Open questions and directions for future research are also included.
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Chapter 1

Modern conformal field theory

During the last 20 years two-dimensional conformal field theory has become an important
and powerful tool in modern theoretical physics. This chapter provides a short introduc-
tion to logarithmic conformal field theory and boundary conformal field theory. In this
work it is assumed that the reader has good knowledge of the basics of conformal field
theory in two dimensions. Good introductions can be found in various books, lecture
notes, articles, and reviews, see [41, 42, 43, 44, 45].

1.1 Logarithmic conformal field theory

The discovery of logarithmically divergent four-point correlation functions in 1993 by
V. Gurarie [7] was the starting point for the development of a new concept in modern
mathematical physics, called logarithmic conformal field theory. Gurarie studied the
properties of a primary operator µ(z) with conformal weight h = −1

8
in a two-dimensional

conformal field theory at central charge c = −2. He computed the four-point correlation
function1

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)
1

4 (z2 − z4)
1

4 F (x). (1.1)

This is the well known result for any such correlator due to the constraints of global
conformal invariance. F (x) is a holomorphic function of the anharmonic ratio

x =
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
(1.2)

that has to be deduced from dynamical constraints. Denoting the vacuum state by
∣∣0
〉

the highest weight state
∣∣µ
〉

= µ(0)
∣∣0
〉

satisfies the condition that
(
L−2 − 2L2

−1

) ∣∣µ
〉

is a
null state: Its scalar products with all states in the theory vanish. This induces a second
order differential equation for F (x) :

x(1 − x)F ′′(x) + (1 − 2x)F ′(x) − 1

4
F (x) = 0. (1.3)

It has two solutions: One is the hypergeometric function F (x) = F (1
2
, 1

2
; 1; x) that is reg-

ular in the vicinity of x = 0 but has a logarithmic singularity at x = 1. The second funda-
mental solution cannot be found via a power series ansatz: F (x) = F (1

2
, 1

2
; 1; x) log(x) +

1In this thesis, formulas are always given in terms of a chiral Euclidean conformal field theory on the
complex plane unless not annotated otherwise.
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H(x) where H(x) is some analytic function both at 0 and 1. This solution is regular at
x = 1 but logarithmically divergent at x = 0. Thus, it is not possible to get rid of the
logarithmic divergences by discarding one of the two solutions.

Consequently, there exist two different operator product expansions of the field µ with
itself depending on how the contour integrations are performed. The regular solution
implies

µ(z)µ(0) = z
1

4 Ω(0) + . . . , (1.4)

where Ω(z) is the identity operator. The second solution leads to a different operator
product expansion:

µ(z)µ(0) = z
1

4 (Ω(0) log(z) + ω(0)) + . . . . (1.5)

Here, Ω(z) is the same as in (1.4) but ω(z) is another operator with new features.

In a different approach one can study the properties of the representation module V−1/8

built on the highest weight state
∣∣µ
〉

= µ(0)
∣∣0
〉
. V−1/8 is an admissable highest weight

representation. The fusion product of this representation with itself is an indecomposable
rank-2 representation. The fusion product is not simply a tensor product but rather a
complicated procedure [46]: If one inserts two representations ψ and χ at the points z1
and z2, respectively, the contour integral with the energy-momentum tensor around both
insertion points defines a representation, the fusion product (ψ ⊗f χ). Even though it
differs from the tensor product it is common to use the same symbol ⊗. In order to
suppress confusions, it is here used either with an index f or when concerning the Verma
modules, a cross (×) is used. ⊗ refers to the usual tensor product. The action of the
Virasoro modes on this representation is given by a so-called comultiplication formula:

∮

0

dwwm+1
〈
φ
∣∣T (w)ψ(z1)χ(z2)

∣∣Ω
〉

=
〈
φ
∣∣(∆(1)

z1,z2
(Lm)ψ)(z1)(∆

(2)
z1,z2

(Lm)χ)(z2)
∣∣Ω
〉 (1.6)

Here, φ is an arbitrary state inserted at infinity. The symbol ∆ is given in [46]:

∆z1,z2(Ln) =
n∑

m=−1

(
n+ 1
m+ 1

)
zn−m1

(
Lm ⊗ 1)

︸ ︷︷ ︸(
∆(1) ⊗ 1) +

n∑

l=−1

(
n+ 1
l + 1

)
zn−l2

(1⊗ Ll
)

︸ ︷︷ ︸(1⊗ ∆(2)
)

, (n ≥ −1) (1.7)

For n ≤ −2 there are two different possible choices:

∆z1,z2(Ln) =
∞∑

m=−1

(
m− n− 1
m+ 1

)
(−1)m+1zn−m1

(
Lm ⊗ 1)

+

∞∑

l=−n

(
l − 2

−n− 2

)
(−z2)l+n

(1⊗ L−l
)

(1.8)



1.2. Boundaries, boundary conditions and boundary conformal field theory 7

and ∆̃z1,z2(Ln) where the tensoring is the other way round:

∆̃z1,z2(Ln) =

∞∑

m=−1

(
m− n− 1
m+ 1

)
(−1)m+1zn−m1

(1⊗ Lm
)

+

∞∑

l=−n

(
l − 2

−n− 2

)
(−z2)l+n

(
L−l ⊗ 1). (1.9)

Due to the fact that the fusion product should be uniquely defined states of the form[
∆(Lm)− ∆̃(Lm)

]
(ψ1 ⊗f ψ2) are discarded from the product space of the two representa-

tions. An explicit formulation in the case of the c = −2 theory is given in [8]. The main
result is the existence two states

ω = (µ⊗f µ) and Ω = −1

4
(µ⊗f µ) + (L−1µ⊗f µ) . (1.10)

They have the property

L0ω = Ω and L0Ω = 0. (1.11)

They form a rank-2 indecomposable Jordan block in the L0 mode and can be identified
with the states corresponding to the operators Ω(z) and ω(z) in the operator product
expansions (1.4) and (1.5). In (1.11), L0 belongs to the realisation of the Virasoro modes
on the fusion representation and is given by the comultiplication formula (1.7). The
symbol ∆ will be omitted from now on unless confusions arise.

1.2 Boundaries, boundary conditions and boundary

conformal field theory

In all experimental setups the probes that are examined occupy a finite area, i. e. they
have a finite length. One simply cannot study a two-dimensional system of infinite size in
a laboratory. This naturally implies the existence of physical boundaries and boundary
conditions. Conformal field theory found many applications in modern theoretical physics,
just to give an example in the studies of the critical behaviour of two-dimensional lattice
systems at the phase transition point. Therefore, it had been an obvious quest to study
the consequences of conformal invariance in the vicinity of a boundary and to connect
the results to the knowledge one had had for the bulk theories, i. e. theories without
boundaries. The subject of boundary conformal field theory emerged first at the end of
the 1980’s simultaneously in the field of open string theory [5] and in connection with
critically behaving systems in condensed matter physics. During the last years, boundary
conformal field theory has found a renewed interest in both high energy and condensed
matter subjects. In this section a very brief overview leading to the basic conceptual ideas
is presented. An extensive description can be found in [4].

It turned out that a conformal field theory on a surface with boundaries is deeply con-
nected to the prescription of the same theory on the corresponding surface without bound-
aries, just as in string theory there is a deep relation between closed and open strings. In
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this work, these two surfaces will always be considered to be the cylinder and the torus,
respectively. P. di Francesco and J.-B. Zuber [47] as well as R.E. Behrend, P.A. Pearce,
V.B. Petkova, and J.-B. Zuber [48] formulated this correspondence in terms of graphs.
On the cylinder, the graphs’ nodes denote the physically consistent boundary conditions
and the partition functions are described by their adjacency matrices, while for the bulk
theory, i. e. on the torus, the nodes yield the modular invariants.

In a conformal field theory with boundaries, the conditions on the boundary have to
obey conformal invariance. In general cases, the symmetry algebra is bigger than just
the conformal symmetry algebra. It may contain the energy-momentum tensor and some
additional field(s) W of some weight h ∈ Z+/2. Considering for the moment a semi-
infinite cylinder which can be equally regarded as the upper half complex plane, i. e. a
setup with only one boundary, then one has to impose the absence of energy-momentum
flow across the boundary and corresponding continuity equations for the fields W (z) and
W (z):

T (z) = T (z) and W (z) = W (z) for z = z. (1.12)

T (z) and W (z) are exactly the anti-holomorphic fields corresponding to T (z) and W (z).
This situation can be mapped to an annulus in the complex plane, which is topological a
(finite) cylinder, by the transformation

ζ = e−2iπ L
T
·log(z). (1.13)

In these coordinates, (1.12) reads

ζ2T (ζ) = ζ2T (ζ) and ζsW (ζ) = (−ζ)sW (ζ) for |ζ | ∈
{
1, e2π L

T

}
. (1.14)

Here, s denotes the spin of the field W (z) and its anti-holomorphic partner. In the
given picture a boundary condition applied to one side of the cylinder can be understood
as a closed string state

∣∣B
〉

that propagates to another state
∣∣C
〉

corresponding to the
boundary condition on the other side of the cylinder. After radial quantization the above-
mentioned conditions (1.14) transform to constraints on these boundary states

∣∣B
〉

and∣∣C
〉

that are given in terms of the Virasoro modes and the mode expansion of the field
W (z), W (z) =

∑
n z

−n−hWn :
(
Ln − L−n

) ∣∣B
〉

= 0 and (1.15)
(
Wn − (−1)sW−n

) ∣∣B
〉

= 0, (n ∈ Z). (1.16)

(1.15) can be understood as an equation of motion for the open string background and
thus itself does not completely determine the boundary states. Therefore, it is natural to
consider the influence of a larger symmetry algebra.

The general solution to these equations in the case of ordinary rational conformal field
theories containing only irreducible representations in their spectra was analyzed first by
N. Ishibashi [5]. Later, J. L. Cardy [3] connected the results of Ishibashi to the properties
of the corresponding bulk theory. This standard approach to boundary conformal field
theory is shortly reviewed in section 2.1 and exemplarily applied to a very simple and
well-known system, the two-dimensional lattice Ising model on an annulus.
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Chapter 2

Construction of boundary states:

A general procedure

In this chapter, the constraints on the boundary states are solved, leading to the complete
set of allowed boundary states. Firstly, the “standard approach” is presented. Its main
results in mind, a procedure is invented that is based on only a small set of fundamental
assumptions concerning the bulk state properties. Thus, this method should be applicable
to a wide range of conformal field theories.

2.1 Standard approach in ordinary conformal field

theories

It was already mentioned in the last chapter that in ordinary rational conformal field the-
ories with boundaries there exists a generic way for obtaining the set of physical boundary
conditions in terms of boundary states. The span of boundary states is derived by the so-
called Ishibashi construction [5]: It was discussed in section 1.2 that conformal invariance
gives strong constraints on a boundary state

∣∣B
〉
:

(
Ln − L−n

) ∣∣B
〉

= 0. (2.1)

This equation is not sufficient enough to determine
∣∣B
〉

completely. Therefore, one ana-
lyzes boundary operators with respect to the maximally extended chiral symmetry algebra
W with additional N fields W r, r = 1, . . . , N . The boundary state for this algebra has
to obey in addition:

(
W r
n − (−1)srW r

−n
) ∣∣B

〉
= 0, (2.2)

where sr labels the spin of the field W r. A basis over a given bulk representation module
Mh may be denoted by

{∣∣l, n
〉 ∣∣ l = h, h+ 1, . . . ; n = 1, . . . , nl

}
, (2.3)
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where l counts the levels beginning from the highest weight h of the module and n labels
a suitable basis on each level. This might look as in the following diagram:

•

••

•

6

J
J

J
J

J
J

JJ]

�
�

�
��3

∣∣h, 1
〉

∣∣h+ 2, 1
〉 ∣∣h + 2, 2

〉

∣∣h+ 1, 1
〉

L−1

L−1

L−2

figure 2.1: Denoting the basis of a Virasoro module Mh with highest weight
state

∣∣h, 1
〉
≡
∣∣h
〉

of weight h

The first thing is to compute a suitable basis of boundary states. For a representation
module Mh of the chiral bulk theory and its anti-chiral partner module Mh a sufficient

boundary state is given by the sum over tensor products
∣∣l, n; l, n

〉
≡
∣∣l, n

〉
⊗
∣∣l, n

〉
of a

complete orthonormal basis, the Ishibashi states :
∣∣Mh

〉
=
∑

l,n

(1⊗ U
) ∣∣l, n; l, n

〉
. (2.4)

Here, U is the anti-unitary operator acting on the modes as

ULn = LnU and UW r
n = (−1)srW r

n U . (2.5)

For a two-boundary system the physical relevant boundary conditions were analyzed by
J. L. Cardy [3]. The partition function in such a theory with boundary conditions α and
β, respectively, is not a sum over bilinears of the characters as in pure bulk theories but
rather a linear combination

Zαβ(q) =
∑

i

niαβχi (q) =
∑

i

niαβSji χj (q̃) (2.6)

with coefficients niαβ . Here, the index i runs over the representations and q ≡ e2πiτ , τ
being the modular parameter. S is the transformation matrix of the characters under
q −→ q̃ = e−2πi/τ , τ −→ −1/τ . An open string that propagates periodically in time can
be regarded as a propagating closed string. With the help of this T -duality Zαβ(q) can
be rewritten in terms of a closed string amplitude, i. e. a closed string propagating from
the initial state

∣∣β
〉

to a final state
∣∣α
〉
:

Zαβ(q) =
〈
α
∣∣q̃H
∣∣β
〉
. (2.7)

