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Parabase

Freudig war vor vielen Jahren,

Eifrig so der Geist bestrebt,

Zu erforschen, zu erfahren,

Wie Natur im Schaffen lebt.

Und es ist das ewig Eine,

Das sich vielfach offenbart;

Klein das Große, groß das Kleine,

Alles nach der eignen Art.

Immer wechselnd, fest sich haltend,

Nah und fern und fern und nah,

So gestaltend, umgestaltend -

Zum Erstaunen bin ich da.

Goethe





Abstract

Based on our article [FGK07], published in Nuclear Physics B, fermionic quasi-
particle sum representations consisting of only one single fundamental fermionic
form are presented for all characters of the logarithmic conformal field theory models
with central charge cp,1, p ≥ 2.

These new representations are embedded in the surrounding field of Nahm’s con-
jecture and modular forms in general. In this context, it is also shown that it
is possible to correctly extract dilogarithm identities, which supports the derived
fermionic character expressions even more.

In addition, other building blocks of the fermionic characters, with regard to the
SU(2) Wess-Zumino-Witten conformal field theory and Kač-Peterson characters of
the affine Lie algebras are presented, which might be of importance for the future
work on yet missing fermionic expressions.

To conclude, a conjecture for a physical quasi-particle interpretation for the new
fermionic character expressions of the cp,1 models is made, involving symplectic
fermions.





Zusammenfassung

Basierend auf unserem im Journal Nuclear Physics B veröffentlichten Artikel [FGK07]
werden in dieser Arbeit neue fermionische Summendarstellungen für alle logarith-
mischen konformen Feldtheorien mit der zentralen Ladung cp,1 , p ≥ 2, präsentiert.

Diese Darstellungen, die nur aus einer fundamentalen fermionischen Form beste-
hen, werden insbesondere in das Umfeld der Vermutung Nahms und der modu-
laren Formen im allgemeinen eingebettet. In diesem Kontext wird auch gezeigt,
daßes möglich ist, Dilogarithmische Identitäten aus den hergeleiteten fermionis-
chen Charakterausdrücken zu extrahieren. Diese erfahren hierdurch noch einmal
zusätzliche Bestätigung.

Zusätzlich werden noch andere Bausteine für fermionische Charakterausdrücke im
Hinblick auf die SU(2)-Wess-Zumino-Witten-CFT und die Kač-Peterson-Charaktere
der affinen Lie-Algebren präsentiert, die für zukünftige Arbeit auf diesem Gebiet
von Wichtigkeit sein könnten.

Abschließend wird noch eine physikalische Quasi-Teilchen-Interpretation, die sym-
plektische Fermionen beinhaltet, für die neuen fermionischen Charaktere der cp,1-
Modelle gegeben.
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1. Introduction and Overview

Conformal field theories (CFTs) are quantum field theories that possess confor-
mal symmetry. This extremely powerful symmetry even enables exact solutions of
two-dimensional conformal field theories, which is mainly due to the fact that the
corresponding symmetry algebra, the Virasoro algebra, is infinite-dimensional1.
As a consequence of this peculiarity, we will mostly consider two-dimensional con-
formal field theories in this thesis.

Let us now offer some of the numerous applications of two-dimensional conformal
field theory, which justify its significance despite a four-dimensional reality.

First of all, conformal field theory plays a major role in string theory:
In contrast to an ordinary quantum field theory, where the basic objects are regarded
as point particles, a string is an extended one-dimensional object and thus has
internal degrees of freedom, which permit vibrations. These string vibrations are
most naturally described on a two-dimensional surface that the string sweeps out
of the higher-dimensional space-time during its propagation. The theory on this
(Riemann) surface, the so-called world-sheet of the string, is decribed by a conformal
field theory. Moreover, the whole particle spectrum of the string theory is given by
only one fundamental object – the string – since the mentioned vibrations can be
interpreted as the ’particles’ of the theory.

Recalling the known properties of a particle like mass, momentum, charge and
spin, it is astonishing that – besides these vibrations – elementary particles such
as neutrinos, composed ones such as nuclei as well as stable and unstable ones can
be all abstracted under the term ’particles’. Following an idea, which originated in
Landau’s theory of Fermi liquids, which was originally invented for studying liquid
helium-3, we even obtain a new animal in the zoo: the quasi-particle.

These particle-like entities lead us to statistical mechanics, another large area of
application of two-dimensional conformal field theory:
Here, conformal field theories describe systems at the critical point, where the cor-
relation lenght diverges, the so-called critical phenomena.
And in particular, the quasi-particle concept is one of the most important in con-
densed matter physics, because it is one of the few known ways of simplifying the
quantum mechanical many-body problem, and is applicable to an extremely wide
range of many-body systems. It even has eminent experimental relevance:
For example, the existence of quasi-particles has been experimentally demonstrated
(see e.g. [SGJE97]) concerning the fractional quantum Hall effect. This effect is
explained by proposing that electrons, which are under the influence of powerful
magnetic fields, form a quantum fluid made up of quasi-particles that have frac-
tional electric charges.

1In later chapters, this symmetry algebra is even extended to a so-called W-algebra.
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Störmer, Tsui and Laughlin were even awarded the 1998 Nobel Prize in Physics for
the discovery [TSG82] and explanation [Lau83] of this effect.

In the next part, we provide an overview of our thesis, which deals with formal
so-called bosonic-fermionic q-series identities, which nevertheless can be interpreted
in terms of the just mentioned quasi-particles in the end:
Thus, precisely these quasi-particles actually close the gap between our abstract
combinatorial identities and the role they (could) play for experimental research.

This thesis is organized as follows:
The aim of the first chapter 2 is to guide the reader through the aspects in

conformal field theory, which are relevant for an understanding of our studies and
observations in this thesis. Here we abstain from proofs and instead refer the reader
to [FMS99, Sch95, Gab00, Gin88a] for details. In addition, [Sch94] delivers a more
mathematical approach to CFT.

To stress the importance of symmetries in general, we start with elementary
thoughts on this topic in section 2.1 and based on these ones, we will then claw our
way through the different areas of conformal field theory.

After having introduced some useful concepts, in section 2.3 we turn to the ele-
ments of representation theory:
With the help of embedding structures for the different degenerate representations,
we review a rough classification of all possible degenerate representations, which
gives us a first hint how the characters of the different models eventually may look
like.

In chapter 3, we consider the bosonic character expressions for these classified
models:
At first, we explain the derivation of character expressions and q-series expansions
for the simplest CFTs, the minimal models. This procedure is demonstrated in the
case of the Tricritical Ising model, which will also later serve as the main example
to clarify our approaches to fermionic character expressions of the minimal models.
Then we turn our attention to logarithmic conformal field theories (LCFTs), espe-
cially to the triplet W-algebra, which leads us to the cp,1 series - a chief ingredient
of our investigation.
With regard to LCFT, the introductory literature is more rare than for general
CFT: the mainly used references are [Flo03] and [Gab03].
In this context, new structure elements, in particular indecomposable representa-
tions, are explained. Finally, this results in the bosonic character expressions for
the cp,1 series.
In addition, some other interesting bosonic expressions of parabolic theories are
listed without going into too much detail.
This concludes the first part of the thesis, where we have only concerned the so-
called ’bosonic’ character expressions.

In chapter 4, the famous Rogers-Ramanujan identities, which constitute the link
to an alternative formulation of all mentioned characters and hence play a key role
in our work, are discussed extensively in the middle part involving various aspects
of the theory of partitions and helpful combinatorial identities.
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Chapter 1. Introduction and Overview

Afterwards, in chapter 5, the corresponding ’fermionic’ expressions are derived in
the same order as for the bosonic expressions.
At first, we illustrate the construction of fermionic character expressions for the
complete set of minimal models by means of the Tricritical Ising model. A funda-
mental fermionic form is defined in this context.
In contrast to these fermionic characters of the minimal models, which are essen-
tially known, we present new expressions for the cp,1 series in section 5.2, which
already have been accepted for publication in the journal Nuclear Physics B:

� Fermionic Expressions for the Characters of cp,1 Logarithmic Conformal Field
Theories
Nucl. Phys. B (2007), [hep-th/0611241]

Then we turn to the parabolic models: Here we present expressions of fundamen-
tal fermionic form type, but consisting of more than only one fundamental form.
In addition, other building blocks of the fermionic characters are presented:
These are explained in the context of the SU(2) Wess-Zumino-Witten conformal
field theory and Kač-Peterson characters of the affine Lie algebras.

In chapter 6, we continue with an exciting connection between hypergeometric q-
series and modular forms. In this context, we discuss Nahm’s remarkable conjecture
and allude the existence of Dilogarithm identities, which appear in each CFT’s
environment.

At the end in chapter 7, a physical quasi-particle interpretation for the minimal
models is extended to the cp,1 series, particularly addressing the c = −2 model.
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2. Conformal Field Theory

2.1. Symmetries

Symmetries are of universal importance in human culture: they find themselves
in paintings, sculptures, constructions, compositions, dances and poems. Colloqui-
ally, people equate beauty with symmetry. And definitely, the fascinating ideas of
symmetry are in parts reducible to the perfection and regularity, which symmetry
guarantees. Nonetheless, symmetries do not only occur in art and architecture, but
also in nature, without any human‘s effort. That is the reason why you encounter
symmetries that often in physics. The aim of physics is to correlate different quan-
tities so that we are able to make predictions, which are based on our observations.
In this context, the symmetry of nature plays a decisive role: A physical system
being symmetric, can be described on the basis of less observations than a system
without any symmetries. Thus, symmetries are important to find elegant solutions,
but normally the nature do not offer a perfect symmetry. Therefore, it is extremely
challenging to find coherences, which give sense to the symmetry in an asymmetrical
reality: In my opinion, this interplay is what makes physics so exciting. When a law
of physics does not change upon some transformation, that law is said to exhibit
a symmetry. Especially in modern physics, the importance of symmetry cannot be
overstated.

In particular, note the concept of (explicit) symmetry breaking: By adding terms
that do not respect the symmetry, e.g. to the Lagrangian of the theory, the sym-
metry is broken. In the case of spontaneous symmetry breaking, the vacuum of the
theory breaks the symmetry1.

2.1.1. Noether’s Theorem and Ward Identities

In order to explain the occurence of symmetries, let us now start with one of the most
profound observations in theoretical physics, namely Noether’s Theorem, which
states that every continuous symmetry of the action is associated with a current,
and hence with a charge, that is classically conserved2.

The most important conserved current associated with space and time translation
invariance is the energy-momentum tensor: This tensor is defined in terms of the
variation of the action S under changes of the space-time metric via

δS =
1

2

∫
ddx
√
gT µνδgµν . (2.1.1)

1A prominent example in this context is the Higgs mechanism.
2Of course, this relation also holds conversely.
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2.1. Symmetries

In particular, in two dimensions, i.e. d = 2 in (2.1.1), any CFT has an infinite set
of conserved charges, the Virasoro generators, as will become clear in later sections,

At the quantum level, a continuous symmetry leads to constraints relating dif-
ferent correlation functions, the objects we want to calculate in general in field
theory. The knowledge of all correlation functions means that the theory is com-
pletely solved: We are able to compute any scattering amplitude, which eventually
establishes the connection between theory and reality. The measure on correlation
functions may also be expressed via the so-called Ward identities. Furthermore, as
the consequence of a symmetry of the action, they allow us to identify the conserved
charge, which is connected with conformal transformations (see section 2.2.1).

2.1.2. Conformal Symmetry

Since we want to study conformal field theories, the question arises, how the sym-
metries that these theories feature may look like. For a first clue, let us consider
the transformation

z′ = ξz (2.1.2)

for complex ξ: While the phase of ξ is a rotation of the system, its magnitude is a
rescaling of the size of the system. Its effect on a two-dimensional region is displayed
in figure 2.1.

Figure 2.1.: The effect under the special conformal transformation (2.1.2)

This kind of rigid scaling can be generalized to conformal transformations: In-
finitesimal distances are rescaled by a position-dependent factor. A theory with this
invariance is called conformal field theory.

The conformal group is formed by the set of conformal transformations, i.e. in-
vertible mappings x 7→ x′, which leave the metric tensor invariant up to a scale:

g′µν(x
′) = Λ(x)gµν(x) , (2.1.3)

gµν being the metric tensor in a d-dimensional space-time, which contains the
Poincaré group as a subgroup. Despite a local dilation, the conformal group pre-
serves angles between two arbritary curves, hence the word conformal.
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Chapter 2. Conformal Field Theory

The finite conformal transformations are summarized in the following list:

x′µ =xµ + aµ translations (2.1.4)

x′µ =αxµ dilations (2.1.5)

x′µ =Mµ
νx

ν rigid rotations (2.1.6)

x′µ =
xµ − bµx2

1− 2bx + b2x2
special conformal transformations (SCTs) . (2.1.7)

The last transformations (2.1.7) are the only ones that are probably not so familiar
to the reader: They are composed of a translation and an inversion xµ 7→ xµ

x2 . In
comparison to the above introduced rigid special conformal transformations, these
generalized transformations take infinitesimal squares into infinitesimal squares, but
rescale them by a position-dependent factor.

The corresponding generators of the conformal group are

Pµ =− i∂µ translations (2.1.8)

D =− ixµ∂µ dilations (2.1.9)

Lµν =i(xµ∂ν − xν∂µ) rotations (2.1.10)

Kµ =− i(2xµx
ν∂ν − x2∂µ) SCTs . (2.1.11)

The commutation relations between these generators define the conformal algebra.
Note that there exists an isomorphism between the conformal group in d dimensions
and the noncompact group SO(d + 1, 1), which enables an even simpler form for
the commutation relations.

A field theory has conformal symmetry at the classical level if its action is in-
variant under conformal transformations. It is important to note that quantum
conformal symmetry in general does not follow from classical conformal symmetry:
A quantum field theory does not make sense without a regularization prescription
that introduces a scale in the theory. Adding a scale, i.e. adding a mass term like
to the theory, breaks conformal invariance. In general, quantum effects also disturb
conformal invariance, since they introduce a renormalization scale dependence on
physical parameters like e.g. coupling constants. This dependence destroys invari-
ance under scale transformations q → λq in momentum space, except at particular
values of the parameters, which constitute a renormalization-group fixed point.

2.2. The Geometry of the Space

Not having specified our space-time yet, in the following, we only want to treat
two-dimensional CFT, i.e. there is only one space and one time direction.

Having fixed the space-time dimensions, the occurring symmetries nevertheless
depend on the chosen geometry of the space, on which the theory is defined. While
starting on the complex plane by complexifying our coordinates, there are also other
possibilities: The simplest example, the infinite plane is topologically equivalent to
a sphere, i.e. a Riemann surface of genus h = 0. In general, one may study CFTs
defined on a Riemann surface of arbitrary genus h, which is the basis for calculating
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2.2. The Geometry of the Space

multiloop scattering amplitudes in string theory. But in contrast to arbitrary genus
Riemann surfaces, it is natural to study CFTs on the simplest non-spherical case,
the torus (h = 1), equivalent to a plane with periodic boundary conditions in two
directions, i.e. in time and space direction. Therefore, different properties can be
derived by considering the CFT on the complex plane, on the cylinder or on a torus.

2.2.1. On the Complex Plane

As in arbitrary dimensions, one is usually interested in conformal field theories in
Minkowski space. But since it is more comfortable to be able to make use of the
many powerful theorems, which are provided by working with complex functions, at
first a Wick rotation to the Euclidean space is performed, which is then mapped to
the complex plane. Anyway, if we complexify the coordinates, it becomes irrelevant
in this context to distinguish between Euclidean space and Minkowski space. The
Wick rotation x0 = −ix2, which means that the time coordinate becomes imaginary,
nevertheless has to be treated carefully, although it naturally improves convergence
properties of important quantities - not only in two dimensional CFTs - like path
integrals or propagators.

Conformal Transformations

Regaining after some confusion on the complex plane and introducing the coor-
dinates z = x1 + ix2 and z̄ = x1 − ix2

3, the Cauchy-Riemann equations arise,
by demanding that each conformal transformation should leave the metric tensor
invariant up to a scale, in the following form:

∂z̄w(z, z̄) = 0 , ∂zw̄(z, z̄) = 0 (2.2.1)

with ∂z ≡ ∂
∂z

and analogously for z̄. Thus, conformal transformations can now be
written as any analytic transformations

z 7→ w(z) and z̄ 7→ w̄(z̄) (2.2.2)

of the coordinates z and z̄. Therefore, the conformal group in two dimensions is
the set of all analytic maps, which is infinite dimensional, since all functions ana-
lytic in some neighborhood are specified by an infinite number of parameters: the
coefficients of a Laurent series

∑
n anz

n. The infinitesimal versions of these coor-
dinate transformations are generated by ln = −zn+1∂z, which satisfy the classical
conformal algebra, also known as Witt algebra:

[ln, lm] = (n−m)ln+m . (2.2.3)

The same holds for the antiholomorphic counterpart, i.e. the barred quantities, and
additionally [ln, l̄m] = 0. Note that this decoupling into two sectors is not always
the case, especially not for the later discussed logarithmic CFTs (see section 3.2).

3i.e. light-cone coordinates in a Minkowski space-time and therefore in the following referred to
as left and right moving coordinates, respectively.
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Chapter 2. Conformal Field Theory

In contrast to the just mentioned local conformal transformations, global confor-
mal transformations must be defined everywhere and be invertible. The complete
set of such mappings, the so-called projective or Moebius transformations are given
by

f(z) =
az + b

cz + d
, a, b, c, d ∈ C , ad− bc = 1 . (2.2.4)

The global conformal group is isomorphic to SL(2,C), which in turn is isomorphic
to the Lorentz group in four dimensions: SO(3, 1).

The physical space, a two-dimensional submanifold, is reobtained, if needed at
all, via the reality condition z? = z̄.

Primary Fields

A field Φ that transforms as

Φ(z, z̄) 7→ Φ′(w, w̄) = (
∂w

∂z
)−h(

∂w̄

∂z̄
)−h̄Φ(z, z̄) (2.2.5)

under any local conformal transformation is called a primary field: (h, h̄) = (1
2
(∆+

s), 1
2
(∆ − s) being the (anti)holomorphic conformal dimensions. Hence, the bar

does not indicate complex conjugation. The resulting sum ∆ = h + h̄ is called the
scaling dimension, whereas s = h − h̄ is known as conformal spin. The class of
primary fields plays an astonishing role in CFT: any field that does not transform
as in (2.2.5) is called secondary field secondary field. All primary fields are also
quasi-primary, but the reverse is not true.

The Energy-Momentum Tensor

As in arbitrary dimensions, the main object in a two-dimensional CFT is the energy-
momentum tensor Tµν , which is by the way a quasi-primary field that is not primary.
Besides the conservation law

∇µTµν = 0 , (2.2.6)

local scale invariance governs it to be traceless:

T µ
µ = 0 . (2.2.7)

With respect to the complexified coordinates, the energy-momentum tensor now
splits into two components T ≡ Tzz = T11 − T22 + 2iT12 and T̄ ≡ Tz̄z̄ = T11 −
T22 − 2iT12, which only depend on z and z̄ respectively, due to the conservation
law (2.2.6). This splitting into two chiral halves, one being only of holomorphic,
the other of antiholomorphic dependence, is a feature that occurs often, especially
for the minimal models, which will be our first examples. Therefore, following
discussions will be sometimes restricted to the chiral components only, automatically
including that the same relations hold for the other half as well.
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2.2. The Geometry of the Space

The Generator of Conformal Transformations

Hence, only considering the holomorphic component of the energy-momentum ten-
sor, the current for an infinitesimal transformation takes the form T (z)ε(z), ε(z)
also being the holomorphic component of an infinitesimal conformal change of co-
ordinates, the corresponding charge may be written as

Qε =
1

2πi

∮
dzε(z)T (z) . (2.2.8)

Thus, Qε generates conformal transformations of the global form

Φ(w, w̄) 7→ Φ′(w, w̄) = (
∂f(w)

∂w
)hφ(f(w), w̄) , (2.2.9)

with f(w) = w + ε(w).
In the infinitesimal form they look like

δεΦ(w, w̄) = h∂wε(w)Φ(w, w̄) + ε(w)∂wΦ(w, w̄) . (2.2.10)

Here w and w̄, which the field Φ in general both depends on, are independent
variables and therefore also transform independently.

