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Chapter 1

Introduction

Conformal field theories (CFTs) are the class of quantum field theories which
in addition to the Poincaré group are invariant under conformal transforma-
tions. Interestingly, in two dimensions, the group of conformal transformations
becomes infinite-dimensional. Since the seminal paper of Belavin, Polyakov and
Zamolodchikov [1] CFT’s were recognized as a very rich and exciting field of
research with a wide range of applications, especially in statistical physics and
string theory.

Another influential paradigm of theoretical research is supersymmetry. An
ordinary transformation group acting on a representation preserves particle
statistics. It is a common belief among physicists that there might be a symme-
try transforming particles of different statistics among each other. One of the
most significant reasons for the importance of supersymmetry is the Coleman-
Mandula theorem [3], which is seen as one of the most important no-go theorems
in theoretical physics. It states that the symmetry group of quantum fields in
theories with a mass gap is exhausted with the Poincaré group tensored with the
internal symmetry group. However, it allows supersymmetry which extends the
internal symmetry by introducing a gradation of the Lie bracket. Generators
of the supersymmetry group transform fermionic representations into bosonic
ones and vice versa. That way, every particle has a superpartner of same mass.
This is obviously not the case as far as we have observed, which indicates that
if supersymmetry exists, it must be broken. As of February 2010, no experi-
mental evidence of particle supersymmetry in nature has been found. With first
particle beams being injected in the Large Hadron Collider, there is hope and
excitement in the community to obtain experimental data which indicates that
broken particle supersymmetry is more than a mere theoretical construct.

In theories without a mass gap, the symmetry group is limited to the con-
formal transformations and internal degrees of freedom. The conformal algebra,
which is given by the Virasoro algebra, can be easily extended to a graded alge-
bra by introducing supersymmetry generators. The N=1 and N=2 algebras and
their representations where studied quite extensively in the late 1980s and early
1990s [4], [5], [6]. The interest somewhat faded away later, until it was realized
later that the N=2 superconformal theory is more interesting than assumed, and
that a lot of “structure” of N=0 and N=1 theories does not generalize to N=2.
One impressive example is the existence of subsingular vectors in N=2 theory
[82]. In supersymmetric conformal field theory, there is an additional gauge
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symmetry group for N>1. The larger N, the “bigger“ is the gauge symmetry.
Super Virasoro theories with N>2 were treated rather scarcely in the literature
[72], [71], but it is already obvious that their representation theory might bring
surprises as well.

Meanwhile, another discovery in CFT drew a lot of attention: logarithms in
correlation functions for some non-unitary representations with all their impli-
cations. Although the appearance of logarithmic divergences was noticed before,
Gurarie [7] initiated a more intensive research on what became logarithmic con-
formal field theory (LCFT) by pointing out in that in the four-point function of
c = −2, h = − 1

8 fields of the non-unitary minimal models, the usual approach
of calculating correlation functions by expanding operator products in Laurent
series does not work. A Laurent series does not exist, since there are logarithmic
divergences at x = 0, where x is the anharmonic ratio of field coordinates. He
showed that this happens if there are at least two operators of the same confor-
mal dimension that transform as a reducible, but indecomposable representation
of the Virasoro algebra. In this case, the dilation operator is non-diagonalizable
and has a Jordan cell structure. This feature makes logarithmic CFTs a very
unique theory among field theories.

Jordan cells appear in a CFT if the fusion product of two fields contains at
least two fields of the same conformal dimension or if the fields involved differ
by one in their conformal dimensions. Although most of the known LCFT’s
are indecomposable with respect to the Virasoro algebra, other operators of the
symmetry algebra, like generators of gauge symmetries can lead to logarithmic
singularities as well. In general, representations of the extended Virasoro algebra
where logarithms in correlation functions occur posses an infinite number of
irreducible representations, although one counterexample is known [79].

LCFT was soon applied to and found in many theories some of which in-
clude WZNW models [8] [9], fractional quantum Hall effect [10], 2D turbulence
[11] [12] [13] [15] , D-brane recoil [62], gravitationally dressed CFTs [16] [17],
critically disordered models [18] [19], unifying W algebra [20], [21], normalizable
zero-modes in string backgrounds [22] [23] and cp,1 non-unitary minimal models
[24] [25].

From technical point of view, it is obvious that non-diagonalizable represen-
tations must be treated very differently from to the diagonalizable ones. Most of
the mathematical “tool set” previously applied to CFT’s has to be generalized
to apply to the logarithmic case, although the generalization is not always well-
understood and sometimes the results require some additional interpretation.
Some of the rather unusual features of LCFT include appearance of negative
multiplicities in the application of the Verlinde formula or logarithms in charac-
ter expressions. Some of the (with varying success) generalized methods include
logarithmic null vectors [26], [27], fusion rules [29] [30] [31], character expressions
[32] [33] and partition functions [34] [35]. Logarithmic stress-energy tensors and
Sugawara construction are treated in [36]. Some progress was achieved using
the nilpotent variable formalism to describe Jordan cell structure [38].

Despite much effort, the level of understanding of LCFT’s is currently by
far not as general and complete as that of “conventional“ CFT’s consisting of
completely reducible representations. Since Gurarie’s work, the best understood
LCFT’s remain c1,p models with extended conformal grid.

Of particular interest in the context of this thesis are supersymmetric exten-
sions of the Virasoro algebra. The literature treating LSCFT is rather sparse.
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Some aspects of the N = 1 Neveau-Schwarz sector of logarithmic supersymmet-
ric conformal field theory (LSCFT) were treated in [41], among them general
transformation properties and logarithmic correlation functions. These findings
were generalized to the Ramond sector in [43], [44]. In [45], a very general,
geometric method was developed to calculate correlators for logarithmic N = 0,
N = 1 and N = 2 theories and N = 0 and N = 2 two-point functions were
calculated.
In this thesis, the Neveu-Schwarz sectors of N = 1, 2, 3 extended super Virasoro
algebras with indecomposable representations are studied. We answer a series of
questions related to the structure of LSCFT’s. In section 2, the necessary back-
ground information on CFT’s is presented in a very condensed form. Section
3 is an (again, very brief) overview of logarithmic CFT’s and indecomposable
representations in general, only in as far as it is necessary for the understanding
of the presented work. Section 4 is a treatment of N = 1, 2, 3-extended super
Virasoro theories in general and logarithmic theories in particular. The main
results can be found in this part of the thesis. We find that the logarithmic
N = 1 theories are probably just supersymmetric extensions of already known
N = 0 models. Contrary to previous conjectures made in the literature we con-
clude that this fact holds for theories with N > 1. This implies that there are no
logarithmic fields with respect to the supersymmetric current. A treatment of
indecomposable su(2) representations is presented, and we find that, although
constructible, this structure does not appear in N = 3 theories. We find the
two-point functions of the N = 3 theories by solving the superconformal Ward
identities. We find that, surprisingly, only su(2)-singlets and doublets have non-
trivial correlation functions. Using this fact, we are able to obtain the general
n-point function of the N=3 super Virasoro theory. Furthermore, we find no
“hidden connection” between logarithmic theories and supersymmetric theo-
ries previously conjectured in the literature on the basis of apparent similarity
between supersymmetric fields and logarithmic fields in the nilpotent variable
formalism. The thesis is concluded with a few final remarks on our findings.
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Chapter 2

Preliminaries about CFT

In this section, conformal transformations of coordinates and quantum fields are
discussed. Representation theory of the Virasoro algebra is introduced. Free
theories containing real bosons and fermions are considered.

2.1 Conformal Transformations

To begin the discussion of conformal field theory, consider conformal transfor-
mations of coordinates. Classically, fields are real functions on a manifold. In a
quantum field theory, fields are “promoted” to operators acting on a Fock space,
satisfying certain commutation relations with observables of the theory. We will
restrict ourselves to flat spaces and begin naturally on a Minkowski metric of
dimension d = p+ q, with p negative and q positive eigenvalues.

General global and infinitesimal transformations of coordinates are of the
form:

x→ f(x)

xµ → x′µ = xµ + εµ(x)

with a not yet specified function ε(x). We are interested in special cases of gen-
eral coordinate transformations. These transformations, by definition, trans-
form the metric tensor in a way that is given in its global and infinitesimal form
as:

gµν(x)→ Ω(x)gµν

gµν(x)→ gµν(x) + ω(x)gµν(x).

Thus, we multiply the metric tensor by a real function, leaving angles between
vectors invariant, but not preserving lengths of vectors. Invariance of the action
can be reformulated in terms of the stress-energy tensor. Field theories with a
conserved (∂µT

µν = 0) and traceless (Tµµ = 0) stress-energy tensor are invariant
under Poincaré and general conformal transformations, respectively. Invariance
under conformal transformations implies that no mass terms are allowed in the
Lagrangian of the theory (that is, if a Lagrangian can be formulated at all).

From transformation of the metric tensor we are able to derive constraints
on ε(x). Since a tensor of rank 2 must transform as:

gµν(x)→ ∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x).
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After a short calculation we arrive at an equation imposing constraints on ε(x)
for the case that it generates a conformal transformation:

∂µεν + ∂νεµ =
2

d
∂λε

λgµν

from which follows that: (
1− 2

d

)
∂ρ∂µ∂λε

λ = 0. (2.1)

Surprisingly, for d = 2 an arbitrary ε(x) is allowed, whereas in d > 2 it can be
dependent on x only in at most second order, generating the whole Poincaré
group and two new elements, namely scale transformations and special confor-
mal transformations. Together, they form the conformal group.

For d = 2, (2.1) tells us that ∂1ε1 = ∂2ε2 and ∂1ε2 = −∂2ε1. These equations
are known as the Cauchy-Riemann differential equations and play a prominent
role in complex analysis. They are automatically fulfilled by real and imaginary
parts of holomorphic functions on C. Complexifying ε and the coordinates leads
to:

ε = ε1 − iε2 ε̄ = ε1 + iε2

z = x1 − ix2 z̄ = x1 + ix2

∂z ε̄(z, z̄) = 0 ∂z̄ε(z, z̄) = 0.

That way, ε(z, z̄) and ε̄(z, z̄) are arbitrary functions of z and z̄, respectively, so
we may as well write ε(z) and ε̄(z̄).

To formulate a transformation law on the space of quantum fields one follows
the standard approach of deriving a symmetry algebra by studying infinitesimal
generators of continuous symmetries. The infinitesimal transformation is repre-
sented by some operator Ln, which is a Noether charge. We expect charges to
generate conformal transformations on the space of functions:

[Ln, φ(x)] = δφ(x).