Here, H ≡ 1
2
(L0 + L0 − c/24) is the Hamiltonian. The two equations (2.6) and (2.7)

combine to Cardy’s consistency equation:
∑

i,j

niαβSji χj(q̃) ≡
〈
α
∣∣q̃H
∣∣β
〉
. (2.8)
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In ordinary theories the Ishibashi boundary states diagonalise the closed string amplitudes
(2.7)

〈
i
∣∣q̃H
∣∣j
〉

= δijχi(q̃). (2.9)

Here, i counts the Ishibashi states. Therefore, the identity can be expressed in terms of
the complete set of Ishibashi boundary states (2.4) as1 =

∑

i

∣∣i
〉〈
i
∣∣. (2.10)

This leads to a relation between (2.6) and (2.7):

Zαβ(q) =
∑

i

〈
α
∣∣i
〉〈
i
∣∣β
〉
χi(q̃). (2.11)

If the characters χi (q) are linearly independent (as they are for ordinary conformal field
theories) then a comparison to (2.6) shows that

〈
α
∣∣i
〉〈
i
∣∣β
〉
≡ njαβSij. (2.12)

Cardy used this equation to relate the coefficients niαβ to the fusion rules of the under-
lying bulk theory obtaining the set of physical relevant boundary conditions. They are
derived by looking at conditions where the spectrum of the bulk Hamiltonian consists of
the vacuum representation Ω and the representation k. This corresponds to boundary
conditions (Ω ,k), i. e. Ω on one side of the cylinder and k on the other side:

∣∣k
〉

=
∑

i

Sik√
Si0

∣∣i
〉
. (2.13)

Here, the row Si0 is associated with the transformation of the vacuum character under
τ −→ −1/τ . The dual states are not simply the adjoints. The boundary conditions are
symmetric, i. e. for boundary conditions (k,Ω) the Hamiltonian’s spectrum contains the
representations k and Ω . In order to stick to these considerations, the correct bra states
are

〈
k∨∣∣ =

∑

i

Sik√
Si0
〈
i
∣∣. (2.14)

As an example, the two dimensional Ising model on a square lattice with two boundaries
is briefly reviewed here. The Ising model at the critical point can be described by a
rational conformal field theory with central charge c = 1

2
. It is equivalent to the free

fermion system. There are three representations that close under fusion: V0 (the vacuum
representation), V1/2 (belonging to the energy), and V1/16 (coming from a twist operator
that changes the spin). The fusion rules Vi × Vj =

∑
kN

k
ijVk read:

V0 × Ψ = Ψ V1/2 × V1/16 = V1/16

V1/2 × V1/2 = V0 V1/16 × V1/16 = V0 + V1/2

(2.15)
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The S matrix for the characters {χ0 (q), χ1/2(q), χ1/16(q)} of the representation modules
is given by

S =




1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0


 . (2.16)

There exist three relevant boundary conditions for each boundary: All spins up, all down
and a condition where the spins are free. The boundary states derived by the Ishibashi
and Cardy construction are

∣∣0
〉

=
1√
2

∣∣V0

〉
+

1√
2

∣∣V1/2

〉
+

1
4
√

2

∣∣V1/16

〉
,

∣∣1
2

〉
=

1√
2

∣∣V0

〉
+

1√
2

∣∣V1/2

〉
− 1

4
√

2

∣∣V1/16

〉
, (2.17)

∣∣ 1

16

〉
=
∣∣V0

〉
−
∣∣V1/16

〉
.

The first two states can be identified with the all-spin-up and all-spin-down state, respec-
tively, according to their Z2 symmetry. Naturally,

∣∣ 1

16

〉
has to be the state corresponding

to free boundary conditions. This is not unexpected, since the operator related to the
representation V1/16 is the twist operator that interchanges the spin content. One should
stress here that boundary operators in general do not have the same weight as the cor-
responding bulk operators: The twist state, for example, has weight h = 0 while in the
bulk the weight is equal to 1/16.

In principle there can be other choices for the proper boundary conditions as well. A
necessary condition is that the coefficients niαβ interpreted as matrices (nα)

i
β obey a

matrix multiplication law equal to the fusion rules, the Verlinde algebra:

(nk)
r
s · (nl )st =

∑

i

N i
kl · (ni )rt. (2.18)

Evidently, for n being equal to the fusion coefficients N themselves this condition is
trivially satisfied. In ordinary rational conformal field theory the Cardy condition is equal
to finding so-called non-negative integer matrix (NIM) representations of the Verlinde
algebra [4, 54]. It is still not clear if and how more general solutions have to be taken into
account, especially in logarithmic conformal field theories.

2.2 A general procedure

The standard method to gain boundary states works well in ordinary conformal field theo-
ries but it fails in cases that have a more complicated structure like logarithmic conformal
field theories. There, one has to cope with the natural existence of zero-norm states. This
prohibits the use of an orthonormal basis. In principle, the Ishibashi construction does
not make use of orthonormality but in most of its applications to logarithmic conformal
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field theory this far it was in fact always assumed. Another feature is that the L0 mode
contains non-trivial Jordan blocks and is therefore not diagonalisable. A possible way out
is presented here: The implementation of a procedure that derives the set of boundary
states from bottom-up by using rather general properties of the bulk theory. Considering
an arbitrary not necessarily orthonormal basis

{∣∣l, n
〉}

of a representation Mh the metric
elements gmn are given by the always well-defined and symmetric Shapovalov forms [49]:

δll′gmn ≡
〈
l,m

∣∣l′, n
〉
≡ lim

z→∞
lim
w→0

z2l
〈
φl,m(z)φl′,n(w)

〉
. (2.19)

Here, φl,m is the field corresponding to the state
∣∣l,m

〉
. A prescription for the case of

logarithmic conformal field theories was given by F. Rohsiepe [27]. It is assumed here,
that Mh contains an element of highest weight h. This does not have to be the cyclic
state that generates the complete representation as in ordinary theories. One might, for
example, think of more general setups in which there exists a state ψ that generates the
module and has the property that L2

1ψ = 0 while L1ψ 6= 0. This is in fact the case in the
c = −2 triplet model. Keeping in mind the standard approach, a generalised ansatz for a

boundary state can be written as a sum of product states
∣∣l,m; l̄, n

〉
≡
∣∣l,m

〉
⊗
∣∣l̄, n

〉
of a

holomorphic representation Mh and an anti-holomorphic module Mh̄ :

∣∣B
〉

=
∑

l,m,l̄,n

c l l̄mn
∣∣l,m; l̄, n

〉
. (2.20)

Here, l 6= l̄ is in principle allowed. Of course, it will turn out that only states of the type∣∣l,m; l, n
〉

contribute to the solution just as in the Ishibashi approach. The modes Ln in
equation (2.1) obey the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,0. (2.21)

For n 6= 2 a simple calculation shows that

Ln =
1

n− 2
[Ln−1, L1] and L−n =

1

2 − n
[L1−n, L−1] . (2.22)

Thus, it is enough to check condition (2.1) for n = −2, . . . , 2 because the equation auto-
matically holds for |n| ≥ 3. For a boundary state that is built on two copies of the same
representation module in its holomorphic and anti-holomorphic part it is equivalent to
demand that (2.1) is valid for n = 0, 1, 2 and to choose the coefficients symmetrically in
m and n, i. e. c l l̄mn = c l l̄nm.

From now on it is always assumed that L0 and L0 are in Jordan form and the decompo-

sition into their diagonal and off-diagonal parts is given by ĥ (ˆ̄h) and δ̂ (ˆ̄δ), respectively,
such that

L0 = ĥ+ δ̂ and L0 = ˆ̄h+ ˆ̄δ. (2.23)
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Equation (2.1) transforms into

0 =
(
L0 − L0

) ∣∣B
〉

=
(
ĥ− ˆ̄h + δ̂ − ˆ̄δ

) ∑

l,m,l̄,n

c l l̄mn
∣∣l,m; l̄, n

〉

=
∑

l,m,l̄,n

c l l̄mn

(
l − l̄ + δ̂ − ˆ̄δ

) ∣∣l,m; l̄, n
〉
.

(2.24)

Because the states
∣∣l,m; l̄, n

〉
form a basis of Mh ⊗Mh, the off-diagonal part (δ̂ − ˆ̄δ)

∣∣B
〉

has to vanish and the holomorphic and anti-holomorphic weight should coincide, l = l̄:

∣∣B
〉

=
∑

l,m,n

c lmn
∣∣l,m; l, n

〉
. (2.25)

This is already part of the result given by N. Ishibashi for ordinary conformal field theories,
see section 2.1. In the same manner the treatment of the n = 1 case in (2.1) yields the
following equations:

0 =
(
L1 − L−1

) ∣∣B
〉

=
(
L1 − L−1

)∑

l,m,n

c lmn
∣∣l,m; l, n

〉

=
∑

l,m,n

c lmn

(∑

a

α l m
a

∣∣l − 1, a; l, n
〉
−
∑

b

β l nb
∣∣l,m; l + 1, b

〉)

=
∑

l,m,n

(
α l a

mc
l
an − c l−1

mb β
l−1 b

n

) ∣∣l − 1, m; l, n
〉
.

(2.26)

In the last line of (2.26) and in the following, Einstein’s summing convention is used for
the indices a and b. Here, α and β denote the coefficients in the expansion of L1

∣∣l,m
〉

and L−1

∣∣l, n
〉

in terms of the basis states
∣∣l − 1, a

〉
and

∣∣l + 1, b
〉

at level l − 1 and l + 1,
respectively:

L1

∣∣l,m
〉

=
∑

a

α l m
a

∣∣l − 1, a
〉

and L−1

∣∣l, n
〉

=
∑

b

β l nb
∣∣l + 1, b

〉
. (2.27)

To fulfil the condition (2.26) the coefficients have to vanish identically because {
∣∣l,m

〉
}

is a basis:

α l a
mc

l
an − c l−1

mb β
l−1 b

n = 0. (2.28)

For n = 2 it follows analogously that

̺ l amc
l
an − c l−2

mb σ
l−2 b

n = 0. (2.29)

As in (2.28), ̺ and σ are the expansion coefficients for the states L2

∣∣l,m
〉

and L−2

∣∣l, n
〉
.

The conditions (2.2) for the extended symmetry algebra W have to be treated in the
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same way. These equations reduce to a finite set as well. The additional N fields in
the extended chiral symmetry algebra are primary with respect to the energy momentum
tensor. If h is the conformal weight of W r, then:

[
Ln,W

r
m

]
= ((h− 1)m− n)W r

m+n. (2.30)

As in (2.22) this implies

W a
n =

{ 1
(h−1)n

[
Ln,W

r
0

]
(n 6= 0, h 6= 1)

[
Ln−1,W

r
1

]
(h = 1)

. (2.31)

Therefore, it is enough to check (2.2) for n = 0 (or n ∈ {0, ±1} if h = 1), since the
remaining conditions are treated implicitly with the help of (2.1):

(
W r

0 − (−1)srW r
0

) ∣∣B
〉

= 0, r = 1, . . . , N. (2.32)

This leads to additional N + 2k equations, where N is the total number of additional
fields W a and k is the number of fields of conformal weight 1 among these. In particular,
in the special case of the W(2, 3, 3, 3) algebra in the c = −2 theory the three additional
fields W a are spin-3 fields and (2.32) reduces to the three equations

(
W a

0 +W a
0

) ∣∣B
〉

= 0, (2.33)

where a is the spinor index of su(2) and takes three different values.

By solving all the conditions for the coefficients c lmn and all possible combinations of
holomorphic and anti-holomorphic representations contributing to

∣∣B
〉

one gains a com-
plete basis of boundary states. After having derived the coefficients for the first three
levels without any inconsistencies, there are no contradictions occurring on higher levels.
This is assured by the algebraic structure ((2.21) and (2.30)). Especially, the states are
well-defined solutions of (2.1) and (2.2). Indeed, this is the case for the c = −2 rational
logarithmic conformal field theory considered here as will be shown explicitly later on.
In particular, the coefficients c lmn for any arbitrary given finite level l can be calculated
iteratively and in a finite number of steps.

Given a set of representation modules Mm
h , m = 1, . . . ,M that build a Jordan block of

rank M in the zero mode of the Virasoro algebra, the number of boundary states built on

M1
h ⊗M1

h derived by the presented method is M . There is one state that is associated

to the whole representation M1
h ⊗M1

h and for each submodule there exists a state that
has only contributions coming from the particular subrepresentation. To see this, one
might look at a highest weight module Mm

h that is embedded as a subrepresentation in
M1

h. Exemplarily, one can consider an irreducible subrepresentation. Then, there exists a
highest weight state ζ with weight h such that Lnζ = 0 for n > 0. Therefore, the coefficient

chζζ in the expansion (2.25) of the boundary state for M1
h⊗M1

h is independent due to (2.1)

and (2.2). By acting with creators and annihilators on the states
∣∣l,m; l, n

〉
∈ Mm

h ⊗Mm

h

one cannot leave the representation. Therefore, this coefficient only affects states in this
subrepresentation.
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It is obvious that in ordinary conformal field theories this formalism reproduces the usual
Ishibashi results: Let {

∣∣l,m
〉
} be an orthonormal basis of an irreducible highest weight

module V. The corresponding Ishibashi boundary state reads:

∣∣V
〉

=
∑

l,m

(1⊗ U
) ∣∣l,m; l,m

〉
. (2.34)

U is the anti-unitary operation defined in the previous section with the feature that it
acts on the modes of the extended chiral algebra as W r

nU = (−1)srUW r
n and commutes

with all the Virasoro modes. Since the state given in (2.34) satisfies the two equations
(2.1) and (2.2), it has to fulfil the coefficient equations (2.24), (2.26), and (2.29) as well
as the corresponding ones for the modes of the extended algebra (2.33). This means that∣∣V
〉

can be constructed by the formalism presented above. The difference is that it does
not make explicit use of the unitary operation U . If U is split off by hand afterwards, the
well-known results of ordinary conformal field theories are exactly reproduced.

