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Abstract

In this thesis first steps are taken towards the construction of local logarithmic con-

formal field theories (LCFTs). After resuming some of the central concepts and

definitions of conformal field theory we explore local non-chiral LCFTs whose chi-

ral halves possess arbitrary Jordan rank. Our approach rests upon the analysis of

the conformal symmetry and aims for comprehensive generality. Beside some rather

general assumptions on the structure of a chiral LCFT the deduced statements about

its local non-chiral equivalent can be called generic.

In the first part of this thesis we investigate the field content of local LCFTs and

present two methods how to construct local representations of the symmetry algebra

as subrepresentations of the tensor product of chiral and anti-chiral Jordan cells.

The gained Hilbert spaces are not identical but isomorphic. The symplectic fermion

modell suggests one of the solutions to be more intuitive.

In the second part we study the possibility to assemble generic chiral correlation

functions to local correlation functions of the corresponding non-chiral theory. Be-

side the constraint of locality, invariance under the global conformal group, duality

and monodromy invariance have to be implemented. We propose a constructive

method, discuss the generality of our solution and check its consistency with previ-

ous findings.
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Zusammenfassung

Diese Arbeit befasst sich mit grundlegenden Schritten in Richtung einer Konstrukti-

on nicht chiraler, lokaler logarithmisch konformer Feldtheorien (LCFTs). Nach kurz-

er Darstellung einiger der wichtigsten Definitionen und Relationen konformer Feld-

theorie werden Aussagen über lokale LCFTs entwickelt, deren chirale Hälften belie-

bigen Jordanrang aufweisen. Die gewählte Herangehensweise basiert auf der Aus-

schöpfung der konformen Symmetriealgebra und zielt darauf ab, Aussagen von

weitgehender Allgemeingültigkeit zu treffen. Abgesehen von wenigen schwachen

Annahmen in Bezug auf die Struktur chiraler Theorien bleibt die Untersuchung der

entsprechenden nicht chiralen Theorien generisch.

Im ersten Teil der Arbeit analysieren wir den Feldinhalt lokaler LCFTs und geben

zwei Methoden an, lokale Darstellungen der Symmetriealgebra als Unterraum des

Tensorprodukts von chiralen und antichiralen Jordanzellen zu konstruieren. Die

nach beiden Methoden gewonnenen Hilberträume sind nicht identisch, jedoch iso-

morph. Das symplektische Fermionen–Modell zeichnet schließlich eine der Lösun-

gen als die intuitivere aus.

Im zweiten Teil der Arbeit wird die Möglichkeit untersucht, generische chirale Kor-

relationsfunktionen zu lokalen Korrelatoren der korrespondierenden nicht chiralen

Theorie zu kombinieren. Neben der Lokalitätsbedingung ist die Invarianz unter

der global konformen Gruppe sowie Dualität und Monodromieinvarianz der Kor-

relatoren zu gewährleisten. Wir stellen eine Methode vor, die die Konstruktion der

lokalen Korrelatoren erlaubt, diskutieren die Allgemeinheit der Lösung und prüfen

die Konsistenz der Voraussagen der vorgestellten Methode mit bisherigen Erkennt-

nissen.
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1 Introduction

Conformal quantum field theories (CFTs) in two dimensions exhibit an exceedingly

rich structure. The symmetry algebra of these theories is infinite-dimensional and

decomposes in two independent sectors of opposite chirality. The decoupling of the

chiral and anti-chiral “half” gives reason to a very elegant and beneficial technique:

Many statements about CFTs can be derived considering only one sector, either the

chiral or the anti-chiral. Due to the infinite number of local symmetries the adherent

calculations are under certain circumstances exactly solvable. Results of one sector

can be transferred to the other one by mirroring the chirality. Subsequently both

halves have to be glued together to form the full, non-chiral theory.

The first to realize the abovementioned chances were Belavin, Polyakov and

Zamolodchikov [1]. Their work opened up a revolutionary since non-pertubative

approach to a subclass of quantum field theories. In the course of the following in-

vestigation of these theories it was discovered that CFT correlation functions may

exhibit logarithmic divergencies. The circumstances of their occurrence were ex-

plored [2] and it turned out that non-logarithmic CFT is actually a special case of

the more general concept of logarithmic CFT (LCFT). Since this key finding, an

enormous amount of work was done to evolve LCFTs. Their applications to other

fields in physics, for example to the theory of percolation and critical disordered

systems have been explored. Many structural aspects have been studied in detail.

In particular the powerfull techniques from non-logarithmic CFT have been ported

to LCFT, especially those that do exclusively use chiral informations: Correlation

functions are calculated in [3–12] , fusion rules are investigated in [13–17] and null

vectors in [18, 19].

All cited findings were stated for chiral theories only. Enlarging their scope to non-

chiral theories and implementing the constraints of locality is a task of elementary

importance, as only local theories have physical interpretation. Unfortunately, the

construction of local theories turned out to be non-trivial: Unlike conventional, non-

logarithmic CFTs, LCFTs were found to be non-factorisable. Insofar speaking about

chiral halves in the context of LCFTs might be delusive. As we will see, assembling

a local theory out of a chiral LCFT and its anti-chiral counterpart is evocative of

screwing them into each other rather than of combining two halves. Anyhow, we

will stick with the familiar naming convention and refer in abuse of language to the

chiral theories as chiral halves.

So far, only few attempts have been made to close the gap between the well-known

chiral and the almost unknown non-chiral LCFTs. Gaberdiel and Kausch suc-
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1 Introduction

ceeded in constructing a non-chiral local theory at c = −2 by solving the con-

formal bootstrap [20]. This construction was interpreted in terms of symplectic

fermions [21] and enabled a detailed comparison of the two-dimensional Abelian

sandpile model with the local triplet theory at c = −2 [22]. The logarithmic triplet

theory with boundary was studied in [23] for c1,2 = −2 and the generalisation to

rational cq,p models was attempted in [24]. Stating remarkable structural similari-

ties between the local triplet theory and supergroup WZNW models, Schomerus

et al. suggested that consulting the better understood local WZNW models might

promote the construction of generic local LCFTs. Local logarithmic bulk correlation

functions for the GL(1|1) WZNW model have been computed in [25], non-chiral

indecomposable representations on which the zero-mode of the energy-momentum

tensor is not digonalizable were investigated by means of the WZNW model on the

supergroup PSU(1, 1|2) [26]. A rather general discussion on conclusions for local

LCFTs from the supergroup WZNW point of view can be found in [27].

In this thesis, we will choose an approach which rests solely upon the analysis of the

conformal symmetry and aims for comprehensive generality. Beside some rather

general assumptions on the structure of an chiral LCFT the deduced predictions

about its local non-chiral equivalent can be called generic.

This thesis is organized as follows: In Section 2 we present general foundations of

conformal field theories and logarithmic conformal field theories. This introduction

should enable the reader to understand the suceeding chapters. Furthermore we fix

the naming convention and introduce the notation used.

In Section 3 the aspect of locality is explored and an algebraic formulation of the

locality constraint is derived.

Section 4 shows in detail why in case of indecomposable representations the non-

chiral representation is not the tensor produt of its left- and right chiral equivalent,

but only a quotientspace thereof. The chiral concept of Jordan levels is enlarged to

the non-chiral case. Two methods are presented how to construct the space of states

of a local LCFT. Both methods predict a non-chiral local theory to possess the same

rank as the halves it is composed of. In other respects the results of both methods

turn out to be mutually excluding. The consideration of a specific model suggests

one of the proposed methods to be more intuitive.

From Section 5 we turn our attention to LCFT correlation functions. After a brief

recapitulation about generic chiral correlation functions, we explore the possibility

to compose generic non-chiral correlators out of generic chiral ones. Beside the con-

straint of locality, invariance under the global conformal group, duality and mon-

odromy invariance have to be implemented. We propose a construction method,
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discuss the generality of our solution and check its consistency with previous find-

ings.

Technical details of our calculations can be found in the included appendices.
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2 Preliminaries

Locally scale invariant quantum field theories are called conformal field theories.

In this section a basic familiarity with those concepts this thesis rests upon shall

be achieved and conventions as well as matters of notation shall be introduced. In

the majority of cases we will skip extensive calculations and proofs. The reader

unfamiliar with CFT may be refered to [28, 29, 31] for an elaborated introduction. A

more mathematical approach is chosen in [32]. For a detailed description of Virasoro

algebras see [33, 34]. Foundations of LCFTs can be found in [14] and [35].

We will start with an investigation of the conformal symmetry in a setting of flat

d-dimensional spacetime Rp,q, with d = p + q and signature ((−1)p, (+1)q). From

subsection (2.1.3) we restrict ourselves on two-dimensional systems. As we will

see d = 2 conformal field theories provide a specific attraction: in two spacetime

dimensions the conformal symmetry algebra is infinite-dimensional and manifests

a rich structure, the Virasoro algebra.

Logarithmic conformal field theory is a generalisation of conformal field theory.

From section (2.2) we will focus on the question, how the concepts of CFT have to

be modified in the framework of LCFT.

2.1 Conformal Field Theory

2.1.1 Conformal transformations

Conformal transformations possess the characteristic trait to preserve angles be-

tween two arbitrary curves on a manifold. This can be expressed in terms of the ef-

fect of coordinate transformations on the metric tensor: Arbitrary coordinate trans-

formations f : x → x′ act on the metric as

gµν(x) → g ′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x). (1)

A transformation f is called conformal if it leaves the metric tensor invariant up to

a position-depending scale-factor, i. e. if the left hand side of (1) is proprotional to

gµν(x):

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) = Ω(x)gµν(x). (2)
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2.1 Conformal Field Theory

2.1.2 Conformal group and algebra

Infinitesimal transformations x′µ = xµ+ǫµ(x) altering the metric tensor as demanded

above satisfy a constraint which is known as the conformal Killing equation:

∂µǫν + ∂νǫµ = 2
d ∂ · ǫ gµν, ∂ · ǫ ≡ ∂λǫλ. (3)

Contracting equation (3) first with ∂ρ∂
ν then with ∂ρ∂ν and adding both equations

one finds: (

1 − 2
d

)

∂ρ∂µ∂ · ǫ = 0. (4)

For d > 2 it follows immediately that ǫµ can be of at most second order in the

coordinates xµ:

ǫµ(x) = αµ + β
µ
νx

ν + γ
µ
νρx

νxρ. (5)

The conformal transformations thus determined form a group. Its 1
2(d + 1)(d + 2)

generators

D = xµ∂µ (6a)

Pµ = ∂µ (6b)

Mµν = 1
2

(
xµ∂ν − xν∂µ

)
(6c)

Kµ = x2∂µ − 2xµx
ν∂ν (6d)

can be identified as the generators of rotations, translations, dilations and so called

special conformal transformations. One can write out the commutation rules of the

generators to see that they form a closed algebra. The component containing the

identity is isomorphic to SO(p + 1, q + 1).