If we transform a coordinate via:

z → z
′

= z − zn+1,

then the generator of the corresponding conformal transformation in complex
coordinates on the space of functions reads:

Ln = −zn+1∂z.

We are interested in the d = 2 case, since the infinite dimensional symme-
try algebra leads to a much greater solvability of a theory, imposing additional
constraints on fields and their correlation functions. Luckily, we can map the
underlying two-dimensional space from the cylinder to the complex plane and
use methods developed in complex analysis to simplify calculations significantly.
First, the space coordinate x1 is compactified by imposing a periodic bound-
ary condition on functions living on this so called worldsheet parametrized by
(x0, x1). Compactification removes the eventual problem of infrared divergences
since now we have an upper limit of the “wavelength” corresponding to a field
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mode. Now, we perform a Wick rotation of the time coordinate x2 = ix0.
At last, we map the obtained cylinder coordinates on the complex plane via
exponentiation:

w = ei(x
0+x1). (2.2)

The conformal current in complex coordinates equals T (z)ε(z). Expanding
ε(z) in modes we obtain the charges:

Ln =
1

2πi

∮
dzzn+1T (z). (2.3)

Inverted, this relation reads:

T (z) =
∑
n

z−n−2Ln.

One has to keep in mind that the fields φ(x) are classically real. Our de-
scription on the complex plane is somewhat redundant. There are two copies
of generators: one holomorphic Ln, and one anti-holomorphic L̄n. They cor-
respond to the left-moving (chiral) and right-moving (anti-chiral) fields on the
cylinder. There are two commuting copies of the Virasoro algebra, each acting
on a two-dimensional space. The Hilbert space is a tensor product of two copies
of Virasoro representations:

H = V ir ⊗ V ir. (2.4)

The dimensional redundancy seems unnecessary but it simplifies calculations.
The reality conditions have to be imposed in the end when one is calculating
measurable quantities.
Calculating [Ln, φ] at first seems problematic since we have to calculate an
operator product at the same coordinate point, which corresponds to an equal-
time operator product. The solution to this is to take different points z and w
and expand the operator product for z → w.

In ordinary quantum field theory, we introduce a time ordering of the op-
erators, since the Hamiltonian of a theory can only be bounded from below if
the operator on the right is taken at a later time then the one on the left. On
the complex plane, the analogous ordering is a radial one, since points of “equal
time” lie on circles around the origin:

R (A(z, z̄)B(w, w̄)) := A(z, z̄)B(w, w̄)Θ(|z| − |w|) +B(w, w̄)A(z, z̄)Θ(|w| − |z|)

were Θ is the Heaviside step function. Using radial ordering, it can be seen that
in the commutator [Ln, φ(w, w̄)], the integral contours are two circles, one with
a radius smaller and one with a radius greater than |w|:

[Ln, φ(w, w̄)] =
1

2πi

(∮
|z|>|w|

−
∮
|z|<|w|

)
dzzn+1R (T (z)φ(w, w̄)) .

We can simply deform the contours to one curve running around w with an
arbitrarily small radius. Keeping that in mind, we write:

[Ln, φ(w, w̄)] =
1

2πi

∮
dzzn+1R (T (z)φ(w, w̄)) .
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This integral is solvable if we know the radially ordered operator product ex-
pansion of the stress-energy tensor with the field. One has to find possible
constraints on the OPE.

A key feature of conformal field theory (CFT) is the conformal bootstrap, an
idea which was first expressed in the pioneering work of Belavin, Polyakov and
Zamolodchikov [1]. In particular, this means that we do not rely on a Lagrangian
or Hamiltonian formulation as a starting point of the theory, but try to solve
all correlation functions using symmetries and associativity of operators. The
main assumption is the idea that we can always express an operator product as
a linear combination of local operators:

φi(x)φj(y) =
∑
k

Ckij(x− y)φk(y) (2.5)

where Ckij are complex-valued coefficients. The exact solvability is only possible

if there are finitely many fields φk. This makes the so-called rational conformal
field theories (RCFTs) particularly “solvable”, since they are the ones with
finitely many representations. A field, defined to be a primary field, transforms
as:

w → f(w)

φ(w, w̄)→ φ′(w, w̄) =

(
∂f(w)

∂w

)h
φ(f(w), w̄).

The primary fields are the starting points of the theory. They correspond to
“lowest-energy”-representations which are eigenstates to the dilatation operator
L0 with eigenvalues h. It will be shown that the remaining states of the theory,
the so-called descendant states can be generated from the highest-weight vectors
|h〉. It is often preferable to work with the state formalism since infinitesimal
transformation properties of the descendants are given by complicated formulae.

Infinitisemally, the transformation of the primary fields amounts to:

δεφ(w, w̄) = h (∂wε(w))φ(w, w̄) + ε(w)∂wφ(w, w̄).

This must equal the commutator of an arbitrary conformal charge with the field:

[Ln, φ(z)] = (zn+1∂z + h(n+ 1)zn)φ(z). (2.6)

In [72] it was shown that the infinitesimal transformations of the primary field
integrate to global transformations:

eλLnφ(z)e−λLn = eλ(zn+1∂z+h(n+1)zn)φ(z). (2.7)

Which amounts to:

eλLnφ(z)e−λLn =
1

(1− nλzn)
h(n+1)
n

φ

(
z

(1− nλzn)
1
n

)
n 6= 0.

eλL0φ(z)e−λL0 = eλhφ
(
eλhz

)
.

From (2.6), we can recover the operator product expansion (OPE) of
R(T (z)φ(w, w̄)) (omitting the radial ordering symbol from now on for conve-
nience):

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + power series. (2.8)
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We observe that the Laurent series terminates after the second term. There
are only two interesting terms, since the Taylor part of the expansion disappears
under closed integrals around w and will be omitted without further comment.

2.2 Free Bosonic Theory

To see how this is supposed to work we start from a simple toy model: N free real
bosons on the cylinder. In this theory the Lagrangian (density) is well-known:

S =
1

8π

∫
d2x

∑
i

∂αφ
i(x0, x1)∂αφi(x0, x1).

By minimization of the action we obtain the classical equation of motion:

(∂2
0 − ∂2

1)φi(x0, x1).

It is obvious that the fields transform as functions, that is they are eigenfunctions
to the scaling operator L0 with scaling dimension h = 1. The compactification
of the “space” direction imposes periodic boundary conditions on the space of
fields on the cylinder:

φi(x0, 0) = φi(x0, 2π).

Periodicity in turn implies that a Fourier series exists for these fields:

φi(x0, x1) =

n=∞∑
n=−∞

einx
1

f in(x0).

Since every mode satisfies the equation of motion, we have:

∂2
0f

i
n(x0) = −n2f in(x0)

f in(x0) = aine
inx0

+ bine
−inx0

n 6= 0 (2.9)

f i0(x0) = pix0 + qi.

Then the classical real field can be written, recombining mode coefficients, as:

φi(x0, x1) = qi + 2pix0 + i

∞∑
n=1

(
1

n
(αine

−in(x0+x1) + ãine
−in(x0−x1)

)
.

The usual procedure, by which we turn the classical field into a quantum
field and which is often called the “second quantization” is straightforward.
We promote the mode coefficients (which we then call modes) to operators by
imposing following equal-time commutation relations between fields and their
canonical momenta π = ∂0φ

i/4π:

[φi(x0, x1), πj(x0, y1)] = iδijδ(x1 − y1)

[φi(x0, x1), φj(x0, y1)] = 0

[πi(x0, x1), πj(x0, y1)] = 0.
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The same commutation relations expressed in terms of modes are:

[αik, α
j
l ] = [α̃ik, α̃

j
l ] = kδijδk+l,0

[αik, α̃
j
l ] = 0.

Transformation to the conformal plane via (2.2) yields:

φi(z, z̄) = qi − i(pi log(z) + pi log(z̄)) + i
∑
n6=0

1

n

(
αinz

−n + α̃inz̄
−n) .

The somewhat unusual zero mode leads to a field which can not be factor-
ized into holomorphic and anti-holomorphic parts and logarithmic singularities
(however, this is not the case for its derivatives ∂zφ

i and ∂z̄φ
i). Fortunately,

we can deal with this by subtracting an infinite constant from the stress-energy
tensor of the theory, which turns the quantized field into an infinite set of har-
monic oscillators.
The holomorphic part of the energy-momentum tensor is classically the Legen-
dre transform of the Langrangian:

T (z) = −1

2

∑
i

∂zφ
i(z)∂zφ

i(z).

To write a quantum version of this equation, one uses the standard technique
of normal ordering which precisely amounts to radial ordering of an operator
product. Normal ordering amounts to moving all positive modes, which anni-
hilate the vacuum:

αik|0〉 = 0, k > 0

to the right. That way, the expectation value of the normally ordered product
vanishes but the terms containing the commutators which appear in the process
of normal ordering remain. We also commute pi to the right with respect to qi.
The radial ordering, written in terms of harmonic oscillators reads:

R(φi(z, z̄)φj(w, w̄)) =: φi(z, z̄)φj(w, w̄) :=

−i[pi, qj ](log(z) + log(z̄)) + power series(z̄, w̄).

Which, inserting commutation relations and using the Taylor expansion of
the logarithm amounts to:

R(φi(z, z̄)φj(w, w̄)) =: φi(z, z̄)φj(w, w̄) : −δij(log(z − w) + log(z̄ − w̄)).

Since the radial ordering implies z < w, the Taylor series is convergent and
the above expression well-defined. The product of derivatives yields:

R(∂zφ
i(z, z̄)∂wφ

j(w, w̄)) =: ∂zφ
i(z, z̄)∂wφ

i(w, w̄) : − δij

(z − w)2
.

Omitting the term containing the normal ordering, the radial ordering sign and
the arguments of the derivatives, we are left with:

∂φi(z)∂φj(w) = − δij

(z − w)2
.
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Now we have the term which has to be subtracted in the definition of the non-
singular quantum version of the energy-momentum tensor:

T (z) ≡ −1

2

∑
i

(
: ∂φi(z)∂φi(z) : − δij

(z − w)2

)
.

Using this definition, one can easily derive the operator product expansion of
T (z) with ∂φi(w). We just have to expand the latter around z, which is the
usual Taylor series. We end up with:

T (z)∂φj(w) =
∂φi(w)

(z − w)2
+
∂2φj(w)

z − w
.

With some more effort, the operator product expansion between the stress-
energy tensor with itself can be calculated:

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂wT (w).

The first term in this expansion prevents T (w) from being a conformal field.
In CFT literature, this term is called the conformal anomaly. It contains a
number, c. In a free bosonic theory, c is the number of boson fields contained
in the theory, therefore it has to be a natural number. However, we consider a
larger set of possible theories and assume c to be any real number, even if we
can not write down Lagrangians of the theory for most of our c. The quantity
c is called the central charge. At first glance at the bosonic theory where the
conformal weight is the tensor rank of the fields and c the number of bosons
in the Lagrangian, taking c and h to be non-integer numbers seems somewhat
artificial, but it was shown in a multitude of cases that theories with non-integer
c and h have a wide range of applications, instead of being mere mathematical
curiosities.

2.3 The Virasoro Algebra

Since now we have computed the OPE of the stress-energy tensor with itself and
we know that its modes act on the space of fields as (2.3), we are now able to
compute the commutation relation between modes Ln which yield the Virasoro
algebra:

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn,−m. (2.10)

Without the last term we would just get the classical Witt algebra, which is a
Lie algebra:

[ln, lm] = (n−m)lm+n. (2.11)

Thus, the Virasoro algebra is a Lie algebra with a central extension. The
term containing c seems to be highly unusual. If c is just a real number, it can
not appear on the right-hand side of commutator. Algebraically, we are forced
to treat c as an operator commuting with every other element of the Virasoro
algebra. The chiral sector of a CFT is just a collection of representations of the
Virasoro algebra, spanned by I, Ln, with I being the central element. A repre-
sentation is characterized by a pair of numbers (h, c). For practical reasons, we
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usually obtain states of the CFT using the so-called highest weight represen-
tations, which are, in fact, ground states with respect to the Hamiltonian and
therefore lowest energy states. They are found by diagonalizing L0:

L0|h〉 = h|h〉.

The highest-weight state can be created from the vacuum by acting on it with
a corresponding primary field at z = 0:

|h〉 = lim
z→0

φh(z)|0〉.

We can easily derive the fact that any highest-weight state |h〉 is annihilated
by any Ln with n > 0 directly from the Virasoro algebra. The vacuum state |0〉
is somewhat unusual compared to ordinary QFT, since it is annihilated only by
Virasoro modes Ln with n ≥ −1. This means that it is only possible to have
a state which is annihilated by a maximal number of Virasoro modes, which
is defined to be the vacuum, but not all of them. Acting on the vacuum or a
highest-weight state with a negative mode L−n, n > 0 creates a new state, a
descendant with conformal weight h− n:

L0Ln|h〉 = (−nL−n + L−nL0)|h〉 = (h− n)L−n|h〉, n > 0.

Acting on a descendant again produces a new state. Acting on a highest
weight state with a composition of modes produces a state at level n, the de-
scendant of |h〉:

L−ni ...L−nk |h〉,
∑
i

ni = n.

The space spanned by this states is called a Verma module Vh,c. The Vira-
soro algebra can be applied to rearrange the indices ni in decreasing order. A
compact definition of a Verma module is [61]:

Vh = span{
∏
i∈I

L−ni |h〉 : N ⊃ I = {n1, ...nk}, ni+1 ≥ ni}. (2.12)

The space of states built by applying negative-moded Virasoro generators
on a highest-weight space is called a conformal family. It might happen that in
a Verma module on a certain level there is a linear combination of states, which
is again a state |χ〉 with the property that it is orthogonal to all other states in
the theory. Acting with positively moded Virasoro generators on such a state,
we arrive at a singular vector |χs〉, a special null state. If one considers χs to be
a “primary field”, then its Verma module consists of null vectors only. We set
χ0 ≡ 0. What is now meant by Verma module is (2.12) with singular vectors
removed, or expressed in a more mathematical way, the quotient space of (2.12)
by the subspace generated from singular vectors. Now the Hilbert space picture
(2.4) can be refined since it decomposes in a direct sum over the Verma modules
built on highest-weight states:

H = ⊕h,hVh ⊗ Vh.

A conformal family containing singular vectors is called degenerate. We also
call the primary states which contain null vectors in their respective Verma mod-
ules degenerate. A natural question arising at some point is the classification
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of CFT’s. This is a very difficult question, and it is doubtful if all CFT’s can
be classified at all. First, we turn our attention to unitary theories, where the
scalar product between two states is positive-definite and the Virasoro genera-
tors satisfy the hermiticity condition L†n = L−n. The existence of a non-negative
norm imposes strong constraints on the possible values of c and h. The problem
is that given a highest weight vector |h〉 the number of excitations grows with
each level n, since one can decompose n as a sum of integers in various ways.
Consider the first few levels (with p(n) the number of possible partitions of n):

n Level p(n) States

0 0 |h〉

1 1 L−1|h〉

2 2 L2
−1|h〉, L−2|h〉

3 3 L3
−1|h〉, L−2L−1|h〉, L−3|h〉

4 5 L4
−1|h〉, L2

−1L−2|h〉, L2
−2|h〉, L−3L−1|h〉, L−4|h〉.

For the next levels, p(n) is 7, 11, 15, 22, 30, 42 and so on. At level 1 the norm
of the vector is:

〈h|L1L−1|h〉 = 〈h|L−1L1 + 2L0|h〉 = 2h.

That means that for unitary representations, and |h〉 6= |0〉, h must satisfy h > 0.
For |h〉 = |0〉 the first descendant is already a null vector. The condition c ≥ 0
follows immediately from the action of a negative mode on |0〉:

〈0|LnL−n|0〉 = 〈0| 1

12
c(n3 − n)|0〉.

We continue our analysis at level two. Since there are two excitations on this
level one has to consider all possible linear combinations in the two-dimensional
state space. To do that, we introduce the matrix Kn of dimension p(n)× p(n)
with scalar products of the possible vectors at level n. At level two, this matrix
reads:

K2 =

 〈h|L†−2L−2|h〉 〈h|L†−2L
2
−1|h〉

〈h|(L†−1)2L−2|h〉 〈h(L†−1)2L2
−1|h〉

 .

This matrix acts on the two-dimensional coefficient space. Using the Vira-
soro algebra and 〈h|h〉 = 1 one can express the components of Kn as polynomials
in c and h:

K2 =

 4h+ 1
2c 6h

6h 4h+ 8h2

 .

In [64], [65] it was shown that for a CFT to be rational, that means to have
a finite number of representations, the values of c and h have to be rational.

For 0 < c < 1, h > 0, there exists a family of rational unitary conformal field
theories, the unitary minimal models. They are called minimal because they
have a finite number of primary fields, are invariant with respect to conformal
transformations only and, additionally, are non-degenerate in their conformal

13



dimensions [2]. They are obtained by imposing non-negativity conditions on
scalar products between states in a Verma module.

For minimal models, the possible values of c are parametrized by an integer
m ≥ 3, the possible values of the conformal weight h are parametrized by
integers r and s with limited range:

c = 1− 6

m(m+ 1)
m ≥ 3 (2.13)

hr,s(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
1 ≤ r < m, 1 ≤ s ≤ r.

This series can be generalized to the series of (not necessarily unitary) minimal
models [53]:

c(p,q) = 1− 6(p− q)2

pq

h(r,s) =
(pr − qs)2 − (p− q)2

4pq
0 < r < q, 0 < s < p,

with p, q coprime positive integers. which means they do not have non-trivial
common divisors. To recover (2.13), simply set m = p− 1 = q.

Until now, we were discussing conformal invariance generated by elements
of the Virasoro algebra. The set of symmetry generators can be extended,
demanding additional invariance. The commutation relations between the Vi-
rasoro algebra and the additional generators is fixed in that case. This can be
seen as follows. Assume we have a conformal field J(z) with conformal weight
h. We can regard J(z) as a current with modes and mode expansion defined to
be:

Jr =
1

2πi

∮
dzzr+h−1J(z)

J(z) =
∑
r

z−r−hJr.

We know the action of the Virasoro modes on the current from the fact that
the current is a conformal field:

[Ln, J(z)] = (zn+1∂ + h(n+ 1)zn)J(z).

Expanding J(z) in modes and dividing by z−h yields:∑
r

z−r[Ln, Jr] =
∑
r

zn−r(−r + hn)Jr.

By comparing the coefficients of powers of z we recognize that r has to be shifted
by n on the right-hand side, leaving us with the commutator:

[Ln, Jr] = (n(h− 1)− r)Jn+r.

If we expect the fields in the theory to be invariant with respect to the gen-
erators {Ln, Jr}, we get the simplest example of an extension of the conformal
group, although we have not specified the commutation relations between the
mode currents Jr yet.
In this thesis, we will be dealing with representations of extended algebras,
namely the N=0, 1, 2, 3 superconformal algebras.
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2.4 Free Fermions

In ordinary quantum field theory, the fermionic fields are implemented in the
Feynman path integral formalism via Grassmannian (anticommuting) variables.
In the quantized theory, this leads to anticommuting modes. This mathematical
trick emulates the Pauli exclusion principle: one cannot create two fermionic
field modes corresponding to the same state from the vacuum. It is desirable to
be able to describe fermions in conformal field theory as well, since there is no
reason to assume that conformally invariant fields have to be bosonic.
In Lagrangian formalism, the action of free fermions in two dimensions on the
complex plane is:

S =
1

8π

∫
d2x(ψ∂z̄ψ + ψ̄∂zψ̄)

which leads to equations of motion

∂z̄ψ(z, z̄) = 0, ∂zψ̄(z, z̄) = 0,

which in turn implies that the fermionic fields can be factorized into a holomor-
phic and an anti-holomorphic part. If periodic boundary conditions are imposed
on the space of fields, the representations span the Ramond sector. In contrast
to the bosonic theory, the boundary conditions are allowed to be anti-periodic,
with representations spanning the Neveu-Schwarz sector. Going through the
quantization procedure, we end up with the following mode expansion:

ψ(z) =
∑
n

bnz
−n− 1

2 .

Here bn are anticommuting and the n are half-integer numbers for the
Neveau-Schwarz and integer numbers for the Ramond sector. It is interest-
ing to see that periodicity changes if a transformation to the cylinder is applied,
so purely non-periodic or periodic boundary conditions are not possible for
fermions on both the cylinder and the plane. The energy-momentum tensor is:

T (z) = −1

2
: ψ(z)∂zψ(z) :,

from which, taking the operator product expansion with itself and ψ(w) we
conclude that both the central charge and the conformal weight equal 1

2 . In this
thesis, we are interested in the Neveau-Schwarz sector. The propagator in this
case is obviously antisymmetric under exchange of z and w and reads:

ψ(z)ψ(w) =
1

z − w
.

It is remarkable that for c = 1
2 the representations contained in the minimal

models (2.13) are the ones with h ∈ {0, 1
16 ,

1
2}. The representations with h = 1

16
are spin fields, which appear in the case of aperiodic boundary conditions of
fermionic representations.