The big advantage compared to other ansatzes is that this method does not make any
use of the properties of the states themselves other than the expansion with respect to
an arbitrary but fixed basis. On the other hand, it is not possible with this method to
derive the boundary states in a closed form because that would mean to deduce an infinite
number of coefficients. Therefore, it is necessary to identify the states afterwards. This
is the price one has to pay for the sake of the method’s simplicity that results in the
possibility to keep track of non-trivial inner structures of complicated representations and
a better handling of non-normalisable states. Both are a specialty of logarithmic conformal
field theories. This features its application in a wide range of boundary conformal field
theories.
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Chapter 3

Boundary states in c = −2 logarithmic

conformal field theory

This chapter deals with the derivation of the span of boundary states for the c = −2 triplet
model. After a short introduction of this rational conformal field theory the results of
previous works on this topic are briefly reviewed. In section 3.3 it is shown to what
extent it is possible to generalise the standard Ishibashi formalism. In section 3.4 the
method presented in chapter 2 is applied to the triplet model. It turns out that the
rational c = −2 theory containts more boundary states than has been assumed up to
now. The solution is discussed in section 3.5. Exploring its structure a connection to the
unique local theory analyzed by M.R. Gaberdiel and H.G. Kausch [29] arises. Finally,
the cylinder amplitudes are calculated to see how the physical relevant boundary states
à la J. L. Cardy can be obtained and how this standard approach has to be modified for
logarithmic conformal field theories.

3.1 The triplet model

Before considering boundary states, this section tries to give a short overview of the c = −2
triplet model. M.R. Gaberdiel and H.G. Kausch spent a lot of work analyzing this ra-
tional logarithmic conformal (bulk) theory [25, 26, 29, 50]. F. Rohsiepe examined the
physical characters of the representation modules [27]. They form the three-dimensional
representation of the modular group. The torus amplitudes on the other hand seem to
be related to a five-dimensional representation of the same group that was analyzed by
M. Flohr [28]. The latter representation contains the smaller one as a subrepresentation.
Even though it is not quite well understood, it is suspected to be an essential and in-
teresting new feature of logarithmic conformal field theories that characters and torus
amplitudes form different representations. Work in this direction is still in progress [40].
In ordinary theories the two sets — characters and torus amplitudes — are exactly equal.
The theory is based on a W(2, 3, 3, 3) triplet algebra which is generated by the Virasoro
modes Ln and the modes W a

n of a triplet of spin-3 fields W a(z). With the help of two
quasi-primary normal ordered fields Λ = :L2:−3/10 ∂2L and V a = :LW a:−3/14 ∂2W a
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the commutation relations read

[
Lm, Ln

]
=(m− n)Lm+n −

1

6

(
m3 −m

)
δm+n,0,

[
Lm,W

a
n

]
=(2m− n)W a

m+n,

[
W a
m,W

b
n

]
=ĝ ab

(
2 (m− n) Λm+n +

1

20
(m− n)

(
2m2 + 2n2 −mn− 8

)
Lm+n

− 1

120
m
(
m2 − 1

) (
m2 − 4

)
δm+n,0

)
(3.1)

+ f̂ abc

(
5

14

(
2m2 + 2n2 − 3mn− 4

)
W c
m+n +

12

5
V c
m+n

)
.

Here, ĝ ab is the metric and f̂ abc are the structure constants of su(2). For the further
discussion it is suitable to choose a Cartan-Weyl basis for su(2) which reads W 0 and W±.
The metric is given by ĝ 00 = 1, ĝ+− = ĝ−+ = 2 and the non-vanishing structure constants
read f̂ 0±

± = −f̂ ±0
± = ±1 and f̂ +−

0 = −f̂ −+
0 = 2. The anti-unitary operator U of chapter

2 acts in this setup as a spin flip: UW 0 = −W 0U and UW± = −W∓U . Commutators
involving the operators δ̂ and ĥ introduced as the decomposition of L0 (2.23) read1

[
ĥ,On

]
=
[
L0,On

]
and

[
δ̂,On

]
= 0, (3.2)

where On is an arbitrary mode of the algebra. There are six representations that close
under fusion. Four of them are irreducible: two singlet representations, the vacuum
representation V0 and V−1/8 with highest weight states Ω at h = 0 and µ at h = −1/8,
respectively, and two doublet representations V1 and V3/8 with highest weight states at h =
1 and h = 3/8. Furthermore there exist two reducible but indecomposable representations:
R0 is generated by a cyclic state ω at level 0 that builds a Jordan block in L0 together
with the vacuum highest weight state Ω of V0 and R1 is generated by a doublet of level 1
cyclic states ψ± that form Jordan blocks together with the highest weight states φ± of the
representation V1. µ, Ω and ω are the states discussed in chapter 1. The states ω and ψ±

are no highest weight states, i. e. ξ± ≡ −1
2
L1ψ

± is not zero and L0 acts non-diagonal. The
representations V0 and V1 are subrepresentations of the modules R0 and R1, respectively.
It follows that the states in the two (sub-)representations V0 and V1 are zero-norm states
[27]. Due to the fact that the highest occurring weight in both of these indecomposable
representations is h = 0, these representations are also known as generalised highest
weight representations2. Furthermore, R0 contains two subrepresentations of type V1

built on the two doublet states Ψ±
1 and Ψ±

2 (here, the conventions of [26] are used):

Ψ+
1 = W+

−1ω, Ψ+
2 =

(
W 0

−1 + 1
2
L−1

)
ω,

Ψ−
1 =

(
−W 0

−1 + 1
2
L−1

)
ω, Ψ−

2 = W−
−1ω.

(3.3)

1O
−nĥ

∣∣h
〉
≃ h

∣∣h + n
〉
, ĥO

−n

∣∣h
〉
≃ ĥ

∣∣h + n
〉
≃ (h + n)

∣∣h + n
〉

2i. e. their spectra are bounded from below as in irreducible representations
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The structure of the indecomposable modules R0 and R1 can be drawn schematically:

• •

• •
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figure 3.1: Generalised highest weight modules R0 and R1

The points in figure 3.1 refer to the states on which the different (sub-)representations
are built and the lines denote the action of the W-algebra.

These six representations form a finite set that close under fusion. Therefore among
others, one refers to this as a rational theory, even though rationality has to be seen
in a weaker sense than in ordinary rational conformal field theories. The fusion rules
Mi × Mj =

∑
kN

k
ijMk for the triplet model were analyzed by M.R. Gaberdiel and

H.G. Kausch [25, 26]:

V0 × Ψ = Ψ, V3/8 × V1 = V−1/8,

V−1/8 × V−1/8 = R0, V3/8 ×Rm = 2V−1/8 + 2V3/8,

V−1/8 × V3/8 = R1, V1 × V1 = V0,

V−1/8 × V1 = V3/8, V1 ×R0 = R1,

V−1/8 ×Rm = 2V−1/8 + 2V3/8, V1 ×R1 = R0,

V3/8 × V3/8 = R0, Rm ×Rn = 2R0 + 2R1.

(3.4)

Here, m and n can take the values 0, 1. There exists a sub-group with respect to fusion:
The set

{
R0, R1, V−1/8, V3/8

}
closes under fusion as well. By looking at this reduced

set the non-trivial inner structures of the representation R0 and R1 are surely lost. The
characters χi(q) associated to the representations read

χV0
(q) =

1

2η(q)

(
Θ1,2(q) + (∂Θ)1,2(q)

)
,

χV1
(q) =

1

2η(q)

(
Θ1,2(q) − (∂Θ)1,2(q)

)
,

χV−1/8
(q) =

1

η(q)
Θ0,2(q), (3.5)

χV3/8
(q) =

1

η(q)
Θ2,2(q),

χR(q) ≡ χR0
(q) = χR1

(q) =
2

η(q)
Θ1,2(q).
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Here, η(q) = q1/24
∏

n∈N (1 − qn) is the Dedekind eta function and Θr,2(q) and (∂Θ)1,2(q)
are the ordinary and affine Riemann-Jacobi theta functions:

Θr,k(q) =
∑

n∈Z q(2kn+r)2/4k,

(∂Θ)r,k(q) =
∑

n∈Z (2kn + r) q(2kn+r)2/4k, (3.6)

(∇Θ)r,k(q) =
1

2π
log(q) (∂Θ)r,k (q) = iτ (∂Θ)r,k(q).

Y. Ishimoto showed that the metric for the two representations R0 and R1 can be chosen
in the following form [37]:

〈
Ω
∣∣Ω
〉

= 0,
〈
Ω
∣∣ω
〉

= 1,
〈
ω
∣∣ω
〉

= d,

〈
φ+
∣∣φ−〉 = 0,

〈
φ+
∣∣ψ−〉 = −1,

〈
ψ+
∣∣ψ−〉 = −t,

(3.7)

where d and t are in principal arbitrary real numbers. This determines the metric com-
pletely (see appendix A).

3.2 Boundary states – previous works

The field of boundary logarithmic conformal field theory has not been much developed
up to now. The first works on this topic appeared first in 2000 when I. I. Kogan and
J. F. Wheater tried to solve it via the standard Ishibashi approach [34]. They restricted
themselves to the case of only one rank-2 indecomposable representation R containing
the (irreducible) sub-representation V. To get rid of the zero norm states they introduced
some regularization, such that the states in V were normalised to a polynomial in some
small value ǫ. Here, the orthogonal basis states of V are denoted by

∣∣l, n
〉
. The additional

states in order to complete this set of states to a basis of R are labeled by
∣∣l, n

〉〉
. Their

proposal for the Ishibashi boundary states was

∣∣R
〉

=
1

ǫ

∑

l,n

∣∣l, n; l, n
〉〉

+
∣∣l, n; l, n

〉
and

∣∣V
〉

= ǫ
∑

l,n

∣∣l, n; l, n
〉
. (3.8)

The cylinder amplitudes that arise from these states are

〈
R
∣∣q̂
∣∣R
〉

= χ0(q) log(q) + χ1(q),〈
R
∣∣q̂
∣∣V
〉

= χ0(q), (3.9)
〈
V
∣∣q̂
∣∣V
〉

= 0.

In the c = −2 case, these characters were identified in the following way in order to stick
to the lines of Cardy to construct the physical relevant boundary conditions:

χ0 (q) =
(∂Θ)1,2(q)

η(q)
and χ1 (q) =

1

η(q)

(
Θ1,2(q) − (∂Θ)1,2(q)

)
. (3.10)
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Obviously, it is not very satisfying that these “characters” are not exactly the physical
ones but rather different linear combinations of (3.5). Anyhow, together with the two
ordinary Ishibashi states

∣∣V−1/8

〉
and

∣∣V3/8

〉
for the irreducible representation modules

V−1/8 and V3/8 the physical relevant boundary states were identified:
∣∣1
〉

= a
∣∣V
〉

+
∣∣V−1/8

〉
+
∣∣V3/8

〉
,

∣∣2
〉

= b
∣∣V
〉

+

√
3

2

∣∣V−1/8

〉
+

√
1

2

∣∣V3/8

〉
, (3.11)

∣∣3
〉

= c
∣∣V
〉

+
√

2
∣∣V−1/8

〉
.

Here, a, b and c are arbitrary (!) constants. It is interesting that
∣∣R
〉

does not show up
at all.

Another proposition for the Ishibashi construction in the triplet model was given by
Y. Ishimoto [37]. He ignored the fact that the states in V0 and V1, respectively, have zero
norm but rather assumed an orthonormal basis for the modules R0 and R1. It was derived
that the only possible boundary states for the rank-2 indecomposable representations
were those based on the subrepresentations. From this, Ishimoto conjectured that it is
indeed true for rank-2 indecomposable representations in general: There can only exist
one corresponding boundary state. This conjecture is discussed further below. For the
states connected to the fusion rules coefficients3 a wide range of possibilities was given.

A third approach towards a proper and consistent prescription of the boundary states in
the triplet model was proposed by S. Kawai and J. F. Wheater [35]. Their construction
exploits the fact that the triplet model can be described in terms of symplectic fermions
by starting from the fermionic (η, ξ)-ghost system with central charge c = −2. The main
idea was that the boundary equations with respect to this algebra are satisfied by certain
coherent states. Chapter 4 concentrates explicitly on the boundary states obeying the
symplectic fermion symmetry. There, this approach is described in detail.

3.3 A generalisation of the standard formalism – The

matrix approach

This section deals with a matrix formulation of the boundary states. Those for the c = −2
triplet model are derived by a direct generalisation of the Ishibashi states. It will turn out
in the next section that this approach is not sufficient enough to cover the complete set of
boundary states. Anyhow, the idea of this section is to give a very intuitive prescription
for dealing with the derivation of boundary states.

The boundary conditions implied by conformal invariance and the ansatz for the boundary
states are:

(
Or
n − (−1)srOr

−n
) ∣∣B

〉
= 0, (3.12)

∣∣B
〉

=
∑

l,m,n

c lmn
(1⊗ U

) ∣∣l,m; l, n
〉
. (3.13)

3i. e. obtained by the Cardy construction
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In (3.13) it is already implemented that only those product states survive that come with
the same weight l = l̄ as discussed in section 2.2.