2.1.3 Conformal symmetry in two dimensions

In two dimensions the restriction that ǫ(x) is of at most second order in x drops.

Subsequently we will address ourselves to the two-dimensional manifold R1,1 with

the flat metric tensor ηµν. In the course of Wick rotation the Minkowski metric can

be replaced by δµν. Moreover the time coordinate becomes imaginary: x0 → −ix2.

Therewith (3) turns out to be identical to the Cauchy-Riemann differential equa-

tions:

∂1ǫ1 = ∂2ǫ2 , ∂1ǫ2 = −∂2ǫ1. (7)

With complex variables,

z = x1 + ix2 , z̄ = x1 − ix2 (8)
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2 Preliminaries

the constraints (7) determine an infinititesimal coordinate transformation

z 7→ z′ = z + ǫ(z, z̄) , z̄ 7→ z̄′ = z̄ + ǭ(z, z̄) (9)

to be conformal if

∂z̄ǫ(z, z̄) = 0 , ∂zǭ(z, z̄) = 0. (10)

That is: any holomorphic function ǫ(z) defines an infinitesimal conformal transfor-

mation (9), any anti-holomorphic function ǭ(z̄), too. Expanding the holomorphic

(and anti-holomorphic) transformations in Laurent series ǫ(z) =
∑

n ǫ−nz
n we are

led to introduce the generators of the local conformal transformations:

ln = −zn+1∂z and l̄n = −z̄n+1∂z̄ n ∈ Z (11)

Calling up the association of helicity the sector that depends on the coordinate z

only is often referred to as the chiral sector. The scope of z̄ is named anti-chiral. The

chiral and anti-chiral conformal generators decouple and satisfy mutually indepen-

dently a Lie algebra

[
ln, lm

]
= (m − n) lm+n ,

[
l̄n, l̄m

]
= (m − n) l̄m+n (12)

the so-called Witt algebra.

As mentioned before it is in many respects convenient to treat z and z̄ as linearly

independent and consider the chiral and anti-chiral sector separately. This proceed-

ing entails an artificial doubling of variables which finally has to be removed by

reimplementing the reality condition z∗ = z̄.

Though the conformal algebra is infinite-dimensional, not every generator is well-

defined globally. The (global) conformal group is generated by the sub-algebra
{
ln, l̄n

}
for n = −1, 0, 1 and is isomorphic to SL(2,C)/Z2 × SL(2,C)/Z2. The corre-

sponding global conformal transformations are known as Möbius transformations

z 7→
az + b

cz + d
, z̄ 7→

āz̄ + b̄

c̄z̄ + d̄
. (13)

2.1.4 Virasoro algebra

In a classical theory, the generators of a Lie algebra may be defined such that they

satisfy the Poisson bracket relations

[
ta, tb

]

P.B. = f
ab
c tc. (14)
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2.1 Conformal Field Theory

Following Dirac’s quantization procedure the correspondig quantum commutation

is
[
ta, tb

]
= iħfabc tc +O(ħ2) (15)

The terms of order ħ2 are called central extension of the algebra (15) and are con-

strained by Jacobi identities. The simplest realisation to consider is that the exten-

sions O
(
ħ2
)

are complex numbers which satisfy

ca,b =
c

12
a (a2 − 1) δa,−b . (16)

Therewith the chiral and anti-chiral symmetry algebra of a conformal quantum field

theory in two dimensions reads

[
Ln, Lm

]
= (n −m)Ln+m + c

12

(

n3 − n
)

δn,−m
[
L̄n, L̄m

]
= (n −m) L̄n+m + c̄

12

(

n3 − n
)

δn,−m (17)
[
Ln, L̄m

]
= 0.

This is the famous Virasoro algebra, a class of algebras parametrized by the central

charge c. Note that in perfect analogy to the Witt algebra the chiral and the anti-

chiral part decouple. Moreover, the subalgebra generated by
{
Ln, L̄n

}
, n = −1, 0, 1

is not affected by the central charge, i. e. the global conformal group continues to be

isomorphic to SL(2,C)/Z2 × SL(2,C)/Z2.

The central extension (16) of the symmetry algebra eliminates the possibility of

the vacuums having full symmetry. The maximal symmetry we can claim without

violating the algebra is

Ln | 0〉 = L̄n | 0〉 = 0, for n ≥ −1. (18)

As equation (18) in particular implies invariance under the global conformal group

|0〉 is often referred to as SL(2,C) invariant vacuum. The state |0〉 is unique. Its

hermitean conjugate 〈0| satisfies the relation

〈0 |Ln = 〈0 | L̄n = 0, for n ≤ 1. (19)

2.1.5 Virasoro representation theory

A heighest weight representation module of the Virasoro algebra is built up on

a primary field. The primary and with it the representation are characterized by

two real parameters h and h̄, the chiral and anti-chiral conformal weights. A field
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2 Preliminaries

φh,h̄ is named a primary field if it transforms under any conformal transformation

z 7→ w(z) (z̄ 7→ w̄(z̄) respectively) as

φh,h̄(z, z̄) 7→ φ′
h,h̄

(w, w̄) =

(
∂w

∂z

)−h(∂w̄

∂z̄

)−h̄

φh,h̄(z, z̄). (20)

From equation (20) follows that an infinitesimal transformation z 7→ w = z + ǫnz
n+1

induced through a conformal generator Ln causes the following variation of a pri-

mary field:

δnφh(z) =
[
Ln, φh(z)

]
=
(

zn+1∂ + h (n + 1) zn
)

φh(z). (21)

Here, for the first time we used the chance to omit one half of the theory. The defini-

tive transformation property (20) of a primary field is irrespective of one coordinate

to be suppressed. It thus remains meaningful to speak of a chiral primary field

φh(z).

Fields that do not transform according to equation (20) are referred to as secondary

fields. Typical examples for secondary fields are derivatives of primary fields. If a

field satisfies the property (20) only with respect to the global conformal group, it

is called quasi-primary.

A field–state isomorphism

|h〉 := lim
z→0

φh(z) |0〉 (22)

allows us to study Virasoro representation theory in terms of states. Highest weight

states are generated from the vacuum by primary fields. They are eigenstates of the

Virasoro zero modes with eigenvalue h:

L0 |h〉 = h |h〉. (23)

Acting with Ln on the state |h〉 decreases its L0 eigenvalue by n:

L0 Ln |h〉 =
(
Ln L0 − [Ln, L0]

)
|h〉 = (h − n)Ln |h〉. (24)

A highest weight state defines the state within a representation that exhibits the

lowest L0 eigenvalue. From equation (24) one can conclude that it is annihilated by

all positive generators:

Ln |h〉 = 0, forn > 0. (25)

Negative Virasoro modes Ln, n ≤ −1 can be used to generate other states of the

representation, the so-called descendant states.
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2.1 Conformal Field Theory

2.1.6 Ward Identities and Correlation functions

Let
〈
φ1 . . . φn

〉
be an n-point correlation function

〈
φ1 . . . φn

〉
:= 〈0 |φ1(z1) . . . φn(zn) | 0〉 , (26)

where any φi denotes a primary field of conformal weight hi. According to the

relations (18) and (19) 〈0 |Lq = Lq| 0〉 = 0 for q = −1, 0, 1. Hence, for these values of

q it follows that

0 = 〈0 |Lq φ1 . . . φn | 0〉

=
∑

i

〈0 |φ1 . . . φi−1
[
Lq, φi

]
φi+1 . . . φn | 0〉 + 〈0 |φ1 . . . φn Lq | 0〉 .

(27)

The last terms vanishes. Therewith we derived the so called global conformal Ward

identities (GCWIs)

Lq
〈
φ1 . . . φn

〉
:=
∑

i

〈0 |φ1 . . . φi−1
[
Lq, φi

]
φi+1 . . . φn | 0〉

=
n∑

i=1

z
q

i

[
zi∂i + (q + 1)hi

] 〈
φ1 . . . φn

〉
= 0 for q = −1, 0, 1.

(28)

The second identity results from equation (21).

The GCWIs enable us to fix the generic structure of an n-point function up to an a

priori undetermined structure function of n − 3 SL(2,C) invariant crossratios. Thus

for example the two-point function reads

〈
φ1 φ2

〉
= δh1,h2

C (h1, h2)

zh1+h2

12

, (29)

where the usual abbreviation zij := zi−zj is used. The three-point functions is given

by
〈
φ1 φ2 φ3

〉
=

C (h1, h2, h3)

zh1+h2−h3

12 zh1+h3−h2

13 zh2+h3−h1

23

. (30)

The four-point function is known to be of the form
〈
φ1 φ2 φ3 φ4

〉
=
∏

i<j

z
µij
ij F(x),

∑

i6=j

µij = −2hj . (31)

where F(x) is the aforementioned undetermined structure function of the crossratio

x = z12z34
z13z24

. Beyond the sketched features, CFT correlators are very well-elaborated.

Structure functions may be subject to further determination due to additional local

symmetries. Correlation functions of descendant fields can be traced back to those

of primary fields. In the scope of this thesis we will be concerned with neither of

these cases.
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2 Preliminaries

2.2 Logarithmic Conformal Field Theory

2.2.1 Indecomposable Virasoro representations

Logarithmic conformal field theories feature indecomposable but reducible repre-

sentations of the chiral symmetry algebra. In this thesis we will consider only the

case where such indecomposable representations occur with respect to the Virasoro

zero modes. Through appropriate choice of the basis, the generators L0 and L0 can

be transformed into Jordan normal form. A rank r Jordan cell is spanned by r fields
{
Ψ(h,r−1), . . . , Ψ(h,1), Ψ(h,0)

}
. The action of the zero mode L0 of the Virasoro algebra

is then given by

L0Ψ(h,k)(0) | 0〉 = h Ψ(h,k)(0) | 0〉 + (1 − δk,0)Ψ(h,k−1)(0) | 0〉, (32)

where h as usual denotes the conformal weight. The parameter k grades the fields

within the Jordan cell and will be termed Jordan level. The field with level k = 0 is

an ordinary primary field. All other fields Ψ(h,k) with k ≥ 1 are called logarithmic

(partner) fields. The adjunct “logarithmic” refers to the fact that inserting these

fields in correlators gives rise to logarithmic terms.