2.5 Conformal Ward Identities

The measurable quantities in a QFT are the correlation functions, also called
the n-point functions:

Fn(z1, z2, ...zn) ≡ 〈φ1(z1)φ2(z2)...φn(zn)〉
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of some fields φi(zi). The correlation function of primary fields can be obtained
using the conformal Ward identities. We demand that the n-point function is
invariant under variation corresponding to the three global conformal transfor-
mations. Then we can write the variation of the function in terms of variations
of fields:

δFn =

n∑
i=1

〈φ1(z1)...δiφi(zi)...φn〉.

Since we know the variation of primary fields (2.6), the three differential equa-
tions obtained are: ∑

i ∂iFn = 0∑
i(hi + zi∂i)Fn = 0∑

i(2hzi + z2∂i)Fn = 0.

(2.14)

This can be done using the invariance of the vacuum with respect to SL(2,C),
generated by {L−1, L0, L1}. The conformal transformations alone do not give
us any further restrictions on n-point functions. The second equation is redun-
dant, since all functions satisfying the first and third equation satisfy the second
one. This a consequence of [L1, L−1] = 2L0.
It is obvious that the one-point functions (vacuum expectation values of a field)
disappear in ordinary CFT.
The two-point functions of two primary fields in the holomorphic sector are
restricted by:

(∂z1 + ∂z2)F2(z1, z2) = 0.

Changing coordinates to w = z1 − z2, v = z1 + z2 leads to:

∂vF2(w, v) = 0⇒ F2 = F2(w) = F2(z1 − z2).

In the new coordinate, the second conformal Ward identity reads:

(h1 + h2 + w∂w)F (w) = 0.

Using the ansatz wa we obtain the correlator:

〈φhi(zi)φhj (zj)〉 =
δij

(zi − zj)2hi
. (2.15)

For the three-point function find the solution is:

〈φhi(zi)φhj (zj)φhk(zk)〉 = Cijkz
hk−hi−hj
ij z

hj−hi−hk
ik z

hi−hj−hk
jk . (2.16)

The three-point functions are fixed up to structure constants Cijk. Here,
one of the zij is a redundant variable. It is included here to give the solution a
symmetric form.
Using SL(2,C), the four-point function can be determined only up to an arbi-
trary function of two Möbius-invariant crossing ratios F (x1, x2). Usually, the
four-point correlator is written in the symmetric form:

〈φh1
(z1)φh2

(z2)φh3
(z3)φh4

(z4)〉 =
∏
i>j

z
1
3h−hi−hj
ij F (x1, x2) (2.17)

h ≡
∑
k

hk, x1 ≡
z12z34

z13z24
,

z12z34

z14z23
.
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Chapter 3

Logarithmic CFT

3.1 Logarithmic Divergencies and Jordan Cell
Structure

Existence of logarithmic divergencies in correlation functions got their first
proper treatment by Gurarie in [7] for the c = −2, h = − 1

8 model. Loga-
rithmic conformal theories have a variety of interesting properties, the most
obvious and far-reaching one is the presence of indecomposable irreducible rep-
resentations. The L0-mode of the stress-energy tensor turns out to have Jordan
block structure. This feature leads to the necessity of generalization of the
tool set (characters, null vectors, partition functions) used in the framework of
the ordinary conformal field theotry in which the Hamiltonian L0 − L0 can be
diagonalized on the space of states [62], [7].

The appearance of indecomposable representations is due to unavoidable
logarithms appearing in some four-point functions. Given any two conformal
fields νi, νj (which are not necessarily primary), it is assumed that the conformal
bootstrap is possible and leads to the operator product expansion:

νi(z)νj(w) =
∑
n

Cn
(z − w)hj+hj−hn

νn(w). (3.1)

We will see that by making this assumption we are missing a (possibly) large
class of conformal field theories.
Assuming there are two fields in the theory with the same conformal dimension,
their two-point function is given by:

〈µ(z)µ(0)〉 = z−2h.

Let us follow Gurarie and consider the c = −2, h = − 1
8 model. Due to the

action of the group SL(2,C), the four-point function of the field µ is given, up
to a function F (x) of one anharmonic ratio:

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = ((z1 − z2)(z3 − z4))
1
2F (x).

Equation (3.1) inserted in the four-point function should give us the Laurent
series expansion of F (x). This approach does not work here. The function F (x)
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is more general then an OPE of this form can describe. This can be seen by
using the second-level null vector of the h = − 1

8 , c = −2 theory, which leads to
the differential equation:

x(1− x)
d2

dx2
F (x) + (1− 2x)

d

dx
F (x)− 1

4
F (x) = 0,

which is a special case of the hypergeometric equation:

x(1− x)
d2

dx2
F (x) + (d− (a+ b+ 1)x)

d

dx
F (x)− abF (x) = 0. (3.2)

The hypergeometric equation is known to have two linearly independent
solutions which are given by the hypergeometric function:

F1 = F (a, b, d;x) (3.3)

F2 = x1−dF (a− d+ 1, b− d+ 1, 2− d;x).

This corresponds to the operator product expansion of the fields µ(z):

µ(z)µ(0) =
1

z2h
(I + zd−1I′).

As we will see, logarithms emerge iff I has the same conformal dimension as
I (then d = 1) or I′ has the same conformal dimension as one of the descendants
of I. An ordinary second-order differential equation can be solved by applying
the Frobenius method. It involves an ansatz of the form:

xα
∑
n

anx
n,

and solving the resulting equation for α putting n = 0. This is known as the
indicial equation, which for the hypergeometric function reads:

α(α− 1 + d) = 0. (3.4)

Usually, one obtains the coefficients an one after another. In the case that the
solutions to the indicial equation differ by an integer, we get terms proportional
to xn lnx in the second solution to the differential equation. In he case c =
−2, h = − 1

8 , d equals one and both αi are the same. The solutions to the
hypergeometric equation then read [83]:

F (x) = F (
1

2
,

1

2
, 1;x)

F (x− 1) = log(x)F (
1

2
,

1

2
, 1;x) +H(x).

Here, F (x) the hypergeometric function of second order and H(x) some
logarithm-free function. Both of the solutions have logarithmic singularities for
some x, therefore one cannot simply discard one of them as unphysical. This is
a direct contradiction to (3.1). If d = 1 in (3.4) in the case of a Jordan cell of
dimension two the properties of the operator I′ can be summarized as:

L0|φ〉 = h|φ〉
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L0|φ′〉 = h|φ′〉+ |φ〉. (3.5)

The action of the Virasoro modes on the corresponding fields is:

[Ln, φ] = (zn+1∂z + h(n+ 1)zn)φ

[Ln, φ
′] = (zn+1∂z + h(n+ 1)zn)φ′ + (n+ 1)znφ.

Here, φ is an ordinary primary field and φ′ is its logarithmic partner. It is
noteworthy that the second equation can be obtained from the first one by a
formal derivation with respect to h and the identification ∂φ

∂h → φ′. This will be
referred to as the “derivation trick” throughout the thesis.

In the case that the solutions of the indicial equation differ by an integer,
the OPE of two fields becomes logarithmic as well. The Jordan structure of
L0 in this case is quite different. The solutions of the indicial equation provide
the dimensions of the fields appearing in the OPE of two fields, which means
that I′ has an integer conformal dimension. In (3.2), that means that d =
m + 1 for m ∈ Z. If m > 0 then I′ has a negative conformal dimension −m
and one of its descendants on level m degenerates with I. For negative m the
conformal dimension of I′ is positive and the degeneration occurs with one of
the descendants of I. As an example, in the c = −2, h = 1 theory with m < 0
the action of the Virasoro modes on states is [61]:

L0|φ〉 = |φ〉

L0|φ′〉 = |φ′〉+ |φ〉

L1|φ′〉 = |ξ〉.

(3.6)

If |φ′〉 is annihilated by all positive Virasoro modes, we call this state quasi-
primary. Calculations involving fields where the corresponding states not quasi-
primary are more intricated and were treated in the literature to a much lesser
extent.

In the most general case, the differential equation satisfied by F (x) is a
higher-order Fuchsian differential equation. Most of the findings obtained from
the c = −2 theory can be generalized in a straightforward way. We differentiate
between the two cases of Jordan block structure of different dimensions and
designate them by a pair of integers (m,n). Here, m = d− 1 with d from (3.3)
and n the dimension of Jordan block.

In the first case, one has m = 0, n ∈ N. All logarithmic partners of pri-
mary fields are quasi-primary. The most general behaviour of the function F (x)
near x = 0 obtained from a higher-order Fuchsian differential equation with
coinciding roots of the indicial equation is:

F (x) =

∞∑
n=0

anx
n + log(x)

∞∑
n=0

bnx
n + log(x)2

∞∑
n=0

cnx
n + . . . . (3.7)

In this case, the Jordan cell contained in the operator L0 is more then
two-dimensional. The transformation properties of logarithmic fields can be ob-
tained from following simple arguments. Considering the action of L0 on a
two-dimensional logarithmic state (3.5), infinitesimal transformations of fields
are fixed by:

[Ln, φ(z)] = zn+1∂zφ(z) + (n+ 1)nhφ(z) (3.8)
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[Ln, φ
′(z)] = zn+1∂zφ

′(z) + (n+ 1)znhφ′(z) + (n+ 1)nφ(z). (3.9)

In the case that (3.7) does not terminate after the second term, one obtains
a higher-dimensional (n-dimensional) Jordan block. We write:

φ =


φ0

...

φn



I =


0

1
. . .

. . .
. . .

1 0

 .

Then the action of L0 = Ih+ I is given by:

[Ln, φ(z)] = zn+1∂zφ(z) + (n+ 1)znhφ(z) + I(n+ 1)nφ(z). (3.10)

Same as for higher-dimensional Jordan cells, one can indeed regard h in (2.6)
as a matrix acting on a column vector with field components. The infinitesimal
transformations for a two-dimensional Jordan cell integrate up to:

φ(z)→
(
∂f−1

∂z

)h
φ
(
f−1(z)

)
φ′(z)→

(
∂f−1

∂z

)h(
φ′
(
f−1(z)

)
+ log

(
∂f−1(z)

∂z

)
φ
(
f−1(z)

))
.

The transformation properties of the logarithmic field can be obtained from
its logarithmic partner by a formal differentiation with respect to h (derivation
trick) and the identification:

φ′ =
∂φ

∂h
. (3.11)

This holds in infinitesimal as well as in the global form (which is a non-
trivial fact). This fact was used, for example, in [27] to find some logarithmic
null vectors.
In the second case one has m ∈ Z, n ∈ N. The roots of the indicial equation
differ by an integer. The logarithmic partner is not a proper primary field as in
(3.6). The general construction for the rank two Jordan cell for this case is:

L0|φ〉 = h|φ〉

L0|φ′〉 = h|φ′〉+ |φ〉

Lk|φ′〉 = |ξ〉.