The dual basis is given by the states
〈
l1, α; l2, β

∣∣ (1⊗ U †). By multiplying such a state
from the left, equation (3.12) transforms into

0 =
〈
l1, α; l2, β

∣∣ (Or
n −Or

−n
)∑

l,p,q

c lpq
∣∣l, p; l, q

〉

=
∑

l,p,q

(〈
l1, α

∣∣Or
n

∣∣l, p
〉
c lpq
〈
l, q
∣∣l2, β

〉
−
〈
l1, α

∣∣l, p
〉
c lpq
〈
l, q
∣∣Or

n

∣∣l2, β
〉)

(3.14)

=
〈
l1, α

∣∣Or
n

∣∣l, p
〉
c lpqδl,l2g

(l)
qβ − δl1,lg

(l)
αpc

l
pq

〈
l, q
∣∣Or

n

∣∣l2, β
〉
.

Herein, g lpq is the metric on level l. Introducing the matrix notation Or α
n β ≡

〈
α
∣∣Or

n

∣∣β
〉

the last line can be written in a very short way:

0 = Or α
n pcpqgqβ − gαpcpqOr q

n β. (3.15)

By multiplying from left and right with the inverse metric g−1 and dropping the indices
the final result is the matrix identity

0 = g−1 · Or
n · c− c · Or

n · g−1. (3.16)

Obviously, for the coefficient matrix being the inverse metric, c ≡ g−1, this equation
is trivially satisfied. If the considered basis is orthonormal this reproduces the usual
Ishibashi result exactly. The best one can do in the c = −2 theory, however, is to choose
the metric as in (3.7) with some structure constants d and t for the two representations
R0 and R1.

For simplicity, only R0 is treated here. All considerations are valid in the R1 case as well.
The matrix Or

n is connected to the metric g via multiplication (either from left or from
right) with a matrix that is constant with respect to d:

A = Or
n · g−1 and B = g−1 · Or

n. (3.17)

This is seen as follows. The action of Or
n on a state

∣∣l+ n, α
〉

can always be expanded in
terms of the given basis: Or

n

∣∣l + n, α
〉

=
∑

β ̺
α
β

∣∣β, n
〉
. Since ̺ is completely determined

by the commutation relations (3.1), it does not depend on d.

B = g−1 · Or
n = g−1

pq Or q
n s

= g−1
pq

〈
q
∣∣Or

n

∣∣s
〉

(3.18)

= g−1
pq

〈
q
∣∣∑

α

̺sα
∣∣α
〉

= g−1
pq gqα̺

s
α = ̺ps ≡ ̺,

and together with the analogous calculation for A the statement is proven. Inserting this
into (3.16) gives A·c−c·B = 0. Since c = g−1 is a solution, it follow thatA·g−1−g−1·B = 0.
The inverse metric depends linear4 on the structure constant d. Because A and B are

4For an explicit derivation, see appendix A.
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constant matrices, the derivation ∂d only acts on g−1 in this equation. Obviously ∂dg
−1

is not equal to zero and since A · (∂dg−1) − (∂dg
−1) · B = 0, there exists another proper

boundary state with the coefficient matrix being equal to c = −∂dg−1. The minus sign is
added to normalise the coefficient of

(
Ω ⊗ Ω

)
in the sum to be positive.

Altogether, two proper independent boundary states were identified for the indecompos-
able representation R0:

∣∣R0

〉
=
∣∣c = g−1

〉
and

∣∣V0

〉
=
∣∣c = −∂dg−1

〉
. (3.19)

Here, g−1 is the metric on the representation R0.

The same considerations for the representation R1 lead to analogous results. Again two
boundary states are found:

∣∣R1

〉
=
∣∣c = g−1

〉
and

∣∣V1

〉
=
∣∣c = ∂tg

−1
〉
, (3.20)

with g now being the metric on R1. The representations V−1/8 and V3/8 are ordinary,
irreducible ones. They produce the usual Ishibashi states for these cases. Thus, a total
number of six boundary states could be identified in this section.

Evidently, the two states
∣∣R0

〉
and

∣∣R1

〉
are generalised Ishibashi boundary states. They

are a generalisation of the usual Ishibashi states to an arbitrary basis and to indecom-
posable rank-2 and higher representations. The states

∣∣V0

〉
and

∣∣V1

〉
are only build from

states lying in the subrepresentations V0 and V1, respectively. This statement is proven
first in the next chapter, but it can also be read off from the explicit calculations in
appendix A. These boundary states may be assigned the name level-2 Ishibashi states.

3.4 Via the general procedure

Here, the boundary states in the case of the rational c = −2 logarithmic conformal field
theory are solved following the construction of chapter 2. A total number of ten proper
boundary states is identified:

• A state
∣∣V−1/8

〉
for the pairing V−1/8 ⊗ V−1/8,

• Another state
∣∣V3/8

〉
for V3/8 ⊗ V3/8.

These states are the usual Ishibashi states for the representation modules V−1/8 and V3/8

and coincide with the results of 3.3. The situation is different for states built on R0 ⊗R0.
There are two independent coefficients c

ΩΩ
≡ c 0

ΩΩ
and c

Ωω ≡ c 0
Ωω and hence two different

solutions. One state is derived for the complete module R0 and one for the submodule
V0 :

∣∣R0

〉
=
∣∣cΩΩ = −d, cΩω = 1

〉
= −d

∣∣Ω ,Ω
〉

+
∣∣Ω , ω

〉
+
∣∣ω,Ω

〉
+ . . . ,

∣∣V0

〉
=
∣∣cΩΩ = 1, cΩω = 0

〉
=
∣∣Ω ,Ω

〉
+ . . . .

(3.21)

The notation
∣∣α, β

〉
≡
(
α ⊗ β

)
is introduced as a short-hand. The boundary states are

defined via the given choice of the two free parameters, fixing all other coefficients in (2.25).
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To be more explicit, the first few terms of the infinite sum are also given, i. e. the first
level contributions5. In

∣∣R0

〉
the parameter cΩΩ = −d is chosen for a convenient further

discussion and to be compatible with the results of the previous section. Remember that
d is a structure constant fixing the metric (3.7). Analogously, there are two boundary
states for R1 ⊗R1:

∣∣R1

〉
=
∣∣cξ+ξ− = −t, cφ+ψ− = 1

〉

= t
{
−
∣∣ξ+, ξ−

〉
+
∣∣ξ−, ξ+

〉
+
∣∣φ+, φ−〉−

∣∣φ−, φ+
〉}

+
∣∣φ+, ψ−〉−

∣∣φ−, ψ+
〉

+ . . . ,
∣∣V1

〉
=
∣∣cξ+ξ− = 1, cφ+ψ− = 0

〉

=
∣∣ξ+, ξ−

〉
−
∣∣ξ−, ξ+

〉
−
∣∣φ+, φ−〉+

∣∣φ−, φ+
〉

+ . . . ,

(3.22)

where in
∣∣R1

〉
again cξ+ξ− = −t is chosen for convenience. Herein, the coefficients are

antisymmetric with respect to interchanging the su(2)-spin indices.

These results coincide with the ones of the previous section: Indeed, one can expand the
states

∣∣R0

〉
and

∣∣R1

〉
into the sums (2.25) and re-introduce the anti-unitary operation U

which acts as W±
n U = −UW∓

n and W 0
nU = −UW 0

n . Finally, the coefficient matrix γ can
implicitly be defined by γ · (1 ⊗ U) ≡ c. The two states take the following form:

∣∣Rλ

〉
=
∑

l,m,n

γλ lmn
(1⊗ U

)∣∣l,m; l, n
〉
, λ = 0, 1. (3.23)

The coefficient matrices γλ are exactly the inverse metrics on the corresponding repre-
sentations Rλ. Thus,

∣∣Rλ

〉
are the generalised Ishibashi states introduced in the previous

section. They are well-defined:

0 =
(
On ±O−n

) ∣∣Rλ

〉

=
〈
l1, a

∣∣⊗ U
〈
l1, b
∣∣ (On ±O−n

)∑

l,m,n

γλ lmn
∣∣l,m

〉
⊗ U

∣∣l, n
〉

(3.24)

=
∑

l,m,n

(〈
l1, a

∣∣Onγ
λ l
mn

∣∣l,m
〉〈
l,m

∣∣l2, b
〉
−
〈
l1, a

∣∣γλ lmn
∣∣l,m

〉〈
l,m

∣∣On

∣∣l2, b
〉)

=
〈
l1, a

∣∣ [On,1λ] ∣∣l2, b〉
for the modes On of the chiral algebra. The operator 1λ defined by1λ ≡

∑

l,m,n

γλ lmn
∣∣l,m

〉〈
l, n
∣∣ (3.25)

5Explicit calculations can be found in appendix A.1. There, the first few level contributions of the
boundary states for the Virasoro sector of R0 are derived.
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is the projector onto the representation module Rλ:

(1λ)2 =
∑

l,m,n

∑

k,a,b

∣∣l,m
〉
γλ lmn

〈
l, n
∣∣k, a

〉
︸ ︷︷ ︸

δlkgna

γλ kab
〈
k, b
∣∣

=
∑

l,m,n

∑

k,a,b

∣∣l,m
〉
δlkδmaγ

λ k
ab

〈
k, b
∣∣ (3.26)

=
∑

l,m,b

γλ lmb
∣∣l,m

〉〈
l, b
∣∣ = 1λ.

Hence, it commutes with the action of the algebra.

In ordinary conformal field theories there are no boundary states based on product states
of different representations in their holomorphic and anti-holomorphic part because the
weights of two different representations are usually disjunct sets. Here, the representations
R0 and R1 contain the same weights and even their characters coincide [26]. Indeed, there
exist another two doublets of boundary states. For the combination R0⊗R1 one obtains:

∣∣R+
01

〉
=
∣∣cΩξ+ = 1

〉
=
∣∣Ω , ξ+

〉
+
∣∣Ψ−

1 , φ
−〉−

∣∣Ψ+
1 , φ

+
〉

+ . . . ,
∣∣R−

01

〉
=
∣∣cΩξ− = 1

〉
=
∣∣Ω , ξ−

〉
+
∣∣Ψ+

2 , φ
−〉−

∣∣Ψ−
2 , φ

+
〉

+ . . . .
(3.27)

Analogously, for R1 ⊗R0 one finds:

∣∣R±
10

〉
=
∣∣cξ±Ω = 1

〉
. (3.28)

These states glue together different bulk representations at the boundary. Since they are
built on different representations they are called mixed boundary states. They seem to
be a specialty of logarithmic conformal field theories.

After all, six solutions for the boundary states could be identified that have a one-to-one
correspondence to the representations. Furthermore, there are two doublet solutions that
relate the two generalised highest weight modules to each other. These ten states span
the space of all possible boundary states in the rational c = −2 logarithmic conformal
field theory.

3.5 Structural properties

This section deals with the analysis of the properties of the newly derived boundary states.
It is shown that they are related to each other by the action of certain operators. The
off-diagonal part of the Hamiltonian H ≃ L0 + L0 occurring in the “scalar products” of
the boundary states as in (2.9)

〈
B
∣∣qH
∣∣C
〉

=
〈
B
∣∣q 1

2
(L0+L0− c

12
)
∣∣C
〉

(3.29)

defines an operator N̂

N̂ ≡ δ̂ + ˆ̄δ. (3.30)
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Recalling L0 = ĥ + δ̂ and that in the rational c = −2 theory L0 has Jordan blocks of
dimension 2 at maximum for the R0 and R1 representations, i. e. δ̂2 = 0, it follows that
the operator N̂ is nilpotent of degree three: N̂ 3 = 0. Given this operator it is clear by
use of (3.2) that given a boundary state

∣∣B
〉

then N̂
∣∣B
〉

either vanishes or is a boundary
state itself. It turns out that

∣∣Vλ

〉
=

1

2
N̂
∣∣Rλ

〉
= −∂

∣∣Rλ

〉
, (λ = 0, 1), (3.31)

where ∂ ≡ ∂d if acting on
∣∣R0

〉
and ∂ ≡ −∂t if acting on

∣∣R1

〉
. This shows that the

two states
∣∣Vλ

〉
are identical to the level-2 Ishibashi states derived in section 3.2. The

structure implied by (3.31) is very similar to the bulk theory:

• •�

Ω , φ ω, ψ

δ̂
• •�∣∣Vλ

〉 ∣∣Rλ

〉
1
2
N̂

bulk states boundary states

figure 3.2: Similarity of δ̂ and N̂

Every boundary state
∣∣B
〉

satisfies

N̂ 2
∣∣B
〉

= ∂2
∣∣B
〉

= 0. (3.32)

This is seen with the help of equation (2.24): (δ̂ − ˆ̄δ)
∣∣B
〉

= 0 for a boundary state
∣∣B
〉
.