The quantum version of this transformation is a special case of the above men-
tioned conformal Ward identity

δεΦ(w, w̄) = −[Qε, Φ(w, w̄)] (2.2.11)

The commutator may be evaluated with the help of contour integrals and operator
product expansions (OPEs), which will be introduced in the section (2.2.2).

It is interesting to note, that the classical charge conservation can be expressed
with the fact that the evaluation of Qε on the cylinder (see section 2.2.2) is in-
dependent of the time, i.e. independent of the contour integral due to Cauchy’s
theorem.

Towards the Virasoro Algebra

As usual in a quantum theory, the measurement of an exact position of a quantum
field is always associated with infinite fluctuations. Thus, correlation functions have
singularities when the coordinates of two or more fields coincide. The behavior
of this kind of divergences is expressed in a short-distance product of operators
(operator product expansion). For T (z), the OPE reads

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w + . . . . (2.2.12)

Here the ordinary commuting number c is called the central charge and the dots
denote an infinite number of regular terms, which appear in almost each OPE and
are usually omitted. In general, an OPE is given by a convergent expansion of the
product of two fields at different points as a sum of local fields.

10



Chapter 2. Conformal Field Theory

The central charge or conformal anomaly constitutes a soft breaking of conformal
symmetry, since it introduces a macroscopic scale into the theory. It can be shown
to be proportional to the Casimir energy.

In terms of the Laurent modes Ln, the energy-momentum tensor T (z) takes the
form

T (z) =
∑

n∈Z

Lnz
−n−2 . (2.2.13)

Its modes can be expressed as

Ln =

∮
dz

2πi
zn+1T (z) , (2.2.14)

where the integration is along a closed contour that encircles the origin counter-
clockwise. The OPE relation (2.2.12) then yields the celebrated Virasoro algebra
for the modes Ln

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (2.2.15)

The same procedure for the bared quantities yields the antiholomorphic counterpart
of (2.2.15). As it already has been the case for the Witt algebra, holomorphic and
antiholomorphic components decouple. It is the algebra of analytic transformations
of z which are generated by ln = −zn+1 d

dz
that form the two-dimensional conformal

group, together with a central extension. To summarize, any CFT has an infinite set
of conserved charges, the Virasoro generators, which act in the Hilbert space and
satisfy the algebra (2.2.15). The set of {L−1, L0, L1} (and their antiholomorphic
counterparts) generates sl(2,C) in the Hilbert space, a closed subalgebra of the
Virasoro algebra without central charge. The vacuum |0〉 is a singlet - as it should
be - under this subalgebra. L0 +L̄0 in particular, as we will see later in section 2.2.2,
generates time translations in radial quantization and is therefore proportional to
the Hamiltonian of the system.

The Hilbert space of physical states of a CFT is linked to representations of the
Virasoro algebra. The (left, i.e. holomorphic) Hamiltonian L0 of these representa-
tions, which are the so-called highest weight modules, is bounded from below. To
this lowest L0-eigenvalues correspond highest weight states |h, c〉, which are charac-
terized by the properties

L0|h, c〉 = h|h, c〉 (2.2.16)

Ln|h, c〉 = 0 ∀n > 0 (2.2.17)

Furthermore, there exists a simple one-to-one correspondence between these highest
weight states and primary fields, which holds in general for states |Φ〉 in the Hilbert
space and fields Φ(z, z̄), called vertex operators for the state |Φ〉, via the relation

|Φ〉 = lim
z,z̄→∞

Φ(z, z̄)|0〉 . (2.2.18)

11



2.2. The Geometry of the Space

2.2.2. On the Cylinder

In a Euclidean theory, the time direction is somewhat arbitrary. In particular, it
may be chosen as the radial direction from the origin. The use of complex coor-
dinates then allows a representation of commutators in terms of contour integrals,
making the operator product expansion (OPE) (see (2.2.12)) a particularly useful
computational tool.

Radial Quantization

Motivating the choice of space and time that leads to radial quantization of two-
dimensional CFTs, we start with a theory on an infinite cylinder: time t flowing
along the flat direction of the cylinder from −∞ to +∞ and space x being compact-
ified on a circle of circumference L. After having introduced a complex coordinate
t + ix, the cylinder is mapped to the complex plane via

z = e
2π(t+ix)

L , (2.2.19)

like it is sketched in figure 2.2. Then the surface at t = −∞ is mapped to the origin
z = 0, while the surface at t =∞ is mapped to a circle with infinte radius |z| =∞.

���*
�
�
��

A
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AK

HHHY

�
�

��

���� A
A
AU

HHHj

6

t = +∞

t = −∞

- -

6

m
&%
'$

Figure 2.2.: After mapping the cylinder on the plane, the time flows radially out-
wards.

While the time changes radially, space on fixed-time annuli rotates clockwise or
counterclockwise, respectively: hence the common terms left- and right-movers.

Within radial quantization, time ordering becomes radial ordering:

RΦ1(z)Φ2(w) =

{
Φ1(z)Φ2(w) if |z| > |w|
Φ2(w)Φ1(z) if |z| < |w| . (2.2.20)

For fermions, a minus sign is added in front of the second expression. Furthermore,
with the property that circles around the origin are now fixed-time contours, equal
time commutators can be obtained with the help of OPEs.

The following integral, where a(z) and b(z) are two holomorphic fields and the
integration contour encircles w counterclockwise, may be evaluated by inserting the

12



Chapter 2. Conformal Field Theory

z
w

=−
z

w

z

w

Figure 2.3.: Evaluating a contour integral yields a commutator.

OPE to yield a commutator as shown in figure 2.3.
∮

w

dza(z)b(w) =

∮

C1

dza(z)b(w)−
∮

C2

dzb(w)a(z)

= [A, b(w)] . (2.2.21)

Finally, the commutator [A,B] of two operators, each the integral of a holomorphic
field, i.e. A =

∮
a(z)dz and B =

∮
b(z)dz, is obtained by integrating (2.2.21) over

w:

[A,B] =

∮

0

dw

∮

w

dza(z)b(w) (2.2.22)

2.2.3. On the Torus

Figure 2.4.: A doughnut being topological equivalent to a torus

An astonishing result in [Car86], which was later proofed rigorously in [Nah91],
is that conformal invariance of a quantum field theory on a two-dimensional sphere,
S2, already enforces modular invariance of its partition function on a torus.4 So
let us come to modular invariance now. As already mentioned, the geometry of
the space, on which the theory is defined, imposes physical constraints on various

4The proof applies only for theories with a diagonalizable L0, but the result should apply for
LCFTs as well [Flo96].
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2.2. The Geometry of the Space

quantities. Since a two-dimensional torus is characterized by its modular parameter
τ , these constraints mirror in the dependence on τ .

-
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0 1

τ τ + 1

Im τ

Re τ

Figure 2.5.: The parameter τ defining a lattice, i.e. a torus.

The main advantage of studying CFTs on a torus is the imposition of constraints
on the operator content from the requirement that the partition functions must
be independent of the choice of the modular parameter τ for a given torus: τ ∈
C, Im τ > 0 is the ratio of two complex numbers ω1 and ω2, which are the periods
of a lattice that is obtained on the complex z plane by identifying z ∼ z + ω1

and z ∼ z + ω2, i.e. after gluing together the opposite sides of the parallelogram,
which is spanned by ω1,2, we get a torus. The demanded modular invariance of the
partition functions is connected with a linear fractional transformation with integer
parameters for τ :

τ 7→ aτ + b

cτ + d
, a, b, c, d ∈ Z , ad− bc = 1 (2.2.23)

Furthermore, since the sign of all parameters may be simultaneously changed with-
out affecting the transformation, the resulting modular group is SL(2,Z)

Z2
= PSL(2,Z).

The two generators for this group and the corresponding operations in the upper
half-plane are

T =

(
1 1
1 0

)
with T : τ 7→ τ + 1 (2.2.24)

S =

(
0 −1
1 0

)
with S : τ 7→ −1

τ
. (2.2.25)

These two transformations satisfy (ST )3 = S2 = 1.
Calculating one-loop closed string amplitudes, for example, one must only include

the contributions from all inequivalent tori, i.e. the set of tori in the fundamental
domain of the modular group. The fundamental domain, which is sketched in figure
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Chapter 2. Conformal Field Theory

2.6, is a domain of the upper half-plane such that no pair of points within can be
reached through a modular transformation and any point outside can be reached
from a unique point inside. Thus, the separate points within the fundamental
domain belong to all possible inequivalent tori. The fundamental domain of the
torus is given by the region

F ≡
{
− 1

2
< Re (τ) ≤ 1

2
, Im (τ) > 0, |τ | ≥ 1,

with the further restriction that Re τ ≥ 0 if |τ | = 1

}
. (2.2.26)

−1 −1
2

0 1
2

1

i

Figure 2.6.: The fundamental domain of the torus

The Partition Function

An important quantity to consider in this context is the partition function, which
is formally defined as [Car86]5

Z(τ, τ̄) ≡ Tr(q−
c
24

+L0 q̄−
c
24

+L̄0) , (2.2.27)

with q = e2πiτ , q̄ = e2πiτ̄ and H = L0 + L̄0 being the Hamilton operator. Its modular
invariance is an extremely powerful tool in CFT. According to the decomposition
of the Hilbert space into a sum of (irreducible) representations of the conformal
algebra, the torus partition function assumes the form

Z(τ, τ̄) =
∑

h,h̄

Nh,h̄χh(τ)χh̄(τ̄ ) , (2.2.28)

where χh(q) is the character for the representation of the chiral symmetry algebra
with highest weight h. In general, the characters are certain modular functions

5similar to Z = Tr e−βH in a statistical quantum field theory
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which can be viewed as the zero-point partition functions on a torus: Fourier ex-
pansions around τ = +i∞ are just the q-series, which will be in the focus in later
chapters. The symmetric matrix Nhh̄ consists of non-negative integer entries and
N00 = 1. Furthermore, it provides an elegant way to define whether the underlying
symmetry algebra is maximal extended or not: The former is the case if Nhh̄ is
diagonal. The modular invariance of the partition function forces the characters to
be modular forms of weight 0.

See section C in the appendix for a connection of the partition functions to the
A-D-E classification.

2.3. Representation Theory

The energy eigenstates of L0 and L̄0 decompose into representations of the local con-
formal algebra, which is the Virasoro algebra for minimal models, much in the same
way as the energy eigenstates of a rotation-invariant system fall into irreducible rep-
resentations of SU(2). So, similar to the highest weight construction with angular
momentum operators, let us now construct representations of the Virasoro algebra.

2.3.1. The Verma Module

By applying the raising operators L−m (m > 0) in all possible ways, the so-called
descendant states are obtained:

L−k1L−k2 . . . L−kn |h〉 , (1 ≤ k1 ≤ . . . ≤ kn). (2.3.1)

Each of these states is an eigenstate of L0 with eigenvalue

h+

n∑

i=1

ki = h+N , (2.3.2)

where N is called the level of the state. |h〉 denotes the highest weight state with
eigenvalue h of L0, i.e. L0|h〉 = h|h〉. It is interesting to note that this kind of states
are asymptotic states, which means that they are created by acting with a primary
field operator φ(0) of conformal dimension h on the vacuum |0〉. The module, which
is built upon such a highest weight state and hence consists of all possible linear
combinations of the corresponding descendant states, is called the Verma module
V (c, h). It admits a natural gradation

V (c, h) =
⊕

n≥0

V (c, h)(n) , (2.3.3)

where
V (c, h)(n) = {v ∈ V (c, h) | L0v = (h + n)v} . (2.3.4)

A basis for the eigenstates V (c, h)(n) is given by the states

L−k1 . . . L−km |h, c〉,
m∑

i=1

= n, k1 ≥ k2 ≥ . . . ≥ km > 0 . (2.3.5)
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Chapter 2. Conformal Field Theory

The dimension of the eigenspace V (c, h)(n) is given by Euler’s partition function
p(n), defined by

1

φ(q)
≡

∞∏

n=1

1

1− qn
=

∞∑

n=1

p(n)qn , (2.3.6)

This function counts the number of ways of partitioning n into a set of positive
integers.

In general, the Verma module V (c, h) is not irreducible. It may contain invariant
subspaces. The hermiticity condition L†

n = L−n(n ∈ Z), together with the nor-
malization 〈h, c|h, c〉 = 1 uniquely define a symmetric sesquilinear form 〈.|.〉, the
Shapovalov form, on the Verma module. The radical of this form is such an invari-
ant subspace. It consists of the so-called null states or singular vectors v ∈ V (c, h),
which are orthogonal to every state w ∈ V (c, h). Since the complete set of all null
states is the unique maximal ideal in V (c, h), it follows that the coset vector space

M(c, h) ≡ V (c,h)
Rad(〈|〉)

is an irreducible highest weight module.
In the physical world, this means that the null states, being orthogonal to every

other state, decouple from all correlation functions. Consequently, they can be
omitted and hence the physical spectra consist of irreducible highest weight modules
M(c, h). Furthermore, there exists a one-to-one correspondence between null states
and the roots of the so-called Kač determinant, which is the determinant of the so-
called Gram matrix of inner products of all basis states. Hence it is an important
tool in the investigation of the structure of Verma modules and their irreducible
quotients. The Kač determinant is given by

detM l = αl

∏

r,s≥1
rs≤l

[h− hr,s(c)]
p(l−rs) . (2.3.7)

Here p(k) is the number of partitions of the integer k and αl is a positive constant
independent of h or c.

By analyzing the Kač determinant or, to specify it, its vanishing curves h =
h(r, s)(c) (see figure 2.3.1), one can show that the Verma module is irreducible for
central charges c > 1 and highest weights h > 0. Requiring unitarity [Lan88], i.e.
all states must have positive norm, the possible c and h values are restricted to
c ≥ 1 and h ≥ 0.

2.3.2. Embedding Structures

Since each submodule of a Verma module can be written as a sum of submodules,
which are themselves Verma modules, the embedding structures of Verma modules
are very important to classify different representations. The representations belong-
ing to h = hr,s(c) in (2.3.7) are called degenerate representations, since they possess
at least one singular vector, which means that the corresponding Verma module
V (c, h) possesses an embedded submodule. Otherwise the Verma module V (c, h)
is irreducible. Parametrizing the highest weights as hr,s = −k + 1

4
((2k + 1)(r2 +

s2)+2
√
k(k + 1)(s2−r2)−2rs), which is just a more convenient parametrization of

(2.3.7) for us, it can be shown that every degenerate representation of the Virasoro
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Figure 2.7.: The vanishing curves due to the Kač determinant (taken from
[Gin88a])
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algebra belongs to one of the following classes as determined by k, k′ :=
√
k(k + 1),

of which especially the minimal and the logarithmic models will be of interest to us
in this thesis; about the parabolic models should not be talked about that exten-
sively. Much effort, e.g. the BRST-approach in [Fel89], has been invested to classify
the embedding structures of Verma modules, which lead to irreducible representa-
tions. In the following embedding structures, which were proven in [FF83], each
module Va,b is represented by a pair of Kač indices (a, b), furthermore, each arrow
represents an inclusion: A← B means B ⊂ A and arrows are transitive.

1. k, k′ ∈ Q. In this case k must be of the form (p−p′)2

4pp′
with p, p′ ∈ N coprime,

and therefore c = 1 − 6 (p−p′)2

pp′
. In addition, one has hr,s ∈ Q ∀r, s ∈ Z. One

distinguishes between three subcases:

� Minimal Models (p > p′ > 1). The highest weights hp,p′

r,s = (pr−p′s)2−(p−p′)2

4pp′

have the usual form. The infinite embedding structure for the Verma
module Vr,s with 1 ≤ r < p′, 1 ≤ s < p has the form

↙ (r,−s) ← (r, s+ 2p) ← Vr,−s−2p ← (r, s+ 4p) · · ·
(r, s) ↖↙ ↖↙ ↖↙

↖ (r, 2p− s) ← (r, s− 2p) ← (r, 4p− s) ← (r, s− 4p) · · · ,

which is based on the infinte number of singular vectors.

� Logarithmic models (p > p′ = 1). Here one has hp,1
r,s = (pr−s)2−(p−1)2

4p
.

As is readily seen this set is already exhausted by the weights of the
form h1,s. The corresponding highest weight representations lead to the
following modified embedding chain:

(1, s) ← (1,−s) ← (1, s− 2p) ← (1,−s− 2p) ← (1, s− 4p) · · ·

The embedding structure for all other remaining highest weight repre-
sentations is determined via the relation M1,s−pr 'Mr+1,s.

� Gaussian models (p′ = p, i.e. c = 1). The embedding structure for all
degenerate modules is given by (r, s)← (r,−s).

2. Parabolic models (k ∈ Q, k′ ∈ C \ Q). c is still rational. The weights
h±r,r ∈ Q ∀r ∈ Z are exactly the rational weights. The embedding structure
for all degenerate modules is (r, s)← (r,−s).

3. Irrational models, i.e. no CFTs (k ∈ C \ Q). Neither c nor the weights
(except for h1,1 = 0) are rational. Again the embedding structure is (r, s) ←
(r,−s).
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3.1. Minimal Models

Of special interest are the best known CFTs, the minimal models [BPZ84]. Since
they have a finite number of (physical) highest weight representations with - as
we have already seen - at least two singular vectors, these models are also called
rational.

They are distinguished by the central charge

c = 1− 6
(p− p′)2

pp′
, (3.1.1)

where p, p′ ∈ N are relatively prime (w.l.o.g. we set p > p′), and the highest weights

hp,p′

r,s =
(pr − p′s)2 − (p− p′)2

4pp′
(3.1.2)

with 1 ≤ r < p′ and 1 ≤ s < p. The minimal models are denoted by M(p′, p)
in the following. The highest weight representation to h = 0 is called the vacuum
representation, because it is constructed on the state |0〉 with L1|0〉 = 0, i.e. it is
invariant under translations.

These models are called ’minimal’ because they all have a finite field content and
even are the ’smallest’ CFTs. Unfortunately, they are not very useful for string
theory, but contribute to many applications in statistical mechanics.

3.1.1. An Example: the Tricritical Ising Model

To make things more demonstratic, let us introduce an example here: Following the
Ising model, which constitutes the simplest unitary minimal model, the next one,
namely M(5, 4), is the so-called Tricritical Ising Model with central charge 7

10
.

The dilute Ising model at its tricritical fixed point is defined like an ordinary Ising
model, except that vacant sites are allowed and the number of spins on the lattice
fluctuates.
The configuration energy is

E[σi, ti] = −
∑

〈ij〉

titj(K + δσi,σj
)− µ

∑

i

ti , (3.1.3)

where the variable ti = σ2
i is 0 if site i is vacant and 1 otherwise. While K is

the energy of a pair of unlike spins, K + 1 is the energy of a pair of like spins,
respectively. The average number of occupied sites on the lattice is specified by the
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chemical potential µ.
The model is characterized as tricritical, since a critical point arises at some value
dependent on β, K and µ, where three phases meet and coexist critically. Besides
the identity operator (labeled as 1 in figure 3.1.1), there emerge five other scaling
operators at this tricritical point: three energy- (labeled as ε , ε′ and ε′′ in figure
3.1.1) and two spin-like operators (labeled as σ and σ′ in figure 3.1.1), corresponding
to the different highest weights in the Kač table.
Due to the symmetry property

hr,s = hp′−r,p−s (3.1.4)

half the highest weights in the Kač table are redundant.