(3.12)

This is a class of the less-understood logarithmic theories. Some progress
in understanding these theories was achieved in [28]. We will not deal with
representations of this kind in the presented thesis.
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We have to clarify here what we mean by a rational CFT, since there are two
meanings used in mathematics and physics literature. First of all, we demand
that there are only finitely many irreducible representations in the theory. The
mathematicians’ definition further requires all representations to be completely
reducible, while the physicists’ definition requites a finite dimensional highest
weight space. In [58] it was shown that the first definition implies the second
one. The other way does not work since there are certain logarithmic CFTs
which are rational only according to the second definition.
Logarithmic CFTs corresponding to cp,1 models with maximally extended triplet
algebra [79] are called rational since they possess a finite-dimensional pace of
irreducible representations, a finite dimensional highest-weight space but some
of their representations are not completely reducible. This is the reason why
the two notions of rationality are different and one should be aware of the differ-
ence. However, this is the only known example for a rational LCFT. The other
known theories containing indecomposable representations also contain an infi-
nite, countable space of irreducible representations. They are only quasi-rational
and have the property that the fusion product of two irreducible representations
is finite-dimensional and contains representations with Jordan cell structure.

3.2 Correlation functions in LCFT

In a well-defined logarithmic CFT one should be able to calculate corresponding
correlation functions between fields of the theory. If the transformation prop-
erties of logarithmic fields, generated by elements of the Virasoro algebra are
known, one can apply conformal Ward identities and solve the obtained differen-
tial equations [37]. It is also well-known that correlation functions in logarithmic
conformal field theory do not factorize, but it in LSCFT, the proper correlation
functions can be obtained by one assuming that Jordan cells exist in the chiral
representation of a field. Correlation functions are calculated using conformal
Ward identities and their proper, not factorizable counterparts are obtained via
the substitution:

zh → zhzh

log(z)→ log(|z|2).

Consider the simplest case, a two-dimensional Jordan block containing fields
φ and φ′ of same conformal dimension. Then the correlator of φ is fixed by
ordinary conformal Ward identities:

〈φ(z)φ(w)〉 =
C

(z − w)−2h
.

On the other hand, the correlator 〈φ(z)φ′(w)〉 satisfies:

(z2∂z + w2∂w + 2h(z + w))〈φ′(z)φ(w)〉+ 2z〈φ(z)φ′(w)〉 = 0.

With a change of coordinates x = z−w, y = z+w this equation can be reduced
to:

(x∂x + 2h)〈φ(z)φ′(w)〉+ C
x+ y

yx2h
.
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This clearly can be satisfied only if C = 0. Thus, the logarithmic partner has a
vanishing propagator and:

〈φ(z)φ′(w)〉 =
a

(z − w)2h
.

Translational invariance of 〈φ′(z)φ′(w)〉 again implies its dependence of (z−w)
and variation generated by L1 leads to the differential equation:

(x∂x + 2h)〈φ′(x)φ′(w)〉+
2c

x2h
= 0.

The solution is:

〈φ′(z)φ′(w)〉 = (z − w)−2h(b− 2clog(z − w)).

Consider a field γ which is not part of the Jordan cell. Following [39], [40],
we call such fields non-cellular, as opposed to cellular primary fields. The only
case when γ couples to φ is when their conformal dimensions are identical, so
from now on we are going to assume that the conformal dimension of γ is h and:

〈γ(z)γ(w)〉 = d(z − w)−2h

〈γ(z)φ(w)〉 = E(z − w)−2h.

Varying 〈γφ′〉 with respect to L1 sets E to 0 and yields:

〈γ(z)φ′(w)〉 = e(z − w)−2h.

These findings can be generalized as follows [37]. Consider a n+1-dimensional
Jordan cell with corresponding fields φ0 := φ, φ1 := φ′,..., φn. Then L0 acts on
the corresponding highest-weight states in the following way:

L0|φ0〉 = h|φ0〉

L0|φi〉 = h|φi〉|+ |φi−1〉, 1 ≤ i ≤ n.

The action of the Virasoro generators on the fields is:

[Ln, φ0(z)] = (zn+1∂z + h(n+ 1)zn)φ0(z)

[Ln, φi(z)] = (zn+1∂z + h(n+ 1)zn)φi(z) + (n+ 1)znφi−1(z), 1 ≤ i ≤ n− 1.

Again, one can apply the derivation trick, setting:

φi =
1

i!

∂iφ0

∂hi
. (3.13)

We can simplify the notation by setting φ−1 = 0. Consider the two-point
function 〈φiφj〉. We obtain:

(z2∂z + w2∂w + 2h)〈φi(z)φj(w)〉+ z〈φi−1(z)φj(w)〉+ w〈φi(z)φj−1(w)〉.

This requires:
〈φi(z)φj−1(w)〉 = 〈φi−1(z)φj(w)〉.
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Setting φ−1 inducts the relation:

〈φi(z)φj(w)〉 = 0, i+ j < n− 1.

Therefore, the last term on the right side of the Ward identity disappears for
i = 0, j = n− 1 and any i, j = n− 1− i and the solution reads:

〈φi(z)φn−1−i(w)〉 = a(z − w)−2h.

Now, we can insert this solution back into the Ward identity for 〈φ1φn〉 or any
i, j = n+ 1− i:

〈φi(z)φn+1−i(w)〉 = (z − w)−2h(b− 2a log(z − w)).

Reinserting obtained solutions we arrive at:

〈φi(z)φj(w)〉 = (z − w)−2h
i∑

j=0

aij(log(z − w))j

(j + 1)ai,j+1 + 2ai−1,j = 0.

This recursion relation can be written as:

ai,j+1 =
−2

j + 1
ai−1,j =

(−2)j+1

(j + 1)
ai−j−1,0 ≡

(−2)j+1

(j + 1)
ai−j−1.

Now we consider an even more general case, with eventually more Jordan
cells of different sizes, which we label by I, J . The two-point function generalizes
so we can write it as:

〈φIi (z)φJj (w)〉 = (z − w)−2h

i+j−n∑
k=0

(−2)k

k!
aIJn−k(log(z − w))k. (3.14)

for i+ j ≥ n and 0 otherwise.
The tree-point function can be calculated following a similar way. We re-

member that the fields in a logarithmic block are degenerate in h. If the corre-
lator does not contain the logarithmic field, we obtain the ordinary three-point
function:

〈φ0(z1)φ0(z2)φ0(z3〉 = a(z12z23z13)−h. (3.15)

Acting on 〈φ1φ0φ0〉 with variation corresponding to one of the SL(2,C again
leads to a set of differential equations, solution of which is:

〈φ1(z1)φ0(z2)φ0(z3〉 = (b+ alog)(
z12

z23z31
)(z12z23z31)−h. (3.16)

Introducing some short-hand notation ξ1 := z12, ξ2 := z23, ξ3 := z13 the
correlator 〈φ1φ1φ0〉 reads:

〈φ1(z1)φ1(z2)φ0(z3)〉 = (c−
∑
i cilog(ξi)

+
∑
ij cij log(ξi)log(ξj)))(ξ1ξ2ξ3)−h.
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The constants are fixed by the Ward identities, so in the final form we have:

〈φ1(z1)φ1(z2)φ0(z3)〉 =

(c− 2blog(ξ3) + a(( log(ξ1)
log(ξ2) )2 + (log(ξ3)2))(ξ1ξ2ξ3)−h.

(3.17)

To write down 〈φ1(z1)φ1(z2)φ1(z3)〉 it is useful to introduce functions of ξi:

D1 ≡ log(ξ1ξ2ξ3)

D2 ≡ log(ξ1)log(ξ2) + log(ξ2)log(ξ3) + log(ξ1)log(ξ3)

D3 ≡ log(ξ1)log(ξ2)log(ξ3).

Then the correlator of three logarithmic fields yields:

〈φ1(z1)φ1(z2)φ1(z3)〉 =

(d+ d1D1 + d2D2 + d′2D
2
1 + d3D3 + d′3D1D2 + d′3D

3
1)(ξ1ξ2ξ3)−h.

Finally, the Ward identities fix the constants up to:

〈φ1(z1)φ1(z2)φ1(z3)〉 =

(d− cD1 + 4bD2 − bD2
1 + 8aD3 − 4aD1D2 + aD3

1)(ξ1ξ2ξ3)−h.
(3.18)

It can be seen that the relations (3.11), (3.13) can be used to obtain cor-
relators of logarithmic fields without solving the conformal Ward identities by
treating the fields and normalization constants as formally dependent on the
fields’ conformal weighs. Consider a three-point function 〈φiφ0φ0〉:

〈φi(z1)φ0(z2)φ0(z3)〉 =
1

i

∂i

∂hii
〈φi(z1)φ0(z2)φ0(z3)〉.

For an arbitrary correlator, one has to treat the conformal weights as inde-
pendent variables, although they take the same value. The correlator of ordinary
primary fields then reads:

〈φ0(z1)φ0(z2)φ0(z3)〉 = ξ−h2−h3+h1
1 ξ−h3−h1+h2

2 ξ−h2−h1+h3
3 .

Differentiating with respect to h1 and setting h1 = h2 = h3 and ∂a
∂h = b

returns exactly (3.15-3.18). This works for all correlation functions except for
n = 2, which is the only correlation function in which the dependence on h is
not continuous. A more explicit study of logarithmic four-point functions can
be found in [47].
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Chapter 4

Super Virasoro Theories
and Jordan cell structure in
SCFT

Supersymmetric extensions of the Virasoro algebra, motivated by physical con-
siderations were suggested in [48], [49]. Interestingly, they also were indepen-
dently discovered in [50], motivated by infinite dimensional Lie algebras. Al-
though there is no evidence for particle supersymmetry, the N=1 tricritical Ising
model can be realized experimentally by absorbing 4He atoms on krypton-plated
graphite [51].

Beginning with the notion of a supermanifold, super Viraroro algebras with
N fermionic generators are discussed in this chapter. Supermanifolds allow to
study supersymmetric theories in a unified way by introducing superfields which
contain bosonic and fermionic components. A superconformal theory decom-
poses in exactly the same way as ordinary CFT in holomorphic and antiholo-
morphic parts, and only the holomorphic part will be studied here.

A supermanifold is obtained by extending an ordinary manifold by a fibre
bundle of N anticommutative rings. Then the holomorphic part of the field
theory is formulated on a map of the manifold with coordinates {z, θ1, ...θN}.
The ordinary CFT can be seen a field theory on the trivialN = 0 superconformal
extension of the complex plane.