The nilpotency of δ̂ and ˆ̄δ yields

0 = (δ̂ − ˆ̄δ)2
∣∣B
〉

= −2δ̂ ˆ̄δ
∣∣B
〉

= −N̂ 2
∣∣B
〉
. (3.33)

Equation (3.29) implies the definition of an operator q̂:

q̂ ≡ q
1

2(L0+L0+ 1

6) = q
1

2

„
ĥ+

ˆ̄
h+ 1

6

« [
1 + log(q) · 1

2
N̂ + log(q)2 · 1

4
N̂ 2

]
. (3.34)

Here, c = −2 and q ≡ e2πiτ . The last equality is verified using the nilpotency property

of N̂ and L0 + L0 ≡ ĥ + ˆ̄h + N̂ . By means of equation (3.32) this implies that pairings〈
B
∣∣q̂
∣∣C
〉

of boundary states can contain logarithmic terms proportional of order one at
maximum, but never of higher order. This is not surprising, since usually, these pairings
reproduce the torus amplitudes or equivalently, the characters. In ordinary conformal field
theories the torus amplitudes and the characters span exactly the same representation
of the modular group. Here, there are two different representations instead, a three-
dimensional one for the physical characters and a five-dimensional one presumably for
the torus amplitudes including the smaller one. The main result of [25, 26, 28, 29] is
that the latter representation possesses elements of order (log(q))1 but neither of them
contains (log(q))2 or higher order contributions. Unfortunately, pairings of the boundary
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states, i. e. the cylinder amplitudes, happen to contain no logarithmic terms at all. With
the help of (3.5) they read

〈
V−1/8

∣∣q̂
∣∣V−1/8

〉
= χV−1/8

(q),
〈
V3/8

∣∣q̂
∣∣V3/8

〉
= χV3/8

(q),

〈
R0

∣∣q̂
∣∣R0

〉
= χR(q),

〈
R1

∣∣q̂
∣∣R1

〉
= χR(q).

(3.35)

All other combinations vanish. In particular, the six states
∣∣V0

〉
,
∣∣V1

〉
,
∣∣R±

01

〉
, and

∣∣R±
10

〉

are null-states with respect to the span of boundary states. Thus, the boundary states
reproduce the three-dimensional representation of the modular group6. Coming back to
Ishimoto’s conjecture, from the cylinder amplitudes point of view there exists exactly
one non-trivial boundary state for each of the rank-2 representations. In this sense, the
conjecture holds, though presumably not in the way it was meant to. Due to the fact that
most of the derived boundary states vanish the properties related to the inner structure of
the indecomposable representations are not visible at this state. Therefore, it is necessary
to study the boundary states in more detail.

In the following the main focus is on the structural relations of the states to each other.
In figure 3.2 the similarity of δ̂ in the bulk theory and N̂ for boundary states was shown.
Since N̂ has nilpotency degree three, the question arises if it is possible to construct
states, such that the boundary states

∣∣Rλ

〉
are the image of these states under the action

of N̂ . Of course, those additional states cannot be proper boundary states since they
violate the boundary equations (2.1) and (2.2) and especially (3.32). Unfortunately, one
can only find two states

∣∣Xλ

〉
and

∣∣Yλ

〉
such that

∣∣Rλ

〉
= N̂

∣∣Xλ

〉
+
∣∣Yλ

〉
and

∣∣Vλ

〉
=

1

2
N̂
∣∣Rλ

〉
=

1

2
N̂ 2
∣∣Xλ

〉
(λ = 0, 1). (3.36)

• • •⊕

•

- - -

6
∣∣Xλ

〉 ∣∣Rλ

〉 ∣∣Vλ

〉

∣∣Yλ

〉

N̂ 1
2
N̂

figure 3.3: weak boundary states

The choice of
∣∣Xλ

〉
and

∣∣Yλ

〉
is not unique. It is possible to add states belonging to the

kernel of N̂ to
∣∣Xλ

〉
without changing anything as well as one could subtract states from∣∣Xλ

〉
that belong to the kernel of N̂ 2 and add their images under the N̂ -operation to∣∣Yλ

〉
.
∣∣Xλ

〉
and

∣∣Yλ

〉
generate the boundary states and can be called weak boundary

states. This is justified by looking at their scalar products with the original boundary

6the set of physical characters
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states. They can be chosen uniquely7 to produce
〈
Xλ

∣∣q̂
∣∣Vλ

〉
= χVλ

(q),
〈
Xλ

∣∣q̂
∣∣Rλ

〉
= log(q) · χVλ

(q),
〈
Xλ

∣∣q̂
∣∣Yλ

〉
= 0,

〈
Yλ

∣∣q̂
∣∣Rλ

〉
= χR(q) − 2χVλ

(q),
〈
Rλ

∣∣q̂
∣∣Rλ

〉
= χR(q).

(3.37)

The set of boundary states and the two states
∣∣Xλ

〉
together reproduce the elements of the

five-dimensional representation of the modular group. In the pairings, logarithmic terms
occur only of order one at maximum. Unfortunately, they contain terms proportional
to log(q)Θ1,2(q) as well which are not physical and do not belong to the representation.
Luckily, they occur in such a way that they are suppressed in certain linear combinations
of the boundary states. At this state the physical meaning of the additional states

∣∣Xλ

〉

and
∣∣Yλ

〉
remains open. Before going further into this question the states

∣∣R±
01

〉
and

∣∣R±
10

〉

that relate the two generalised highest weight representations to each other are studied.
Similarly to the definition of

∣∣Xλ

〉
states

∣∣Z±
01

〉
and

∣∣Z±
10

〉
can be constructed in such a way

that

〈
Z±

01

∣∣q̂
∣∣R±

01

〉
=
〈
Z±

10

∣∣q̂
∣∣R±

10

〉
=

1

2
χR(q). (3.38)

These states have the property N̂
∣∣Z±

λ(1−λ)

〉
=
∣∣R±

λ(1−λ)

〉
and fulfil N̂ 2

∣∣Z±
λ(1−λ)

〉
= 0. They

can be interpreted as weak boundary states again.

Boundary states are associated to propagators that connect the holomorphic part (e. g.
the upper half complex plane, in a very simple setting) to the formal anti-holomorphic
one (the lower half plane):

∣∣R±
01

〉
=
∑

l,m,n

c lmn
∣∣l,m

〉
⊗
∣∣l, n

〉
⇔ P̂±U † ≡

∑

l,m,n

c lmn
∣∣l,m

〉〈
l, n
∣∣ and

∣∣R±
10

〉
=
∑

l,m,n

c lmn
∣∣l, n

〉
⊗
∣∣l,m

〉
⇔ P̂†

±U † ≡
∑

l,m,n

c lmn
∣∣l, n

〉〈
l,m

∣∣. (3.39)

Here, U is the usual anti-unitary operator. Because the corresponding boundary states
satisfy the Ishibashi equations (2.1) and (2.2) the operators P̂± and P̂†

± commute with
the action of the chiral algebra:

0 =
〈
l1, a

∣∣⊗
〈
l2, b
∣∣ (Ln − L−n

) ∣∣R01

〉

=
∑

l,r,s

〈
l1, a

∣∣⊗
〈
l2, b
∣∣ (Ln − L−n

)
c lrs
∣∣l, r
〉
⊗
∣∣l, s
〉

=
∑

l,r,s

c lrs

{〈
l1, a

∣∣Ln
∣∣l, r
〉〈
l, s
∣∣l2, b

〉
−
〈
l1, a

∣∣l, r
〉〈
l, s
∣∣Ln
∣∣l2, b

〉}

=
〈
l1, a

∣∣[Ln, P̂U †]∣∣l2, b
〉

=
〈
l1, a

∣∣[Ln, P̂
]
U †∣∣l2, b

〉
.

(3.40)

7The explicit construction is found in appendix A.4.
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Thus, P̂ commutes with the Virasoro modes. Analogously,
[
P̂,W a

n

]
is calculated and the

statement is proven. This implies that for every boundary state
∣∣B
〉

the states P̂
∣∣B
〉

and

P̂†
∣∣B
〉

are again boundary states or equal to zero. The action of the operators P̂ and P̂†

on the bulk states in the representation modules R0 and R1 is given by:

P̂†
±
∣∣ω
〉

=
∣∣ξ±
〉
, P̂†

±
∣∣Ω
〉

= 0, P̂+

∣∣ψ±〉 = −
∣∣Ψ±

2

〉
,

P̂±
∣∣ξ∓
〉

= ±
∣∣Ω
〉
, P̂±

∣∣φ±〉 = 0, P̂−
∣∣ψ±〉 =

∣∣Ψ±
1

〉
,

P̂†
−
∣∣Ψ±

2

〉
= −

∣∣φ±〉, P̂†
+

∣∣Ψ±
1

〉
=
∣∣φ±〉.

(3.41)

Especially, these operators decompose the off-diagonal part δ̂ of L0:
8

δ̂ =

{
P̂P̂† on R0

P̂†P̂ on R1

. (3.42)

Using this equality it is easy to agree on the existence of the mixed states:

∣∣R±
01

〉
= P̂±

∣∣R1

〉
= P̂†

±
∣∣R0

〉
,

∣∣V0

〉
= P̂∓

∣∣R±
01

〉
= P̂∓

∣∣R±
10

〉
,

∣∣R±
10

〉
= P̂±

∣∣R1

〉
= P̂†

±
∣∣R0

〉
,

∣∣V1

〉
= P̂†

∓
∣∣R±

01

〉
= P̂†

∓
∣∣R±

10

〉
.

(3.43)

The action of the operators P̂ and P̂† and their anti-holomorphic partners on the states∣∣Xλ

〉
and

∣∣Yλ

〉
relate them to each other by

∣∣Y0

〉
= P̂P̂

∣∣X1

〉
and

∣∣Y1

〉
= P̂†P̂†∣∣X0

〉
. (3.44)

Therefore, the states
∣∣Xλ

〉
are the generating states for the boundary states involving the

indecomposable representations. On the other hand, the denomination weak boundary
states is now justified in the sense that they fulfil a slightly weaker boundary condition
that is derived from (2.1) and (2.2) by the action of certain operators Â ∈ {N̂ , CD},
where C,D ∈ {P̂ , P̂, P̂†, P̂†}:

Â
(
On ±O−n

) ∣∣Xλ

〉
= 0. (3.45)

The relations between the boundary states under the action of P̂ and P̂† and their anti-
holomorphic partners look schematically like the following. On the right hand side the
embedding scheme of the representation R of the local logarithmic conformal field theory

8From now on, the spin index is omitted wherever it is possible and unless confusions arise. The reader
is encouraged to add the indices in the appropriate way.
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with central charge c = −2 [29] is cited which looks exactly the same:
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figure 3.4: boundary states vs. local theory

The lines in the left picture refer to the action of P̂ , P̂†, P̂, and P̂† while in the right picture
they denote the action of the symmetry algebra. The perfect one-to-one correspondence
between these two diagrams suggests that there is a deeper relation between the local
theory and the chiral one with boundaries. This is quite remarkable, especially because
the boundary states were derived completely independent of the local theory9. On the
other hand, it is already clear from the very beginning that there has to be at least a link
between the two theories. The local theory fuses together a chiral and an anti-chiral copy
of the rational c = −2 theory. To keep all correlators local, certain states are discarded:
the image of L0 −L0. Equation (2.1) treated for n = 0 yields that exactly the states with
non-vanishing norm in the range of L0−L0 are not allowed to contribute to the boundary
states.

3.6 Modular properties (1)

The pairings of the non-vanishing boundary states (3.35) reproduce the elements of the
three-dimensional representation of the modular group. This section investigates to what
extent Cardy’s formula can be applied to find linear combinations of the boundary states
that satisfy Cardy’s consistency equation (2.8) and are related to the physical boundary
conditions.

For the set {χR0
, χR1

, χV−1/8
, χV3/8

}, the S and T matrices10 are derived in [27]. There

are six proper choices due to the fact that there are four independent orthogonal repre-
sentation modules whose characters build only a three-dimensional representation of the

9See appendix C for a short overview, a detailed prescription can be found in [8, 29].
10giving the transformations of the characters under the modular transformations τ → −1/τ and

τ → τ + 1
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modular group. One of the possibilities is:

S =




i
2

− i
2

1
4

−1
4

− i
2

i
2

1
4

−1
4

1 1 1
2

1
2

−1 −1 1
2

1
2


 , T =




0 eiπ/6 0 0

eiπ/6 0 0 0

0 0 e−iπ/12 0

0 0 0 −e−iπ/12


 . (3.46)

The associated charge conjugation matrix C is a permutation matrix and has the following
form:

C =




0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1


 . (3.47)

Altogether, these matrices satisfy S4 = 1 and (ST )3 = S2 = C. The set of boundary basis
states

{∣∣R0

〉
,
∣∣R1

〉
,
∣∣V−1/8

〉
,
∣∣V3/8

〉}
11 is the starting point for Cardy’s method. Firstly,

the vacuum boundary state
∣∣ω
〉

has to be constructed. It can be written in terms of the
basis states as

∣∣ω
〉

= A
∣∣R0

〉
+B

∣∣R1

〉
+ C

∣∣V−1/8

〉
+D

∣∣V3/8

〉
. (3.48)

The remaining problem is that the Cardy formulation requires that Sj0 , the line cor-
responding to the transformation of the vacuum character, has positive valued entries
because the vacuum state should be self-conjugate. This is obviously not the case. More-
over, the coefficients are complex. A possible way out is to abandon self-conjugation,
introduce a conjugate vacuum representation boundary state

∣∣ω∨〉,
∣∣ω∨〉 = A∗∣∣R0

〉
+B∗∣∣R1

〉
+ C∗∣∣V−1/8

〉
+D∗∣∣V3/8

〉
, (3.49)

and allow only boundary conditions of the form (α∨, β). This means to apply the condition
α∨ on one side of the cylinder instead of α and on the other side the condition β. Now,
one can calculate the boundary states à la Cardy:

∣∣i
〉

=
∑

j

Sji√
Sj0

∣∣j
〉
. (3.50)

Here,
∣∣j
〉

denotes the boundary basis state belonging to the representation j and
∣∣i
〉

is
the physical relevant boundary state corresponding to a bulk Hamiltonian that contains
only the representation i and the vacuum in its spectrum. The physical boundary states
are finally:

∣∣ω
〉

= 1√
2
e iπ/4

∣∣R0

〉
− 1√

2
e−iπ/4

∣∣R1

〉
+ 1

2

∣∣V−1/8

〉
+ i

2

∣∣V3/8

〉
,

∣∣ψ
〉

= − 1√
2
e iπ/4

∣∣R0

〉
+ 1√

2
e−iπ/4

∣∣R1

〉
+ 1

2

∣∣V−1/8

〉
+ i

2

∣∣V3/8

〉
,

∣∣µ
〉

=
√

2e−iπ/4
∣∣R0

〉
−

√
2e iπ/4

∣∣R1

〉
+
∣∣V−1/8

〉
− i
∣∣V3/8

〉
,

∣∣ν
〉

= −
√

2e−iπ/4
∣∣R0

〉
+
√

2e iπ/4
∣∣R1

〉
+
∣∣V−1/8

〉
− i
∣∣V3/8

〉
.