##

##

##

##

##

##

##

##

##

##

r

6

s -0 1 2 3 4 5

0

1

2

3

4

u u u u

u u u u

u u u u

h1,1 = 0 h1,2 = 1
10

h1,3 = 3
5

h1,4 = 3
2

1

h2,1 = 7
16

h2,2 = 3
80

h2,3 = 3
80

h2,4 = 7
16

σ′ σ

h3,1 = 3
2

h3,2 = 3
5

h3,3 = 1
10

h3,4 = 0
ε′′ ε′ ε

Figure 3.1.: The Kač table for the minimal modelM(5, 4)

Note that the complete set of different highest weights of the Kac table 3.1.1 for
this minimal model, namely, in increasing order, h ∈ {0, 3

80
, 1

10
, 7

16
, 3

5
3
2
}, can be read

off with the help of the vanishing curves in figure 2.3.1: Starting at the central
charge c = 7

10
and following the vertical line, the wanted h-values can be identified

as the intersection points with the corresponding vanishing curves.
Furthermore, this model is one of the few physically relevant theories that feature

supersymmetry [FQS85]: The superconformal algebra or super-Virasoro algebra, a
generalized Virasoro algebra, leads to pairs of fields and their corresponding su-
perpartners, which are called superfields. Thus, the formulation of supersymmetric
CFTs is possible in general.
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3.1.2. The Character of a Verma Module

Since characters encode the physical spectrum with the information on the multi-
plicities of states in a highest weight module V , they play a crucial role in conformal
field theory. The character χV is the holomorphic function on the complex upper
half plane (τ ∈ C, Im(τ) > 0), defined by

χV (τ) = TrV (qL0−
c
24 ) (3.1.5)

with q = e2πiτ . With the generating function of the already mentioned partition
function p(n) from (2.3.6) the character of a generic Verma module may be written
as

χV (τ) =
qh− c

24

φ(q)
(3.1.6)

Introducing the famous Dedekind η-function (see B.1 in the appendix)

η(τ) ≡ q
1
24φ(q) = q

1
24

∞∏

n=1

(1− qn) , (3.1.7)

the Virasoro character becomes

χV (τ) =
qh+ 1−c

24

η(τ)
(3.1.8)

3.1.3. Irreducible Modules

As a consequence of the Kač determinant formula (2.3.7), we now go into the struc-
ture of irreducible Verma modules, i.e. we describe the embedding structure of the
reducible Verma modules, which in the end leads to the minimal character formula.
Here we recall that only those representations with highest weights h are reducible
if and only if the highest weights are parametrized by

hp,p′

r,s =
(pr − p′s)2 − (p− p′)2

4pp′
(3.1.9)

with the corresponding conformal charges

cp,p′ = 1− 6
(p− p′)2

pp′
, (3.1.10)

for some non-negative integers r, s ≥ 1.
A reducible Verma module with highest weight hp,p′

r,s , denoted by Vr,s in this sec-
tion, has its first singular vector at level l = rs according to (2.3.7). An appearance
of another singular vector at level (p′−r)(p−s) follows from the symmetry property
(3.1.4). From (3.1.9) one can derive the identities

hr,s + rs = hp′+r,p−s = hp′−r,p+s (3.1.11)

hr,s + (p′ − r)(p− s) = hr,2p−s = h2p′−r,s , (3.1.12)
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3.1. Minimal Models

which state that the two singular vectors that are contained in Vr,s are themselves
highest weights of degenerate Verma modules, since they fit in (2.3.7). Furthermore,
these new submodules give rise to the same structure, i.e. they also contain singular
vectors, which in turn are highest weight vectors for modules that again contain
singular vectors and so on. This structure is suggested graphically in the following
figure 3.2.
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Figure 3.2.: The interlocking of Verma modules

The first inclusion of submodules can hence be written as

Vp′+r,p−s ∪ Vr,2p−s ⊂ Vr,s (3.1.13)

If we just factor out Vr,s by the union of these two submodules, we would subtract
too much, since the submodules in turn contain singular vectors, which are highest
weights of new submodules. Thus, the irreducible Virasoro module Mr,s is obtained
after the sum of these submodules has been factored out, namely

Mr,s =
Vr,s

Vp′+r,p−s + Vr,2p−s
. (3.1.14)

Keeping in mind the mentioned embedding structure and taking again advantage
of some symmetry properties, the sum Vp′+r,p−s +Vr,2p−s can be taken into the form
of a quotient

Vp′+r,p−s + Vr,2p−s =
Vp′+r,p−s ∪ Vr,2p−s

V2p′+r,s + Vr,2p+s

, (3.1.15)

which leads, by iterating this expression, to the infinite embedding structure of the
Verma module Vr,s with 1 ≤ r < p′, 1 ≤ s < p, whose form is depicted in the
following figure 3.3. Finally, we obtain the irreducible Virasoro module Mr,s, which
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Figure 3.3.: The infinite embedding structure for a Verma module V p,p′

r,s .

is given as an alternating sum that mirrors the successive subtractions and additions
of the diverse submodules:

Mr,s = Vr,s − (Vp′+r,p−s ∪ Vr,2p−s) + (V2p′+r,s ∪ Vr,2p+s)− · · · . (3.1.16)

This alternating structure, i.e. the first subtraction is too large, so you have to
add the wrongly subtracted submodules and so on, will turn out to be of great
importance in later chapters, since it is the signature of so-called bosonic character
expressions.

3.1.4. Minimal Characters

With the results of the last two sections we now have all ingredients to write the
character of the irreducible Verma module Mr,s in an extremely simple form. Prin-
cipally, we just have to follow the corresponding embedding chain, e.g. the one for
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3.1. Minimal Models

minimal models in figure 3.3.1:

χp,p′

r,s =
q

1−c
24

η

(
qhr,s − qhr,−s − qhr,2p−s + qhr,s+2p + qhr,s−2p − . . .

)

=
q

1−c
24

η

(
−

∞∑

n=0

qhr,−s−2pn −
∞∑

n=1

qhr,2pn−s +
∞∑

n=0

qhr,s+2pn +
∞∑

n=1

qhr,s−2pn

)

=
q

1−c
24

η

(
∞∑

n=−∞

qhr,s+2pn − qhr,2pn−s

)

=
q

1−c
24

η

(
∞∑

n=−∞

q
(pr−p′(s+2pn))2−(p−p′)2

4pp′ − q
(pr−p′(−s+2pn))2−(p−p′)2

4pp′

)

=
q

1−c
24 q

c−1
24

η

(
∞∑

n=−∞

q
(pr−p′s−2pp′n)2

4pp′ − q
(pr+p′s−2pp′n)2

4pp′

)

=
1

η

(
∞∑

n=−∞

q
(2kn+λ)2

4k − q (2kn+λ′)2

4k

)

=
1

η
(Θλ,k −Θλ′,k) , (3.1.17)

where we have obtained the important Θ-functions by setting k = pp′, λ = pr− p′s
and λ′ = pr + p′s (cf. section B.2 in the appendix).

Since the range for the r- and s-values is set by r ∈ {1, 2, 3} and s ∈ {1, 2, 3, 4},
six different characters for the in section 3.1.1 introduced Tricritical Ising Model
arise, which can now be written as

χ5,4
1,1 =χ5,4

3,4 =
1

η
(Θ1,20 − Θ9,20) =

1

η
(Θ−1,20 − Θ31,20) (3.1.18)

χ5,4
1,2 =χ5,4

3,3 =
1

η
(Θ−3,20 − Θ13,20) =

1

η
(Θ3,20 − Θ27,20) (3.1.19)

χ5,4
1,3 =χ5,4

3,2 =
1

η
(Θ−7,20 − Θ17,20) =

1

η
(Θ7,20 − Θ23,20) (3.1.20)

χ5,4
1,4 =χ5,4

3,1 =
1

η
(Θ−11,20 − Θ21,20) =

1

η
(Θ11,20 − Θ19,20) (3.1.21)

χ5,4
2,2 =χ5,4

2,3 =
1

η
(Θ2,20 − Θ18,20) =

1

η
(Θ−2,20 − Θ22,20) (3.1.22)

χ5,4
2,4 =χ5,4

2,1 =
1

η
(Θ−6,20 − Θ26,20) =

1

η
(Θ6,20 − Θ14,20) . (3.1.23)

Their corresponding q-series expansions, which are normalized to one by dividing

1For purposes of clarity, the dependence on τ or q, respectively, is omitted here and in the
following as well as in later chapters if this cannot lead to confusion.
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out the offset given by q
λ2

4k , are

χ5,4
1,1 = χ5,4

3,4 = q−
1
80 (1 + q2 + q3 + 2q4 + 2q5 + 4q6

+ 4q7 + 7q8 + 8q9 + 12q10 + 14q11 + 20q12 + 23q13 +O(q14)) (3.1.24)

χ5,4
1,2 = χ5,4

3,3 = q−
9
80 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6

+ 8q7 + 11q8 + 14q9 + 19q10 + 24q11 + 32q12 + 40q13 +O(q14)) (3.1.25)

χ5,4
1,3 = χ5,4

3,2 = q−
49
80 (1 + q + 2q2 + 2q3 + 4q4 + 5q5 + 7q6

+ 9q7 + 13q8 + 16q9 + 22q10 + 27q11 + 36q12 + 45q13 +O(q14)) (3.1.26)

χ5,4
1,4 = χ5,4

3,1 = q−
121
80 (1 + q + 2q2 + 2q3 + 3q4 + 4q5 + 6q6

+ 7q7 + 10q8 + 13q9 + 17q10 + 21q11 + 28q12 + 34q13 +O(q14)) (3.1.27)

χ5,4
2,2 = χ5,4

2,3 = q−
1
20 (1 + q + 2q2 + 3q3 + 4q4 + 6q5 + 8q6

+ 11q7 + 15q8 + 20q9 + 26q10 + 34q11 + 44q12 + 56q13 +O(q14)) (3.1.28)

χ5,4
2,4 = χ5,4

2,1 = q−
9
20 (1 + q + q2 + 2q3 + 3q4 + 4q5 + 6q6

+ 8q7 + 10q8 + 14q9 + 18q10 + 23q11 + 30q12 + 38q13 +O(q14)) . (3.1.29)

Comparing these q-expansions with the expansion of 1
φ(q)

, namely

1

φ(q)
=

1∏
n≥1(1− qn)

=
1

(q)∞
= 1 + q + 2q2 + 3q3 + 5q4 + 7q5

+11q6 + 15q7 + 22q8 + 30q9 + 42q10 + 56q11 + 77q12 + 101q13 + · · · , (3.1.30)

one can easily verify that the first two singular vectors occur at level rs and at level
(4 − r)(5 − s), respectively (cf. the q-series expansions of the c = −2 model in
section D in the appendix).

3.2. Logarithmic Models

After it was noted in [Kni87] that correlation functions may also exhibit logarithmic
divergences, the concept of a CFT with logarithmic singularities occuring in the
correlation functions was introduced by Gurarie [Gur93]. The main difference to
ordinary rational CFTs such as the minimal models is that the representations of
the chiral symmetry algebra may be indecomposable. But otherwise the LCFTs,
especially the here explicitly considered cp,1 series, are very close to rationality.
Almost all important structures, basic notions and tools of (rational) CFTs, such as
null vectors, (bosonic) character functions, partition functions, fusion rules, modular
invariance, OPEs, have been generalized by now. So nowadays the understanding
of of LCFTs is almost at the same level as the one about (rational) conformal field
theories. Furthermore, there exists a huge number of applications for LCFTs, which
include topics like two-dimensional conformal turbulence, the fractional quantum
Hall effect (see chapter 1) and AdS/CFT-correspondence.
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3.2. Logarithmic Models

3.2.1. W-Algebras

In the following, we want to concern extended conformal symmetry algebras, the
so-called W-algebras as introduced by [Zam85].
As can be comprehended in [BFK+90], W-algebras describe the operator product
expansion (cf. (2.2.12)) of conformally invariant local chiral fields. While the singu-
lar part of such an OPE yields a Lie bracket structure for the Fourier modes of the
fields, the regular part provides an operation of forming normal ordered products.

A W-algebra is generated by a finite set of simple, i.e. they are not composed
from others by normal ordering, primary fields φ0, φ1, . . . , φn including the identity.
Hence, it is denoted by W(2, d1, . . . , dn), where the di = h(φi) stand for the confor-
mal dimensions and d0 = 2 for the Virasoro field instead of the identity field.
So, for example, the W-algebra, which is generated by three primary fields, which
all have conformal dimension three, is denoted by W(2, 3, 3, 3). This is in fact the
most prominent candidate and therefore should bother us in the next section.
Other examples are the super-Virasoro algebra (cf. section 3.1.1) W(2, 2

3
), the di-

rect sum of two Virasoro algebras W(2, 2) or the Casimir algebras of the affine
Kač-Moody algebras W(2, 3), W(2, 4) and W(2, 6) [Flo94].

3.2.2. The W(2, 3, 3, 3)-Algebra

Let us only consider the c(2, 1) model of the cp,1 series in detail here, since it should
be sufficient to understand the basic ideas.
The Virasoro theory at c = −2 is not rational – it has infinitely many representa-
tions – with respect to the Virasoro algebra, but it is rational with respect to an
extended chiral symmetry algebra in the sense that it only possesses finitely many
indecomposable representations that close under fusion [Gab03]2. At first, those
extensions of the Virasoro algebra, resulting in a multiplet structure of fields with
integer or half-integer spin – in particular the triplet structure, which will be of
interest to us in the next sections – were studied in [Kau91].

Let us recall that the possible highest weights are given through the extended
Kač table, which is displayed in figure 3.4, by

h2,1
r,s =

(2r − s)2 − 1

8
(3.2.1)

and hence especially h3,1 = 3, which plays a decisive role for the following symmetry
algebra extension.

The tripletW-algebra is the extension of the Virasoro theory by a triplet of fields
W i with h = h3,1 = 3. Here, an important role is played by the screening charges
Q, which are given by

Q =

∮
dzVα+(z) (3.2.2)

with the vertex operator Vα+(z) that arises in the context of the free field construc-
tion in [Kau91]. These screening charges Q are actually responsible for the triplet

2Note the definition of quasi-rationality in this context: [Nah96, Flo03].
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Figure 3.4.: The extended Kač table for the c = −2 model

structure, which is obtained by repeated application of Q on the field φ3,1

W i = Qiφ3,1 . (3.2.3)

This leads eventually to three fields with SO(3) structure, which, together with the
energy-momentum tensor, generate the desired W(2, 2p− 1.2p− 1, 2p− 1)-algebra.

As mentioned above, we are interested in the case of p = 2 here:
Expressed in an orthonormal basis, i.e. the metric gab and the structure constants
fab

c of su(2) take the form δab and iεabc, respectively, the commutation relations
for the corresponding modes W a

n of the fields and the modes Ln of the energy-
momentum tensor then read

[Ln, Lm] = (n−m)Ln+m −
1

6
n(n2 − 1)δn+m,0 , (3.2.4)

[Ln,W
a
m] = (2n−m)W a

n+m , (3.2.5)

[W a
n ,W

b
m] = δab

(
2(n−m)Λn+m +

1

20
(n−m)(2n2 + 2m2 − nm− 8)Ln+m (3.2.6)

− 1

120
n(n2 − 1)(n2 − 4)δm+n,0

)
(3.2.7)

+ iεabc

(
5

14
(2n2 + 2m2 − 3nm− 4)W c

n+m +
12

15
V c

n+m

)
, (3.2.8)

with the normal ordered quasi-primary fields Λm =: L2
m : − 3

10
∂2Lm and V a

m =:
LmW

a
m : − 3

14
∂2W a

m (a, b, c ∈ {1, 2, 3} and n,m ∈ Z). The existence of singular
vectors in the vacuum representation leads to constraints for the allowed represen-
tations – i.e. their zero modes have to vanish on any highest weight state ψ in order
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to get a physical spectrum of L0, which is bounded from below – of the following
form: (

W a
0W

b
0 − δab 1

9
L2

0(8L0 + 1)− iεabc 1

5
(6L0 − 1)W c

0

)
ψ = 0 (3.2.9)

This constraint governs the highest weight representations to have an su(2) struc-
ture, since

[W a
0 ,W

b
0 ] =

2

5
(6h− 1)iεabcW c

0 , (3.2.10)

which follows from (3.2.9), is a rescaled version of the su(2) algebra. The irreducible
representations of these zero modes can be labeled as is customary after rescaling:
j(j + 1) is the eigenvalue of the Casimir operator

∑3
i=1(W

i
0)

2 and m the eigenvalue
of W 3

0 . Furthermore, (3.2.9) leads to the relation

j(j + 1) = 3m2 , (3.2.11)

since the action of W a
0W

a
0 is the same as W b

0W
b
0 on highest weight states. Evaluat-

ing this restriction, we have finally arrived at the allowed representations [EHH93,
GK96b]:

� j = 0: Two singlet representations

– V0 at h = 0

– V− 1
8

at h = −1
8

� j = 1
2
: Two doublet representations

– V1 at h = 1

– V 3
8

at h = 3
8

.

Those readers, who find this analysis to be too physical, are referred to [Zhu96].
Analyzing the fusion products (see e.g. [Ver88] for the constitutional fusion rules in
the context of modular invariance and [Knu06] for recent developments concerning
fusion with regard to LCFT) for these four irreducible representations [GK96b],
we find two generalized highest weight representations R0 and R1. Their sketched
structures can be found in the figures 3.5 and 3.6.

Here, each dot in the bottom row stands for the irreducible representation V0 and
each one in the top row for V1. The action of the triplet algebra is indicated by the
arrows.
R0 is generated from a highest weight vector ω of h = 0, which is a singlet under
su(2), forming a Jordan cell for L0 with Ω, i.e. L0ω = Ω. The four states L−1ω
and W a

−1ω form two doublets and are therefore denoted by Ψ1 and Ψ2. Furthermore,
note that R0 is an extension of the vacuum representation.
R1 is generated from a doublet φ± of weight h = 1, denoted by φ in the corre-
sponding figure. It has two ground states ξ± at h = 0 and another doublet ψ± at
h = 1, denoted by ψ in the corresponding figure, forming L0 Jordan cells with φ±.
Furthermore, R1 is not a highest weight representation. The relations, which define
the action of the Virasoro and the triplet algebra in both cases, are given in detail
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Figure 3.6.: The indecomposable representation R1

in [GK96b].
Both of these representations are indecomposable. The set of these six mentioned
representations closes under fusion.
In the following chapters we do not distinguish between R0 and R1, since they are
isomorphic to each other.

Finally, note the interesting fact that the occurring partition function of the full
theory is actually the same as that of a free boson compactified on a circle of radius√

2 [Gin88b].

3.2.3. The Indecomposable Representation

As already mentioned, LCFTs are intimately connected with the existence of in-
decomposable representations. A Jordan cell of states takes the place of a unique
highest weight state in a representation module. These new ’highest weight states’
are linked by the action of a non-diagonalizable operator, which might be any gen-
erator, but is at last mainly the energy-momentum tensor, of the (extended) chiral
symmetry algebra. To illustrate the Jordan cell structure, let us assume that there
exist two operators Φ and Ψ with an equivalent set of quantum numbers with respect
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to the maximally extended chiral symmetry algebra, the same conformal weight h
included. As a consequence, the L0 operator can no longer be diagonalized and thus
takes the form

L0

(
Φ
Ψ

)
=

(
h 0
1 h

)(
Φ
Ψ

)
. (3.2.12)

Let us now go into more detail with regard to the structure of an indecomposable
representation, following [GK96a], since it is not only a central aspect for the c = −2
model, but also for an LCFT in general.

To make things clear, we choose a representation similar to R0, which we call R
here, since R1 is not a highest weight representation. As it is the case for R0, it is
generated from a highest weight state ω satisfying

L0ω = Ω , L0Ω = 0 , Lnω = 0 for n > 0 (3.2.13)

by the action of the Virasoro algebra, i.e. no extensions are considered here. The
state χ = L−1Ω is a null-state of R, but ξ = L−1ω is not singular, since L1L−1ω =
[L1, L−1]ω = 2L0ω = 2Ω. The following figure 3.7 shows a sketch of R.
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Figure 3.7.: The indecomposable representation R

Here each filled dot denotes a state of the representation space, and the unfilled
dots correspond to singular vectors. A −→ B indicates that B is in the image of A
under the action of the Virasoro algebra.

Letting the Virasoro modes act on Ω, the complete set of the obtained states
shapes up as a subrepresentation Rsub of R being isomorphic to the vacuum repre-
sentation. This observation shows that R cannot be irreducible.
On the other hand, R is also not completely reducible: We cannot write R as a
direct sum of its submodules, since we cannot find a complementary subspace to
Rsub that is a representation by itself.
Hence, R is called an indecomposable (but reducible) representation.