2.2.2 Naming convention

Subsequently we are forced to sharpen the concept of primary fields: In an LCFT

the operator product expansion of two primary fields with non-integer conformal

weight might produce logarithmic fields on the right hand side. These primaries

are called pre-logarithmic or twist fields. Primary fields whose operator product

expansion among each other does merely contain primary fields and its descendants

but no logarithmic fields are called proper-primaries. In the scope of this work,

only reducible representations are regarded whose irreducible subrepresentations

Ψ(hi,0)(zi) accord to proper primaries. Furthermore, we assume the logarithmic

partner fields of the proper primary to be quasi-primary, i. e.

LnΨ(hi,ki)(0) | 0〉 = 0 ∀n ≥ 1. (33)

If an LCFT accomodates more than one indecomposable representation one can

consider every Jordan cell to be of rank r(h) = r, with r being the rank of the largest

Jordan cell. Hypothetically emerging smaller Jordan cells can be padded with fields

that are to be set zero afterwards.
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2.2 Logarithmic Conformal Field Theory

The following decomposition of the non-diagonal action of the Virasoro modes on

LCFT n-point correlators will turn out to be advantageous:

Lq 〈. . .〉 =

[

Oq +
n∑

i=1

z
q

i (q + 1)δhi

]

〈. . .〉 , (34)

where Oq abbreviates the diagonal part of the action as known from ordinary non-

logarithmic CFT

Oq 〈. . .〉 =
n∑

i=1

z
q

i

[
zi∂i + (q + 1)hi

]
〈. . .〉 .

The off-diagonal, nilpotent part is generated by operators δhi . They act on a loga-

rithmic field by reducing its Jordan level by one, on a primary by annihilating the

field:

δhjΨ(hi,ki)(zi) = δij (1 − δ0,ki)Ψ(hi,ki−1)(zi). (35)

Below we will augment the introduced glossary with entities marked with a bar.

These can be obtained from those without a bar by complex conjugation of all vari-

ables z and providing all parameters h, k and g with a superscript line. For h, k and

g this line is not related to complex conjugation but only indicates that parameters

of the anti-chiral theory are denoted.

To distiguish quantities of a full local theory from those living on its right- or left-

handed half we will apply the pair of concepts “non-chiral” - “chiral”. If used in

this sense the latter shall cover anti-chiral quantities, too.

2.2.3 Vanishing correlators

A first look at LCFT n-point functions exposes a curiosity which will gain some rele-

vancy in the following. Let Ψ(h,k)(z) be a field from a rank r Jordan cell. Translation

invariance of the one-point function enforces
〈
Ψ(h,k)

〉
to be constant:

L−1
〈
Ψ(h,k)

〉
= 0 ⇒

〈
Ψ(h,k)

〉
= const. (36)

Moreover, the GCWI for q = 0 imposes the following restriction (cf. (34)):

L0
〈
Ψ(h,k)

〉
= z∂z

〈
Ψ(h,k)

〉
+ h
〈
Ψ(h,k)

〉
+ (1 − δ0,k)

〈
Ψ(h,k−1)

〉
= 0. (37)

The first term vanishes due to (36). As a consequence the only field with non-

vanishing vacuum expectation value (vev) is the field with h = 0 and highest Jordan
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2 Preliminaries

level r − 1. This means in particular that the one-point function of proper primaries

residing in a non-trivial Jordan cell is zero.

An analogous argumentation for higher n-point functions yields the following result

[4]: Correlators which contain fields from rank r Jordan cells are non-zero only if

the sum over the Jordan levels is greater or equal r − 1:

〈
Ψ(h1,k1) . . . Ψ(hn,kn)

〉
6= 0 ⇔ K :=

n∑

i=1

ki ≥ r − 1. (38)

This is especially true for the Shapovalov form 〈h, k |h′, k′〉 [35] as it corresponds

to the two-point function
〈
Ψ(h,k)(z1)Ψ(h′,k′)(z2)

〉
evaluated at z1 = ∞, z2 = 0.

18



3 Locality constraints

The fundamental postulation on a non-chiral theory is locality of the fields or, in

terms of correlation functions, singlevaluedness of the amplitudes. We will follow

the argumentation of [20] deriving the resulting equations of constraints. Evaluating

equation (34) for q = 1 and n = 2 yields:

O = [z∂z + h1 + h2 + δh1 + δh2]
〈

Ψ
(h1,h1,k1)

(z, z)Ψ
(h2,h2,k2)

(0, 0)
〉

. (39)

An analogous identity is satisfied for the anti-chiral Virasoro zero mode. By in-

tegrating the difference of the two differential equations along a circle around the

origin one finds:

〈

Ψ1(e
−2πiz, e2πi z) Ψ2(0, 0)

〉

= e
2πi
(

h1−h1+h2−h2

) 〈

e2πiS1 Ψ1(z, z) e
2πiS2 Ψ2(0, 0)

〉

(40)

where Ψi abbreviates Ψ(hi,h̄i,ki)
and Si shortens δhi − δh̄i . Here we introduced ki

anticipatorily as non-chiral Jordan level. As the notion Jordan level rests upon the

Jordan block structure of the zero modes of the chiral symmetry algebra, we need a

redefinition in terms of non-chiral representations, which will be given in section 4.

Locality of the two-point function requires that

〈

Ψ1(e
−2πiz, e2πi z) Ψ2(0, 0)

〉

=
〈

Ψ1(z, z) Ψ2(0, 0)
〉

. (41)

Comparing the right hand side of equation (40) with the right hand side of equation

(41) reveals the following conditions for the two-point function to be local:

h1 − h1 + h2 − h2 ∈ Z,
〈

Sn1 Ψ1(z, z)S
m
2 Ψ2(0, 0)

〉

= 0 ∀n,m ∈ Z≥0 n +m > 0. (42)

Since this has to hold for arbitrary combinations of fields Ψ1 and Ψ2 the first condi-

tion must be devised even more strictly

hi − hi ∈ Z, (43)

the second one can be shortened by

SiΨi = 0. (44)

The scope of the conditions for a two-point function to be local can be enlarged

to arbitrary n-point functions. By defining Ψ2 as a suitable contour integral of the

product of n − 1 fields, every n-point function including Ψ1 can be traced back to a

two-point function 〈Ψ1 Ψ2〉.
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4 Non-chiral local representations

Non-chiral irreducible representations can be obtained as diagonal tensor product

of irreducible chiral representations [28]. This course of action fails in case of non-

chiral indecomposable representations. A chiral indecomposable representation Rh

of Jordan rank r + 1 is generated by states |h, ki〉, ki running from r to null. The

various tensor products included in Rh ⊗ Rh̄ can be endowed with a gradation:

Starting with the tensor product of those states with highest Jordan level, all other

possible tensor products can be obtained by repeated application of δh and δh̄. The

resulting structure is summarised in figure 1:

rr ⊗ r̄
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�
�	

r − 1(r−1) ⊗ r r ⊗ (r−1)

@
@R

�
�	

�
�	

@
@R

r − 2(r−2) ⊗ r (r−1) ⊗ (r−1) r ⊗ (r−2)

...
...

00 ⊗ r 1 ⊗ (r−1) r ⊗ 0(r−1) ⊗ 1· · ·

@
@R

�
�	

@
@R

�
�	

@
@R

�
�	

−10 ⊗ (r−1) (r−1) ⊗ 0· · ·
. . .

...

level

...

Figure 1: Gradation of Rh ⊗ Rh̄

Here the following abbreviations were introduced: An element of the product space

Rh ⊗ Rh̄ is uniquely denoted by its chiral and anti-chiral Jordan level

k ⊗ k̄′ := |h, k〉 ⊗ |h̄, k̄′〉. (45)

Let ւ indicate that the state the arrow points at is an image of the state the arrow

starts at under the action of δh. The symbol ց does the same for the action of δh̄.

Level n = r − m is subsequently assigned to states that are obtained from r ⊗ r̄ by
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4.1 Quotient space construction

m-fold descending, i.e. by m-fold application of delta operators. Starting with one

state on level r, the number of states with level n increases gradually with decreasing

n ≥ 0. Level zero possesses the highest number of states, namely r + 1. For level

n ≤ 0 those states located on the fringes of the above graphic are deleted either by

δh or by δh̄. Hence the number of states on level n decreases with decreasing n ≤ 0:

number of states in Rh ⊗ Rh̄ with level n = r + 1 − |n| , |n| ≤ r. (46)

Due to the field-state isomorphism (22) equation (42) enforces that the action of

the operator S = δh − δh̄ has to vanish on all non-chiral states belonging to local

theories. Figure 1 shows that generally the image of a tensor state under the action

of δh differs from its image under δh̄. As a consequence states of the local non-

chiral theory span only a subspace of the space generated by the diagonal tensor

product of the chiral and anti-chiral Jordan cells [20]. This local subspace Lhh̄ can

be constructed in two ways.

Firstly, we revisit the “quotient space construction” which Gaberdiel and Kausch

introduced for the c = −2 local triplet theory [20] and enlarge the scope of their

findings to theories whose chiral halves are of arbitrary rank. We would like to

point out that a generalisation was achieved earlier but under a different viewpoint:

Starting off at a single boundary condition Gaberdiel and Runkel constructed the

local space of bulk states [24]. Their course of action holds for rational CFTs, log-

arithmic and non-logarithmic, and was shown to reproduce the known local bulk

theory at c = −2 if applied to the c1,2 triplet model. Our approach towards an en-

hanced quotient space construction differs from [24] inasmuch it does not use any

information about boundaries.

Secondly, we introduce the “kernel construction” and compare the results of both

methods.