(3.51)

11i. e. neglecting the null states
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Here, the states are denoted in correspondence to the cyclic states of the underlying bulk
representation. The conjugate states are given by complex conjugation of the coefficients.
The boundary states (3.51) are not uniquely defined but rather chosen up to a Z4 symme-
try in the coefficient phases. Furthermore, the pairs

∣∣ω
〉
,
∣∣ψ
〉

and
∣∣µ
〉
,
∣∣ν
〉

are related by
a Z2 symmetry. This is already implemented in the S matrix (3.46). Of course, it is also
possible to start from any other of the five proper definitions of the S and T matrices.
This leads to the same solutions up to the discussed symmetries. It is clear by construc-
tion that the partition function coefficients corresponding to these states are equal to the
fusion rules that are related to the elements of the S matrix by the Verlinde formula [51]:

nki∨j = Nk
ij =

∑

r

SirSjrSrk
Sr0

. (3.52)

In ordinary conformal field theories, the S matrix diagonalises the fusion rules. As indi-
cated in [27] this is not the case here. Instead, the fusion matrices are transformed into
block-diagonal form.

This section showed that the standard Cardy procedure works perfectly well in the c = −2
theory on the character representation of the modular group. Only a minor sacrifice has
to be accepted, the abandonment of a self-conjugate boundary state that corresponds to
the vacuum representation. This is connected to the fact that the vacuum representation
is taken to be R0 which embeds the vacuum into a rank-2 indecomposable representation
and cannot exactly be identified with the identity operator as the true vacuum would. It
seems natural that this can be generalised to other such theories.

3.7 Modular properties (2)

Here, the considerations of the previous section are repeated for the five-dimensional
representation of the modular group, deriving again linear combinations of the boundary
states following the lines of Cardy. Therefore, the complete set of boundary states plus
the recently introduced dual states

∣∣Xλ

〉
and

∣∣Zλ(1−λ)

〉
is studied. The representation was

investigated in [25, 26, 28, 29].

In [28], an approach based on ideas of S.D. Mathur et al. [52, 53] was used, which is
followed here: The linearly independent set of characters is given by

{
χV0

, χV−1/8
, χV1

, χV3/8
, 2χ eR ≡ 2

η

[
Θ1,2 + iα (∇Θ)1,2

] }
, (3.53)

where α ∈ R is arbitrary. The corresponding S matrix that transforms the characters
under τ → −1/τ is

S =




1
2α

1
4

1
2α

−1
4

− 1
4α

1 1
2

1 1
2

0

− 1
2α

1
4

− 1
2α

−1
4

1
4α

−1 1
2

−1 1
2

0

−2α 1 2α −1 0




. (3.54)
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In order to obtain the elements of the five-dimensional representation from the cylinder
amplitudes partners to the boundary null-states were introduced in section 3.5 that serve
as duals for the null-states. However, taking into account these states they should at
least vanish in a physical limit because they are no proper boundary states. This can be
implemented by renormalising the two states

∣∣Vλ

〉
and

∣∣Xλ

〉
such that

∣∣Vλ

〉
−→ 2π√

2α

∣∣Vλ

〉
and

〈
Xλ

∣∣ −→
√

2α

2π

〈
Xλ

∣∣. (3.55)

The pairings
〈
Xλ

∣∣q̂
∣∣Vλ

〉
do not change for any choice of α. In particular for α = 2π/

√
2 the

original states are obtained. On the other hand, the pairings
〈
Xλ

∣∣q̂
∣∣Rλ

〉
get an additional

pre-factor (
√

2α)/(2π):

〈
Xλ

∣∣q̂
∣∣Rλ

〉
=

√
2α

2π
log(q)χVλ

(q) and
〈
Xλ

∣∣q̂
∣∣Vλ

〉
= χVλ

(q). (3.56)

From now on,
∣∣Vλ

〉
and

∣∣Xλ

〉
always refer to these renormalised states.

Following the Cardy formalism the physical vacuum boundary state is, in ordinary con-
formal field theory and up to a choice of phases, given by (3.50) for i = 0. As in the
three-dimensional case, this definition has to be treated more carefully. First of all, since
the concerned elements of the S matrix are not positive it is again necessary to introduce
a conjugate vacuum representation boundary state

∣∣Ω∨〉 in order to be able to follow
Cardy’s arguments. The naively computed boundary states do not exactly reproduce the
characters (3.5). Instead, the cylinder amplitudes incorporate certain linear combinations
of them and terms proportional to log(q)Θ1,2(q) which are not physical. Luckily,

∣∣Zλ(1−λ)

〉

and
∣∣Rλ(1−λ)

〉
are not used up to now, because they do not correspond to a unique rep-

resentation. Only for those, of course, the S matrix yields the transformations. Adding
these states by hand in the correct way they can serve as counter terms to adjust the
boundary states such that they give the correct results:

∣∣Ω
〉

=
1

2
√
α

{√
2
(∣∣V0

〉
+
∣∣V1

〉)
+ i
(∣∣R0

〉
−
∣∣R1

〉)

+
(∣∣R01

〉
+
∣∣R10

〉) }
+

1

2

(∣∣V−1/8

〉
+ i
∣∣V3/8

〉)
,

∣∣µ
〉

=
√

2α
{∣∣V0

〉
+
∣∣V1

〉}
+
(∣∣V−1/8

〉
− i
∣∣V3/8

〉)
,

∣∣φ
〉

=
1

2
√
α

{
−

√
2
(∣∣V0

〉
+
∣∣V1

〉)
+ i
(
−
∣∣R0

〉
+
∣∣R1

〉)
(3.57)

+
(
−
∣∣R01

〉
+
∣∣R10

〉)}
+

1

2

(∣∣V−1/8

〉
+ i
∣∣V3/8

〉)
,

∣∣ν
〉

= −
√

2α
{∣∣V0

〉
+
∣∣V1

〉}
+
(∣∣V−1/8

〉
− i
∣∣V3/8

〉)
,

∣∣ω
〉

= 2
√

2α3
{
−
∣∣V0

〉
+
∣∣V1

〉}
+ 2

(∣∣V−1/8

〉
+ i
∣∣V3/8

〉)
,

The coefficients for the six boundary basis states
∣∣Vλ

〉
(λ = −1/8, 0, 3/8, 1) and

∣∣Rλ

〉

(λ = 0, 1) fulfil the Cardy law12: Up to phases they are given by Sjk/
√
Sj0 . The two

12all except the mixed boundary states



34 Chapter 3. Boundary states in c = −2 logarithmic conformal field theory

states corresponding to the indecomposable representations are treated by the same ma-
trix elements except for a minus sign. Secondly, the mixed states guarantee that the
partition function coefficients satisfy the Verlinde formula in the same way the S ma-
trix elements reproduce the fusion rules. Indeed, calculating the partition functions for
boundary conditions (i∨, j) yields

Zi∨j(q) =
∑

k

nki∨jχk(q) (3.58)

with nki∨j being nearly equal to the fusion coefficients derived from the given S matrix
via the Verlinde formula (3.52). These fusion coefficients are equal to the physical ones
up to some identifications13 and in the physical limit α −→ 0 under which the contribu-
tions of the non-boundary states and the mixed states vanish. For particular choices of
boundary conditions the partition function contains terms proportional to log(q)Θ1,2(q).
Fortunately, they have a pre-factor α and thus vanish in the limit α −→ 0. One even
finds that under this limit nki∨j = Nk

ij. Again, the fusion matrices are not diagonalised by
the S matrix but instead transformed in block-diagonal form. However, it is not possible
to apply this limit to the boundary states themselves since they get singular at this point.
The same problem was seen for the S matrix in [28]: Even though the fusion coefficients
are reproduced by the Verlinde formula in the limit α −→ 0, it is not possible to apply this
limit to the matrix itself due to the fact that the set of characters gets linearly dependent
and S (3.54) yields a singular behaviour.

132V0 + 2V1 ≡ R0 ≡ R1 concerning the number of states on each level
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Chapter 4

Symplectic fermion model

The concept of symplectic fermions was first introduced by H.G. Kausch [30] in order
to describe the rational c = −2 logarithmic conformal field theory. After a short intro-
duction the boundary states corresponding to the symplectic fermion symmetry algebra
are derived and compared to the results of chapter 3 and the results of S. Kawai and
J. F. Wheater [35]. It turns out that the boundary states based on this model are exactly
the same as those derived under the restriction of the W-algebra. They are identical to
those of [35] which means that the two approaches really are compatible. This corresponds
to the presumption of Kawai [55] that the coherent state approach is indeed as good as
taking the usual Ishibashi states.

4.1 Symplectic fermions

Before deriving boundary states under the fermion symmetry, this section is intended to
give a brief overview of the method of symplectic fermions in the c = −2 theory.

The theory has an explicit Lagrangian formulation based on two fermionic fields η and ξ
of scaling dimension 1 and 0, respectively:

S =
1

π

∫
d2z

(
η∂̄ξ + η̄∂ξ̄

)
. (4.1)

This is the fermionic ghost system at c = −2 with the operator product expansions

η(z)ξ(w) = ξ(z)η(w) =
1

z − w
+ . . . , (4.2)

all other products are regular. The two fields can be combined into a two component
symplectic fermion

χ+ ≡ η and χ− ≡ ∂ξ, (4.3)

which has a bosonic sector being identical to the triplet model. This choice assures that
χ+ and χ− have the same conformal weight h = 1. The symplectic fermion description
differs from the ghost system only by the treatment of the zero modes in χ− and ξ. The
fermion modes are defined by the usual power series expansion

χ±(z) =
∑

m∈Z+λ

χ±
mz

−m−1, (4.4)
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where λ = 0 in the untwisted (bosonic) sector and λ = 1
2

in the twisted (fermionic) sector.
The modes satisfy the anticommutation relations

{
χαm, χ

β
n

}
= mεαβδm+n,0 , (4.5)

with the totally antisymmetric tensor ε±∓ = ±1. The symplectic fermions decompose the
Virasoro modes and the W -modes of the W(2, 3, 3, 3) triplet algebra:

Ln =
1

2
εαβ

∑

j∈Z+λ

: χαj χ
β
n−j : +

λ(λ− 1)

2
δn,0,

W 0
n = −1

2

∑

j∈Z+λ

j ·
{

: χ+
n−jχ

−
j : + : χ−

n−jχ
+
j :
}
,

W±
n =

∑

j∈Z+λ

j · χ±
n−jχ

±
j .

(4.6)

The highest weight states of the triplet model1 are now related to each other by the fermion
symmetry. In the twisted sector, the doublet states of weight h = 3/8 are connected to
the singlet at weight h = −1/8 by να = χα−1/2µ. The states of weight 0 in the untwisted

sector are related by ξ± = −χ±
0 ω, Ω = χ−

0 χ
+
0 ω. Furthermore, one finds φα = χα−1Ω and

ψα = χα−1ω. Thus, the symplectic fermion symmetry interconnects and intertwines the
representations R0 with R1 and on the other hand V−1/8 with V3/8.

4.2 Coherent boundary states

In this section, the results of S. Kawai and J. F. Wheater [35] are briefly desribed.

The starting point is the consistency equation for boundary states under the symplectic
fermion symmetry:

(
χ±
m − e±iφχ±

−m
) ∣∣B

〉
= 0, (4.7)

where φ is the phase difference between the two boundaries. They showed that this
equation is solved by the coherent states

∣∣B0φ

〉
= N exp

(
∑

k>0

eiφ

k
χ−
−kχ

+
−k +

e−iφ

k
χ−
−kχ

+
−k

)
∣∣0φ
〉
. (4.8)

Here, N is a normalisation factor and
∣∣0φ
〉

is a non-chiral ground state, which is one of

the “invariant vacua” {
(
Ω ⊗ Ω

)
,
(
ω ⊗ ω

)
,
(
µ ⊗ µ

)
}. Kawai and Wheater designed the

boundary states in such a way that they obey the Virasoro boundary state equation and
the equation for the modes of the W-algebra. This implies that the phase φ can only take
the values φ = 0 and φ = π. Therefore, there are six possible boundary states2:

∣∣BΩ+

〉
≡
∣∣BΩ ,φ=0

〉
,
∣∣BΩ−

〉
,
∣∣Bω±

〉
, and

∣∣Bµ±
〉
. (4.9)

1see section 3.1
2denoted by (+) if φ = 0 and (−) for φ = π
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The corresponding cylinder amplitudes
〈
B
∣∣q̂
∣∣C
〉

for the interesting (untwisted) sector are3




∣∣BΩ+

〉 ∣∣BΩ−
〉 ∣∣Bω+

〉 ∣∣Bω−
〉

∣∣BΩ+

〉
0 0 η(q)2 Θ1,2(q)∣∣BΩ−

〉
0 0 Θ1,2(q) η(q)2

∣∣Bω+

〉
η(q)2 Θ1,2(q) d(d+ ln(q))η(q)2 d(d+ ln(q))Θ1,2(q)∣∣Bω−

〉
Θ1,2(q) η(q)2 d(d+ ln(q))Θ1,2(q) d(d+ ln(q))η(q)2



. (4.10)

To get rid of the unphysical terms proportional to log(q)Θ1,2(q), one of the states
∣∣Bω±

〉

was discarded and the physical boundary conditions were derived with this reduced set
of states.