3.2.4. Characters of the Triplet Algebras

W(2, 2p − 1, 2p − 1, 2p − 1)

A minimal model with central charge c = cp,p′ admits highest weights hp,p′

r,s (cf.
(3.1.9)) with 1 ≤ r < p′ and 1 ≤ s < p.
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In contrast, the h-values of all 3p− 1 inequivalent representations for the LCFT
models with cp,1 and chiral symmetry algebra W(2, 2p − 1, 2p − 1, 2p − 1) can be
read off the extended conformal grid of the augmented minimal model [Flo97, EF06],
corresponding formally to central charge c3p,3.
For example, in the case p = 2 and c2,1 = −2, the only possible highest weights
are h ∈ {−1

8
, 0, 3

8
, 1}, where h = 0 corresponds to two inequivalent representations

[GK96b]. Here, (3.2.9) and a null vector constraint can be transformed to obtain
the condition

0 = L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)ψ , (3.2.14)

ψ being any highest weight state, which states that L0 has to take exactly those
h-values, which we just read off the extended conformal grid. In addition, note that
(3.2.14) in general allows a logarithmic highest weight representation, since we only
have to claim that L2

0 = 0, but not necessarily that L0 = 0. In particular, a two-
dimensional space of highest weight states similar to (3.2.12) copes with (3.2.14).
In general, the possible highest weights for a given W-algebra can be determined
explicitely with the help of Jacobi identities and constraints on the singular vectors.
In comparison to the singlet algebra W(2, 2p − 1), which is too small to obtain
a rational cp,1 model, the triplet algebra now serves as its maximally extended
symmetry algebra.

The way to get theW-algebra characters is to sum up appropriate subsets of Vira-
soro characters of degenerate highest weight representations, which is in conjunction
with the fact that many properties are only defined modulo Z for characters. One
also has to keep in mind that only those highest weights are permitted which differ
by integers and has to take care of multiplicities caused by the su(2) symmetry
among the triplet of chiral fields of conformal weight 2p − 1. The multiplicity of
the Virasoro highest weight representation on |h2k+1,1〉 turns out to be 2k + 1. For
k = 1, i.e. h3,1 = 2p− 1, the dimension three matches the desired triplet structure.
Fortunately, the structure for these representations appears even simpler than the
one for minimal models: Due to the classification of Feigin and Fuks [FF82], there
exists exactly one null vector, which leads to the following form for the Virasoro
characters:

χVir
2k+1,1 =

1

η(q)
(qh2k+1,1 − qh2k+1,−1) . (3.2.15)

Summarizing all the mentioned points, the vacuum representation of theW-algebra
is then the Hilbert space

HW
|0〉 =

⊕

k∈Z+

(2k + 1)HVir
|h2k+1,1〉

. (3.2.16)
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So, the vacuum character is [Flo03]

χW
0 =

∑

k∈Z+

(2k + 1)χVir
2k+1,1

=
q(1−c)/24

η(q)

(∑

k≥0

(2k + 1)qh2k+1,1 −
∑

k≥0

(2k + 1)qh−(2k+1),1

)

=
q(1−c)/24

η(q)

(∑

k≥0

(2k + 1)qh2k+1,1 +
∑

k≥1

(−2k + 1)qh−2k+1,1

)

=
q(1−p)2/4p

η(q)

∑

k∈Z

(2k + 1)q
(1−(2k+1)p)2−(1−p)2

4p

=
1

η(q)

∑

k∈Z

(2k + 1)q(
2pk+(p−1))2

4p

=
1

pη(τ)
((∂Θ)p−1,p(τ) +Θp−1,p(τ)) . (3.2.17)

In the last line the character has been rewritten in terms of Θ-functions and affine
Θ-functions (see sections B.2 and B.3 in the appendix).

Although the functions Λλ,k =
Θλ,k

η
are modular forms of weight 0, we meet

a problem with the terms, where the affine Θ-functions are involved: (∂Λ)λ,k =
(∂Θ)λ,k

η
have weight 1. To solve the problem, a factor η3 would be necessary in the

denominator like it is the case for the characters of the affine Kac-Moody algebras

ŝu(2) equivalent to A
(1)
k (cf. section 5.4).

The Complete Set of the Bosonic cp,1 Characters

Analyzing the action of the triplet algebras on the degenerate Virasoro represen-
tations [GK96b, Flo96] as well as the modular transformation properties of the
vacuum character allows to find a complete set of character functions for the cp,1

models that is closed under modular transformations [Flo97]:

χ0,p =
Θ0,p

η
representation to hp,1

1,p (3.2.18)

χp,p =
Θp,p

η
hp,1

1,2p (3.2.19)

χ+
λ,p =

(p− λ)Θλ,p + (∂Θ)λ,p

pη
hp,1

1,p−λ (3.2.20)

χ−
λ,p =

λΘλ,p − (∂Θ)λ,p

pη
hp,1

1,3p−λ (3.2.21)

χ̃+
λ,p =

Θλ,p + iαλ(∇Θ)λ,p

η
hp,1

1,p+λ (3.2.22)

χ̃−
λ,p =

Θλ,p − iα(p− λ)(∇Θ)λ,p

η
hp,1

1,p+λ , (3.2.23)
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Chapter 3. Bosonic Expressions

where 0 < λ < p, k = pp′ = p, λ = pr − p′s = pr − s. The following definitions
are listed for convenience (cf. sections B.2, B.3 and B.1 in the appendix): The
Jacobi-Riemann Θ-function is defined as

Θλ,k(τ) =
∑

n∈Z

q
(2kn+λ)2

4k , (3.2.24)

the affine Θ-function defined as

(∂Θ)λ,k(τ) =
∑

n∈Z

(2kn + λ)q
(2kn+λ)2

4k (3.2.25)

and the Dedekind η-function defined as

η(q) = q1/24(q)∞ . (3.2.26)

Here, q = e2πiτ , τ ∈ h (upper half-plane).
Θλ,k(τ)

η(τ)
is a modular form of weight zero

with respect to the generators T : τ 7→ τ + 1 and S : τ 7→ − 1
τ

of the modular

group PSL(2,Z). But since
(∂Θ)λ,k(τ)

η(τ)
is a modular form of weight one with respect

to S, some of the above character functions are of inhomogeneous modular weight,
thus leading to S-matrices with τ -dependent coefficients.
However, adding

(∇Θ)λ,k(τ) =
log q

2πi

∑

n∈Z

(2kn+ λ)q
(2kn+λ)2

4k , (3.2.27)

one finds a closed finite dimensional representation of the modular group with con-
stant S-matrix coefficients.

Note that (3.2.22) and (3.2.23) are not characters of representations in the usual
sense. Actually, these are regularized character functions and the α-dependent part
has an interpretation as torus vacuum amplitudes [FG06]. In the limit α→ 0, they
become the characters of the full reducible but indecomposable representations.

The q-series expansions of the c2,1 model are displayed in section D in the ap-
pendix.

3.3. Parabolic Models

To conclude this chapter, let us come to the parabolic models, which have been
quoted in section 3.3.

3.3.1. Characters of the W(2, 3k)-Algebras

Choosing k as integer or half-integer, then all allowed highest weights are given by

hr,r = (r2 − 1)k (3.3.1)

h−r,r = (r2 − 1)k + r2 , (3.3.2)
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3.3. Parabolic Models

likewise being integer or half-integer. Allowing only odd r- values, choosing k ∈ Z≥0

4

is also possible. Thus, all requirements are fulfiled to guarantee a local system
of chiral BRST-invariant screened vertex operators [Flo94]. Here the locality also
constricts the fusion rules of the chiral algebra: The corresponding highest weights
may only differ by integer or half-integer values again [God89].

A consequence of the modular properties is that choosing k ∈ Z≥0

4
is the only way

to obtain rational conformal field theories from parabolic models.
An interesting algebra is given for c = 1 − 24k with k ∈ Z≥0

2
: the W(2, 3k)-

algebra. It is constructed from chiral vertex operators of a free field representation.
Comparing the commutator of the modes of two such operators, one can show that
this algebra has indeed only two generators: The Virasoro field and the field with
conformal dimension h2,2 = 3k, as can be verified by using (3.3.1), with its modes,
which both form a Lie algebraic structure.

This theory is just mentioned marginally here, since we only want to draw the
reader’s attention to the corresponding character expressions. For details we refer
to [Flo93, Flo94].

The relevant representations and their characters of the bosonicW(2, 3k)-algebras3

are the following:

χW
0 =

1

2
(Λ0,k(τ)− Λ0,k+1(τ)) (vacuum representation)

(3.3.3)

χW
1 = Λ1,k(τ) (3.3.4)

...

χW
k−1 = Λk−1,k(τ) (3.3.5)

χW
k,+ = χW

k,− =
1

2
Λk,k(τ) (degenerate representation)

(3.3.6)

χW
k+1 =

1

2
(Λ0,k(τ) + Λ0,k+1(τ)) (representation to hmin)

(3.3.7)

χW
−1 = Λ1,k+1(τ) (3.3.8)

...

χW
−k = Λk,k+1(τ) (3.3.9)

χW
−k−1,+ = χW

−k−1,− =
1

2
Λk+1,k+1(τ) (degenerate representation)

(3.3.10)

3Only the even sectors are considered here: For the odd sectors, a W(2, 8k)-algebra can be
obtained in an analogous manner.
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4. A Gateway to the Other Side

The Rogers-Ramanujan identities provide one of the most fascinating chapters in
the history of partitions. The story began with the discovery of the Indian genius
S. Ramanujan by G. H. Hardy. In Ramanujan’s first letter to Hardy from 1913, two
outstanding examples on continued fractions,

1

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + . . .

=



√

5 +
√

5

2
−
√

5 + 1

2


 e

2π
5 (4.0.1)

and

1− e−π

1 +
e−2π

1− e−3π

1 + . . .

=



√

5−
√

5

2
−
√

5− 1

2


 e

π
5 , (4.0.2)

were commented by Hardy in his article [Har37]: ”[These formulas] defeated me
completely. I had never seen anything in the least like them before. A single look at
them is enough to show that they could only be written down by a mathematician
of the highest class. They must be true because, if they were not true, no one would
have had the imagination to invent them.”

Let us relate these continued fractions to the Rogers-Ramanujan identities now:
We start with a linear second-order q-difference equation 1

F (x) = F (xq) + xqF (xq2) , (4.0.3)

where the function F (x) is analytic in x at 0 and F (0) = 1. Setting F (x)
F (xq)

= c(x, q),
we get

c(x, q) = 1 +
xq

c(xq, q)
(4.0.4)

c(xq, q) = 1 +
xq2

c(xq2, q)
(4.0.5)

c(xq2, q) = 1 +
xq3

c(xq3, q)
(4.0.6)

...
... .

1see [FS93b] for some additional information on q-difference equations in the context of Virasoro
characters
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Plugging these expressions into each other, we have already obtained a generalized
version of Ramanujan’s continued fraction, namely

c(x, q) = 1 +
xq

1 +
xq2

1 +
xq3

1 +
xq4

1 + · · ·

. (4.0.7)

Thus, it can be easily checked that the two theorems at the beginning of this chapter
are precisely those evaluations of c(1, e−2π) and c(1,−e−π).

Furthermore, we can expand F(x) in a power series

F (x) =
∑

n≥0

An(q)xn , (4.0.8)

which yields, after being substituted in (4.0.3) and by comparing coefficients of xn,

An(q) = qnAn(q) + q2n−1An−1(q) . (4.0.9)

Successively using this expression, we can calculate

An(q) =
q2n−1

1− qn
An−1(q) =

q(2n−1)+(2n−3)

(1− qn)(1− qn−1)
An−2(q) (4.0.10)

= · · · = q1+3+···+(2n−1)

(q)n
A0(q) =

qn2

(q)n
. (4.0.11)

So finally we get

Fx(q) =
∞∑

n=0

xnqn2

(q)n

. (4.0.12)

Applying this power series, F1(q) and Fq(q) can now be written as infinite prod-
ucts2:

F1(q) =1 +
q

1− q +
q4

(1− q)(1− q2)
+

q9

(1− q)(1− q2)(1− q3)
+ · · · (4.0.13)

=

∞∏

n=1

1

(1− q5n−1)(1− q5n−4)
(4.0.14)

and

Fq(q) =1 +
q2

1− q +
q6

(1− q)(1− q2)
+

q12

(1− q)(1− q2)(1− q3)
+ · · · (4.0.15)

=

∞∏

n=1

1

(1− q5n−2)(1− q5n−3)
. (4.0.16)

2A proof can be found in [And84a]
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Chapter 4. A Gateway to the Other Side

With both of these last results, we are now able to write c(1, q) in an infinite
product.

And in particular, F1(q) and Fq(q) match the infinite product representations
of the famous Rogers-Schur-Ramanujan identities (4.2.1) and (4.2.2), respectively,
which will ultimately lead us to the desired fermionic character expressions. Note
that F1(q) and Fq(q) are derived that explicitly here, since we will encounter them
again in the context of q-hypergeometric series and modular forms in chapter 6.

But let us first of all put these identities in perspective with respect to the inter-
pretation in terms of partitions, based on a generalization by Gordon.

4.1. Gordon’s Generalization

The following theorem in terms of partitions is due to B. Gordon: Let Bk,i(n) de-
note the number of partitions of n of the form (b1b2 . . . bs), where bj − bj+k−1 ≥ 2,
and at most i− 1 of the bj equal 1.
Let Ak,i(n) denote the number of partitions of n into parts 6≡ 0,±i (mod 2k + 1).
Then Ak,i(n) = Bk,i(n) for all n.

Its most celebrated corollaries are the two Rogers-Ramanujan identities – at first
stated in terms of partitions here:

� The first identity (k = i = 2). The partitions of an integer n in which the
difference between any two parts is at least 2 are equinumerous with the
partitions of n into parts ≡ 1 (mod 5) or ≡ 4 (mod 5)

� The second identity (k = i + 1 = 2). The partitions of an integer n in which
each part exceeds 1 and the difference between any two parts is at least 2
are equinumerous with the partitions of n into parts ≡ 2 (mod 5) or ≡ 3
(mod 5).

Its analytic counterpart from [And74] applies for 1 ≤ i ≤ k, k ≥ 2, |q| < 1:

∑

n1,n2,...,nk−1≥0

qN2
1 +N2

2+···+N2
k−1+Ni+Ni+1+···+Nk−1

(q)n1(q)n2 · · · (q)nk−1

=

∞∏

n=1
n6≡0,±i (mod 2k+1)

(1−qn)−1 , (4.1.1)

with Nj = nj +nj+1+· · ·+nk−1. This identity, one of the so-called Andrews-Gordon
identities, introduces a sum over multi-indices and thus plays an important role on
the way to fermionic character expressions and therewith to dilogarithm identities
[NRT93].

Furthermore, each of the classical identities of Rogers-Ramanujan type can be
used to yield further multiple sum series identities: It is shown in [And84b] how the
Bailey chain is used to achieve this.
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4.2. The Connection to Characters

4.2. The Connection to Characters

The famous Rogers-(Schur-3)Ramanujan identities [Rog94, Sch17, RR19]

∞∑

n=0

qn2

(q)n

=
∞∏

n=1

1

(1− q5n−1)(1− q5n−4)
(4.2.1)

and
∞∑

n=0

qn2+n

(q)n
=

∞∏

n=1

1

(1− q5n−2)(1− q5n−3)
, (4.2.2)

with the q-Pochhammer symbol defined as (see also A.1 in the appendix)

(q)n =

n∏

i=1

(1− qi) and per definition (q)0 = 1 and (q)∞ = lim
n→∞

(q)n , (4.2.3)

first of all built a bridge between bosonic and fermionic representations for a CFT
character.

In particular, these identities coincide with the two characters of the M(5, 2)
minimal model [Fis78, Car85] (normalized to 1 at q0). By using Jacobi’s triple
product identity, which is stated for z 6= 0, |q| < 1 by

∞∑

n=−∞

znqn2

=

∞∏

n=0

(1− q2n+2)(1 + zq2n+1)(1 + z−1q2n+1) , (4.2.4)

the r.h.s.’s of (4.2.1) and (4.2.2) can be transformed to give two simple examples of
what is called a bosonic-fermionic q-series identity, namely

∞∑

n=0

qn2

(q)n

=
1

(q)∞

∞∑

n=−∞

(qn(10n+1) − q(5n+2)(2n+1)) (4.2.5)

and
∞∑

n=0

qn2+n

(q)n
=

1

(q)∞

∞∑

n=−∞

(qn(10n+3) − q(5n+1)(2n+1)) . (4.2.6)

By the way, Jacobi’s triple product identity is a direct consequence of a corollary
due to Euler (see e.g. [And84a]), which is defined for |t| < 1, |q| < 1 by

1 +

∞∑

n=1

tn

(q)n
=

∞∏

n=0

(1− tqn)−1 , (4.2.7)

1 +

∞∑

n=1

tnq
1
2
n(n−1)

(q)n
=

∞∏

n=0

(1 + tqn) . (4.2.8)

Since we have already found a way of generalizing the bosonic sides of the iden-
tity to all known minimal models in section 3.1.4, the next step is now to clear
the way for the generalization of the fermionic sides for all minimal models. Be-
fore we conclude this chapter, we touch on two important subjects with respect to
the Rogers-Ramanujan identities: the physical background and the proof of new
identities relating the bosonic and the fermionic sides of a character.

3Schur is often omitted both in the literature and here as well.
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Chapter 4. A Gateway to the Other Side

4.3. The Physical Background

The occurrence of these bosonic-fermionic q-series identities is a peculiarity in two-
dimensional conformal field theory, i.e. there exists only one space dimension.
In general, the nature of bosons and fermions is quite distinct in three space dimen-
sions, regardless of whether the particles are expressed in terms of commutation
and anti-commutation relations or through their spectra4.
Nevertheless, the fact that they are related in two dimensions provokes to the as-
sumption that there exists a Bose-Fermi correspondence for every conformal field
theory in question, i.e. all CFT characters can be written in two different sum repre-
sentations, generalizing the Rogers-Schur-Ramanujan Identities. In particular, this
assumption is supported by Nahm’s conjecture (cf. section 6.2).

To confront the bosonic side with the fermionic side, let us summarize the most
important facts here:
As mentioned, the so-called bosonic expressions on the r.h.s.’s of (4.2.5) and (4.2.6),
respectively, correspond to two special cases of the general character formula for
minimal models M(p, p′) [RC84]

χ̂p,p′

r,s = q
c
24

−hp,p′

r,s χp,p′

r,s =
1

(q)∞

∞∑

n=−∞

(qn(npp′+pr−p′s) − q(np+s)(np′+r)) (4.3.1)

with χ̂p,p′

r,s being the normalized character. The known symmetry χp,p′

r,s = χp,p′

p′−r,p−s

follows from (3.1.4).
Since (4.3.1) is computed by eliminating null states from the Hilbert space of

a free chiral boson [FF83], it is referred to as bosonic form. Its signature is the
alternating sign, which reflects the subtraction of null vectors. The factor (q)∞
keeps track of the free action of the Virasoro ’raising’ modes. Furthermore, it can
be expressed in terms of Θ-functions (see (B.2) in the appendix), which directly
point out the modular transformation properties of the character.

In contrast, the fermionic sum representation possesses a remarkable interpreta-
tion in terms of quasi-particles for the states, obeying Pauli’s exclusion principle
(see chapter 7).

The bosonic representations are in general unique, whereas there is usually more
than one fermionic expression for the same character.

4.4. How to Prove the Identities

Having introduced all bosonic expressions of the relevant characters, i.e. the mini-
mal characters, the characters of the parabolic models and above all, the characters
of the cp,1-series, we will be in search of the corresponding fermionic expressions in
the next chapter to constitute new bosonic-fermionic q-series identities. To ’prove’
these Bose-Fermi identities, the q-series expansions of both sides are compared. To
achieve this, we worked with Maple:
All presented identities have been verified up to a high order. A q-series Maple

4Due to the Spin-Statistics-Theorem, both approaches are equivalent.
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4.4. How to Prove the Identities

package and the appropriate q-product tutorial [Gar98] assisted us much with that
task.
Although this procedure is no proof in a rigorous mathematical sense, there are the
following arguments for this approach to be sufficient:
At first, if we know that a fermionic partition function has a finite representation
of the modular group that is the same as for the bosonic one, it will be enough to
know only a finite number of terms. Otherwise, if we do not know this fermionic
representation, one can show by retrospectively drawing upon Nahm’s conjecture
(see section 6.2) that comparisons up to an only finite order will again be sufficient.