4.1 Quotient space construction

Locality requires that the image of a local state under the action of δh has to equal

the image of the same state under the action of δh̄ (42). The “quotient space con-

struction” presented here approaches the problem by identifying both images mod-

ulo elements of a subspace Nhh̄:

Lhh̄ QSC ≡ (Rh ⊗ Rh̄)/Nhh̄. (47)

The chiral version of the c = −2 triplet theory possesses two indecomposable rep-

resentations of rank two. For these cases, Gaberdiel and Kausch identified the
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4 Non-chiral local representations

subrepresentation spanned by S acting on the tensor product of states with Jordan

level one and the descendants of this state with respect to δh and δh̄ to be a minimal

choice for Nhh̄ [20]:

Nhh̄ =
{
(δh)

p(δh̄)
qS(1 ⊗ 1̄)

}
, h = h̄ = 0, 1. (48)

This result can be generalised to local theories whose chiral halves exhibit Jordan

cells of arbitrary rank r + 1. For that purpose we repeat the procedure used to

gain the gradation of Rh ⊗ Rh̄ with a different starting point: S acting on the tensor

product of those states with highest Jordan level. The structure of the resulting

subrepresentation Shh̄ is depicted on the right hand side of the chart given below.
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Rh ⊗ Rh̄ Shh̄

Figure 2: Rh ⊗ Rh̄ versus Shh̄

On the left hand side the gradation of Rh ⊗ Rh̄ is recapitulated: Every • marks an

element of the product space. As per construction the formation on the right hand

side is generated by one state S(r ⊗ r̄) = (r−1) ⊗ r − r ⊗ (r−1) on level r − 1. This state

and every state that emanates from it by application of delta operators are pictured

as ◦. Counting the states ∈ Shh̄ with level n yields

number of states in Shh̄ with level n = r + 1 − |n + 1| , |n| ≤ r − 1. (49)
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4.1 Quotient space construction

Level n = −1 accomodates the maximum number of states. Level n ≤ −1 states that

are located on the fringes vanish either under the action of δh or of δh̄.

Comparing the state content of both representations one finds: For |n| ≤ r − 1, the

difference of two adjacent level n states in Rh ⊗ Rh̄ is element of Shh̄. Additionally,

for level n ≤ −1 the skirting states of both representations are pairwise identical:

n = r •
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�
�	

n = r − 1 • ◦ •

n = r − 2
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. . .
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Figure 3: Comparison of Rh ⊗ Rh̄ and Shh̄

Hence dividing the subspace Shh̄ out of Rh ⊗ Rh̄ accords with identification of all

those states ∈ Rh ⊗ Rh̄ that exhibit identical level:

(δh)
pi(δh̄)

qi r ⊗ r̄ ∼ (δh)
pj (δh̄)

qj r ⊗ r̄ ∀ i, j | pi + qi = pj + qj . (50)

The action of δh on these equivalence classes equals that of δh̄. Thus indeed with

Shh̄ we constructed a minimal choice for Nhh̄.

The equivalence classes in (Rh ⊗ Rh̄)/Shh̄ are parameterised and arranged in order

by their level. A non-chiral level n state shall be defined as a representative of the

equivalence class with level n. As standard representative we choose the symmetric

sum over all elements:
∣
∣h, h̄,n

〉
:=
∑

level n states. (51)

To avoid confusion with the Jordan level naming of a chiral state, we will use bold

numbers to denote states of the non-chiral theory by their level. Since the equiv-

alence classes with level n ≤ −1 include representatives ∈ Shh̄, they are entirely
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4 Non-chiral local representations

removed from (Rh ⊗ Rh̄)/Shh̄, i. e. states ∈ Rhh̄ at level zero are annihilated by both

delta operators.

4.2 Kernel construction

The “kernel construction” defines Lhh̄ KC ⊂ Rh ⊗Rh̄ as the kernel of S. The key idea

for determining the kernel of S is to use telescoping series. If we sum up all states

∈ Rh ⊗ Rh̄ with same level and act with S on it, every term except the first and the

last cancels with either the preceding or suceeding term.

S
(∑

level n states
)

=






δh (n ⊗ r̄) − δh̄ (r ⊗ n̄) for n ≥ 1

δh (0 ⊗ (r − n)) − δh̄
(
(r − n) ⊗ 0̄

)
for n ≤ 0.

(52)

As for level ≤ 0 the surviving terms vanish, we can conclude:

Lhh̄ KC =
{∑

level n states | n ≤ 0
}

. (53)

4.3 Summary and discussion

In the preceding sections we presented two methods how to construct local inde-

composable representations - the quotient space construction (QSC) and the kernel

construction (KC). According to both methods Lhh̄ possesses the same rank as the

chiral halves it is composed of:

rank(Lhh̄) = rank(Rh) = rank(Rh̄). (54)

The state content of a local representation depends on the method used to construct

it:

Lhh̄ QSC =
{∑

level n states | n ≥ 0
}

Lhh̄ KC =
{∑

level n states | n ≤ 0
} (55)

Above, specifications were made such that for QSC the term non-chiral Jordan level

is in perfect accordance to the chiral Jordan level. For KC it is of avail to slightly

adapt the definition of the non-chiral Jordan level: Redefining level n to be level

n + r

n 7→ n′ = n + r
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4.3 Summary and discussion

we achieve the familiar situation of non-negative integer values for the non-chiral

Jordan level. Furthermore the redefinition guarantees that level zero states are an-

nihilated by δh and δh̄:

δh
∣
∣h, h̄,n′

〉

KC = δh̄
∣
∣h, h̄,n′

〉

KC = 0 for n′ = 0. (56)

Computable predictions in QSC may depend on the choice of the considered repre-

sentative. The vanishing Shapovalov form of |0〉 for example can be shown by means

of the representatives 0 ⊗ r̄ and r ⊗ 0̄. However, rank r + 1 theories with r + 1 > 1

and r an even integer possess a level zero representative r
2 ⊗ r̄

2 . The corresponding

Shapovalov form is
(〈

r
2

∣
∣ ⊗
〈
r̄
2

∣
∣
) (∣
∣ r

2

〉
⊗
∣
∣ r̄

2

〉)

=
〈
r
2

∣
∣
∣
r
2

〉 〈
r̄
2

∣
∣
∣
r̄
2

〉

6= 0. (57)

In a rank r + 1 theory with r + 1 > 2 and r an odd integer the same problem occurs

but on level n = 1: Such a theory possesses a level one representative r+1
2 ⊗ r+1

2 that

can easily be shown to contradict equation (38). The crucial point is that though rep-

resentatives of QSC equivalence classes are as per construction equivalent with re-

spect to the action of L0 and L̄0 in other respects their equivalence is not guaranteed.

Another example of this problematic QSC feature will be sketched in Section 6.

In every case is true: Representatives of QSC equivalence classes may be chosen such

that observables in both formulations - QSC and KC - are identical. That is, even

though Lhh̄ QSC 6= Lhh̄ KC both representations are isomorphic and
∣
∣h, h̄,n

〉

QSC is

equivalent to
∣
∣h, h̄,n′

〉

KC. Hence, at this point it is both impossible and unnecessary

to finally rule on the question wether one method has to be prefered.

Anyhow, the known symplectic fermion realisation of the LCFT at c = −2 may

be interpreted as a hint on the KC to be the more natural method. A symplectic

fermion a la Zamolodchikov is a two-component fermionic field θ of spin zero [36].

The stress energy tensor of its free theory is given by T(z) = 1
2ǫ

αβ : ∂θα ∂θβ : (z). The

mode expansion of the component fields reads:

θα =
∑

n6=0

θα,nz
−n + θα,0 log(z) + ξα. (58)

The ξ’s are Grassmann numbers and act as creation operators for the chiral loga-

rithmic partner of the identity:

|h = 0, k = 1〉 = −
1

2
ǫαβ ξα ξβ |h = 0, k = 0〉 =: ξα ξβ |0〉. (59)

Of course an analogue identity holds for the anti-chiral half. Therewith we can give

explicit expressions for the sum of all states ∈ R0 ⊗ R0̄ with equal level n:
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4 Non-chiral local representations

n = 1 • ξα ξβ |0〉 ⊗ ξ̄α ξ̄β |0̄〉= ξ
α ξβ ξ̄α ξ̄β |0〉 ⊗ 0̄〉

@
@R

�
�	

• •n = 0 ξα ξβ |0〉 ⊗ |0̄〉 + |0〉 ⊗ ξ̄α ξ̄β |0̄〉 =
(
ξα ξβ + ξ̄α ξ̄β

)
|0〉 ⊗ |0̄〉

@
@R

�
�	

•n = −1 |0〉 ⊗ |0̄〉

It is possible to choose a basis such that ξα = ξ̄α, i. e. the state |n = 1〉 vanishes due

to the nilpotency of ξ. This coincides with the prediction of the kernel construction.
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5 Correlation functions

The prominent role that correlation functions play in CFTs results from two facts:

On the one hand, they are related to observables and therefore represent a connec-

tion between theory and accessible experimental data. On the other hand, they are

considered fundamental from a pure theoretical point of view: As shown in [37],

a CFT is completely constituted if all correlation functions are known. Given the

two- and three-point functions of the fundamental fields, all other amplitudes can

actually be derived from these. Furthermore, the consistency conditions of all am-

plitudes can be traced back to those obeyed by the four-point functions.

The calculation of correlation functions in LCFTs holds two major difficulties that do

not arise in case of non-logarithmic CFTs. Both have their origin in the non-diagonal

action of the generators of the chiral symmetry algebra. The off-diagonal contribu-

tion enters the global conformal Ward identities in the shape of an inhomogeneity

and results in the aforementioned challenges:

Firstly the identification of the generic structure of chiral correlation functions com-

patible to global conformal invariance is remarkably hindered. A hierarchical solu-

tion scheme for the inhomogeneous Ward identities allows to explore the texture of

the subset of correlators which contain chiral fields residing in indecomposable rep-

resentations whose irreducible subrepresentation corresponds to a proper primary

field. For these cases, it is possible to fix the generic structure of n-point functions

up to structure functions of n−3 SL(2,C) invariant crossratios, however only within

sets of other correlators. Possible extensions of the hierarchical solution scheme to

pre-logarithmic fields and non-quasi-primaries are discussed in [4] and [10].