As we will see, one can easily construct Jordan cells for primary fields in
superconformal theories and determine their transformational properties. From
ordinary correlation functions, logarithmic correlation functions can be derived.

4.1 Superconformal Transformations

To obtain a supersymmetrically extended, well-defined CFT, two approaches
can be taken. The algebraic one imposes a grading of the superconformal al-
gebra, denoted |x|, which is either zero or one for even and odd generators,
respectively. The Lie bracket is graded, which means it is an anticommutator
for odd elements of the algebra. The super Jacobi identity reads:
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(−1)
|z||x|

[x, [y, z]] + (−1)|x||y|[y, [z, x]] + (−1)|y||z|[z, [x, y]] = 0. (4.1)

The anticommutator is often denoted as {., .}. An example of the analytic
approach is [71], where superprimary fields are treated as sections of a sheaf
over the graded Riemann sphere and OPEs and commutation relations of the
operators in the case N=3 are obtained.

The rather analytic approach discussed in [72], [73] starts from the notion of
the supermanifold. Superconformal transformations of coordinates are obtained
from the superconformal condition. Uncharged primary fields are then defined
on the supermanifold and their various quantities are calculated.

To obtain a supermanifold, one defines a fiber bundle of N anticommutative
rings over a manifold. The coordinates of a two-dimensional supermanifold are
given by Z = z, θ1, ...θN , where θi are anticommuting, and therefore nilpotent
Grassmannian variables satisfying:

θ1θ2 = −θ2θ1.

Derivatives acing on θi satisfy:

∂

∂θi

∂

∂θj
= − ∂

∂θj

∂

∂θi
,

∂

∂θi
θj = δi,j − θj

∂

∂θi
.

A general infinitesimal transformation acts on coordinates of superspace via:

z′ = z + δz, θ′j = θj + δθj . (4.2)

We define a one-form as:
ω = dz −

∑
i

dθiθi.

The superconformal transformations which are the homomorphisms between
charts are the invertible transformations which preserve the one-form up to a
function, which is called the superconformal condition:

ω′ = κ(z, θi)ω. (4.3)

In fact, this is the defining condition of supeconformal transformations.
There is another choice of the one-form:

ω = dz −
∑
i

dθ.

This is a convenient choice for following calculations. The basis of the dual
space (the space of derivations) is given by (∂z, Di) with Di the covariant
derivative:

Di =
∂

∂θi
+ θi

∂

∂θi
,

satisfying:
D2
i = ∂z.

The set of superpoints together with the supercovariant derivative defines
the notion of the superconformal manifold. In N=2 theory and higher, there is
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a continuous symmetry group transforming fermionic components in each other
as we will see. Under (4.2), the covariant derivative transforms as:

Di = (Diθ
′
j)D

′
j + (Diz

′ − θ′jDiθ
′
j)∂z. (4.4)

The first term is the homogenious part. The second, inhomogenious part
arises due to the general nature of the transformations. We want to obtain those
transformations under which the covariant derivative transforms as a vector,
which is equivalent to (4.3). This is similar to ordinary CFT, where ∂

∂z = ∂z′

∂z
∂
∂z′ .

The equivalence of (4.3) and (4.4) can be seen as follows.
The superconformal condition implies that ω transforms as (using the Ein-

stein summation convention):

ω′ = (
∂z′

∂z
+ θ′i

∂θ′i
∂z

)dz + (− ∂z
′

∂θj
+ θ′i

∂θ′i
∂θj

)dθj

⇒ (
∂z′

∂z
+ θ′i

∂θ′i
∂z

)θj = − ∂z
′

∂θj
+ θ′i

∂θ′i
∂θj

.

This is equivalent to:
Djz

′ = θ′iDjθ
′
i.

Thus, the superconformal condition is equivalent to the disappearance of the
inhomogenious term in (4.4).

Superdifferentials dZi are defined as elements from the space dual to the
space of superderivatives:

DidZj = δi,j

where the indices i and j run from 1 to N. Naturally, superdifferentials transform
as a vector:

dZ′i = Diθ
′
jdZj

where Diθ
′
j are elements of the super Jacobi matrix which is defined as:

Dθ′ =


D1θ

′
1 · · · DNθ

′
1

...
...

D1θ
′
N · · · DNθ

′
N

 . (4.5)

Now we are ready to do some field theory on supermanifolds. First we
consider the Neveu-Schwarz theories where the functions are subring of C[z−1, z]
under addition and pointwise multiplication.

A result obtained in [74] states that the generators of superconformal trans-
formations in the Neveu-Schwarz theories can be written as:

Xa(i1, ..., iI) = (1− I
2

)zn−
I
2 +1θi1 ...θiI∂z +

1

2

I∑
p=1

(−1)p+Izn−
I
2 +1θi1 ...θ̌ip ...θiI∂θip

+
1

2
(a− I

2
+ 1)

∑
k∈S̄

za−
I
2 θi1 ...θiIθik∂θk .

This combinatorial result requires some further explanation. The generators
are labeled by an index a, which is from Z if N is even and from Z 1

2
otherwise. θ̌ip

27



means that this variable is omitted in the expression. The sequence S = (i1, ...iI)
contains elements i1...iI ∈ {1, ..., N}. In the third term, the complement of S is
S̄ and is defined as the set S̄ = {1, ..., N}\S. Superconformal generators satisfy
classical (as opposed to quantum) commutation relations:

[Xa(i1, ..., iI), Xb(j1, ..., jJ)]

=
∑I
p=1

∑J
q=1

(−1)I+pδip,jq
2 Xa+b(i1, ...̌ip, ..., iI , j1, ..., ǰq, ..., jJ)

+
(
(1− I

2 )b− (1− J
2 )a
)
Xa+b(i1, ..., iI , j1, ..., jJ).

(4.6)

For N=0, one easily recovers the Witt algebra (2.11).
A consequence of (4.6) is that the scaling factor of the superconformal condition
under a superconformal transformation can be determined as:

ω′ = X(i1, ..., iI)ω = (a− I

2
+ 1)za−

I
2 θi1 ...θiIω.

Quantum versions of commutators can be obtained by a central extension
of the symmetry algebra. Remarkably, for infinite-dimensional algebras there is
at most one possible central extension which will be parametrized by c, which
is allowed to be non-zero for N≤4 [72].

The only conceptual notion remaining to be generalized is superintegration.
If one defines:

DiF (Z) = f(Z),

then:

F (Z) =

∫
dZif(Z).

An integral over a finite interval is consistent and obeys the fundamental
theorem of calculus: ∫ Z2

Z1

dZif(Z) = F (Z2)− F (Z1),

if Z1 and Z2 coincide up to the coordinates z and θi. Of special importance
for calculations in superspace are the superdifferences. To define them, we need
to introduce additional indices since we are dealing with different superpoints
Zi = {zi, θi,1 · · · θi,N} on the supermanifold. The first index i ∈ {1, 2} labels the
different points and the second one the Grassmannian coordinates. Then the
superdifferences are defined as:

Z12 ≡ z1 − z2 − θ1,jθ2,j

θ12 ≡ θ1,j − θ2,j .
(4.7)

It can be easily seen that the following equations are satisfied (without the
use of Einstein summation convention in the second expression):

D2,iZ
n
12 = nθ12,iZ

n−1
12

D2,iθ12,iZ
n
12 = −Zn12.
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Successive integrals of 1 can be represented using combinations of superdif-
ferences (again, not using the Einstein summation convention):∫ Z2

Z1

dZ3,iZ
n
13 = −θ12,iZ

n
12

∫ Z2

Z1

dZ3,iθ13,iZ
n
13 =

1

n+ 1
Zn+1

12 .

The superdifferences, viewed as new coordinates also will drastically simplify
conformal Ward identities, as we will see.

Super contour integration is a linear operation which is translationally in-
variant. For one Grasmanian coordinate and a closed path C0 around the origin
it is defined as: ∮

C0

dθiθj = δi,j∮
C0

dθi = 0.

Thus, contour integration over Grassmannian numbers is equivalent to dif-
ferentiation with respect to Grassmannian numbers. For N anticommutative
coordinates, the full contour integral returns zero whenever the integrand is
missing at least one of the θ’s. Expanding a general superfunction in Grass-
mannian coordinates:

f(Z) = f0 + θif
1
i (z) + · · ·+ θ1 · · · θNfN (z),

and defining:

εN =

∮
C0

dθ1 · · · dθN = (−1)
N(N−1)

2 ,

it is obvious that only the last term contributes to the integral:∮
C

dZf(Z) =

∮
C

dzdθ1...θNf(Z) = εN
∮
C′
dzfN (z).

Here, C ′ is a projection of C on the complex plane.
Volume integrals, which are necessary for formulation of action in superspace,
are defined as: ∫

V

dZf(Z) =

∫
V

dZ1 · · · dZNf(Z).

Under a conformal transformation, the volume integral is required to be
invariant. This leads to:∫

V

dZf(Z) =

∫
V ′
dZ′f(Z′)detDθ′.

4.2 Ordinary N=1 SCFT

The simplest case of a conformal supersymmetric theory is the N=1 SCFT. In
addition to Virasoro modes Ln there are additional fermionic generators Gr.
The complete set of generators satisfies following (anti-)commutation relations:

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn,−m
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[Ln, Gr] = (
1

2
n− r)Gn+r (4.8)

{Gr, Gs} = 2Lr+s +
1

3
c(r2 − 1

4
)δr,−s.

Here, r is a half-integer moded for the Neveu-Schwarz sector and integer
moded for the Ramond sector. We expect the NS-vacuum to be globally invari-
ant under a maximum number of modes Gr. The maximal set of such Gr is
given by G− 1

2
, G 1

2
. This is the group OSp(2|1).

Making use of superspace formalism, the super stress-energy tensor is written
as:

T(z, θ) = G(z) + θT (z),

and primary superfields, expanded in the nilpotent variable, possess one bosonic
and one fermionic field:

Φ(z, θ) = φ(z) + θψ(z).

We can write the infinitesimal transformations of superfields as:

[Ln,Φ(z, θ)] =

(
zn+1∂z + (n+ 1)(h+

1

2
θ∂θ)z

n

)
Φ(z, θ)

[Gr,Φ(z, θ)] =
(
zr+

1
2 ∂θ − θ

(
zr+

1
2 ∂z + h(2r + 1)zr−

1
2

))
Φ(z, θ). (4.9)

This implies operator product expansions:

T(Z1)T(Z2) =
c

6

1

(Z12)3
+

2θ12

(Z12)2
T(Z2) +

1

2Z12
DZ2T(Z2) +

θ12

Z12
∂Z2T(Z2)

T(Z1)Φ(Z2) =
hθ12

(Z12)2
Φ(Z2) +

1

2Z12
DZ2

Φ(Z2) +
θ12

Z12
∂z2Φ(Z2)

with Zij , θij defined as in (4.7) for N=1:

Zij ≡ zi − zj − θiθj

θij ≡ θi − θj .