Let us now attend to the analysis of the fermionic expressions.
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5. Fermionic Expressions

5.1. Fermionic Virasoro Characters

Non-unique bases of the Hilbert spaces in two dimensional CFTs establish the ex-
istence of several alternative character formulae. From both a mathematical and
physical point of view, further interest attaches to the so-called fermionic sum rep-
resentations for a character, which first appeared in the context of the Rogers-
Schur-Ramanujan identities (4.2.1) and (4.2.2). As we have seen, the characters
of the minimal models are constructed as formal power series χ in some variable
q = e2πiτ , τ ∈ h (upper half-plane).

In the first systematic study of fermionic expressions [KKMM93b], sum repre-
sentations for all characters of the unitary Virasoro minimal models and certain
non-unitary minimal models were given. The list of expressions was augmented to
all p and p′ and certain r and s in [BMS98]. Eventually, the fermionic expressions for
the characters of all minimal models were summarized in [Wel05]. Such a fermionic
expression, which is a generalization of the left hand sides of (4.2.1) and (4.2.2), is
a linear combination of fundamental fermionic forms.

A fundamental fermionic form [BMS98, Wel05, DKMM94] is

∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

∏j
i=1(q)i

r∏

i=j+1

[
g(~m)

mi

]

q

(5.1.1)

with A ∈Mr(Q), ~b ∈ Qr, c ∈ Q, 0 ≤ j ≤ r, g a certain linear, algebraic function in
the mi, 1 ≤ i ≤ r, and the q-binomial coefficient (cf. A.2 in the appendix) defined
as [

n
m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
. (5.1.2)

If j = r, then the fundamental fermionic form reduces to the form that is found in
Nahm’s conjecture (see section 6.2)

fA,~b,c(τ) =
∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

(q)~m
, (5.1.3)

which makes a prediction whether for a given matrix A there exist ~b and c such that
(5.1.3) is a modular function.1

1The constant c is not to be confused with the central charge cp,p′ .
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5.1. Fermionic Virasoro Characters

The construction of the fermionic expressions for all Virasoro characters χp.p′

r,s ,
1 < p′ < p, p and p′ coprime and 1 ≤ r < p, 1 ≤ s < p as usual, is sketched here,
for details see [Wel05]: Note that p and p′ are interchanged there.

As already mentioned above, each such expression is a sum of terms of fundamen-
tal fermionic form type. Basically. all these fermionic expressions can be obtained
by using certain trees (see section 5.1.2), Given a fixed r- and s-value, the corre-
sponding trees are constructed from the Takahashi lenghts and truncated Takahashi
lenghts, which are associated with the continued fraction of p

p′
, which will be defined

in the next section.

5.1.1. Continued Fractions

So, the continued fraction of p
p′

plays a central role in the construction of the men-
tioned fermionic expressions. Let p and p′ be coprime integers with 1 ≤ p′ < p. If

p

p′
= c0 +

1

c1 +
1
...

cn−2 +
1

cn−1 +
1

cn

(5.1.4)

with ci ≥ 1 for 0 ≤ i < n, and cn ≥ 2, then [c0, c1, c2, . . . , cn] is said to be the
continued fraction for p/p′.
n is called the height of p/p′, while the rank t is given by t = c0 + c1 + · · ·+ cn − 2.

We also define

tk = −1 +
k−1∑

i=0

ci, (5.1.5)

for 0 ≤ k ≤ n+ 1. Then tn+1 = t+ 1 and tn ≤ t− 1.
The appearance of q-binomial coefficients (see A.2 in the appendix) in fermionic

character expressions is directly ruled by the continued fraction, i.e. no q-binomial
coefficients appear if

n∑

i=1

ci < 4 . (5.1.6)

5.1.2. Takahashi Trees

A Takahashi tree is calculated for a (1 ≤ a < p) with the help of the Takahashi
lengths [BMS98] that are associated with the continued fraction. It is a binary tree
of positive integers, which starts with an unlabeled root node. The following nodes
are labelled ai1i2...ik for some k ≥ 1, with ij ∈ {0, 1} for 1 ≤ j ≤ k. They are
either branch-nodes, through-nodes or leaf-nodes. While a branch-node is followed
by another branch-node or a leaf-node, a through-node is always the parent for
a leaf-node. Naturally, every arm ends with a leaf-node. The tree is generated
recursively, starting with the root node, which depends on the corresponding set of
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Chapter 5. Fermionic Expressions

Takahashi lenghts. Furthermore, every Takahashi tree is finite, since each leaf-node
occurs no deeper than n+ 1 levels below the root node. So, a maximum number of
2n leaf-nodes is possible. A typical Takahashi tree is shown in Fig. 5.1.
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u u ua000 a100 a110

Figure 5.1.: A typical Takahashi tree

5.1.3. In Search of New Identities

It is interesting to compare the expressions, which we calculated following the just
mentioned construction scheme, with other known expressions for minimal models,
found mostly in [Byt99a, Byt99b, KKMM93a, KKMM93b]. In this way interesting
identities arise: the same character can be either expressed with or without q-
binomial coefficients.

Let us investigate the character expressions of the minimal model M(5, 4) asso-
ciated with the Tricritical Ising Model, which we introduced in section 3.1.1.

The continued fraction associated with this model is given by [1, 4]: Thus, we can
predict the occurrence of q-binomial coefficients by using (5.1.6).
Furthermore, the rank is t = 3: Thus, the matrix appearing in the fermionic ex-
pressions due to [Wel05] is a 2 × 2 matrix, the Cartan matrix CA2 to be more
precise.

There are various representations for the characters of the Tricritical Ising Model:
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5.1. Fermionic Virasoro Characters

χ5,4
1,1 =

∞∑

~m=0
~m≡0 (mod 2)

q
~mt

 

1
2

− 1
4

− 1
4

1
2

!

~m

(q)m1

[
1
2
m1

m2

]
(5.1.7)

=

∞∑

~m=0
m1+m3+m6≡0 (mod 2)

q

~mt
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@
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C

A

~m

(q)~m
, (5.1.8)

χ5,4
2,1 =

∞∑

~m

q
~mt
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1
2
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«t

~m

(q)~m
(5.1.9)

=
∞∑

~m=0
~m≡(1

0) (mod 2)

q
~mt

 

1
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− 1
4

− 1
4

1
2

!

~m− 1
2

(q)m1

[m1+1
2

m2

]
(5.1.10)

=

∞∑

~m=0

(−1)m3q

~mt

0

B

@

1
2

0 0

0 1
2

1
2

0 1
2

1
2

1

C

A
~m+

 

1
2
1
1

!t

~m

(q)~m
(5.1.11)

=

∞∑

~m=0

q
~mt

„

2 0
0 1

2

«

~m+

„

2
1
2

«t

~m

(q2)m1(q)m2

. (5.1.12)

χ5,4
2,2 =

∞∑

~m

q
~mt

 

2 1
2

1
2

1
2

!

~m+

„

0
1
2

«t

~m

(q)~m
(5.1.13)

=

∞∑

~m=0
~m≡(1

0) (mod 2)

q
~mt

 

1
2

− 1
4

− 1
4

1
2

!

~m+

„

− 1
2
0

«t

~m

(q)m1

[m1+1
2

m2

]
(5.1.14)

=
∞∑

~m=0

(−1)m3q

~mt

0

B

@

1
2

0 0

0 1
2

1
2

0 1
2

1
2

1

C

A
~m+

 

1
2
0
0

!t

~m

(q)~m
(5.1.15)

=

∞∑

~m=0

q
~mt

„

2 0
0 1

2

«

~m+

„

0
1
2

«t

~m

(q2)m1(q)m2

. (5.1.16)
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χ5,4
3,1 =

∞∑

~m=0
~m≡(01) (mod 2)

q
~mt

 

1
2

− 1
4

− 1
4

1
2

!

~m− 3
2

(q)m1

[
1
2
m1

m2

]
(5.1.17)

=
∞∑

~m=0
m1+m3+m6≡1 (mod 2)

q

~mt

0

B

B

B

B

B

B

B

@

3
2

1 3
2

2 2 5
2

3
1 2 2 2 3 3 4
3
2

2 7
2

3 4 9
2

6
2 2 3 4 4 5 6
2 3 4 4 6 6 8
5
2

3 9
2

5 6 15
2

9
3 4 6 6 8 9 12

1

C

C

C

C

C

C

C

A

~m

(q)~m

. (5.1.18)

These examples punctuate the fact that fermionic expressions are indeed not
unique.

Furthermore, realize that there exists a fixed matrix, depending on the form of
representation one has chosen, for a given model that did not change by varying the
r- or s-values: compare e.g. the matrices in (5.1.7), (5.1.10), (5.1.14) and (5.1.17).
Note the fact that the occurring 7×7 matrix equals the inverse of the Cartan matrix
CE7 (see figure C.4 in appendix C).

Although there exist many individual examples, generalized identities that hold
for all r- and s-values still remain to be found.

Another way of linking different character expressions is given by an additional
symmetry property [Byt99a], namely

χαp,p′

αr,s (q) = χp,αp′

r,αs (q) . (5.1.19)

Evaluating both sides with the introduced procedure from [Wel05], (5.1.19) consti-
tutes a simple possibility to relate representations of different dimensionality.

Thus, for example, (5.1.19) implies due to [Byt99b]

χ6,5
n,3 = χ15,2

1,3n for n ∈ {1, 2} (5.1.20)

for the Three-State Potts model associated with M(6, 5) [Dot84], i.e. the next
unitary minimal model after the Tricritical Ising model, which has been introduced
in section 3.1.1.
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Setting n = 1, this relates the expressions

χ6,5
1,3 =

∞∑

~m=0

~m≡

„

1
0
0

«

(mod 2)

q

~mt

0

B

@

1
2

− 1
4

0

− 1
4

1
2

− 1
4

0 − 1
4

1
2

1

C

A
~m+

 

0
− 1

2
0

!t

~m− 1
2

(q)m1

[1
2
(m1 +m3 + 1)

m2

][1
2
m2

m3

]
=

(5.1.21)

χ15,2
1,3 =

∞∑

~m=0

q

~mt

0

B

B

@

1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

1

C

C

A

~m+

0

B

B

@

0
0
1
2
3
4

1

C

C

A

t

~m

(q)~m
. (5.1.22)

Note that the matrices occuring in (5.1.21) and (5.1.22) are the Cartan matrix
CA3 (see figure C.1 in section C in the appendix) and the inverse of the Cartan
matrix CT6 associated with the tadpole diagram (see figure C.6 in section C in the
appendix), respectively.

It is a peculiarity in [Wel05] that the Cartan matrix CAn for an arbitrary n
appears in many fermionic character expressions as we have already noticed in
the expression for the minimal model M(5, 4). Naturally, the inverses of Cartan
matrices are expected.

5.1.4. Possible Connections to the W-algebra Characters

In this context, we mention an attempt to link these fermionic character expressions
for minimal models to the ones for W-algebras. The c2,1 model formally matches
the c6,3 minimal model due to its occuring highest weights. But since only coprime
values for p and p′ are allowed, we tried to obtain the right expression with the
help of the limiting process limn→∞(M(n, 2n + 1)) yielding in the limit the same
continued fraction as the c2,1 model: We hoped for a matrix with finite dimension,
but this procedure failed, since the dimension of the corresponding matrix increases
to infinity during the sequence. This result can also be anticipated by analyzing the
continued fraction.

Let us summarize our yet obtained results:
While the analysis of the fermionic expressions due to [Wel05] gave us a manifold
insight into the generic structure of these characters, especially into symmetries
that could be relevant for the following approaches, unfortunately, we did not find
any concrete hint, which would have led us directly to the fermionic character
expressions of the cp,1 models that we will discuss in the next sections.

5.2. Fermionic Characters of the cp,1 Series

We present fermionic sum representations for all characters of all cp,1 models. All
of them consist of only one fundamental fermionic form. In this section, we first
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present in detail the fermionic expressions for the case p = 2 and then generalize to
p > 2.

5.2.1. The Case of p = 2

At the beginning, let us recall the bosonic character expressions for the case p = 2.

The Complete Set of the Bosonic c2,1 Characters

χ+
1,2 =

Θ1,2 + (∂Θ)1,2

2η
vacuum irrep V0 to h1,1 = 0 (5.2.1)

χ0,2 =
Θ0,2

η
irrep to h1,2 = −1

8
(5.2.2)

χ1,2 =
Θ1,2

η
indecomp. rep R0(⊃ V0) to h1,3 = 0 (5.2.3)

χ2,2 =
Θ2,2

η
irrep to h1,4 = 3

8
(5.2.4)

χ−
1,2 =

Θ1,2 − (∂Θ)1,2

2η
irrep to h1,5 = 1. (5.2.5)

When α→ 0, the general forms (3.2.22) and (3.2.23) lead to the character expression
(5.2.3) [Kau95, Flo97]. Actually, as we have already talked about in 3.2.2, there exist
two indecomposable representations, R0 and R1, which, however, are isomorphic to
each other and thus share the same character.

From the Bosonic to the Fermionic Expressions

Starting with the bosonic characters of the form
Θλ,k

η
=

Θλ,k

q
1
24 (q)∞

, it is straightforward

to derive the corresponding fermionic expressions. On the way, a key role is played
by the q-analogue of Kummer’s Theorem due to Cauchy [And84a], which is given
by

∞∑

n=0

qn2−nzn

(q)n

∏n
j=1(1− zqj−1)

=

∞∏

m=0

(1− zqm)−1 (5.2.6)

Setting z = qk+1 and dividing by (q)k, we obtain a nice representation for the inverse
of the Dedekind-η function2, namely

∞∑

n=0

qn2+nk

(q)n(q)n+k
=

1

(q)∞
, (5.2.7)

which is valid for k ∈ Z≥0 and known as the so-called Durfee rectangle identity.

2Strictly speaking, it is divided by q
1

24 here for a simpler calculation.

49



5.2. Fermionic Characters of the cp,1 Series

Let us now transform
Θλ,k

(q)∞
into its fermionic form:

Θλ,k

(q)∞
=

1

(q)∞

∞∑

−∞

q
(2kn+λ)2

4k (5.2.8)

=
1

(q)∞

(
∞∑

n=1

q
(2kn−λ)2

4k + q
λ2

4k +

∞∑

n=1

q
(2kn+λ)2

4k

)
(5.2.9)

=
1

(q)∞

(
∞∑

n=1

qkn2+λ2

4k
−nλ + q

λ2

4k +
∞∑

n=1

qkn2+λ2

4k
+nλ

)
(5.2.10)

=

(
∞∑

n=1

∞∑

m1=0

qm2
1+m12n

(q)m1(q)m1+2n
qkn2+λ2

4k
−nλ + q

λ2

4k

∞∑

m=0

qm2

(q)2
m

+
∞∑

n=1

∞∑

m2=0

qm2
2+m22n

(q)m2+2n(q)m2

qkn2+λ2

4k
+nλ

)
(5.2.11)

=

(
∞∑

0≤m1<m2
m1+m2≡0 (mod 2)

qm1m2+ k
4
(m2

1+m2
2)− k

2
m1m2+λ

2
(m1−m2)+ λ2

4k

(q)m1(q)m2

+ q
λ2

4k

∞∑

m=0

qm2

(q)2
m

+

∞∑

0≤m2<m1
m1+m2≡0 (mod 2)

qm1m2+ k
4
(m2

1+m2
2)− k

2
m1m2+λ

2
(m1−m2)+ λ2

4k

(q)m1(q)m2

)
(5.2.12)

= q
λ2

4k

(
∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

λ
−λ

”t
~m

(q)m1(q)m2

)
. (5.2.13)

At first, we have used (5.2.7) three times in line (5.2.11), twice with k = 2n and
once with k = 0, and afterwards, we have set m2 + 2n = m1 and m1 + 2n =
m2, respectively, in line (5.2.12). The same transformation can be accomplished
analogously for the case, which includes the restriction m1 + m2 ≡ 1 (mod 2).
Accordingly, we obtain the final result, the sum-restricted r-fold q-hypergeometric
series

Λλ,k(τ) =
Θλ,k(τ)

η(τ)

=
∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

λ
−λ

”t
~m+ λ2

4k
− 1

24

(q)~m

(5.2.14)

=

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

„

−(k−λ)
k−λ

«t

~m+ (k−λ)2

4k
− 1

24

(q)~m
(5.2.15)

with (q)~m =
∏r

i=1(q)mi
, r = 2 [KMM93].3 This serves for (5.2.2) to (5.2.4) and

is in agreement with Nahm’s conjecture (see e.g. [Nah04]), which predicts that for

3Note that (5.2.14) is not unique as well as (B.2.1) is not: According to (B.2.2), the vector may
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a matrix of the form A = 1
2

“

α 1−α
1−α α

”

with rational coefficients, there exist a vector
~b ∈ Qr and a constant c ∈ Q such that (6.2.1) is a modular function.

The fermionic expressions of the remaining two characters may be calculated as
follows: By using

(∂Θ)1,2

η3(q)
= 1 and the easily proven identity

η(q) = q
1
24

∞∑

n=0

(−1)nq(
n+1

2 )

(q)n

(5.2.16)

by Euler (see e.g. [And84a]), which implies that

η2(q) = η̃2(q,−1) with η̃2(q, z) =

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m+ 1

12 zm1+m2

(q)~m
, (5.2.17)

and by using furthermore the relation

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m

(q)~m
=

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m

(q)~m
(5.2.18)

the remaining two characters also yield expressions which consist of only one fun-
damental fermionic form. The last step follows essentially from

∞∑

m=0

qm(m+1)/2

(q)m
=

1

2

∞∑

m=0

qm(m−1)/2

(q)m
. (5.2.19)

The Complete Set of the Fermionic c2,1 Characters

The following is a list of the fermionic expressions for all five characters of the LCFT
model corresponding to central charge c2,1 = −2:

χ+
1,2 =

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m+ 1

12

(q)~m

(5.2.20)

χ0,2 =

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m− 1

24

(q)~m
(5.2.21)

χ1,2 =
∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m+ 1

12

(q)~m
(5.2.22)

χ2,2 =
∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+

“

1
−1

”t
~m+ 11

24

(q)~m

(5.2.23)

χ−
1,2 =

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m+ 1

12

(q)~m
. (5.2.24)

be changed in certain ways along with the constant.
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Using the equality to the bosonic representation of the characters, these give
bosonic-fermionic q-series identities generalizing the left and right hand sides of
(4.2.5) and (4.2.6). In (5.2.21) to (5.2.23), also the last line of (5.2.14) may be used,
where m1 +m2 ≡ 1 (mod 2).

It is remarkable that, although two of the bosonic characters have inhomoge-
neous modular weight, there exists a uniform fermionic representation for all five
characters with the same matrix A in every case. But on the other hand, this is a
satisfying result, since this is also the case for all other models for which fermionic
character expressions are known: Their different modules are only distinguished by
the linear term in the exponent, not by the quadratic one.

The fact that the quadratic form is diagonal fits well in the description of the
c = −2 model in terms of symplectic fermions (see section 7.6) forming an SU(2)
doublet here (cf. 7.6). Thus, it will become clear in the next section that the matrix
A for the case p = 2 can be understood as the degenerate inverse Cartan matrix of
the series of Lie algebras Dp corresponding to the group SO(4) or SU(2)× SU(2),
respectively (see section C in the appendix).

5.2.2. The Case of p > 2

We now generalize the results of the foregoing section to p > 2 and present fermionic
sum representations for all characters of the LCFT models corresponding to central
charge cp,1. All of them consist of a single fundamental fermionic form. This can be
ranked as the central result of this thesis, which also constitutes the main ingredient
of our published article [FGK07].