Secondly, correlation functions of an LCFT do not generally factorise into chiral

and anti-chiral parts. This is also an immediate consequence of the inhomogeneous

Ward identities which is mirrored by the fact that only those correlators are factoris-

able that solve Ward identities with vanishing inhomogeneity. Gurarie pointed

out that even amplitudes not explicitly involving logarithmic fields do not necess-

esarily fall in this category [2]. Two attemps have been made to adapt the knowl-

edge about chiral correlation functions for non-chiral ones. Flohr provided a rule

of thumb, how to generalise known chiral sets of correlation functions to local sets

by replacing all emerging variables zi − zj =: zij by
∣
∣zij
∣
∣2 [35]. This approach pre-

serves the full generality of the chiral sets but obscures the interrelationship between

chiral, anti-chiral and non-chiral amplitudes. Its validity is proven in Appendix A.

Gaberdiel and Kausch suceeded in constructing a consistent set of amplitudes

for the local theory at c = −2 [20]. As their course of action rests crucially upon
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5 Correlation functions

model specific information like the operator product expansion of the fundamental

fields, it cannot be transfered to the generic case.

Our proceeding will be as follows: We first recapitulate the nessessary assumptions

under which generic chiral n-point functions can be calculated and briefly describe

the hierachical solution scheme for these cases. Subsequently, we summarise the

generic structure of the n-point functions found this way. In section 5.2 we will give

a short proof for the statement that a non-chiral correlation function factorises if and

only if the inhomogeneity of the Ward Identities vanishes for the chiral correlators it

is composed of. Finally we present an ansatz built solely out of quantities enclosed

in the chiral and anti-chiral sets of n-point correlators that allows the construction

of local n-point amplitudes.

Correlators of fields residing in the chiral (anti-chiral) half of an LCFT will be named

chiral, anti-chiral respectively. Even though “chiral” intrinsically describes propa-

gation properties of fields, we prefer this term to the adjunct holomorphic which is

often chosen to indicate that a function only depends on the formal variable z but

not on z̄.

5.1 Chiral correlation functions

Within this thesis, we will consider correlation functions of fields Ψ(hi,ki)(zi) from

Jordan cells whith Ψ(hi,0)(zi) a proper primary. The logarithmic partner fields are

assumed to be quasi-primary, i. e. LnΨ(hi,ki)(0) | 0〉 = 0 ∀ n ≥ 1.

LCFT correlation functions are invariant under the global conformal group. This

stipulates the generic texture of n-point correlators up to structure functions of n−3

SL(2,C) invariant crossratios that are a priori undetermined. Evaluating the identity

(34) for q = −1, 0, 1 exhibits the inhomogeneous global conformal Ward identities:

Oq 〈. . .〉 = −
n∑

i=1

z
q

i (q + 1)δhi 〈. . .〉 , for q ∈ {−1, 0, 1} . (60)

From equation (60) follows immediately that correlation functions containing log-

arithmic fields cannot be determined independently: Due to the action of δhi , the

generic structure of an n-point function including fields Ψ(hi,ki)(zi) can only be spec-

ified within a framework of other n-point functions containing fields Ψ(hi,ki−1)(zi).

Given a set of n conformal weights hi with r(hi) = r there exists a hierarchy of rn

n-point functions with s = 0, . . . , n logarithmic fields displaying varying Jordan lev-

els ki = 1, . . . , r − 1. The number of different correlation functions of a set is actually
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5.1 Chiral correlation functions

reduced: As discussed in Section 2.2.3 a correlator is non-zero only, if the sum over

the Jordan levels of the logarithmic fields it contains equals at minimum r − 1.

The identity (38) serves as starting point for a recursive construction of solutions

of the GCWIs (60). For total Jordan level K = r − 1, the GCWIs are homoge-

neous and can be solved as known from ordinary CFT. Successive increase of the

total Jordan level yields differential equations for 〈k1 . . . kn〉 with the inhomogeneity
∑

i δhi 〈k1 . . . kn〉 determined in foregoing steps of the recursion. To improve lucidity

we wil subsequently shorten the naming of the correlators:

〈k1 . . . kn〉 :=
〈
Ψ(h1,k1)(z1) . . . Ψ(hn,kn)(zn)

〉
. (61)

One finds that n-point correlators which contain fields of rank r Jordan cells posses

the generic form:

〈k1 . . . kn〉 =
∏

i<j

(zi − zj)
µij

lmax∑

G=0

FG
{q}

(xa) · PG(lmn), lmn := ln (zmn) (62)

where PG denotes a sum over monomials of degree G:

PG =
∑

α|g(α)=G

cα

j∏

i=1

(lmini)
gαi =:

∑

α

cαpα,
j∑

i=1

gαi = g(α). (63)

The constraint of global conformal invariance (60) connects a coefficient cα mul-

tiplying a monomial pα in a correlator A to the coefficient cβ which multiplies a

monomial pβ in a correlator
∑

i δhiA, with pβ being the image of pα under the action

of O0. Four-point or higher correlation functions that exhibit logarithmic fields at

every vertex may feature polynomials KG ⊂ PG, whose multiplicities are special in

the following sense: They are not cross-linked to any coefficients in other n-point

functions of the set. Linkage to correlators with lower total Jordan level is canceled

if KG resides in the kernel of the operator O := (O0, O1) [10]. No linkage to higher

correlators of the set has to be required seperatly. As a consequence kernel terms

KG may only arise in the highest correlator of a set, i. e. in the correlator where all

inserted fields are of maximum Jordan level kn = r − 1.

The occurring monomials pα are subject to selection rules [35]: Logarithms in the

correlators stem from contractions of logarithmic fields. Hence, only such loga-

rithms may arise whose indices refer to positions of fields with Jordan level k ≥ 1

within a correlator. To see this and beyond it how the possible powers with which

lmn may occur are determined it is instructive to use a graphical representation first

described by Flohr (2003):
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h;k( )Ψ

h’;k’( )Ψk-i

k’-i’

i

i’

Figure 4: Graphical representation of contractions of logarithmic fields

Each field Ψ(h,k) is depicted by a vertex with k outgoing lines. These legs are to be

connected with other vertices, whereas three rules have to be observed:

1. A vertex Ψ(h,k) may receive at most r − 1 incoming lines, where r is the rank

of the LCFT.

2. The source and the destination vertex have to be different.

3. Connections to primary fields are not possible.

Every connection between two vertices m and n represents a logarithm lmn. As

shown above a correlation function of a rank r LCFT vanishes if its total Jordan level

K =
∑

i ki is lower than r −1
(
c. f. equation (38)

)
. In terms of the proposed graphical

representation this means that leastwise r − 1 legs have to remain uncontracted. If

the number of legs is greater or equal r − 1 the correlation function will essentially

be a sum over all possible graphs where at most
∑

i ki − (r − 1) legs are linked to

arbitrary vertices.

The outlined restrictions ruling the logarithmic terms can be summed up in the

following selection rules:

[S1] Only such logarithms may arise whose indices refer to positions of fields

with Jordan level k ≥ 1.

[S2] The total logarithmic degree G in equation (62) is bounded above as

follows:

G ≤ K − r + 1 =: lmax.

[S3] Each index mi may arise at most r − 1 times within one monomial.

Let FG
{q}

(xa) denominate a family of functions, which solely depend on n− 3 anhar-

monic ratios xa. The subscript
{
q
}

denotes a set of n indices qi which take integer
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5.2 Assembling local amplitudes from the chiral sets

values between zero and ki :

FG
{q}

:= FGq1q2...qn , qi ∈ {0, 1 . . . ki} . (64)

For fixed superscript index G, only those combinations
{
q
}

emerge that fulfil

∑

i

qi +G = K. (65)

Coefficient functions satisfying
∑
qi = r − 1 have to be identified due to the cluster

decomposition property [10]. They will be refered to as Fl
max

. For n ≤ 3 FG
{q}

does

not depend on the values qi but only on
∑

i qi [4].

The structure functions F{q}(x) may be decomposed in conformal blocks Fi

{q}
(x)

which represent the internal propagators:

F{q}(x) =
∑

i

Fi

{q}
(x).

During the main part of this paper this decomposition will not play any role for

the presented argumentation. To keep things simple we will abstain from making it

explicitly where it is not necessary.

The exponents µij in equation (62) solve

∑

i6=j

µij = −2hj . (66)

So far we have stated properties of chiral correlation functions only. It is clear that

analogues propositions hold for anti-chiral correlators.

5.2 Assembling local amplitudes from the chiral sets

We can now bring the original query into sharper focus. Non-chiral amplitudes shall

be obtained by multiplying suitable chiral and anti-chiral amplitudes. Therefore we

have to revisit the constraints of locality (42). As in the frame of this thesis only

the case hi = h̄i is considered, the first condition does not cause concern. Using

equation (60) the second condition can be restated as follows:

−
n∑

i=1

Si 〈Ψ1 . . . Ψn〉 =
(
O0 − Ō0

)
〈Ψ1 . . . Ψn〉 = 0. (67)
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5 Correlation functions

In non-logarithmic conformal field theories, the non-chiral amplitudes A can be

achieved by multiplying the chiral and anti-chiral amplitudes A and Ā:

A = AĀ. (68)

In LCFTs, factorisation is contradictory to the locality constraint except for correla-

tors satisfying homogeneous Ward identities:

(O0 −O0)A = (O0A)Ā −A(Ō0Ā)

=−

(
∑

i

δhiA

)

Ā +A

(
∑

i

δh̄iĀ

)

= 0 ⇔
∑

i

δhiA =
∑

i

δh̄iĀ ≡ 0
(69)

where the first identity follows from the fact, that the operators O0 and Ō0 act as

derivatives with respect to z (z̄ respectively) on the function space, i. e. Ō0 acting

on the chiral amplitude does not yield a contribution and vice versa. The second

identity arises out of the chiral amplitudes satisfying the GCWIs. The last step is

based on the fact, that the maximum logarithmic degree of δhiA is reduced by one

compared to the maximum logarithmic degree of A.

The given argumentation is not affected if the conformal block decomposition of the

amplitudes is taken into account, i. e. if equation (68) is substituted by

A =
∑

qp

XqpAqĀp,

where Aq denotes the contribution of a conformal block q to A. As the conformal

blocks do only depend on the crossratios, adjustment of their linear combination

can not cancel the mismatch of logarithmic powers in equation (69).