The minimal models are found for central charges:

c =
3

2
(1− 8

m(m+ 2)
), m ∈ {N|m > 2}.

4.3 Logarithmic N=1 SCFT

In [41], it was shown that a logarithmic N=1 field Φ′ and corresponding trans-
formations under supersymmetry generators can be defined by assuming inde-
composability in the bosonic component φ′(z) of a superfield and demanding
consistency with the Jacobi identity. Then the infinitesimal transformation of
the bosonic part under Ln can be written as:

[Ln, φ
′(z, θ)] =

(
zn+1∂ + h(n+ 1)

)
φ′z + (n+ 1)znφ(z). (4.10)
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From action of (4.9) on he bosonic component the ansatz for a logarithmic
superpartner ψ′ is taken as:

[Gr, φ
′
z] ≡ zr+

1
2ψ′r(z).

To get transformation properties of ψ′ under Lm, one acts on both sides
with [Lm, ]̇ and make use of the super Jacobi identity(4.1):

[Lm, ψ
′
r(z)] = z−r−

1
2 [Lm, [Gr, φ

′(z)]]

= z−r−
1
2 [[Lm, Gr].φ(z)′] + z−r−

1
2 [Gr, [Lm, φ(z)′]].

Now, using (4.8), (4.10) and (4.9).

[Lm, ψ
′
r(z)] = (

m

2
− r)zm(ψ′m+r − ψ′r)

+

(
zm+1∂z + (h+

1

2
)(m+ 1)zm

)
ψ′r + (m+ 1)zmψ.

The only choice consistent with L−1 acting as generator of translations, i.e.
derivative with respect to z is ψ′r = ψ′ ∀ψ′r. Since the N=1 algebra consists only
of Ln, Gr, one obtains the complete set of superconformal transformations of a
NS superconformal logarithmic field.
The OPEs of the fields with the stress-energy tensor are given by:

T(z1)Φ(z2) =
hθ12

(z12)2
Φ(z2) +

1

2z12
Dz2Φ(z2) +

θ12

z12
∂z2Φ(z2)

T(z1)Φ′(z2) =
hθ12

(z12)2
Φ′(z2) +

θ12

(z12)2
Φ(z2) +

1

2z12
Dz2Φ′(z2) +

θ12

z12
∂z2Φ′(z2).

The second term on the right side of the last equation is the consequence of
the fact that Φ′ is not a primary superfield but is the logarithmic partner of Φ.

In state formalism the indecomposable state manifests itself in Jordan block
structure of the dilation operator acting on a two-dimensional column vector
with fields as components. From here, the OPE of the logarithmic field Φ′ with
T (z) can be deduced and it can be seen that it can be obtained from the OPE
of the ordinary field Φ with T (z) using the derivation trick.

4.4 Correlation functions in N=1 SCFT
and LSCFT

Therefore, the conformal Ward identities for primary fields and generators L−1,
L0, L1, G− 1

2
, and G 1

2
, respectively are given by:

〈Φh1
(Z1)Φh2

(Z2)...Φhn(Zn)〉 = Fn(Z1,Z2, ...Zn)∑
i

∂z1Fn = 0

∑
i

(
zi∂zi + hi +

1

2
θi∂θi

)
Fn = 0
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∑
i

(
z2
i ∂zi + 2zi(hi +

1

2
θizi∂θi)

)
Fn = 0

∑
i

(∂θi − θi∂zi) Fn = 0

∑
i

(zi∂θi − θizi∂zi − 2hiθi)Fn = 0.

As in N=0, the first identity implies F2 = F2(z12, θ1, θ2) = F2((z1−z2), θ1, θ2).
The fourth one can be transformed via a change of coordinates θ12 ≡ θ1− θ2 to:

(∂θ1 + ∂θ2 − (θ1 − θ2)∂z12)F2 = 0.

Any function of Z12 ≡ z1−z2−θ1θ2 satisfies this equation. Thus, G 1
2

implies
that the solution of the two point function depends on the superdifference Z12.
Proceeding with the usual reasoning, the first three Ward identities imply that
for the correlator to be non-zero, the conformal dimensions of the superfields
have to be the same number and:

〈Φ(Z1)Φ(Z2)〉 = aZ−2h
12 .

Expanded around θ1θ2
z1−z2 , this relation reads:

〈Φ(Z1)Φ(Z2)〉 =
a

(z1 − z2)−2h

(
1 +

2hθ1θ2

z1 − z2

)
.

The expansion is exact after the first term since θ1θ2 is nilpotent. It can be
easily checked that this relation satisfies the remaining Ward identity for G 1

2
.

This is expected since G 1
2

= [L1, G− 1
2
].

Consider a two-point function in LSCFT. In the following, we use techniques
analogous to those we developed in 3.2. The two-point function can be written
as a function of Z12 = z1 − z2 − θ1θ2. Then the whole reasoning behind (3.14)
applies directly to the logarithmic case. One finds the term log(Z12) which can
be expanded to log(z1 − z2)− θ1θ2

z1−z2 .
We can write:

〈Φi(Z1)Φj(Z2)〉 = (Z12)−2h

i+j−n∑
k=0

(−2)k

k!
an−klogk(Z12)

with:

logk(Z12) = logk(z12)− klog(z12)θ1θ2

z12
. (4.11)

The N = 1 ordinary three-point function was obtained in [42] and reads:

〈Φ(Z1)Φ(Z2)Φ(Z3)〉 =
∏
i<j Z

h−2hi−2hj
ij (a+ bW )

= Zh3−h1−h2
12 Zh2−h1−h3

13 Zh1−h2−h3
23 (a+ bW )

(4.12)

with b an undetermined Grassmannian constant and:

h ≡
∑
i

hi
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W ≡ θ1Z23 − θ2Z13 + θ3Z23 + θ1θ2θ3

(Z12Z13Z23)
1
2

.

The first term of the super three-point function is (2.16) with zij replaced
by Zij . Expanding (4.12) in the Grassmann variables yields the expression:

〈Φ(Z1)Φ(Z2)Φ(Z3)〉 = (z12)−h1−h2+h3(z13)−h1+h2−h3(z23)h1−h2−h3

·
(
a+ b(θ1z23−θ2z13+θ3z12)

(z12z13z23)
1
2

+ a
2

(
θ1θ2
z12

+ θ1θ3
z13

+ θ2θ3
z23

)
+

bθ1θ2θ3(h1+h2+h3− 1
2 )

(z12z13z23)
1
2

)
.

It is satisfactory to see the different contributions from component fields.
The first term is just the ordinary CFT three-point function (2.16), the other
terms arise from the different contractions of the fermionic and bosonic compo-
nents. We will not write down the logarithmic counterparts to the three-point
functions, since their expressions are quite long and cumbersome. They can
be easily obtained by differentiating the three-point function of ordinary N=1
SCFT, treating undetermined constants as formal functions of h.
Considering the four-point function of superprimary fields, one needs to find all
invariants of the action of the algebra OSp(2|1). The expression:

Y ≡
∏
i<j

(Zij)
h−hi−hj

satisfies the action of the subalgebra generated by {L±, L0, G± 1
2
} on the su-

per four-point function. The first invariant is an obvious modification of the
anharmonic ratio:

X ≡ Z12Z34

Z13Z24
.

There are three more invariants containing θi and zi. The four-point function
can be found to be:

〈Φ(Z1)Φ(Z2)Φ(Z3)Φ(Z4)〉 = Y (a+ b1W234 + b4W123 + cV )

with a, c undetermined constants and b1, b4 undetermined Grassmannian con-
stants:

Wijk ≡
θiZjk − θjZik + θkZij + θiθjθk

(ZijZikZjk)
1
2

and:

V ≡ θ1θ2Z34

Z13Z24
+
θ3θ4Z12

Z13Z24
+
θ1θ4Z23

Z13Z24
+
θ2θ3Z14

Z13Z24
− θ1θ3

Z13
− θ2θ4

Z24
+

3θ1θ2θ3θ4

Z13Z24
.

We see that the nilpotency of θ determines the four-point function completely
up to constants and functions of harmonic ratios. Again, the logarithmic coun-
terparts are determined by formally differentiating the fields and the constants
with respect to h (derivation trick).

4.5 Ordinary and Logarithmic N=2 SCFT

A N=2 SCFT contains two fermionic generators G1
r and G2

r of dimension 3
2 .

The second fermionic generator G2 is the superpartner to an additional Û(1)-
current Jr. The operator product expansions between the T (z) and G1,2(z) of
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the theory read [77](using zij ≡ zi − zj) :

T (z1)T (z2) =
c

z4
12

+
2

z2
12

T (z2) +
1

z12
∂T (z2) (4.13)

T (z1)G1,2(z2) =
3

2z2
12

G1,2(z2) +
1

z12
∂G1,2(z2)

T (z1)J(z2) =
1

z2
12

J(z2) +
1

z12
∂J(z2)

J(z1)J(z2) =
c

12z2
12

J(z1)G(z2)1,2 = ∓ 1

2z12
G2,1(z2)

G1,2(z1)G1,2(z2) =
2c

3z3
12

+
2

z12
T (z2)

G1(z1)G2(z2) =
4

z2
12

J(z2) +
2

z12
∂J(z2).

The super-stress-energy tensor T(z) = J(z) + θ+G−(z) + θ−G+(z) + θ+θ−T (z)
we have the following OPE with itself:

T(Z1)T(Z2) = − c
Z2
12
− θ12,1θ12,2

Z2
12

T(Z2) +
θ12,2D2,1

2Z2
12

T(Z2)

− θ12,1D2,2

2Z2
12

T(Z2)− θ12,1θ12,2
Z2
12

∂z2T(Z2)
(4.14)

Z12 = z1 − z2 − θ1,1θ2,2 − θ2,1θ1,2. (4.15)

Superfields Φh,q(Z) satisfy the OPE:

T(Z1)Φh,q(Z2) = −hθ12,2θ12,2
Z2
12

Φh,q(Z2) +
θ12,2D2,1

2Z2
12

Φh,q(Z2)− θ12,1D2,2

2Z2
12

Φh,q(Z2)

− θ12,1θ12,2Z12
∂z2Φh,q(Z2)− iq

2Z2
12

Φh,q(Z2).