As already indicated, the matrix A in the case of p = 2 can be understood as
the degenerate inverse Cartan matrix of the series of Lie algebras Dp (see section
C in the appendix). And indeed, generalizing to the case p > 2, the inverse Cartan
matrix of the Lie algebra Dp corresponding to a fixed p shows up in the fermionic
character expressions.

The Complete Set of the Fermionic cp,1 Characters (p > 2)

The fermionic character expressions for the cp,1 models4, which we checked numer-
ically up to k = 5 and high order and assume them to hold for k > 5, can be
expressed as follows and their q-series expansions equal the bosonic character ex-
pressions in fact (cf. (3.2.18)-(3.2.23)), the latter being redisplayed on the r.h.s. for

4This means the characters and not the torus vacuum amplitudes (3.2.22) and (3.2.23). Note
that lim

α→0
χ̃+

λ,k = lim
α→0

χ̃−

λ,k = χλ,k for 0 < λ < k.
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convenience:

χλ,k =

∞∑

~m=0
mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~bt

λ,k ~m+c?
λ,k

(q)~m
=
Θλ,k

η
(5.2.25)

χ+
λ′,k =

∞∑

~m=0
mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~b′

+t

λ′,k ~m+c?
λ′,k

(q)~m
=

(k − λ′)Θλ′,k + (∂Θ)λ′,k

kη

(5.2.26)

χ−
λ′,k =

∞∑

~m=0
mk−1+mk≡1 (mod 2)

q
~mtC−1

Dk
~m+~b′

−t

λ′,k ~m+c?
k−λ′,k

(q)~m
=
λ′Θλ′,k − (∂Θ)λ′,k

kη
(5.2.27)

for 0 ≤ λ ≤ k and 0 < λ′ < k, where k = p since p′ = 1 and (~bλ,k)i = λ
2
(±δi,k−1∓δi,k)

for 1 ≤ i ≤ k, (~b′
+

λ′,k)i = max{0, λ′− (k− i− 1)} for 1 ≤ i < k− 1 and (~b′
+

λ′,k)i = λ′

2

for k − 1 ≤ i ≤ k, (~b′
−

λ′,k)i = (~b′
+

k−λ′,k)i and c?λ,k = λ2

4k
− 1

24
. Note the fact that the

restriction mk−1+mk ≡ 1 (mod 2) may also be used in (5.2.25), but then the vector

and the constant change to ~bk−λ,k and c?k−λ,k, respectively, by virtue to (5.2.14).

The matrix A = C−1
Dp

for p ≥ 3 is of the form

C−1
Dp

=
1

4




4 4 . . . 4 2 2
4 8 . . . 8 4 4
...

...
. . .

...
...

...
4 8 . . . 4p− 8 2p− 4 2p− 4
2 4 . . . 2p− 4 p p− 2
2 4 . . . 2p− 4 p− 2 p




. (5.2.28)

Building such a matrix you have to start down right, i.e. C−1
D3

with p = 3, for
example, is of the form

C−1
D3

=
1

4




4 2 2
2 3 1
2 1 3


 . (5.2.29)

In this form it is obvious that C−1
D3

indeed equals C−1
A3

as is evident from the associ-
ated Dynkin diagrams in figure 5.2 (cf. the figures C.2 and C.1 in the appendix).
Furthermore, this coincidence implicates the fact that various fermionic expressions,
which correspond to different A-D-E-T series, may bear relation to each other and
hence presumably culminate in a diversity of interpretation.

Thus, as in the previous section, the p × p matrix A = C−1
Dp

is the same for all
characters corresponding to a fixed p, i.e. for all characters of exactly one selected
cp,1 model. This is in agreement with previous results on fermionic expressions,
since it is known to also be the case for the characters of a given minimal model
(see section 5.1). Note that in [KKMM93a], fermionic expressions for the characters
of the free boson with central charge c = 1 and compactification radius r =

√
p
2
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Figure 5.2.: The coinicdence of the Dynkin diagrams of A3 and D3

[Gin88b] have been obtained. Those characters equal (5.2.25). Thus, some of the
expressions in (5.2.25) already appeared in [KKMM93a], but only for λ = 0 and

λ = k and only for the special case ~b = ~0.

5.3. Fermionic Characters of the W(2, 3k)-algebras

For the purpose of giving fermionic expressions for the characters associated with the
W(2, 3k)-algebras here, let us recall the fermionic expression for Λλ,k from (5.2.14)
here:

Λλ,k(τ) =
Θλ,k(τ)

η(τ)

=
∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

λ
−λ

”t
~m+ λ2

4k
− 1

24

(q)~m

=
∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

„

−(k−λ)
k−λ

«t

~m+ (k−λ)2

4k
− 1

24

(q)~m

(5.3.1)

Using this, the bosonic character from (3.3.7) corresponding to the representation
to hmin can be rewritten as

χW
k+1 =

1

2
(Λ0,k(τ) + Λ0,k+1(τ)) (5.3.2)

= q−
1
24

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m
+ q

1
4

~mt
“

k+1 1−k
1−k k+1

”

~m

2(q)~m

(5.3.3)

= q−
1
24

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

−k
k

”t
~m+ k

4 + q
1
4

~mt
“

k+1 1−k
1−k k+1

”

~m+ 1
2

“

−k−1
k+1

”t
~m+ k+1

4

2(q)~m
.

(5.3.4)
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So, for example, the character χW
5 with k = 4 can now be written in the following

fermionic-like form:

χW
5 =

1

2
(Λ0,4(τ) + Λ0,5(τ)) (5.3.5)

=

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt
“

2 −1
−1 2

”

~m− 1
24 + q

1
4

~mt
“

5 −3
−3 5

”

~m− 1
24

2(q)~m
(5.3.6)

=

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
2

~mt
“

2 −1
−1 2

”

~m+
“

−2
2

”t
~m+ 23

24 + q
1
4

~mt
“

5 −3
−3 5

”

~m+ 1
2

“

−5
5

”t
~m+ 29

24

2(q)~m
.

(5.3.7)

In general, it seems that the expressions like (5.3.6), involving the restriction
that m1 + m2 has to be even, are simpler to handle, since both summands in the
numerator share the same offset.

Having set the first occurring matrix

A =
1

4

(
k 2−k

2−k k

)
(5.3.8)

and the second one

A′ = A+
1

4

(
1 −1

−1 1

)
= A +B , (5.3.9)

an attempt to fuse both matrices into one is given by

∞∑

~m=0
m1+m2≡0 (mod 2)

q ~mtA~m + q
~mt
“

A+ 1
4

“

1 −1
−1 1

””

~m

2(q)~m

=

∞∑

~m=0
m1+m2≡0 (mod 2)

q ~mtA~m + q ~mtA~m+~mtB ~m

2(q)~m

=
∞∑

~m=0
m1+m2≡0 (mod 2)

q ~mtA~m

2(q)~m

(
1 + q ~mtB~m

)
. (5.3.10)

Although there exist some nice ideas to go on, involving a relabeling of the sum-
mation indices, e.g. only summing over the even mi or over the odd mi, respectively,
there seems to be no apparent way to reshape it into a fermionic expression, which
consists of only one fundamental fermionic form, that looks like

∞∑

~m=0

q ~m†Ak ~m+b~m+c

2(q)~m
. (5.3.11)
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5.4. More Fermionic Forms

Some of the summands of the bosonic character expressions of the triplet algebras
W(2, 2p− 1, 2p− 1, 2p− 1) resemble the Kač-Peterson characters of the affine Lie

algebra A
(1)
1 [KP84]. Fermionic expressions for those characters are known, but

most of them are not of fundamental fermionic form type. We display in short the
known fermionic expressions and present new fermionic expressions of fundamental
fermionic form type below.

Besides the already introduced symmetry structures of the Virasoro algebra or
W-algebras, there exist other symmetries that give rise to a new formulation of the
fundamental fermionic forms:
In [HHT+92] such a new formulation was introduced for the SU(2) Wess-Zumino-
Witten (WZW) CFT, which is based on the Yangian symmetry, i.e. it uses in-
variance under the Yangian Y (sl2) to specify a spectrum in terms of multi-spinon
states. Thus, the Hilbert space of the theory is obtained by repeated application of
modes of the so-called spinon-field, which has SU(2) spin j = 1

2
and obeys fractional

(semionic) statistics. This spinon formulation of the SU(2)1 WZW model has been
worked out in [BPS94, BLS94b, BLS94a], until it has been generalized to higher
levels in [BLS95].

The mentioned Yangian Y (L) associated to a Lie algebra L is a Hopf algebra
which is neither commutative nor cocommutative and thus can be viewed as a non-
trivial example of a quantum group [Dri85]. Furthermore, it is interesting to note
in this context that the correlation functions of the spinon-field can be derived via
the celebrated Knizhnik-Zamolodchikov equation [KZ84].

At first, note the fermionic expressions for the irreducible integrable representa-
tions of A

(1)
1 at level k − 2 [BLS95]

(∂Θ)λ,k(τ)

η3(τ)
=

∞∑

m1,...,mk−1=0
restrictions

q ~mtBk ~m+c]
λ,k

(q)m1(q)m2

k−1∏

i=3

[
d(1

2
(2− CAk−2

)~m′)i−1e
mi

]
(5.4.1)

for 0 < λ < k with ~m′t = (m1 +m2, m3, m4, . . . , mk−1) and

4Bk = Ck + CAk−1
, (Ck)ij =





−1 if i + j is even and i+ j ≤ 4

2 if i + j is odd and i + j ≤ 4

0 if i + j > 4

, (5.4.2)

where CAk
is the Cartan matrix of the Lie algebra Ak

∼= s`k+1 (see section C in

the appendix) and c]λ,k = 2λ2+k−2kλ
8k

. Given any x ∈ R, dxe and bxc mean the
next integer greater than or equal to x and the next integer less than or equal
to x, respectively. The following restrictions hold for the sum variables: (~m′)i =

( ~Q)i (mod 2) with ~Q = ((
∑bλ

2
−1c

j=0 δi,λ−(2j+1))i : i ∈ {1, . . . , k − 2}) ∈ (Z2)
k−2, i.e.

~Q is either of the form (1, 0, 1, 0, . . . , 1, 0, 0, 0, . . . , 0) if λ is odd or of the form
(0, 1, 0, 1, . . . , 1, 0, 0, 0 . . . , 0) if λ is even.5

5The number and the placement of entries 1 in the latter vector may be changed in certain ways,
but then an inner product ~bt ~m with the k − 1-component vector ~bt = ( 1

2
,− 1

2
, 0, . . . , 0) has to

be added to the quadratic form in the numerator of (5.4.1).
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For λ = 1 and λ = k−1, there exists another expression. In both cases, it consists
of a single fundamental fermionic form without sum restrictions and has 2(k − 2)
different sum indices.

For λ = 1, it reads [FS93a]

(∂Θ)1,k(τ)

η3(τ)
=

∞∑

~m=0

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+c[

1,k

(q)~m

, (5.4.3)

where CA2 is as above, C−1
Tk

is the inverse of the k × k Cartan matrix associated

with the tadpole Dynkin diagram6 and the constant c[λ,k = λ2

4k
− 1

8
.

For λ = k − 1, we present the following fermionic expression:

(∂Θ)k−1,k(τ)

η3(τ)
=

∞∑

~m=0

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+(~a2⊗~bk−2)

t ~m+c[
k−1,k

(q)~m

(5.4.4)

with ~at
2 = (1,−1) and ~btk = (1, 2, 3, . . . , k). It has been checked numerically up to

k = 4 and high order and is assumed to hold for higher values of k.
For example,

χ+
3,4(τ) =

Θ3,4(τ) + (∂Θ)3,4(τ)

4η(τ)
(5.4.5)

with

Θ3,4(τ)

η(τ)
=

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt
“

2 −1
−1 2

”

~m+ 1
2

“

3
−3

”t
~m+ 25

48

(q)~m
(5.4.6)

and

(∂Θ)3,4(τ)

η(τ)
=

∞∑

~m=0

q

1
2

~mt

0

B

B

B

@

1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 −1 2 −1
0 0 −1 2 −1 2
0 0 2 −1 4 −2
0 0 −1 2 −2 4

1

C

C

C

A

~m+

0

B

B

B

@

1
1
1

−1
2

−2

1

C

C

C

A

t

~m+ 7
16

(−1)m1+m2

(q)~m
(5.4.7)

or, equivalently,

(∂Θ)3,4(τ)

η(τ)
=

∞∑

~m=0
m3+m4≡0 (mod 2)

m5≡1 (mod 2)

q

1
4

~mt

0

B

@

2 0 0 0 0
0 2 0 0 0
0 0 1 1 −1
0 0 1 1 −1
0 0 −1 −1 2

1

C

A
~m+ 1

2

0

B

@

1
1
0
0
0

1

C

A

t

~m+ 1
48

(−1)m1+m2

∏4
i=1(q)mi

[
m3+m4

2

m5

]

q

.

(5.4.8)
A single fundamental fermionic form for the character χ+

3,4(τ) is given in section
5.2.2.

6The CTk
Cartan matrix differs from the CAk

Cartan matrix only by a 1 instead of a 2 in the
lower right corner.
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6. Dilogarithms and Modular
Functions

As we have shown, there exists a variety of bosonic-fermionic q-series identities, of
which the Rogers-Ramanujan identities constitute the archetype. In other words,
these identities justify an overlap between the classes of q-hypergeometric functions
and modular forms or functions, i.e. (complex) analytic functions on the upper
half-plane satisfying a certain kind of functional equations.

A first effort to shed some light on these coherences mysteriously involves diloga-
rithms1, due to Nahm’s conjecture [Nah04]. Let us motivate the following discussion
with two examples 6.1.1 and 6.1.2, which should be already familiar to the mindful
reader.

6.1. q-Hypergeometric Series

Let us start with the two power series from (4.0.12)

F1(q) =
∞∑

n=0

qn2

(q)n
(6.1.1)

and

Fq(q) =

∞∑

n=0

qn2+n

(q)n
(6.1.2)

with |q| < 1. As we have already shown in section 4, F1(q) and Fq(q) provide infinite
product expansions (4.0.13) and (4.0.15), which can be rewritten to the form

F1(q) =
∏

n≡±1 (mod 5)

1

1− qn
(6.1.3)

and

Fq(q) =
∏

n≡±2 (mod 5)

1

1− qn
, (6.1.4)

respectively.
It is important to note that these both are modular functions, up to rational powers
of q.

1The aspect of Bloch groups, which is also involved, should not be of interest to us here.
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6.2. Nahm’s Conjecture

By using again Jacobi’s triple product identity (see (4.2.4)) to achieve fermionic
sum representations and taking into account the mentioned rational powers, we get

q−
1
60F1(q) =

q−
1
60

(q)∞

∑

n∈Z

(−1)nq
5n2+n

2

=
Θ5,1(q)

η(q)
(6.1.5)

and

q
11
60Fq(q) =

q
11
60

(q)∞

∑

n∈Z

(−1)nq
5n2+3n

2

=
Θ5,2(q)

η(q)
, (6.1.6)

where q is defined as usual, η(q) being the Dedekind η-function and

Θ5,j(q) =
∑

n≡2j−1 (mod 10)

(−1)[ n
10

]q
n2

40 (6.1.7)

being a modified Θ-function [Zag06].
In this form, it is striking that the expressions in the second lines of (6.1.5) and

(6.1.6), respectively, are indeed modular functions, since η(z), Θ5,1(z) and Θ5,2(z)
are all modular forms of weight 1

2
. This means that they are invariant under z 7→

az+b
cz+d

for all matrices (a b
c d) that belong to some subgroup of finite index of SL(2,Z),

even invariant under the full modular group if we combine them into a single-vector
valued function (see [Zag06] for details).
The functions F1(q) and Fq(q) are examples of so-called q-hypergeometric series.
They are special in the sense that they belong to the very few q-hypergeometric
series, which are also modular. The problem of stating under which circumstances
such a combination occurs in general is a fascinating and yet unsolved question.
The next section is devoted to Nahm’s conjecture, which relates the answer of this
question in a very special case to dilogarithms and rational conformal field theories.

6.2. Nahm’s Conjecture

Nahm’s conjecture deals with certain r-fold q-hypergeometric series, i.e. they are
similar to the two examples (6.1.1) and (6.1.2), but the sum runs over a multi-
index (Z≥0)

r similar to (4.1.1) now instead of only over Z≥0. Therefore, we define
a function fA,~b,c(τ) by the r-fold q-hypergeometric series (cf. (5.1.3))

fA,~b,c(τ) =
∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

(q)~m
, (6.2.1)

Nahm’s conjecture does not answer the posed question completely, but predicts
which matrices A can occur. Let A = Aij = Aji be a positive definite symmetric
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Chapter 6. Dilogarithms and Modular Functions

r× r matrix with rational entries. Then the conjecture makes a prediction whether
for this A there exist ~b and c such that (6.2.1) is a modular function.2

The main motivation for this conjecture actually comes from physics:
One expects that all the modular functions fA,~b,c obtained in this manner are char-
acters of rational CFTs.

6.2.1. Examples

The following examples for the two simplest cases r = 1 and r = 2 in (6.2.1) support
Nahm’s conjecture:

1. Rank one examples
All parameters are A,~b an c are rational numbers. There are exactly seven
cases known, where fA,~b,c is a modular function:

A ~b c
1 0 −1/60
1 1 1/60

1/2 0 −1/48
1/2 1/2 1/24
1/2 −1/2 1/24
1/4 0 −1/40
1/4 1/2 1/40

(6.2.2)

Already familiar to us are the first two cases that are the modular functions,
which emanate from the Rogers-Ramanujan identities in section 6.1.

2. Rank two examples
22 individual matrices, namely

1

2
(2 1
1 1) ,

1

2
(4 1
1 1) , (2 1

1 1) ,
1

2
(4 3
3 3) ,

1

2
(8 3
3 2) ,

1

2
(8 5
5 4) ,

1

2
(11 9

9 8) ,
1

2
(24 19
19 16) ,

1

4
(4 2
2 3) ,

1

4
(5 4
4 4) ,

1

6
(8 1
1 2) (6.2.3)

and their inverses multiplied by two are possible examples. Except for 1
2
(24 19
19 16),

found in [Zag06], all of these examples originate from [Ter95]. In addition,

three infinite families have been found in [Zag06]. Several values of ~b and c,
for which the function fA,~b,c is modular, have yet been found for the following
matrices only

1

2

(
α 1−α

1−α α

)
,

1

2
(2 1
1 1) ,

1

2
(4 1
1 1) , (2 1

1 1) ,
1

4
(4 2
2 3) ,

1

6
(4 2
2 4) , (6.2.4)

the first matrix being one of the three infinite families and the last one a
concrete example that arises from another infinite family. The infinite family

2The constant c is not to be confused with the central charge cp,p′ .
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corresponding to the matrix 1
2

(
α 1−α

1−α α

)
is of special interest to us, since it

provides the modular function

f 1
2

“

α 1−α
1−α α

”

,( αν
−αν), α

2
ν2− 1

24

(τ) =
1

η(τ)

∑

n∈Z+ν

q
αn2

2 (6.2.5)

with all ν ∈ Q. This can even be simply proved by using the identity

∑

m,n≥0
m−n=r

qmn

(q)m(q)n
=

1

(q)∞
r ∈ Z , (6.2.6)

To conclude we mention that this last example with the matrix of the form
1
2

(
α 1−α

1−α α

)
is directly associated with the fermionic sum representations of the mod-

ular forms
Θλ,k(τ)

η(τ)
of weight zero.

6.3. Dilogarithm Identities for our cp,1 Series

In certain conformal field theory models it was observed that the central charge can
be expressed through the dilogarithm evaluated at certain algebraic numbers. In
particular, if the fermionic representation of a CFT character is known, dilogarithm
identities can be extracted. The number d is then the effective central charge ceff

of the CFT and is fixed by the properties of the character χ(q) with respect to
modular transformations. On the other hand, that number can also be obtained
from the fermionic representation through saddle point analysis (see e.g. [NRT93]).
Equality of those two expressions gives the often non-trivial dilogarithm identities.