Subsequently, we present an ansatz that admits the construction of generic local

n-point functions out of the known chiral correlators:

〈

k1 . . .kn

〉

=
〈

k1 . . . kn
〉〈

k1 . . . kn
〉

|selection rules +GOL, (70)

where GOL stands for guarantor of locality and lives up to its name by providing the

desired behavior of 〈k1 . . .kn〉 under the action of O0−O0. This fixes (O0−O0) GOL

as follows:

(O0 −O0)GOL =
n∑

i=1

[(

δhi

〈

k1 . . . kn
〉)〈

k1 . . . kn
〉

−
〈

k1 . . . kn
〉(

δh̄i

〈

k1 . . . kn
〉)]

.

(71)
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5.2 Assembling local amplitudes from the chiral sets

The contribution of

〈

k1 . . . kn
〉〈

k1 . . . kn
〉

=
∏

i<j

∣
∣zij
∣
∣2µij




lmax∑

g=0

FG
{q}

(x) · PG
(

lmsns

)







lmax∑

g=0

F̄Ḡ
{q̄}

(x̄) · P̄Ḡ

(

lmrnr

)




in equation (70) is constricted to terms satifying selection rules. The selection rules

for the arising logarithmic terms in chiral correlators have been resumed in Sec-

tion 5.1. Generalising them to the non-chiral case is straightforward: [S1] is trivially

fulfilled. The highest logarithmic degree to appear in a correlator was shown to

depend on its total Jordan level and the rank of the theory, [S2]. As demonstrated in

section 4 the rank of the non-chiral theory equals the rank of the chiral halves it is

composed of. Furthermore, as per construction the total Jordan level of the left hand

side of equation (70) equals the total Jordan level of the chiral correlators
〈

k1 . . . kn
〉

and
〈

k1 . . . kn
〉

, i. e.

g + ḡ ≤ lmax, lmaxnon−chiral = l
max
chiral = l

max
anti−chiral. (72)

The highest multiplicity for one index to appear within a monomial was stated to

solely depend on the rank of the theory, [S3]. Thus, according to the aforementioned

reasoning, it can be adopted from the chiral case as its stands.

Therewith the left hand side of the ansatz (70) can in principle be calculated. For

that purpose, we have to expand the product of the chiral correlators, implement

[S2] and [S3] and add an expansion of GOL. The latter is given as follows:

GOL =
∏

i<j

∣
∣zij
∣
∣2µij

lmax∑

G=0

∑

α,β

cαβ

t∏

s=1

u∏

r=1

(

lmsns

)gαs
(

lmrnr

)ḡβr
,

t∑

s=1

u∑

r=1

(gαs + ḡβr )=G. (73)

It is clear that coefficients cαβ depend on the chiral and anti-chiral structure func-

tions, i. e.

cαβ = cαβ
(

F{q}, F̄{q̄}

)

.

For further convenience, we will subsequently use the naming convention intro-

duced in equation (63):

pα :=
t∏

s=1

(lmsns)
gαs ,

t∑

s=1

gαs = g(α) =: gα. (74)

Herewith the expansion of GOL (73) reduces to the form:

GOL =
∏

i<j

∣
∣zij
∣
∣2µij

lmax∑

G=0

∑

α,β

cαβ pαp̄β. (75)
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5 Correlation functions

Of course, the logarithmic terms of GOL are subordinated to [S1] - [S3], too. Further

restrictions on the structure of GOL arise from its claimed behavior under the action

of (O0 −O0): Equation (71) changes sign under complex conjugation. It follows that

GOL = GOL ⇒ cαβ = cβα, in particular cαα ∈ R. (76)

In addition the coefficients cαβ are coupled to linear combinations of the structure

functions FG
{q}

(x) and F̄Ḡ
{q̄}

(x̄) by two sets of constraints. The first set arises out of

the condition (71). The second emanates from the logarithmic identities governing

the assembly of local monomials: Monodromy invariance of equation (70) enforces

arguments of emerging logarithms to be real, i. e. logarithmic terms have to be of

the shape

pα(|lmsns |
2) : =

t∏

s=1

(|lmsns |
2)gs

=
t∏

s=1

(

lmsns + lmsns

)gs

=
t∏

s=1

(
gs∑

i=0

(
gs
i

)
(

lmsns

)i (

lmsns

)gs−i
)

.

(77)

Hence, coefficients of terms
∏t

s=1

(

lmsns

)i (

lmsns

)gs−i
with 0 ≤ i ≤ gs are fixed up to

an overall factor. These coefficients are proportional to FG
{q}

(x)F̄Ḡ
′

{q̄′}
(x̄) if a mono-

mial stems from
〈

k1 . . . kn
〉〈

k1 . . . kn
〉

or else given by cαβ, which establishes the

aforementioned coupling. Recalculating one finds, that every solution of the result-

ing set of constraints solves equation (71).

Without loss of generality the free choice of an overall factor multiplying equation

(77) can be absorbed in the factors of contributions
∏t

s=1

(

lmsns

)gs (

lmsns

)0
. This

lightens our ansatz (70) to

〈k1 . . .kn〉 =
∏

i<j

∣
∣zij
∣
∣2µij

lmax∑

G=0

∑

α

(

F̄ 0̄

{q̄′}
FG
{q}

cα + cα0

)

︸ ︷︷ ︸

=:Cα

pα. (78)

Within this generic approach the monodromy properties of the coefficients Cα can-

not be completely explored. The structure functions F̄{q̄′}(x̄), F{q}(x) in equation
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5.3 Summary and discussion

(78) are linear combinations of conformal blocks:

F̄{q̄′}(x̄) =
∑

i

F̄i

{q̄′}
(x̄), F{q}(x) =

∑

j

F
j

{q}
(x), F̄{q̄′}F{q} =

∑

ij

XijF̄
i

{q̄′}
F
j

{q}
.

(79)

Enforcing monodromy invariance of the amplitude (78) determines the coefficients

Xij , a task that cannot be performed within the generality achieved here.

It is worth pointing out that the claims asserted so far suffice to guarantee all coef-

ficients Cα being real: The constraint (77) in particular demands that the i = 0 term

and the i = gs term arise with the same multiplicity. The coefficient of the former

can easily be shown to equal F̄Ḡ
{q̄}

F0

{q′}
cα+c0α. Using equation (76) we can conclude:

F̄Ḡ
{q̄}

F0

{q′}
cα + c0α = Cα = Cα ⇒ Cα ∈ R. (80)

Reimplementing the GCWIs establishes dependencies between coefficients Cα of

different local correlators of a set. The occurring cross-linkage of coefficients is in

perfect analogy to the chiral case: Cα emerging in a correlator A is connected to Cβ

in a correlator
∑

i δhiA =
∑

i δh̄iA if pβ is the image of pα under the action of O0 as

well as under the action of Ō0. It follows that the obtained solution for a generic

chiral set of correlation functions, obeying locality and global conformal invariance

is not unique. The number of degrees of freedom a local correlator possess equals

the number of those the corresponding chiral correlator shows. This matches with

the predictions of Flohr’s substitution method [35]. Anyhow it is astonishing as

one could have expected that implementing the condition of locality would confine

the number of free parameters. Investigating duality [28,38] of the obtained generic

correlation functions yields that even this constraint does not reduce the number of

free parameters any further.

5.3 Summary and discussion

Non-uniqueness of the solution

Generic local sets of correlators cannot uniquely be determined by virtue of locality,

duality and global conformal invariance. The most general form of GOL preserves

the number of free parameters a set of correlation functions exhibits. The minimal

choice for GOL fulfilling the constraints (71) and (77) is build up of mixed terms

only, i. e. it does not exhibit any contributions pαp̄β with gα = 0 or ḡβ = 0. As a
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5 Correlation functions

consequence, cα0 in equation (78) vanishes identically for all α. In this case, reim-

plementing the GCWIs fixes all but one conformal block of a set. We are confronted

with a situation very similar to non-logarithmic CFT: Although in the LCFT case a

whole hierarchy of n-point functions emanates from a set of n conformal weights

hi = h̄i the structure of each correlator is fixed up to one shared structure function

F which solely depends on n − 3 crossratios and the conformal weights hi but not

on ki.

Consistency check

Our method allows us to connect the results of [10] to the results of [20]. According

to [10] the rank two chiral set of four-point functions with hi = 0 ∀ i reads

〈1000〉 =F1000 , (81a)

〈1100〉 =PS2

{
1
2F1100 − l12F1000

}

, (81b)

〈1110〉 =PS3

{
1
6F1110 + ( 1

2 l23 − l12)F0110 +
[
l12l23 −

1
2 l

2
12

]
F1000

}

, (81c)

〈1111〉 =PS4

{
1

24F1111 + ( 1
6 l23 −

1
3 l12)F0111+ (81d)

[1
2(l14l23 − l12l34) + (l12l23 −

1
2 l24l23) −

1
4 l

2
12

]
F0011+

[1
2 l

2
12l34 +

1
3 l12l23l13 − l12l23l34

]
F1000

}
.

Missing correlators of the set can be obtained by permutation of the inserted fields.

PSx denotes the sum over all permutations of indices generated by the group Sx.

As all four fields posses the same conformal weight hi = hj it follows from the

associativity of the fusionalgebra that

Fq1q2q3q4(x) = Fqσ(1)qσ(2)qσ(3)qσ(4)(x) ∀σ ∈ S4, (82)

i. e. PSx does only affect the indices of logarithmic terms lij . The symmetry (82) ad-

mits to identify all Fq with equal
∑
qi = p and to abbreviate them by the p-th capital

letter of the latin alphabet. As Ψh=0,k=0 denotes the identity field the amplitudes

(81a-c) are identical to the one-, two- and three-point functions of the field Ψh=0, k=1.

Consequentially, in the following expressions, A, B and C are constant, D = D(x).
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5.3 Summary and discussion

We can now arrange the equations (81) more clearly:

〈1000〉 =A , (83a)

〈1100〉 =B − 2A (l12) , (83b)

〈1110〉 =C − B (l12 + l13 + l23) + (83c)

A
[
2 (l12l23 + l13l23 + l12l13) −

(

l212 + l
2
13 + l

2
23

) ]
,

〈1111〉 =D −
2

3
C ∗−∗ +2B

[
(2κ + 1) ∗−∗ ∗−∗ − κ ∗−∗−∗ +κ∗=∗

]
+ (83d)

2A
[
∗=∗ ∗−∗ + ∗−∗−∗ − ∗−∗−∗−∗

]
.