Candidates for the Ishibashi states were also given by the condition that they diagonalise
the cylinder amplitudes, i. e.

〈
i
∣∣q̂
∣∣j
〉

= δijχi(q). However, it was not possible to express
the physical boundary states in terms of this basis. Kawai and Wheater proposed the
following five states and five corresponding duals:

∣∣V0

〉
= 1

2

∣∣BΩ+

〉
+ 1

2

∣∣BΩ−
〉
,

〈
V0

∣∣ = −1
2

〈
Bω+

∣∣− 1
2

〈
Bω−

∣∣,
∣∣V1

〉
= 1

2

∣∣BΩ+

〉
− 1

2

∣∣BΩ−
〉
,

〈
V1

∣∣ = 1
2

〈
Bω+

∣∣− 1
2

〈
Bω−

∣∣,
∣∣V−1/8

〉
= 1

2

∣∣Bµ+

〉
+ 1

2

∣∣Bµ−
〉
,

〈
V−1/8

∣∣ = 1
2

〈
Bµ+

∣∣+ 1
2

〈
Bµ−

∣∣,
∣∣V3/8

〉
= 1

2

∣∣Bµ+

〉
− 1

2

∣∣Bµ−
〉
,

〈
V3/8

∣∣ = 1
2

〈
Bµ+

∣∣− 1
2

〈
Bµ−

∣∣,
∣∣R
〉

=
√

2
∣∣BΩ+

〉
,

〈
R
∣∣ = −

√
2
〈
Bω−

∣∣.

(4.11)

The states based on the ground state
(
ω⊗ω

)
are used in exactly the same way as the

∣∣Xλ

〉

in the previous chapter: They serve as duals to states which otherwise would be null states.
The (ket-)states form only a four-dimensional space. Especially,

∣∣R
〉

is associated to the
indecomposable representations but only built on the subrepresentations. It is evident
that the states

∣∣Bω±
〉

cannot obey equation (4.7) without further restrictions because

they are based on the state
(
ω⊗ω

)
which is obviously not invariant: (L0 −L0)

(
ω⊗ω

)
=(

Ω ⊗ω
)
−
(
ω⊗Ω

)
6= 0, unless the right-hand side state is discarded as in the local theory.

This was not mentioned by Kawai and Wheater. It is shown in the next section that their
considerations are indeed compatible with the result of chapter 3 and lead to the same
results if starting from the correct “vacua”.

4.3 Boundary states

Here, the boundary states for the symplectic fermion algebra are derived using the method
of chapter 24. The boundary state consistency equation for this symmetry algebra is given

3The different factors and signs in contrast to [35] arise due to the different normalisation of the metric
that was chosen there.

4This is subject of [57].
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by (4.7):

(
χ±
m − e±iφχ±

−m
) ∣∣B

〉
= 0, (4.12)

where φ is the spin which can take the values φ = 0, π at the boundary due to conformal
invariance. It is clear that the equations (2.1) and (2.2) are automatically fulfilled once
(4.12) is satisfied5. This implies that the solutions are linear combinations of the bound-
ary states derived for the W-algebra. It is an interesting question whether the fermion
symmetry is more restrictive than the triplet model, i. e. if less states are found here than
in the latter theory. Using the method of chapter 2 ten proper boundary states show up.
Denoting the φ = 0 case by the quantum number (+) and φ = π by (−) as in the previous
discussion and giving the first few terms of the infinite sums, these states are:

∣∣Ω ,Ω ;±
〉

=
∣∣Ω ,Ω

〉
±
∣∣φ+, φ−〉∓

∣∣φ−, φ+
〉

+ . . . ,∣∣Ω , ω;±
〉

=
∣∣Ω , ω

〉
+
∣∣ω,Ω

〉
±
∣∣ξ+, ξ−

〉
∓
∣∣ξ−, ξ+

〉
+ . . . ,∣∣Ω , ξa;±

〉
=
∣∣Ω , ξa

〉
±
∣∣ξa,Ω

〉
+ . . . , a = +,−,∣∣µ, µ;±

〉
=
∣∣µ, µ

〉
±
∣∣ν+, ν−

〉
∓
∣∣ν−, ν+

〉
+ . . . .

(4.13)

This result may be compared to the one for the triplet model. The following identities
are obvious:

∣∣Ω ,Ω ;±
〉

=
∣∣V0

〉
±
∣∣V1

〉
,

∣∣Ω , ω;±
〉

=
(∣∣R0

〉
+ d
∣∣V0

〉)
±
(∣∣R1

〉
− t
∣∣V1

〉)
,

∣∣Ω , ξa;±
〉

=
∣∣Ra

01

〉
±
∣∣Ra

10

〉
,

∣∣µ, µ;±
〉

=
∣∣V3/8

〉
±
∣∣V−1/8

〉
.

(4.14)

This identification uses the fact that the boundary states are defined in such a way that
they obey (2.1) and (2.2). Thus, having found the contributions at weight h = 0 as
written down in (4.13) they can be compared to the results of section 3.4. If they match
the state is identified. This is compatible with the result (4.11) of Kawai and Wheater.
Translated to their notation the states are

∣∣BΩ±
〉

=
∣∣Ω ,Ω ;±

〉
and

∣∣Bµ±
〉

=
∣∣µ, µ;±

〉
, (4.15)

up to possible additive contributions from null-states and the fact that they used a differ-
ent normalisation. It seems contradictive that here, no boundary state based on

(
ω⊗ ω

)

is found. But reviewing their work quoted in the last section they use these states de-
noted by

∣∣Bω±
〉

as the duals to
∣∣BΩ±

〉
as already mentioned before. This is in exact

correspondence to what was called the weak boundary states
∣∣Xλ

〉
. The generic proce-

dure of chapter 2 produces a much bigger collection of states. Especially, those leading to
logarithmic terms in the cylinder amplitudes were identified. These were not discussed by
S. Kawai and J. F. Wheater. Instead, they obtained the Ishibashi boundary state for the
module R by the identification 2V0 +2V1 ≡ R. Presumably therefore and for referring to
the local theory by setting

(
Ω ⊗ω

)
−
(
ω⊗Ω

)
to zero, their physical boundary conditions

differs from the set of Ishibashi states.

5This is proven in appendix B.
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The coherent state method produces exactly the same amount of states when starting
from the same “invariant vacua” as in this thesis6:

{(
Ω ⊗ Ω

)
,
(
Ω ⊗ ω

)
+
(
ω ⊗ Ω

)
,
(
Ω ⊗ ξ

a)
,
(
µ⊗ µ

)}
. (4.16)

The symplectic fermions decompose the L0 operator in such a way that

χ±
0 ω = −ξ± and χ±

0 χ
∓
0 ω = ∓Ω . (4.17)

This provides a possible meaning to the intertwining operators P̂ and P̂† and the corre-
sponding boundary states

∣∣R01

〉
and

∣∣R10

〉
: They might be closely related to the fermionic

zero modes.

6except for possible null-state contributions
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Chapter 5

Discussion

In this thesis a mathematically consistent way for the treatment of boundary states in
logarithmic conformal field theories was presented and applied to the rational c = −2
theory. The advantage of the invented method is it’s simplicity: It does only make use
of an arbitrary basis for each representation module and the expansion of a given state
with respect to this basis. In particular, this basis does not have to be orthonormal. As
a side effect the algorithm produces the inverse metric on each representation module.
The construction turns out to be finite in the sense that the components of the boundary
states can be deduced up to any given finite level in a finite number of steps.

By applying this method to the rational c = −2 logarithmic conformal field theory, ten
states that obey the Ishibashi boundary state conditions were identified and arranged in a
scheme very similar to the embedding scheme of the local theory proposed by M.R. Gab-
erdiel and H.G. Kausch. Six of these states are null states in the space of boundary
states. The remaining four together with the corresponding S matrix can be treated by
the standard Cardy formalism in order to obtain the physical relevant boundary condi-
tions concerning the three-dimensional representation of the modular group. On the other
hand, additional states were found in such a way that their pairings with the boundary
null-states together with the non-vanishing pairings of boundary states reproduce the
five-dimensional representation of the modular group. By referring to these additional
states as the dual states corresponding to the boundary null-states a slightly modified
version of the Cardy formalism could be applied such that at least in a physical limit
the partition function coefficients coincide with the fusion rules of the bulk theory as in
the ordinary cases. For the application of this limit, the same problems arise as for the
S matrix transforming the bulk characters. It is remarkable that the Cardy formalism
works in both cases. The meaning of this, however, is still unknown but it is worth noting
in this context that exactly the same elements that are presumed to form the set of torus
amplitudes in the bulk theory were found. The investigation of the deeper meaning of
the additional so-called weak boundary states is dedicated to future work.

In ordinary rational conformal field theories, solving Cardy’s consistency condition reduces
to finding non-negative integer-valued matrix representations (NIM-representations) of
the Verlinde algebra [4, 54]. The five-dimensional solution for the c = −2 logarithmic
conformal field theory does involve negative integers. They occur in a similar way as in the
computation of fusion matrices in [28]. This demonstrates that the features coming along
with rationality cannot be entirely applied to logarithmic conformal field theories, even
though they share many properties with rational conformal field theories. The negative
integers reflect precisely the linear dependencies among the boundary states which appear
in the above discussed limiting procedure. If these dependencies are taken into account in
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the correct way, the final solution can be written without negative integers. Unfortunately,
this last step has to be done by hand, since the computation via the S matrix and Cardy’s
ansatz leads to some negative integer coefficients. It remains an interesting open question,
in which sense more general solutions than the NIM-representations should be taken into
account for settings slightly more general than ordinary rational conformal field theory.

Y. Ishimoto conjectured that for every indecomposable representation of rank 2, there
exists exactly one boundary state [37]. This work shows that this conjecture holds in
the c = −2 case, even though not strictly. For each indecomposable representations two
boundary states were derived where one only refers to the contained subrepresentation.
This seems in contradiction to the stated conjecture. On the other hand, one of these two
states turns out to be a null state in the space of boundary states.

In one of the first works on this topic, I. I. Kogan and J. F. Wheater tried to fix the
zero-norm state problem by a perturbative procedure. By doing this, they introduced
a physical limit as well that looks much like ours, namely they multiplied the vacuum
Ishibashi boundary state by a factor of 1/ǫ and did the limiting in the calculation of the
pairings. The problem was that the characters they arrive at are not the ones that are
really observed. Even more severe is that if one introduces a non-vanishing scalar product
of the bulk vacuum state with itself, then the L0 mode does not behave well any longer,
i. e. the Shapovalov forms would be non-symmetric. Nevertheless, the principle idea of
introducing such a limit is the same as compared to the limiting procedure of chapter 3.

S. Kawai and J. F. Wheater tried to solve the boundary problem by introducing symplectic
fermions. They found six boundary states and were able to relate them to the bulk
properties in the usual way by defining the bra and ket states completely independent
of each other. To connect their work to the present one, the boundary states obeying
the symplectic fermion symmetry were also derived here. It could be shown that the
two starting points — symplectic fermion description of the c = −2 ghost system and
W(2, 3, 3, 3) theory — lead to exactly the same results and that therefore, the results of
Kawai and Wheater and those of this work coincide.

None of the cited works, however, mentioned the mixed states intertwining the two dif-
ferent indecomposable bulk representations. These play an important role because they
contribute to a probably arising deeper fundamental relation between the boundary and
the local theory. Among others, this shows that the logarithmic conformal field theories,
especially in the vicinity of a boundary, are not yet completely understood.
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Appendix A

Virasoro indecomposable representations

and their boundary states

In this appendix, the indecomposable representations R0 and R1 are discussed. Especially,
the metric as well as the inverse metric are derived and the boundary states are given in
a more explicit way. For simplicity this is only done in the Virasoro sector, i. e. omitting
the contributions from the W-algebra. It is clear that all the consideration made in this
chapter are still valid when considering the extension to complete symmetry algebra. This
is possible, because the additional fields are primary with respect to the Virasoro field,
i. e. the energy momentum tensor.

A.1 The representation R0

A basis for the representation R0 is given by the following states:

level 0 level 1 level 2 level 3 . . .
Ω , ω Ψ ≡ L−1ω L−2Ω , L2

−1ω, L−2ω L−3Ω , L−2L−1ω, L−3ω . . .
. (A.1)

These states span the representation R0 up to weight 3. The remaining states in this
span are L−1Ω , L2

−1Ω , L−1L−2Ω , L−2L−1Ω , L3
−1Ω , L3

−1ω, and L−1L−2ω. In terms of the
basis they read:

L−1Ω = L2
−1Ω = L3

−1Ω = L−2L−1Ω = 0,

L−1L−2Ω = (L−3 + L−2L−1) Ω = L−3Ω ,

L−1L−2ω = (L−3 + L−2L−1)ω,

L3
−1ω = 2L−2L−1ω − L−3Ω .

(A.2)

Those relations appear by means of the Virasoro null states included in the representation.