These mentioned procedures are applied to our cp,1 models to support the
fermionic character expressions we derived in section 5.2.2 even more:
We show in this section that it is possible to correctly extract dilogarithm identities
from them. The effective central charge of the given LCFT model should be ex-
pressible as a sum of dilogarithm functions evaluated at certain algebraic numbers,
where these numbers are determined by the matrix A in the quadratic form in the
exponent of the fermionic character expression.

In general, dilogarithm identities are relations of the form

1

L(1)

N∑

i=1

L(xi) = d (6.3.1)

with xi an algebraic, d a rational number, N being the size of the matrix A in
the fermionic form, and L being the Rogers dilogarithm (see e.g. [Lew58, Lew81]),
defined for 0 < x < 1 by

L(x) =

∞∑

n=1

xn

n2
+

1

2
ln(x)ln(1− x) . (6.3.2)

The Rogers dilogarithm admits an analytic continuation on the complex plane as
a multivalued analytical function of x. The dilogarithm and its generalization, the
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Chapter 6. Dilogarithms and Modular Functions

polylogarithm, appear in a lot of branches of mathematics and physics (see e.g.
[Kir95] and section B.4 in the appendix).

Dilogarithm identities for the central charges and conformal dimensions exist for
at least large classes of rational CFTs. It is conjectured [NRT93] that all values of
the effective central charges occurring in non-trivial rational CFTs can be expressed
as one of those rational numbers that consist of a sum of an arbitrary number of
dilogarithm functions evaluated at algebraic numbers from the interval (0, 1). Thus,
the study of dilogarithm identities arising from CFTs, e.g. the set of effective central
charges that can be expressed with a fixed number N in (6.3.1), gives further insight
into the classification of all rational CFTs.

Let us now go into detail with respect to the cp,1 models:
The effective central charge is a quantity originating from the properties of the CFT
characters with respect to modular transformations. It is the same for all p of the
LCFTs corresponding to central charge cp,1 and it is given by

cp,1
eff = cp,1 − 24hp,1

min = 1 . (6.3.3)

The xi in (6.3.1) are obtained by using the common saddle point analysis pro-
cedure (see e.g. [NRT93]), implying that the place of d in (6.3.1) is taken by the
effective central charge of the conformal field theory in question. This leads to a set
of algebraic equations

xi =

N∏

j=1

(1− xj)
Aij+Aji (6.3.4)

that determine the xi, with A = C−1
Dp

in the case of W(2, 2p− 1, 2p− 1, 2p− 1).
Although those cp,1 theories are non-minimal models on the edge of the conformal

grid, it is still possible (numerically solving (6.3.4)) to correctly extract the well-
known infinite set of dilogarithm identities

1

L(1)

(
2 L(

1

p
) +

p−1∑

j=2

L(
1

j2
)

)
= 1 ∀ p ≥ 2 (6.3.5)

(which can be found in [Kir92] and references therein). This supports the fermionic
sum representations presented in section 5.2.2 for the characters of the W(2, 2p −
1, 2p− 1, 2p− 1) triplet algebras even more.

In particular, the effective central charge of the logarithmic conformal field theory
corresponding to central charge c = −2 is given by

c2,1
eff = c2,1 − 24hmin = 1 (6.3.6)

Again, it is possible to extract the following dilogarithm identity

L(
1

2
) =

π2

12
, (6.3.7)

which is a special case of the well-known identity

L(x) + L(1− x) =
π2

6
. (6.3.8)
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Finally, note the connection between the dilogarithm identities and the A-D-E(-T)
classification (cf. section C in the appendix), which has been established in [GT95]
and is furthermore related to the Andrews-Gordon identities, which have been in-
troduced in (4.1.1).
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7. The Quasi-Particle Interpretation

As mentioned above, fermionic sum representations of characters admit an inter-
pretation in terms of fermionic quasi-particles, as shown in [KM93, KKMM93a,
KKMM93b]. The discussion of the Bose-Fermi correspondence for the minimal
models, i.e. the underlying symmetry algebra is the Virasoro algebra, is based on
these results in order to clarify the physical picture. Afterwards, remarks on the
triplet W-algebra are made.

Let us shortly recall the most important facts concerning the two different rep-
resentations, i.e. the bosonic and the fermionic one: The occurrence of a factor
(q)∞ in the denominator arises naturally in the construction of Fock spaces using
bosonic generators. Encoded by the numerator, these spaces are then truncated in a
particular way. The interpretation as partition functions requires these expressions
to be modular covariant, which is easily achieved for the bosonic side by expressing
the characters in terms of Θ-functions as done in (3.1.17).

In contrast, the fermionic representations possess a remarkable interpretation in
terms of quasi-particles for the states, obeying Pauli’s exclusion principle, which we
start to discuss now.

7.1. Fundamental Fermionic Forms

The general fermionic character expression is a linear combination of fundamental
fermionic forms. The characters of various series of rational CFTs, including the cp,1

series, can be represented as a single fundamental fermionic form [Wel05, BMS98,
DKMM94]. Let us recall the already defined fundamental fermionic form from
(5.1.1):

∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

∏j
i=1(q)i

r∏

i=j+1

[
g(~m)

mi

]

q

(7.1.1)

with A being a real N × N matrix here, where N now stands for the number of
species, ~b being a vector which needs to be specified for a particular theory. The
multi-summation may be restricted in some way provoking that certain particles
may only appear together with certain other particles. We will explain that for the
cp,1 models in section 7.4 and section 7.5. A possible constant c does not matter in
this context and hence is omitted. The q-binomial coefficient does not necessarily
need to appear. Since we will analyze its physical relevance in the next section,
we recall the definition of the q-binomial coefficient (see also section A.2 in the
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7.2. The Quasi-Particle Spectrum

appendix) for integers n and m

[
n
m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
(7.1.2)

and abbreviate the limit n→∞ as
[
∞
m

]
q

= 1
(q)m

for m ≥ 0.

Thus, the two constitutional versions of the fundamental fermionic form, i.e. with
q-binomial coefficients occurring or without, respectively, leads in the former case to
a finite and in the latter case to an infinite spectrum for the corresponding particle
species.

7.2. The Quasi-Particle Spectrum

For the quasi-particle interpretation, the characters are regarded as partition func-
tions Z

χ ∼ Z =
∑

states

e−
Estates

kT =

∞∑

l=0

P (El)e
−

El
kT (7.2.1)

with T being the temperature, k the Boltzmann’s constant, El the energy and P (El)
the degeneracy of the particular energy level l. The energy spectrum consists of all
the excited state energies, with the groundstate energy scaled out, that are given
by

El = Eex − EGS =

N∑

i=1

mi∑

α=1
restrictions

e(pi
α) (7.2.2)

and the momenta of the states are given by

Pex =

N∑

i=1

mi∑

α=1
restrictions

pi
α , (7.2.3)

where N denotes the number of different species of particles, mi the number of
particles of type i in the state, e(pi

α) the single-particle energy of the particle of type
i and the subscript restrictions indicates possible rules under which the excitations
may be combined.
(7.2.2) is referred to as a quasi-particle spectrum in statistical mechanics (see e.g.
[McC94]). Quasi means in this context that for example magnons or phonons have
other properties than real particles like protons or electrons (cf. chapter 1). And
in addition, the spectrum above may contain single-particle energy levels that are
different from the form, which is ubiquitous in relativistic quantum field theory
ei(p) =

√
M2

α + p2. For the quasi-particles to satisfy Fermi statistics, one requires
that one of the restrictions corresponds to the form of Pauli’s exclusion principle

pi
α 6= pi

β for α 6= β and all i , (7.2.4)

The connection to (5.1.1) is made more transparent with the help of combina-
torics: The number of additive partitions PM(N,N ′) of a positive integer N into M
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Chapter 7. The Quasi-Particle Interpretation

distinct1 non-negative integers which are smaller than or equal to N ′ is stated by
[Sta72]

∞∑

N=0

PM(N,N ′)qN = q
1
2
M(M−1)

[
N ′ + 1
M

]
, (7.2.5)

which in the limit N ′ →∞ takes the form

lim
N ′→∞

∞∑

N=0

PM(N,N ′)qN = q
1
2
M(M−1) 1

(q)M
. (7.2.6)

Applying (7.2.6) to the fermionic sum representation (6.2.1) leads to

r∏

i=1




∞∑

mi
restrictions

∞∑

N=0

Pmi
(N)qN+(bi+

1
2
)mi+

Pr
j=1 Aijmimj−

1
2
m2

i


 , (7.2.7)

where PM(N) = limN ′→∞ PM(N,N ′). The constant c has been omitted, since it
would just result in an overall shift of the energy spectrum.

If we now adopt massless single-particle energies

e(pi
α) = vpi

α (7.2.8)

(v referred to as the fermi velocity, spin-wave velocity, speed of sound or speed of
light), where pi

α denotes the quasi-particle α of ’species’ i (1 ≤ i ≤ r), and if in
(7.2.7) we set

q = e−
v

kT , (7.2.9)

we deduce that the partition function corresponds to a system of quasi-particles
that are of r different species and which obey the Pauli exclusion principle from
(7.2.4), but whose momenta pi

α are otherwise freely chosen from the sets

Pi =
{
pi

min, p
i
min + 1, pi

min + 2, . . . , pi
max

}
(7.2.10)

with minimum momenta

pi
min(~m) =

[
((A− 1

2
)~m)i + bi +

1

2

]
(7.2.11)

and with the maximum momenta pi
max either infinite if i ≤ j in (5.1.1) or, if i > j,

finite and dependent on ~m, ~b and g.
Since the fermionic character expressions we present for the cp,1 series of LCFTs
are all of the type (6.2.1), we will mostly deal with the case that all pi

max = ∞
here, i.e. the spectra are not bounded from above, and mention the alternative only
marginally. The former case means that a multi-particle state with energy El may
consist of exactly those combinations of quasi-particles of arbitrary species i, whose
single-particle energies e(pi) add up to El and where Pauli’s principle holds for

1The requirement of distinctiveness expresses the fermionic nature of the quasi-particles, i.e.
Pauli’s exclusion principle.
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any two quasi-particles of that combination unless they belong to different species.
Possible sum restrictions then result in the requirement that certain particles may
only be created in conjunction with certain others.

The latter case means that the possible particle momenta include some limits from
above due to the occurrence of q-binomial coefficients. Although these momentum
boundaries may seem artificial, the phenomenon that the momenta of the quasi-
particles, which correspond to an occurring q-binomial coefficient, are restricted to
take only a finite number of values for given ~m is a common occurence in quantum
spin chains.

7.3. The Decomposition of the Hilbert Space

For the sake of completeness, let us contrast the both Hilbert space decomposi-
tions, before we will make some remarks on the W-characters: With respect to the
Virasoro algebra it is straightforward to associate to each energy level some well-
defined set of fermionic quasi-particle momenta |p1

1, . . . , p
m1
1 , . . . , pmn

n 〉, which are in
one-to-one correspondence to the decomposition of the Hilbert space [BF97]

Hhr,s =
∞⊕

l=0

|hl
r,s〉 (7.3.1)

in form of the already familiar irreducible representations of the Virasoro algebra

L0|hr,s〉 = hr,s|hr,s〉 (7.3.2)

Li|hr,s〉 = 0 for i > 0 (7.3.3)

|hl
r,s〉 = L−n1L−n2 . . . L−nk

|hr,s〉 for ni > 0. (7.3.4)

Here l = n1 + n2 + · · · + nk denotes the lth level of the irreducible highest weight
module.

However, with respect to the chiral symmetry algebra W, the energy operator
L0 is - as we have already realized in section 3.2 - no longer diagonal on a highest
weight representation: It is given in a Jordan normal form with non-trivial blocks.
By taking into account the multiplets generated by screening operators Q, one can
construct exactly 2p regular representations of the triplet algebra [Flo96]. This
procedure leads to the W-modules

HW
n,+ =

∞⊕

j=0

2j−1⊕

m=0

QmH2j+1,n (7.3.5)

HW
n,− =

∞⊕

j=1

2j−2⊕

m=0

QmH2j,n (7.3.6)

with 1 ≤ n ≤ p.
The vacuum representation of theW-algebra can then be written as the following

decomposition of the Hilbert space:

H|0〉 =
⊕

k∈Z

(2k + 1)HVir
|h2k+1,1〉

. (7.3.7)
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Chapter 7. The Quasi-Particle Interpretation

In the next section, we want to investigate the corresponding vacuum character:
at first for the c = −2 model.

7.4. The c= − 2 Model

We start with the case of p = 2, i.e. c2,1 = −2. In contrast to the characters for
the minimal models, these characters are the traces over the representation modules
of the triplet W-algebra, instead of the Virasoro algebra only. However, although
highest weight states are labeled by two highest weights in this case, h and w as the
eigenvalues of L0 and W0 respectively, we consider only the traces of the operator
qL0−

c
24 . It turns out that these W-characters are given as infinite sums of Virasoro

characters, for example [Flo96]

χ|0〉 =

∞∑

k=0

(2k + 1)χVir
|h2k+1,1〉

. (7.4.1)

Let us now come to the vacuum character (5.2.20) for the c2,1 model, which
features the interesting sum restriction m1 + m2 ≡ 0 (mod 2) expressing the fact
that particles of type 1 and 2 must be created in pairs. Thus, the existence of one-
particle states for either particle species is prohibited. Therefore, the single-particle
energies must be extracted out of the observed multi-particle energy levels.

Applying (7.2.6) to the fermionic sum representation (5.2.20) of the vacuum char-
acter leads to

χ+
1,2 =

( ∞∑

m1=0

∞∑

N=0

Pm1(N)qN+m1

)( ∞∑

m2=0
m2≡m1 (mod 2)

∞∑

N=0

Pm2(N)qN+m2

)
, (7.4.2)

where the constant c has been omitted, since it would just result in an overall shift of
the energy spectra. Using massless single-particle energies (7.2.8) and setting (7.2.9)
in (7.4.2) then results in the partition function (7.2.1) corresponding to a system of
two quasi-particle species, with both species having the momentum spectrum N≥1,
i.e. a multi-particle state with energy El may consist of exactly those combinations
of an even number of quasi-particles, having momenta pi

α (i ∈ {1, 2}), whose single-
particle energies e(pi

α) add up to El and where the momenta pi
α ∈ N≥1 of each two

of the quasi-particles in that combination are distinct unless they belong to different
species, i.e. they respect the exclusion principle.

Formally, these spectra belong to two free chiral fermions with periodic boundary
conditions. Note in this context the physical interpretation in terms of symplectic
fermions (see section 7.6), free two-component fermion fields of spin one, which
generate the LCFT associated with c2,1 = −2.

7.5. The p > 2 Relatives

Besides the best understood LCFT with central charge c2,1 = −2, some general
remarks on its cp,1 relatives are alluded here to conclude this section.
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7.6. Symplectic Fermions

The restrictions mp−1 + mp ≡ Q (mod 2) (Q denotes the total charge of the
system) in (5.2.25) to (5.2.27) imply that the quasi-particles p−1 and p are charged
under a Z2 subgroup of the full symmetry of the Dp Dynkin diagram (see figure C.2
in the appendix), while all the others are neutral. This charge reflects the su(2)
structure carried by the triplet W-algebra such that all representations must have
ground states, which are either su(2) singlets or su(2) doublets. In principal, the
corresponding restrictions mp−1 +mp ≡ 0 (mod 2) and mp−1 +mp ≡ 1 (mod 2), as
well as the connected sectors, may be interchanged by virtue of a linear shift, thus
matching the singlet and doublet structure in any case.

In comparison to the c2,1 = −2 model, there exist p quasi-particles in each member
of the cp,1 series, exactly two of which can only be created in pairs, while the others
do not have this restriction.

These observations suggest the following conjecture:
The cp,1 theories might possess a realization in terms of free fermions such that they
are generated by one pair of symplectic fermions and p−2 ordinary fermions (figure
C.2 underlines this structure graphically). Such realizations are unknown so far,
except for the well-understood case p = 2, and are a very interesting direction of
future research.

The minimal momenta of the quasi-particles in the system are given in (7.2.11).
Contrary to the case of p = 2, the quasi-particles do not decouple here:
Hence, the minimal momenta for the quasi-particle species depend on the numbers
of quasi-particles of the different species in the state. But as in the case of p = 2,
the momentum spectra are not bounded from above.

7.6. Symplectic Fermions

Since the cp,1 model features – as mentioned above in this chapter – an interpretation
in terms of symplectic fermions, we summarize, for the sake of completeness, the
essential properties here, while the reader is referred to [Kau95] and [Kau00] for
more details.

The chiral algebra of the symplectic fermion model is generated by a free two-
component fermion field χα of conformal weight one, whose anti-commutator is
given by

{χα
n, χ

β
m} = ndαβδn+m , (7.6.1)

where dαβ is an anti-symmetric tensor, whose components are given by d±∓ = ±1.
The highest weight state Ω satisfies the relations

χα
nΩ = 0 ∀n ≥ 0 (7.6.2)

and hence generates the vacuum representation.
The relations

L−2Ω =
1

2
dαβχ

α
−1χ

β
−1Ω (7.6.3)

W a
−3Ω = taαβχ

α
−2χ

β
−1Ω , (7.6.4)
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Chapter 7. The Quasi-Particle Interpretation

where dαβ is the inverse to dαβ and taαβ are the matrix elements of the spin 1
2

representation of su(2), satisfy the triplet algebra, which is therefore contained.
Finally, let us consider the maximal generalized highest weight representation of

this chiral algebra that contains the vacuum representation. It is freely generated
by the negative modes χα

m with m < 0 from a four-dimensional space of ground
states. This space is spanned by two bosonic states Ω and ω, and two fermionic
states, θα, and the action of the zero-modes χα

0 is given as

χα
0ω = −θα (7.6.5)

χα
0 θ

β = dαβΩ (7.6.6)

L0ω = Ω . (7.6.7)
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8. Conclusion and Outlook

Motivated by Nahm’s conjecture, which predicts the existence of fermionic charac-
ter expressions consisting of a single fundamental form for each rational conformal
field theory, the aim of this thesis has been to find exactly those fermionic charac-
ters in the case of the logarithmic conformal field theories associated with central
charge cp,1. Although the form of these characters – involving indecomposable rep-
resentations and the triplet W-algebras, which are extended Virasoro algebras that
feature a triplet structure of primary fields [Kau91] – is kind of tricky, one has hoped
for the existence of the fermionic sum representations, since these theories are in a
generalized sense [GK96b, CF06] rational conformal field theories.

And in fact, we found a complete set of new fermionic expressions for the
characters of the logarithmic conformal field theories associated with central charge
cp,1 [FGK07], which constitutes our main achievement.

In addition, the following results provide further evidence for the well-definedness
of these cp,1 models:
It is remarkable that there exist fermionic quasi-particle sum representations with
the same matrix A (cf. (6.2.1)) for all characters of each cp,1 model, in spite of the
inhomogeneous structure of the bosonic character expressions in terms of modular
forms. In particular, the matrix A could be identified to be the inverse of the Cartan
matrix of the simply-laced Lie algebra Dp (cf. section C in the appendix and here
especially figure C.2), where p = 2 can be understood as the degenerate inverse
Cartan matrix of this series. Therefore, those expressions fit well into the known
scheme of fermionic character expressions for other conformal field theories.

Physically, this indicates that in each cp,1 model there exists a set of p−2 fermionic
quasi-particle species, the members of which may be combined without obeying any
restrictions except Pauli’s exclusion principle to obtain an arbitrary multi-particle
state, and additionally a set of two species, the members of which may only appear in
an even or odd number, depending on the sector of the theory. In all cases except
p = 2, the possible quasi-particle momenta obey non-trivial restrictions (7.2.11)
for their minimum momenta, depending on the numbers of quasi-particles of each
species in the state. Moreover, since the fermionic character expressions are of the
form (6.2.1) for all p ≥ 2, the momentum spectra are unbounded from above.

In particular, our conjecture regarding the realization of the p > 2 models in
terms of p − 2 ordinary fermions and one pair of symplectic fermions may be a
decisive hint for future research.

Being rational CFTs [GK96b, CF06], it is furthermore satisfying that the
fermionic character expressions of the outlined theories – although they are non-
minimal models on the edge of the conformal grid – lead correctly to a well-known

73



infinite set of dilogarithm identities, which supports the fermionic expressions for
the characters of the cp,1 models that are presented in this thesis even more.