The correlation function (83d) exhibits a kernel term KG whose multiplicity κ is

not fixed by global conformal invariance. Moreover in support of clarity we chose

a graphical notation to depict the logarithmic terms in this correlator. Reading

the diagrams is straightforward: Each position denotes a variable indexvalue. The

symbol filling a position designates the variable which carries the index. We will

use ∗ for z and △ for |z|2. A line between two symbols of the same kind indicates the

logarithm of the symbollically represented variable. Each graph stands for the sum

over all those identifications of variable indexvalues with numerical indexvalues

which provide expressions that are not equivalent, e. g.

△−△△−△ = l12l34 + l13l24 + l14l23, lij := ln(
∣
∣zij
∣
∣2).

Combining local amplitudes according to the method described above yields:

〈1000〉=CAA , (84a)

〈1100〉=CBB − 2CBA (l12) , (84b)

〈1110〉=CCC − CCB (l12 + l13 + l23) + (84c)

CCA
[
2 (l12l23 + l13l23 + l12l13) −

(

l2
12 + l2

13 + l2
23

) ]
,

〈1111〉=CDD −
2

3
CDC△−△ + 2CDB

[
(2λ + 1)△−△△−△ − λ△−△−△+

λ△=△
]
+ 2CDA

[
△=△△−△ +△−△−△ − △−△−△−△

]
, (84d)

where CXY = X̄Y + cxy with cxy being a complex number corresponding to cα0 in

formula (78). The reimplementation of the GCWIs enforces the identification all

coefficients CXY with same second index:

CXY ≡ CY ∀ X. (85)
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5 Correlation functions

It is worth noticing that in the course of assembling local amplitudes the arbitrary

multiplicities κ and κ̄ of the chiral kernel term are set to zero. The kernel term

λKG = λ (2△−△△−△ − △−△−△ + △=△)

in the correlator (84d) is exclusively composed of contributions of GOL.

We can now resume: The equations (84) constitute a generic set of correlators con-

taining fields from a rank two reducible representation with h = h̄ = 0. One explic-

itly known representative of this case is given through the set of n-point functions
〈∏

nΨhn=0,h̄n=0,kn=1

〉
, n = 1, . . . 4 of the local LCFT at c = −2 [20]. Except for an overall

sign of the correlator (84d) both sets - the generic and the concrete - are consistent:

For the local triplet theory, the undetermined coefficients of the generic set take the

values

CA = C0 = 1, CB = −8 ln(2),

CC = 48 ln2(2), CD = −256 ln3(2).

Furthermore the kernel multiplicity λ is fixed to − 1
2 in virtue of the operator product

expansion.
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6 Conclusions

Exploiting the conformal symmetry allows first steps towards the construction of

generic local LCFTs. The generality of our approach is confined by the following

assumptions: Indecomposable representations are considered only with respect to

the Virasoro zero mode. Irreducible subrepresentations are assumed to correspond

to proper primaries, logarithmic partners to quasi-primaries. Furthermore only the

diagonal case hi = h̄i is regarded.

For future work, generalising our findings by releasing these assumptions would

be an interesting task: As mentioned before the scope of section 5 can possibly be

extended to pre-logarithmic fields and non-quasi-primaries [4, 10]. Remarkably, it

seems that even abdicating the hi = h̄i condition does not seriously damage the

proposed method for the construction of generic local correlation functions out of

generic chiral ones.

A matter of particular interest could be to investigate the local space of states for

a theory whose chiral halves violate the assumption of quasi-primarity of the log-

arithmic partner fields. In case of chiral Jordan cells which contain at least one

logarithmic field Ψh,k (Ψ̄h̄,k̄ respectively) with the property

∃ n > 0 : lim
z→0

LnΨh,k (z) | 0〉 6= 0

the equivalence of QSC and KC is broken. This shall be illustrated by means of a

rank three non-chiral representation where the chiral Jordan level one fields are not

quasi-primary.

QSC KCr = 3

n = 22 ⊗ 2̄

@
@R

�
�	

n = 11 ⊗ 2̄ 2 ⊗ 1̄

@
@R

�
�	

�
�	

@
@R

n = 0 n′ = 20 ⊗ 2̄ 1 ⊗ 1̄ 2 ⊗ 0̄

@
@R

�
�	

@
@R

�
�	

n′ = 10 ⊗ 1̄ 1 ⊗ 0̄
@

@R
�

�	
n′ = 00 ⊗ 0̄
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6 Conclusions

According to both methods non-quasi-primarity of the chiral level k states induces

non-quasi-primarity of the non-chiral level k state (here n = 1, n′ = 1 respectively).

Pursuant to QSC additionally states with lower level are affected (here the level

n = 0 representative 1 ⊗ 1̄). By contrast after KC the non-quasi-primarity is passed

on states with higher level (here the n′ = 2 state 0 ⊗ 2̄+1 ⊗ 1̄+2 ⊗ 0̄). Two cases of the

sketched scenario can be distiguinshed:

1. Rank r ≥ 3: In KC non-quasi-primarity (NQP) of a chiral state with Jordan

level k (k̄ respectively) encroaches upon all local states with n′ ≤ k. In QSC

the spread of NQP can be supressed by suitable choice of the considered rep-

resentative unless the non-quasi primary logarithmic partner is the field with

highest Jordan rank.

2. Rank r = 2: In KC the only possible non-quasi-primary is identical to the field

with highest Jordan level, i. e. the NQP does not spread. In QSC every level

zero representatives is affected by NQP. We deal with a situation that could be

called converse quasi-primarity as the behaviour under L0 and L̄0 equals the

behaviour of a proper primary but for every representative

|n = 0〉α = (1 ⊗ 0̄ + 0 ⊗ 1̄) + α(1 ⊗ 1̄ − 0 ⊗ 1̄), α ∈ C

exists a positiv Virasoro mode such that

(
L̄n
)i
(Ln)

j |n = 0〉α 6= 0, i, j ∈ {0, 1} , i + j 6= 0.

Exploring the first case might bring light to a problem we have already sketched in

section 4.3. It seems desirable to understand how the uncertainty can be mastered

which enters computable predications in the QSC formulation through the arbitrary

but non-equivalent choice of the regarded representative. Actually, a promising

possibility to cope with the spreading of NQP in the framework of QSC might be to

extend Nhh̄. For an example see Appendix C.

Somehow or other, the broken QSC–KC equivalence in case of NQP provides the

opportunity to treat them as competing models. On the basis of an explicitly known

realisation exhibiting the claimed properties it could become possible to determine

wether the predicted spread of NQP is reasonable. And finally the comparison

of the explicit realisation with the predications of QSC and KC could resolve the

question if one of the proposed methods can be adapted to the NQP case.
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A Proving the rule of thumb

In [35] a rule of thumb was proposed, how to obtain a non-chiral version out of

known chiral correlators by replacing

1. every zi − zj =: zij by
∣
∣zij
∣
∣2 and

2. every structure function F{q}
(
x
)

by F̃{q}( |x|
2).

To give a proof that this method yields local, GCWI consistent sets of correlation

functions one has to show that if pβ (ln(zmn)) is the image of pα (ln(zmn)) under the

action of O0, pβ
(

ln |zmn|
2
)

is the image of pα
(

ln |zmn|
2
)

under the action of O0 as

well as under the action of O0:

O0 pα(lmn) = pβ(lmn) ⇔ O0 pα(lmn) = pβ(lmn) = O0 pα(lmn) .

It is convenient to consider at first monomials pα of the shape (lmn)
gα . In this case

O0 acting on pα yields

O0 (lmn)
gα = gα (lmn)

gα−1 =: pβ (lmn) .

O0 acting on pα (lmn) = (lmn)
gα provides

O0

(

ln |zmn|
2
)gα

= O0

(

lmn + lmn
)gα

= O0

gα∑

k=0

(
gα
k

)
(

lmn
)k (

lmn
)gα−k

=

gα−1∑

k=0

gα!(gα − 1)

(gα − k)! k!

(

lmn
)k (

lmn
)gα−1−k

=

gβ=gα−1∑

k=0

gα

(
gβ

k

)
(

lmn
)k (

lmn
)gβ−k

= pβ (lmn) . q.e.d.

(86)

Line three to five of equation (86) are invariant under complex conjugation and so

is pα(ln |zmn|
2). It follows that the action of O0 equals the action of O0 when applied

on pα(ln |zmn|
2).
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B Assembling local correlation functions: An example

As any monomial can be decoded as product of monomials of the above shape, it is

straightforward to upgrade the given proof to arbitrary pα.

pα(lmini) =

j∏

i=1

(lmini)
gαi =:

j∏

i=1

pαi(lmini),
j∑

i=1

gαi = gα

According to the product rule O0 acting on pα(lmini) yields a sum over j summands,

each of them containing j − 1 unchanged factors pαi(lmini) and one factor pβi(lmini).

Hence the generic case is put down to the special case treated above.

B Assembling local correlation functions: An example

In this section the proceeding proposed to construct local correlators from the chiral

sets shall be illustrated. We choose the easiest non-trivial example: The assembly of

a non-chiral correlator of four fields residing in a r = 2 Jordan cell all but one poss-

esing level one. Furthermore we will consider the special case, where an additional

symmetry improves lucidity: If all four fields possess the same conformal weight

hi = hj , all structure functions Fq1q2q3q4(x) are invariant under permutation of the

indices qi (cf. equation (82)). In this case the generic chiral four-point functions

calculated in [10] can be formulated by means of a graphical notation which was

fragmentarily introduced in section 5.3 and will subsequently be explored in some

more detail.

B.1 Graphical notation proper

To depict the logarithmic terms in hi = hj-type n-point functions it is convenient to

use a graphical notation which improves clarity of the expressions and facilitates

dealing with them. Reading the diagrams is straightforward: Each position denotes

a variable indexvalue. The symbol filling a position designates the variable which

carries the index. We will use ∗ for z, ◦ for z and △ for |z|2. A line between two sym-

bols of the same kind indicates the logarithm of the difference of the symbollically

represented variables.