The metric elements are given by the Shapovalov forms (2.19):

δll′gmn ≡
〈
l,m

∣∣l′, n
〉
≡ lim

z→∞
lim
w→0

z2l
〈
φl,m(z)φl′,n(w)

〉
. (A.3)

Exemplarily, the metric element for the two states L−2ω and L−2Ω is deduced here with
the help of the normalisation given in (3.7):

〈
L−2Ω

∣∣L−2ω
〉

=
〈
Ω
∣∣L2L−2

∣∣ω
〉

=
〈
Ω
∣∣ (4L0 − 1)

∣∣ω
〉

= 4
〈
Ω
∣∣Ω
〉
−
〈
Ω
∣∣ω
〉

= −1.
(A.4)
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The metric g for the first levels is:




Ω ω Ψ L−2Ω L−1Ψ L−2ω L−3Ω L−2Ψ L−3ω · · ·
Ω 0 1
ω 1 d

Ψ 2

L−2Ω 0 0 −1
L−1Ψ 0 4 6
L−2ω −1 6 4 − d

L−3Ω 0 0 −4
L−2Ψ 0 6 10
L−3ω −4 10 6 − 4d

...
. . .




. (A.5)

The inverse metric in terms of the same basis and thus, following section 3.3, the coefficient
matrix of the generalised Ishibashi state

∣∣R0

〉
=
∑

l,m,n g
−1
mn

(1⊗ U
)∣∣l,m; l, n

〉
is:

g−1 =




−d 1
1 0

1
2

d+ 5 3
2

−1
3
2

1
4

0

−1 0 0
2
3

+ d
4

5
12

−1
4

5
12

1
6

0

−1
4

0 0

. . .




. (A.6)

The coefficients of
∣∣V0

〉
=
∑

l,m,n γmn
(1 ⊗ U

)∣∣l,m; l, n
〉

can directly be calculated from
this matrix:

γ =




Ω L−2Ω L−3Ω · · ·
Ω 1

L−2Ω −1

L−3Ω −1
4

...
. . .



. (A.7)

The anti-unitary operator U can in principle be neglected here. By definition, it commutes
with the Virasoro modes and therefore, it has no effect on the states in the Virasoro sector.
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A.2 The representation R1

The second indecomposable representation in the triplet theory, R1, is more difficult to
handle. It contains a spin-degeneracy that cannot be neglected completely when calcu-
lating the Virasoro sector. It splits into two disjunct parts R+

1 and R−
1 . Only combined

scalar products are non-vanishing. Therefore, only pairings of the form
〈
α−
∣∣β+
〉

are con-
sidered here, i. e. R−

1 serves as the space for the duals to the states in R+
1 . The complete

metric is obtained by tensoring the results with

G ≡
(R−

1 R+
1

R−
1 0 1

R+
1 −1 0

)
, (A.8)

i. e. the metric g is derived by G ⊗ g(−+), where g(−+) is the metric under the above-
mentioned restrictions. Since the notation is clarified, the spin indices will be dropped
from now on unless any confusions could arise.

A basis is given by

level 0 level 1 level 2 . . .
ξ φ, ψ L−1φ, L−2ξ, L−1ψ . . .

, (A.9)

that obey the additional relations φ ≡ L−1ξ and ξ ≡ −1
2
L1ψ.

With the help of (3.7), the metric g yields




ξ φ ψ L−1φ L−2ξ L−1ψ · · ·
ξ 1

φ 0 −1
ψ −1 −t

L−1φ 0 0 −2
L−2ξ 0 −1 −3
L−1ψ −2 −3 −2t− 1

...
. . .




. (A.10)

Thus, the inverse metric, defining the boundary state
∣∣R(+)

1

〉
is derived:

g−1 =




1

t −1
−1 0

−2 − 1
2
t 3

2
−1

2
3
2

−1 0

−1
2

0 0

. . .




. (A.11)
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Finally, the boundary state
∣∣V (−)

1

〉
for the irreducible module V1 is given in terms of its

coefficient matrix γ that reads:

γ =




φ L−1φ · · ·
φ 1

L−1φ −1
2

...
. . .



. (A.12)

Of course, the considerations could have been done the other way round, i. e. taking the R+
1

space serving as the duals for R−
1 . With this an equivalent and completely independent

set of boundary states is derived:
∣∣R(−)

1

〉
and

∣∣V (−)
1

〉
where all the spin indices are flipped

from + to −. Finally, one could think of a mixture, i. e. taking R+
1 in the holomorphic

part and R−
1 in the anti-holomorphic of the boundary states. Altogether, one gains a

total number of 4 possibilities leading to 8 states. Compared to the results in chapter
3, this is not quite satisfying because it was claimed that there exists exactly two such
boundary states. This problem is solved first by taking into account the complete chiral
symmetry algebra that combines the two spaces R+

1 and R−
1 which are separate in the

Virasoro sector.

A.3 Mixed boundary states

With the above defined basis over the representations R0 and R1 the mixed boundary
states for the Virasoro sector are given by the following coefficient matrix γ:




ξ φ L−1φ L−2ξ · · ·
Ω 1

Ψ 1
2

L−2Ω
3
2

−1

L−1Ψ
1
4

0

...
. . .




. (A.13)

With the help of this matrix, the states are defined by

∣∣R01

〉
=
∑

l,m,n

γlmn
(1⊗ U

)∣∣l,m; l, n
〉

and
∣∣R10

〉
=
∑

l,m,n

γ† lmn
(1⊗ U

)∣∣l,m; l, n
〉
. (A.14)

A.4 Weak boundary states

The derivation of the weak states is more complicated than to obtain the boundary states
themselves. Exemplarily, the Virasoro boundary state

∣∣R0

〉
is treated here to obtain

∣∣X0

〉
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and
∣∣Y0

〉
. In principle, one has to keep all the coefficients and shift the states by the

inverse action of N̂ , i. e.

(
Ω ⊗ Ω

)
−→ 1

2

{(
Ω ⊗ ω

)
+
(
ω ⊗ Ω

)}
,

(
Ω ⊗ ω

)
−→

(
ω ⊗ ω

)
.

(A.15)

On level 1, some problem arises because the only state contributing to
∣∣R0

〉
is
(
Ψ ⊗ Ψ

)

that is not in the image of N̂ . This state has to belong to
∣∣Y0

〉
. These considerations

have to be done on all levels. Finally, the coefficient matrix for
∣∣X0

〉
takes the following

form:




Ω ω Ψ L−2Ω L−1Ψ L−2ω L−3Ω L−2Ψ L−3ω

Ω 0 −d
2

ω −d
2

1

Ψ 0

L−2Ω 0 0 5+d
2

L−1Ψ 0 0 3
4

L−2ω
5+d
2

3
4

−1

L−3Ω 0 0 1
3

+ d
8

L−2Ψ 0 0 5
24

L−3ω
1
3

+ d
8

5
24

−1
4




.(A.16)

The state
∣∣Y0

〉
is given by

∣∣R0

〉
− N̂

∣∣X0

〉
. Its coefficient matrix reads




Ω ω Ψ L−2Ω L−1Ψ L−2ω L−3Ω L−2Ψ L−3ω

Ω 0 0
ω 0 0

Ψ 1
2

L−2Ω 0 3
4

0

L−1Ψ
3
4

1
4

0

L−2ω 0 0 0

L−3Ω 0 5
24

0

L−2Ψ
5
24

1
6

0

L−3ω 0 0 0




. (A.17)
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This choice is not unique, but together with the proper state
∣∣X1

〉
it fulfils the condition

∣∣Y0

〉
= P̂P̂

∣∣X1

〉
. The state

∣∣X1

〉
is derived in the same way as

∣∣X0

〉
and defined by




ξ φ ψ L−1φ L−2ξ L−1ψ · · ·
ξ 0

φ 0 t
2

ψ t
2

−1

L−1φ 0 0 −1+t
2

L−2ξ 0 0 3
4

L−1ψ −1+t
2

3
4

−1
2

...
. . .




. (A.18)

Finally,
∣∣Y1

〉
reads




ξ φ ψ L−1φ L−2ξ L−1ψ · · ·
ξ 1

φ 0 0
ψ 0 0

L−1φ 0 3
4

0

L−2ξ
3
4

−1 0

L−1ψ 0 0 0

...
. . .




. (A.19)

The construction of the duals for the mixed boundary states is performed in exactly the
same way and yields the coefficient matrix




ξ ψ L−1φ L−2ξ L−1ψ · · ·
ω 1

Ψ 1
2

L−2Ω 0 0 3
4

L−1Ψ 0 0 1
4

L−2ω
3
4

−1 0

...
. . .




(A.20)

for the state
∣∣Z01

〉
.
∣∣Z10

〉
is based on the transposed matrix. Of course, the choice is again

not unique. Null state contributions can as always be added without trouble.
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Symplectic fermion boundary equation

It is shown that the boundary conditions for the symplectic fermion symmetry include the
W-symmetry as introduced as claimed in chapter 4. This implies that boundary states
derived in the fermion case are a subset of those calculated with respect to the W-algebra.

The boundary condition in the symplectic fermion case is
(
χαn − (−1)aχα−n

) ∣∣B
〉

= 0. (B.1)

The W-algebra modes are given by

Ln =
1

2
ǫαβ

∑

j∈Z+λ

:χαj χ
β
n−j : +

λ(λ− 1)

2
δn,0 ,

W 0
n = −1

2

∑

j∈Z+λ

j ·
{

:χ+
n−jχ

−
j : + :χ−

n−jχ
+
j :
}
,

W±
n =

∑

j∈Z+λ

j · χ±
n−jχ

±
j .

(B.2)

Especially, in the bosonic sector (λ = 0) Ln reads

Ln =
1

2
dαβ

{ ∑

j<n−j
χαj χ

β
n−j

︸ ︷︷ ︸
(1)

+
∑

j>n−j
χ βn−jχ

α
j

︸ ︷︷ ︸
(2)

+
1

2
(1 + (−1)n)χαn/2χ

β
n/2

︸ ︷︷ ︸
(3)

}
. (B.3)

Using (B.1), one can transform the first term (1), since χ and χ anticommute:

χ βn−j
∣∣B
〉

= (−1)aχ β−n+j

∣∣B
〉

=⇒
∑

j<n−j
χαj χ

β
n−j
∣∣B
〉

= −(−1)a
∑

j<n−j
χ β−n+jχ

α
j

∣∣B
〉

= −
∑

j<n−j
χ β−n+jχ

α
−j
∣∣B
〉

(B.4)

=
∑

j>−n−j
χαj χ

β
−n−j

∣∣B
〉
.

Analogously, the second term (2) can be treated to obtain
∑

j>n−j
χαn−jχ

β
j

∣∣B
〉

=
∑

j<−n−j
χα−n−jχ

β
j

∣∣B
〉
. (B.5)
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The term (3) only appears for even n. In this case one has:

χαmχ
β
m

∣∣B
〉

= (−1)a χαmχ
β
−m
∣∣B
〉

= −(−1)aχ β−mχ
α
m

∣∣B
〉

= −χ β−mχα−m
∣∣B
〉

(B.6)

= χα−mχ
β
−m
∣∣B
〉
.

The three equations (B.4), (B.5), and (B.7) together yield

(
Ln − L−n

) ∣∣B
〉

= 0, (B.7)

if (B.1) is valid.

For the modes Wn analogous calculations lead to

(B.1) =⇒
(
Wn +W−n

) ∣∣B
〉

= 0 (B.8)

and thus, the statement is proven.



51

Appendix C

The local theory at c = −2

This appendix is not intended to give a complete prescription of the local logarithmic
conformal field theory with central charge c = −2 as proposed by M.R. Gaberdiel and
H.G. Kausch. It comprises only a very short overview of this subject. For an extensive
discussion, one should refer to [8, 29].

The c = −2 triplet model is a chiral rational logarithmic conformal field theory. The local
theory is based on the idea of constructing a non-chiral theory by tensoring together a
chiral and an anti-chiral realisation of the triplet model.

The idea is the following. The total space of states has essentially the following structure:

H =
⊕

λ=−1/8, 3/8

(
Vλ ⊗ Vλ

)
⊕
⊕

λ=0, 1

(
Rλ ⊗Rλ

)
. (C.1)

Due to the Möbius symmetry on the complex plane the two-point functions of two oper-
ators φ1(z, z̄) and φ2(z, z̄) with conformal weight (h1, h̄1) and (h2, h̄2) have to obey

〈
φ1(e

−2πiz, e2πiz̄)φ2(0, 0)
〉

= e2πi(h1−h̄1+h2−h̄2)
〈
e2πiSφ1(z, z̄)e

2πiSφ2(0, 0)
〉
, (C.2)

with S = δ̂ − ˆ̄δ. The locality of the correlators requires

h− h̄ ∈ Z and Sφ = 0 (C.3)

for any non-chiral field φ(z, z̄) (or state
∣∣φ
〉
) of weight (h, h̄).

Obviously, for states in Rλ ⊗ Rλ this condition is not satisfied, since, e. g. in R0 ⊗ R0

S
(
ω ⊗ ω

)
=
(
Ω ⊗ ω

)
−
(
ω ⊗ Ω

)
6= 0. Therefore, one has to take the quotient space

Rλ,λ̄ = Rλ ⊗ Rλ/S[Rλ ⊗ Rλ] as the correct (local) representation. This yields two
generalised highest weight representations R00̄ and R11̄. Finally, the locality of higher
order correlation functions requires the identification of the states in these representations
to each other in such a way that the resulting representation R has the structure given
in figure 3.4.
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