The fermionic expressions of the W(2, 3k)-Algebras, which we presented in sec-
tion 5.3, still consist of more than one fundamental fermionic form:
Besides the already mentioned ansatz in (5.3.10), general relations for the Θ-
functions [Igu72, Akh90] could turn out to be useful for obtaining a fermionic ex-
pression that consists of only one fundamental fermionic form. The instructions
with regard to the spinon bases on how to construct the fermionic expressions for
the individual summands of the cp,1 models, may also be helpful for the construction
of other yet missing fermionic character expressions.
In this context, another exciting approach is given with respect to the formulation
in terms of crystal bases. An extensive introduction is given in [Kas95], where a rich
combinatorial structure, which is based on the investigation of quantized universal
enveloping algebras, emerges.
Interesting results, which constitute a link to fermionic expressions via quantum
affine Lie algebras and crystal paths, can be found in [KKM+92, HKK+98, HKK+99,
HKO+99] and in particular, quite recent results in [SS05].

To conclude, we want to put straight that the spinon and crystal bases are
only two additional options of the numerous avenues towards finding new general
fermionic expressions:
Therefore, we would like to touch on some other promising attempts that have kept
us busy during our studies by shortly listing the references and associated keywords:

� Bailey’s lemma and the proximate Bailey chain, which we have already men-
tioned in section 4.1: [Bai47, Bai51, SW99a, AB97].

� Directly connected to Bailey’s lemma [War02], the Hall-Littlewood functions
[DLT94, SW99b] and in particular the Kostka Polynomials [NR04, AKS05,
Dek06] mainly represent recent results.

� Fermionic expressions in the context of superconformal algebras [DS05] are in
this case also directly connected to Bailey’s lemma.
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Lohmann, Anne-Lỳ Do and particularly Holger Knuth, who has been a frequent
and gladly seen visitor of our office.

I also would like to thank Prof. Dr. Luis Santos, who agreed to be the second
reviewer of this thesis, although he currently does not have too much time on his
hand.

In the end, special thanks goes to the crew of the institute as a whole, who always
care for a friendly atmosphere and in particular to those who have joined our weekly
soccer program.

On the personal side, I am much obliged to my parents and sisters, who not only
supported me during my whole life, but also particularly with regard to hard times
at university.

And in recent times, I have been in the lucky position to share my weekends with
Antje, who always cheers me up and shows me that there also exists a life beyond
physics.





A. Important Definitions

.

A.1. The q-Pochhammer Symbol

The q-Pochhammer symbol, the q-analog of the Pochhammer symbol, is originally
defined by

(a; q)k =





∏k−1
j=0(1− aqj) if k > 0

1 if k = 0∏k
j=1(1− aq−j)−1 if k < 0∏∞
j=0(1− aqj) if k =∞

. (A.1.1)

For brevity, (a; q)k is often simply written (a)k Hence, (q; q)k takes the form (q)k

and we only need the definition

(q)k =
k∏

i=1

(1− qi), (A.1.2)

with (q)0 = 1 and (q)∞ = limk→∞(q)k.
For convenience, we list some properties:

(a; q)n =
(a; q)∞

(aqn; q)∞
, (A.1.3)

1− aq2n

1− a =
(q
√
a; q)n(−q√a; q)n

(
√
a; q)n(−√a; q)n

, (A.1.4)

(a; q)n(−a; q)n = (a2; q2)n , (A.1.5)

(a; q)n = (
q1−n

a
; q)n(−a)nq(

n
2) , (A.1.6)

(a; q−1)n = (a−1; q)n(−a)nq−(n
2) , (A.1.7)

(a; q)−n =
1

(aq−n; q)n

=
(− q

a
)n

( q
a
; q)n

q(
n
2) , (A.1.8)

with
(

n
k

)
being the usual binomial coefficient and especially

(
n
2

)
= 1

2
n(n− 1).

A.2. The q-Binomial Coefficient

The q-binomial coefficient, also known as Gaussian polynomial, is defined as
[
n
m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
. (A.2.1)
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A.2. The q-Binomial Coefficient

Let 0 ≤ m ≤ n be integers. Then the q-binomial coefficient
[

n
m

]
is a polynomial of

degree m(n−m) in q that satisfies the following relations:

[
n

0

]
=

[
n

n

]
= 1 , (A.2.2)

[
n

m

]
=

[
n

n−m

]
, (A.2.3)

[
n

m

]
=

[
n− 1

m

]
+ qn−m

[
n− 1

m− 1

]
, (A.2.4)

[
n

m

]
=

[
n− 1

m− 1

]
+ qm

[
n− 1

m

]
, (A.2.5)

lim
q→1

[
n

m

]
=

n!

m!(n−m)!
=

(
n

m

)
, (A.2.6)
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B. Important Functions

B.1. The Dedekind η-Function

The Dedekind η-function is defined as

η(τ) = q1/24
∏

n∈N

(1− qn) . (B.1.1)

The modular properties of this function are

η(−1

τ
) =
√
−iτη(τ) , (B.1.2)

η(τ + 1) = e
πi
12 η(τ) . (B.1.3)

B.2. The Jacobi-Riemann Θ-Functions

The elliptic or Jacobi-Riemann Θ-functions are modular forms of weight 1
2
, defined

as

Θλ,k(τ) =
∑

n∈Z

q
(2kn+λ)2

4k , (B.2.1)

with λ ∈ Z

2
and k ∈ N

2
. λ is called the index and k the modulus of the Θ-function,

which also satisfies
Θλ,k = Θ−λ,k = Θλ+2k,k. (B.2.2)

Furthermore, the power series of Θk,k in q has only even coefficients.
Its modular properties are given by

Θλ,k(−
1

τ
) =

√
−iτ

2k

2k−1∑

λ′=0

eiπ λλ′

k Θλ′,k(τ) , (B.2.3)

Θλ,k(τ + 1) = eiπ λ2

2kΘλ,k(τ) . (B.2.4)

B.3. The Affine Θ-Functions

The affine Θ-functions are defined as

(∂Θ)λ,k(τ) =
∑

n∈Z

(2kn+ λ)q
(2kn+λ)2

4k . (B.3.1)

They satisfy
(∂Θ)−λ,k = −(∂Θ)λ,k , (B.3.2)
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B.4. Logarithm Functions

i.e. they are odd and moreover, per definitionem

(∂Θ)0,k = (∂Θ)k,k ≡ 0 . (B.3.3)

Their modular behavior is

(∂Θ)λ,k(−
1

τ
) = (−iτ)

√
−iτ

2k

2k−1∑

λ′=1

eiπ λλ′

k (∂Θ)λ′,k(τ) (B.3.4)

(∂Θ)λ,k(τ + 1) = eiπ λ2

2k (∂Θ)λ,k(τ) . (B.3.5)

They are no longer modular forms of weight 1/2 under S : τ 7→ − 1
τ
. Thus, in

order to obtain a closed finite dimensional representation of the modular group. we
have to add further functions

(∇Θ)λ,k(τ) =
lnq

2πi

∑

n∈Z

(2kn+ λ)q
(2kn+λ)2

4k . (B.3.6)

It is clear that S interchanges these two sets of functions, while T : τ 7→ τ + 1
causes the following transformation:

(∇Θ)λ,k 7→ (∇Θ)λ,k + (∂Θ)λ,k . (B.3.7)

Therefore, the linear combination

(∂Θ)λ,k(τ)(∇Θ)∗λ,k(τ)− (∇Θ)λ,k(τ)(∂Θ)∗λ,k(τ) = (τ − τ̄ )|(∂Θ)λ,k|2 (B.3.8)

is modular covariant of weight 1/2.

B.4. Logarithm Functions

B.4.1. The Classical Functions

The dilogarithm function is the function defined by the power series

Li2(z) =

∞∑

n=1

zn

n2
for |z| < 1 . (B.4.1)

The analogy to the ordinary logarithm

−ln(1− z) =
∞∑

n=1

zn

n
for |z| < 1 (B.4.2)

leads directly to the definition of the polylogarithm

Lim(z) =
∞∑

n=1

zn

nm
for |z| < 1, m = 1, 2, . . . . (B.4.3)
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The Polylogarithm plays a role in many branches in physics as well as in mathe-
matics, in particular, in the computation of quantum-electrodynamic corrections to
the electron’s gyromagnetic ratio.

The domain of definition of Lim can be extended to the cut plane C \ [1,∞).
Especially, the analytic continuation of the dilogarithm is given by

Li2(z) = −
∫ z

0

ln(1− u)du
u

for z ∈ C \ [1,∞). (B.4.4)

In particular, the dilogarithm arises in the context of measurement of volumes in
euclidean, spherical and hyperbolic geometry. Furthermore the function is of great
popularity due to its recent appearance in algebraic K-Theory [Nah04] .

But the classical dilogarithm function Li2(z) admits some disadvantages:
One of them is that, although it has a holomorphic extension beyond the region of
convergence |z| < 1 of the defining power series

∑∞
n=1

zn

n2 , this extension is many-
valued. Thus, the analysis of the dilogarithm function is much more complicated
in many aspects. One way to avoid problems of any kind is to introduce other
variants of the dilogarithm function, of which the Rogers dilogarithm L arises quite
naturally.

B.4.2. The Rogers Dilogarithm

We introduce the Rogers dilogarithm function L(x) (e.g. used in [NRT93, Zag06])
defined by

L(x) = Li2(x) +
1

2
ln(x)ln(1− x) if 0 < x < 1 . (B.4.5)

To prevent confusion, let us call attention to the fact that there exist two versions
of the Rogers dilogarithm, which are normalized quite differently: We will not use
the version, which is defined e.g. in [Byt99a, Byt99b] by

LR(x) =
6

π2
L(x) . (B.4.6)

By setting

L(0) = 0 (B.4.7)

L(1) =
π2

6
(B.4.8)

L(x) =

{
2 L(1)− (L 1

x
) if x > 1 ,

−L( x
x−1

) if x < 0 ,
(B.4.9)

the function can be extended to the rest of R and hence results in a monotone
increasing continuous real-valued function on R. Furthermore, it admits an analytic
continuation on the complex plane as a multivalued analytical function of x.
It is (real)-analytic except at 0 and 1, where its derivative becomes infinite.
Since the Rogers dilogarithm is not continuous at infinity, it is often considered
modulo π2

2
to allow simpler functional equations with no logarithmic terms.
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For example, this new function, i.e. L̄(x) := L(x) (mod π2

2
) and thus defined on

R

π2

2
Z

now, provides and easy form of the famous five-term relation

L̄(x) + L̄(y) + L̄(
1− x
1− xy ) + L̄(1− xy) + L̄(

1− y
1− xy ) = 0 , (B.4.10)

which plays a key role in both functional equations of the dilogarithm function and
numerical identities involving the values of dilogarithms at algebraic arguments.
It can even be proven that all functional equations, whose arguments are rational
functions of one variable are consequences of this five-term functional equation, due
to Wojtkowiak’s theorem. The proofs of all functional equations result from the
elementary formula

L′(x) = − 1

2x
ln(1− x)− 1

2(1− x) ln(x) . (B.4.11)
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C. The A-D-E(-T) Classification

In the general understanding of CFTs, an outstanding impact comes from the Lie
algebraic background, in this work especially in the classification of the quadratic
forms, which appear in the fermionic character expressions. In numerous fields in
physics as well as in mathematics, a key role is played by the A-D-E(-T) classifica-
tion, which is the complete list of simply-laced Lie algebras or other mathematical
objects satisfying analogous axioms. The list comprises An, Dn, E6, E7, E8 and Tn.
Here An is the algebra of SU(n + 1), Dn is the algebra of SO(2n), while Ek are
three of five exceptional compact Lie algebras. The T denotes the additional tadpole
diagram, which results from Tn = A2n

Z2
.

In particular, the classification of modular invariant partition functions falls into
an A-D-E pattern as can be read in [CIZ87b, CIZ87a, Gan00].

Let us recall some facts about Lie algebras here in a very compact way:
There is a one-to-one correspondence between the following Dynkin diagrams of

a Lie algebra L and the corresponding Cartan matrices CL and Incidence matrices
I = 2 − CL of a Lie algebra, a simply-laced one here, i.e. all roots have the same
length. In the Dynkin diagrams, a node is drawn for each Lie algebra simple root,
which is a positive root that is not the sum of two other positive roots. All nodes
correspond to generators of the root lattice. The Cartan matrix is defined via the
scalar products of simple roots, which are induced by the Killing form.
Finally, note that quotienting two affine Lie algebras is one of the key tools in
constructing conformal field theories: Hence, many theories are naturally linked to
a Lie algebraic background in the way that the inverses of the corresponding Cartan
matrices appear in the quadratic forms (i.e. the matrices A) of the fermionic
character expressions, but other constructions – without any known Lie algebraic
background – also may induce this kind of structure.
Possible sum restrictions correspond in general to different symmetries of the
Dynkin diagrams.

The Dynkin diagrams of the simply-laced Lie algebras with correspond-
ing CFTs1

� A-series (see figure C.1)
The corresponding Zn+1-invariant parafermionic theories are the ’original’

theories due to Lepowsky and Primc [LP85]. Furthermore, the Ising model
arises as a special case.

� D-series (see figure C.2)

1The list of corresponding CFTs is not exhaustive.
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Figure C.1.: Dynkin diagram of An

The corresponding theories are the r =
√

n
2

unitary orbifold theories of a free
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�

�
�

@
@

@
@

e

e

1 2 3 n− 2

n− 1

n

Figure C.2.: Dynkin diagram of Dn

boson and the cp,1 models analyzed in our work here.

� E-series (see figures C.3, C.4 and C.5)

e e e e e

e

1 2 3

6

4 5

Figure C.3.: Dynkin diagram of E6

e e e e e e

e

1 2 3

7

4 5 6

Figure C.4.: Dynkin diagram of E7

The Tricritical Three-State Potts Model (E6, see e.g. [FZ87] ), the Tricritical
Ising Model (E7, see section 3.1.1) and the Ising Model (E8, see e.g. [MO97])
are theories, which correspond to the E-series.
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Appendix C. The A-D-E(-T) Classification

e e e e e e e

e

1 2 3

8

4 5 6 7

Figure C.5.: Dynkin diagram of E8

� T -series
The non-unitaryM(2, 2n+3) models, which are connected with the tadpole

e e e r r r e e�

��1 2 3 n− 1 n

Figure C.6.: Dynkin diagram of Tn

diagram, have been discussed in [FNO92] and [NRT93].

Note that most of the connections were found by means of Mathematica in
[KKMM93a, KKMM93b] or Maple – as in our work – which means that analytic
proofs are still missing for most of them, except for the Ising model, where the link
between the dilute A3-model and the E8-model was exploited in [WP94] to proof it.

In addition, we mention a connection between affine Lie algebras and purely
elastic scattering theories due to [KM90]: The analysis of the ultra-violet limit of
the thermodynamic Bethe ansatz for the related minimal scattering matrices of
affine Toda field theory leads to a set of corresponding effective central charges:

Laffine ceff

A
(1)
n

2n
n+3

D
(1)
n 1

E
(1)
6

6
7

E
(1)
7

7
10

E
(1)
8

1
2

A
(2)
2n

2n
2n+3

(C.0.1)
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D. q-Series Expansions of the
c = −2 Model

The q-series expansions of the c = −2 model, expanded to the order O(q20):

χ+
1,2 = q−

1
8 (1 + q2 + 4q3 + 5q4 + 8q5 + 10q6 + 16q7 + 22q8

+ 32q9 + 47q10 + 64q11 + 88q12 + 120q13 + 161q14 + 212q15

+ 282q16 + 368q17 + 480q18 + 620q19 + 798q20 +O(q21)) (D.0.1)

χ0,2 = 1 + q + 4q2 + 5q3 + 9q4 + 13q5 + 21q6 + 29q7 + 46q8

+ 62q9 + 90q10 + 122q11 + 171q12 + 227q13 + 311q14 + 408q15

+ 545q16 + 709q17 + 933q18 + 1198q19 + 1555q20 +O(q21) (D.0.2)

χ1,2 = q−
1
8 (1 + 2q + 3q2 + 6q3 + 9q4 + 14q5 + 22q6 + 32q7 + 46q8

+ 66q9 + 93q10 + 128q11 + 176q12 + 238q13 + 319q14 + 426q15

+ 562q16 + 736q17 + 960q18 + 1242q19 + 1598q20 +O(q21)) (D.0.3)

χ2,2 = q−
1
2 (1 + q + 2q2 + 3q3 + 6q4 + 8q5 + 13q6 + 18q7 + 27q8

+ 37q9 + 53q10 + 71q11 + 100q12 + 132q13 + 179q14 + 235q15

+ 313q16 + 405q17 + 531q18 + 681q19 + 880q20 +O(q21)) (D.0.4)

χ−
1,2 = q−

9
8 (1 + q + q2 + 2q3 + 3q4 + 6q5 + 8q6 + 12q7 + 17q8

+ 23q9 + 32q10 + 44q11 + 59q12 + 79q13 + 107q14 + 140q15

+ 184q16 + 240q17 + 311q18 + 400q19 + 512q20 +O(q21)) (D.0.5)
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[KP84] V. G. Kač and D. H. Peterson Infinite Dimensional Lie Algebras,
Theta Functions and Modular Forms Adv. Math. 53 (1984) 125–264.

[KZ84] V. G. Knizhnik and A. B. Zamolodchikov Current Algebra and
Wess-Zumino Model in Two Dimensions Nucl. Phys. B247 (1984)
83–103.

98



Bibliography

[Lan88] R. Langlands On Unitary Representations of the Virasoro Algebra
in S. Kass (ed.) Infinite-Dimensional Lie Algebras and Applications
(World Scientific, Singapore, 1988).

[Lau83] R. B. Laughlin Anomalous Quantum Hall Effect: An Incompress-
ible Quantum Fluid with Fractionally Charged Excitations Phys. Rev.
Lett. 50 (1983) 1395.

[Lew58] L. Lewin Dilogarithms and Associated Functions (MacDonald, Lon-
don, 1958).

[Lew81] L. Lewin Polylogarithms and Associated Functions (Elsevier, 1981).

[LP85] J. Lepowsky and M. Primc Structure of Standard Modules for

the Affine Lie Algebra A
(1)
1 Contemporary Mathematics (AMS) 46

(1985).

[McC94] B. M. McCoy The Connection Between Statistical Mechanics and
Quantum Field Theory (1994) [hep-th/9403084].

[MO97] B. M. McCoy and W. P. Orrick Single Particle Excitations
in the Lattice E8 Ising Model Phys. Lett. A230 (1997) 24–32
[hep-th/9611071].

[Nah91] W. Nahm A Proof of modular invariance Int. J. Mod. Phys. A6
(1991) 2837–2845.

[Nah96] W. Nahm On Quasi-Rational Conformal Field Theories Nucl. Phys.
Proc. Suppl. 49 (1996) 107–114.

[Nah04] W. Nahm Conformal Field Theory and Torsion Elements of the Bloch
Group (2004) [hep-th/0404120].

[NR04] K. Nelsen and A. Ram Kostka-Foulkes Polynomials and Macdonald
Spherical Functions (2004) [math.RT/0401298].

[NRT93] W. Nahm, A. Recknagel and M. Terhoeven Dilogarithm Iden-
tities in Conformal Field Theory Mod. Phys. Lett. A8 (1993) 1835–
1848 [hep-th/9211034].

[RC84] A. Rocha-Caridi Vacuum Vector Representations of the Virasoro
Algebra in: Vertex Operators in Mathematics and Physics (1984).

[Rog94] L. J. Rogers Second Memoir on the Expansion of Certain Infinite
Products Proc. London Math. Soc. (1) 25 (1894) 318–343.

[RR19] L. J. Rogers and S. Ramanujan Proof of Certain Identities in
Combinatory Analysis Proc. Cambridge Phil. Soc. 19 (1919) 211–
214.

99



Bibliography

[Sch17] I. Schur Ein Beitrag zur additiven Zahlentheorie und zur Theorie
der Kettenbrueche. Berliner Sitzungsberichte 23 (1917) 302–321.

[Sch94] M. Schottenloher Eine mathematische Einführung in die kon-
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