∗=⊛−⊛−∗ :=
∑

i,j,k,m

l2ij · l̄jk · lkm , l̄jk := ln(z̄j − z̄k) (87)

Each graph stands for the sum over all identifications of variable indexvalues with

numerical indexvalues providing inequivalent expressions. Of course only those
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B.1 Graphical notation proper

numerical values have to be taken into account that are conformable with [S1].

What a graph denotes is therefore in multiple respects depending on the context it

is used in:

The number of monomials in the lij a graph represents is depending on the number

of fields with Jordan level k ≥ 1.

For example the graph ∗−∗ in the chiral four-point function 〈1110〉 repre-

sents the sum over the three monomials l12, l13 and l23. The same graph

in the chiral four-point function 〈1111〉 denotes the sum over six mono-

mials, namely l12, l13, l14, l23, l24 and l34.

Mostly the context makes clear, which expression is symbolised by a graph. Where it

is not we will attach an index that designates the numer of incorporated monomials.

Which concrete numerical values the indices can take depends on the positions the

fields with Jordan level k ≥ 1 occupy within a correlator.

For example the graph ∗−∗ in the chiral four-point function 〈1110〉 repre-

sents the sum over the three monomials l12, l13 and l23. The same graph

in the chiral four-point function 〈1101〉 denotes the sum over the mono-

mials l12, l14 and l24.

One advantage of the graphical representation suggested is that the calculation of

sums over correlators as well as of products of correlation functions reduces to

concise combinatorial considerations. In the following calculations we will benefit

from this properties.

Using the specified notation the subset of r = 2 chiral four-point functions with

hi = hj reads

∏

i<j

z
−µij
ij 〈1000〉 = A (88a)

∏

i<j

z
−µij
ij 〈1100〉 = B − 2A ∗−∗1 (88b)

∏

i<j

z
−µij
ij 〈1110〉 = C − B ∗−∗3 +A(2 ∗−∗−∗3 − ∗=∗3) (88c)

∏

i<j

z
−µij
ij 〈1111〉 = D −

2

3
C ∗−∗6 +2B((2α + 1) ∗−∗ ∗−∗3 − α ∗−∗−∗12

+ α∗=∗6) + 2A(∗=∗ ∗−∗6 +∗−∗−∗4
− ∗−∗−∗−∗12)

(88d)

Missing correlators can be obtained by permutation. This changes only the meaning

of the graphs. The coefficient functions which are invariant under permutation are

43



B Assembling local correlation functions: An example

subject to the naming convention chosen in section 5.3: All coefficients Fq with equal
∑
qi = p are identified and abbreviated them by the p-th capital letter of the latin

alphabet.

B.2 Explicit calculation

In the following the non-chiral local correlator 〈1110〉 is explicitly calculated. Pur-

suant to the ansatz (70) the local correlator adds up to:

〈1110〉 =
〈

1110
〉〈

1110
〉

+GOL. (89)

Using equation (88c) the contribution of the product of chiral correlators can easily

be calculated:
∏

i<j

∣
∣zij
∣
∣−2µij 〈1110

〉 〈

1110
〉

= C̄C − C̄B ∗−∗3 −CB̄ ◦−◦3 + C̄A (2 ∗−∗−∗3 − ∗=∗3) +

ĀC (2 ◦−◦−◦3 − ◦=◦3) + B̄B(∗−∗3 · ◦−◦3) + O(G=3).

(90)

Here, logarithmic terms of higher than quadratic order are omitted to make al-

lowance for selection rule [S2]. Computing the product ∗−∗3 · ◦−◦3 is a matter of

simple combinatorics:

∗−∗3 · ◦−◦3 = ◦−⊛−∗6 + ⊛=⊛3. (91)

In the next step we have to analyze GOL which can be expanded as follows:

∏

i<j

∣
∣zij
∣
∣−2µij GOL = c00 + c01 ∗−∗3 + c10 ◦−◦3 + c11 ◦−⊛−∗6 + c′11⊛=⊛3

c02 ∗−∗−∗3 + c03∗=∗3 + c20 ◦−◦−◦3 + c30◦=◦3.

(92)

Using the structure of GOL (76) we can lighten the above expression by the follow-

ing redefinitions:

c00 =: c1 ∈ R c01 = c10 =: c2

c11 =: c3 ∈ R c02 = c20 =: c4

c′11 =: c5 ∈ R c03 = ¯c30 =: c6

Furthermore
(

O0 −O0

)

GOL is determined by equation (71). In order to calculate

the left hand side of this relation it is of avail to clarify the action of O0 and O0 on
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B.2 Explicit calculation

the space of polynomials in the logarithms Slog := C
[
lij , l̄ij

]
. The simple behaviour

can be summarized as follows [10]:

O0 : Slog 7→ Slog O0
(
li1j1 . . . linjn

)
=

n∑

k=1

li1j1 . . . lik−1jk−1 lik+1jk+1 . . . linjn . (93)

In terms of a graphically denoted polynomial G ∈ Slog that means: O0 G equals

the sum over all possibilities to remove one line between two symbols ∗ , O0 G acts

analogous on lines between symbols ◦. Therewith the left hand side of equation (71)

is given through
(

O0 −O0

)

GOL = 3c2 − 3c̄2 + (−2c3 − c5 + 2c4 + 2c6) ∗−∗3 − (−2c3 − c5 + 2c̄4 + 2c̄6) ◦−◦3

(94)

The right hand side reads:

3∑

i=1

[(

δhi

〈

1110
〉)〈

1110
〉

−
〈

1110
〉(

δh̄i

〈

1110
〉)]

=

=
(

3B − 2A ∗−∗3

)(

C − B ◦−◦3 +A(2 ◦−◦−◦3 − ◦=◦3)
)

− c. c.

= 3CB̄ − 3C̄B +
(

−2C̄A + 3BB̄
)

∗−∗3 −
(

−2CĀ + 3BB̄
)

◦−◦3 +O(G = 2).

(95)

Via comparison of coefficients we can conclude that identity (71) imposes the fol-

lowing conditions on the coefficients:

3c2 − 3c̄2 = 3CB̄ − 3C̄B , (96)

−2c3 − c5 + 2c4 + 2c6 = −2C̄A + 3BB̄ . (97)

Inserting the expressions (90) and (92) in the ansatz (89) provides:
∏

i<j

∣
∣zij
∣
∣−2µij 〈1110〉 =

(
C̄C + c1

)
+

(
−C̄B + c2

)
∗−∗3 +

(
−CB̄ + c̄2

)
◦−◦3 +

(
2C̄A + c4

)
∗−∗−∗3 +

(
2CĀ + c̄4

)
◦−◦−◦3 +

(
BB̄ + c3

)
(◦−⊛−∗6) +

(
−C̄A + c6

)
∗=∗3 +

(
−CĀ + c̄6

)
◦=◦3 +

(
BB̄ + c5

)
⊛=⊛3

(98)

The arrangement of equation (98) is not deliberately chosen. Its logarithmic terms

have to be combined to logarithms of real arguments. The adherent condition (77)

possesses an elegant formulation in terms of graphs G:

G(△) = G(∗)+G(◦)+all pairwise distinct possibilities to compose G from ∗−∗ and ◦−◦ .

(99)
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C Cut off the spreading of NQP in QSC

The example given below shall demonstrate this rule:

△−△−△3 = ∗−∗−∗3 + ◦−◦−◦3 + ∗−⊛−◦3 + ◦−⊛−∗3.

In case of graphs that contain more than one line between two positions a additional

rule has to be observed: Mixed multilines have to rise with multipicities, e. g.

△=△△−△ = ∗=∗ ∗−∗ + ◦=◦ ◦−◦ + ∗=∗ ◦−◦ + ◦=◦ ∗−∗ + 2⊛=⊛ ∗−∗ + 2⊛=⊛ ◦−◦ .

Therewith the following sets of constraints can line-by-line be excerpted from equa-

tion (98):

−C̄B + c2 = − CB̄ + c̄2 (100)

2C̄A + c4 = 2CĀ + c̄4 = BB̄ + c3 (101)

−C̄A + c6 = − CĀ + c̄6 = 1
2

(
BB̄ + c5

)
. (102)

One can see immediately: The conditions (96) and (100) coincide. Moreover con-

straint (97) is automatically satisfied if the equations (101) and (102) are fulfilled.

Introducing the abbreviations

CCC := C̄C + c1 , − CCB := −C̄B + c2 , CCA := C̄A + 1
2c4 , (103)

we can finally state the local correlator to be

∏

i<j

∣
∣zij
∣
∣−µij 〈1110〉 = CCC − B△−△3 +A(2△−△−△3 − △=△3). (104)

For hi = 0, ∀ i = 1, . . . 4 it is consistent with equation (84c).

C Cut off the spreading of NQP in QSC

The spreading of NQP in the framework of QSC might possibly be prevented by

extending Nhh̄. As an example serves the c = −2 non-chiral representation with

conformal weight h = h̄ = 1. On the chiral level of consideration we find the

following structures:

L0 φ =φ + ψ , L0 ψ =ψ ,

L1 φ = − ξ , L−1 ξ =ψ ,
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i. e. φ and ψ span a rank two Jordan cell with respect to L0. The logarithimc partner

field φ is not a quasi-primary. It can be generated from the state ξ at level zero

through the action of L−1. The QSC formalism determines the non-chiral equivalent

of the logarithmic partner to be

Φ = φ ⊗ φ̄. (105)

The level zero equivalence class Ψ is represented by

ψ ⊗ φ̄ ∼ φ ⊗ ψ̄. (106)

The encroaching of NQP upon the level n = 0 state Ψ becomes apparent in the

non-trivial action of L1 on its representatives:

L1
(
φ ⊗ ψ̄

)
= L1

(
ψ ⊗ φ̄

)
6= 0. (107)

As far as locality is concerned there is no reason not to define the non-chiral irre-

ducible representation Ξ as direct tensor product

Ξ = ξ ⊗ ξ̄. (108)

But if we choose the alternative definition

Ξ = L1Φ ∧ Ξ = L1Φ, (109)

we are forced to identify ξ ⊗ φ̄ ∼ φ ⊗ ξ̄. As a consequence N11̄ obtains an additional

element: ξ ⊗ Φ̄ − Φ ⊗ ξ̄. The non-vanishing images (107) of Ψ under the action of

L1 and L1 are therewith automatically ∈ N11̄ and the property of Ψ to be a proper-

primary is restated.
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