(4.16)
The centerless, classical algebra acting on the space of functions is given by:

lm = −zm(z∂z +
1

2
(m+ 1)(θ1∂θ1 + θ2∂θ2)) (4.17)

tm = −zm(θ1∂θ2 − θ2∂θ1) (4.18)

gir = zr−
1
2 (zθi∂z − z∂θi + (r +

1

2
)θiθj∂θj ). (4.19)

A more convenient choice of basis for the fermionic generators is the U(1)-
diagonal basis:

θ± =
1√
2

(θ1 ± iθ2)

D± =
1√
2

(D1 ±D2)

G±(z) =
1√
2

(G1 ± iG2)
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J → −iJ.

It should be noted that for ordinary superfunctions, (4.18) implies that only
q ∈ {−1, 0, 1} are allowed. However, we are considering a larger class of rep-
resentations where in principle every real value of q is allowed, but not every
representation can be easily constructed.
The transformed generators of the centerless algebra (4.17)-(4.19) are:

lm = −zm(z∂z +
1

2
(m+ 1)(θ+∂θ+ + θ−∂θ−)) (4.20)

tm = zm(θ−∂θ− − θ+∂θ+) (4.21)

g±r = zr−
1
2 (zθ±∂z − z∂θ± ± (r +

1

2
)θ+θ−∂θ∓). (4.22)

The operator product expansion of G+ and G− with themselves is non-singular
and their OPE with J reads:

J(z1)G±(z2) = ± 1

2z12
G±(z2)

G+(z1)G−(z2) =
2c

3z3
z12

J(z2) +
2

z12
(T (z2) + ∂J(z2))

G+(z1)G+(z2) = G−(z1)G−(z2) = 0.

Analogously to the N = 1 case, the boundary conditions can be chosen to be
either periodic or anti-periodic, which on the complex plane corresponds to the
Neveu-Schwarz and the Ramond sectors, respectively. Introducing a parameter
λ with λ = 0 in the NS sector and λ = 0 in the Ramond sector, the boundary
conditions and the mode expansions of the fermionic currents can be expressed
as:

G±(e2πiz) = eλπiG±(z)

G(z) =

+∞∑
n=−∞

1

2
Gn+(1−λ)/2z

−n−2+λ/2.

There is also a third sector in the N = 2 theory. The boundary conditions
of the current J can be twisted, that is chosen to have anti-periodic boundary
conditions. Then the current, expanded in terms of half-integer modes, reads:

J(e2πiz) = −J(z)

J(z) =

+∞∑
n=−∞

z−n−1/2Jn+1/2.

The full (anti-)commutation relations of the NS-sector of the N = 2-extended
Virasoro algebra read:

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n2 − 1)δn,−m,

[Ln, G
±
r ] = (

1

2
n− r)G±n+r
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{G−r , G+
s } = 2Lr+s − (r − s)Jr+s +

1

3
c(r2 − 1

4
)δr,−s

[Ln, Jm] = −mJn+m

[Jn, Jm] =
1

3
cnδm,−n

[Jn, G
±
r ] = ±G±n+r.

In contrast to the N = 0 and N = 1 cases, the Cartan subalgebra of the
N = 2 theory is two-dimensional and is spanned by the generators L0 and J0,
which means that these two operators are simultaneously diagonalizable and
the highest-weight representations are labeled by their eigenvalues h and q:

L0|h, q〉 = h|h, q〉

J0|h, q〉 = q|h, q〉

Ln|h, q〉 = G±α |h, q〉 = Jm|h, q〉 = 0, α, n, m > 0.

The global symmetry subgroup of the NS sector is therefore the orthogonal sym-
plectic group OSp(2|2), generated by

{
L0, L±1, G±1/2, J0, J±1

}
. The vacuum is

as usual the unique state which annihilated by all these generators in addition
to all the positively-moded ones:

Ln|0〉 = Jn|0〉 = Gα|0〉 = 0, n ≥ −1, α ≥ −1/2.

From the OPE (4.16) one can extract infinitesimal variations of the superfield
generated by the modes of the super-energy tensor:

[Lm,Φ(Z)] = (h(m+ 1)zm + 1
2 (m+ 1)zm(θ+∂θ+ + θ−∂θ−)

+zm+1∂z + q
2θ

+θ−zm−1m(m+ 1))Φ′(Z)
(4.23)

[Jm,Φ(Z)] = (2hθ+θ−mzm−1 + zm(θ−∂θ− − θ+∂θ+) + qzm)Φ(Z) (4.24)

[G±r ,Φ(Z)] = (zr−
1
2 (r + 1

2 )(2h± q)θ± − zr+ 1
2 ∂θ∓ + zr+

1
2 θ±∂z

±zr− 1
2 (r + 1

2 )θ+θ−∂θ∓))Φ(Z).
(4.25)

In [56] it was shown that irreducible unitary highest-weight representations with
respect to N=2 supersonformal algebra exist only for the minimal series:

c =
3k

k + 2
k ∈ N0.

One of the remarkable properties of the N=2 superconformal case is that the Ra-
mond and the Neveu-Schwarz sectors are equivalent . They are connected by the
spectral flow αη, an automorphism of the superconformal algebra parametrized
by η ∈ R [76] [78]:

αη(G±r ) = G±r∓η
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αη(Ln) = Ln − ηJn + ĉ
η2

2
δn,0

αη(Jn) = Jn − ĉηδn,0.

For η = 1
2 the half-integer moded fermionic generators are mapped on the

integer moded ones and vice versa. This fact shows the obvious difference to
the N = 1 case, where the Ramond and the Neveu-Schwarz sectors are very
different. However, the spectral flow deforms the Verma modules, so that the
representation theory of the two sectors of the algebra is different. In [80] it
was shown that all rational representations of the N=2 Virasoro algebra are
necessarily unitary. For logarithmic superprimary fields with a degeneracy in h,
the generalization is straightforward. Consider a Jordan cell of rank 2. The
infinitesimal transformations are:

[Ln,Φ
′(Z)] = (h(m+ 1)zm + 1

2 (m+ 1)zm(θ+∂θ+ + θ−∂θ−) + zm+1∂z

+ q
2θ

+θ−zm−1m(m+ 1))Φ′(Z) + zm(m+ 1)Φ(Z)

(4.26)

[G±r ,Φ
′(Z)] = (−zr+ 1

2 (∂θ∓ − θ∓∂z) + zr−
1
2 (r + 1

2 )((2h± q)θ±

±θ+θ−∂θ∓))Φ′(Z) + zr−
1
2 (2r + 1)θ±Φ(Z)

(4.27)

[Jn,Φ
′(Z)] = (2hθ+θ−mzm−1 + zm(θ−∂θ− − θ+∂θ+) + qzm)Φ′(Z)

+2hθ+θ−mzm−1Φ(Z).
(4.28)

Now one can consider Jordan cells with respect to J0. Define a two-dimensional
Jordan cell:

J0|Φ′〉 = q|Φ′〉+ |Φ〉

J0|Φ〉 = q|Φ〉.

Then the logarithmic superfield transforms, according to (4.23), (4.25), (4.24)
as:

[Ln,Φ
′(Z)] = (h(m+ 1)zm + 1

2 (m+ 1)zm(θ+∂θ+ + θ−∂θ−) + zm+1∂z

+ q
2θ

+θ−zm−1m(m+ 1))Φ′(Z) + 1
2θ

+θ−zm−1m(m+ 1)Φ(Z)

[G±r ,Φ
′(Z)] = (−zr+ 1

2 (∂θ∓ − θ∓∂z) + zr−
1
2 (r + 1

2 )((2h± q)θ±

±θ+θ−∂θ∓))Φ′(Z)± zr− 1
2 (r + 1

2 )θ±Φ(Z)

[Jn,Φ
′(Z)] = (2hθ+θ−mzm−1 + zm(θ−∂θ− − θ+∂θ+) + qzm)Φ′(Z) + zmΦ(Z).

Although this kind of fields can be considered, we will see that J0 is always
diagonal. Even if one assumes an operator J0 with Jordan block, the corre-
sponding “logarithmic partners” decouple from the theory, in other words all
correlation functions containing “logarithmic partners” are trivial. We will show
this in the next sections.
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4.6 Correlation Functions in N=2 SCFT

The ordinary N=2 vacuum is invariant under the orthosymplectic group OSp(2|2).
The two point function is:

F2 ≡ 〈Φ(Z1)Φ(Z2)〉.

It satisfies the following eight superdifferential equations corresponding to
L−1, L0, L1, J0, G+

− 1
2

, G−− 1
2

G+
1
2

and G−1
2

, respectively:

(L1
−1 + L2

−1)F2 = (∂z1 + ∂z2)F2 = 0 (4.29)

(L1
0 + L2

0)F2 = (h1 + h2 + 1
2

(
θ+

1 ∂θ+1
+ θ−1 ∂θ−1

+ θ+
2 ∂θ+2

+ θ−2 ∂θ−2

)
+z1∂z1 + z2∂z2)F2 = 0

(4.30)

(L1
1 + L2

1) = (2h1z1 + 2h2z2 + z1(θ+
1 ∂θ+1

+ θ−1 ∂θ−1
) + z2(θ+

2 ∂θ+2
+ θ−2 ∂θ−2

)

+z2
1∂z1 + z2

2∂z2 + q1θ
+
1 θ
−
1 + q2θ

+
2 θ
−
2 )F2 = 0

(4.31)

(J1
0 + J2

0 )F2 = (θ−1 ∂θ−1
− θ+

1 ∂θ+1
+ θ−2 ∂θ−2

− θ+
2 ∂θ+2

+ q1 + q2)F2 = 0 (4.32)

(G+
− 1

2

+G+
− 1

2

)F2 = (−∂θ−1 − ∂θ−2 + θ+
1 ∂z1 + θ+

2 ∂z2)F2 = 0 (4.33)

(G−− 1
2

+G−− 1
2

)F2 = (−∂θ+1 − ∂θ+2 + θ−1 ∂z1 + θ−2 ∂z2)F2 = 0 (4.34)

(G+
1
2

+G+
1
2

)F2 = ((2h1 + q1)θ+
1 + (2h2 + q2)θ+

2 − z1∂θ−1
− z2∂θ−2

+z1θ
+
1 ∂z1 + z2θ

+
2 ∂z2 + θ+

1 θ
−
1 ∂θ−1

+ θ+
2 θ
−
2 ∂θ−2

)F2 = 0
(4.35)

(G−1
2

+G−1
2

)F2 = ((2h1 − q1)θ−1 + (2h2 − q2)θ−2 − z1∂θ+1
− z2∂θ+2

+z1θ
−
1 ∂z1 + z2θ

−
2 ∂z2 − θ

+
1 θ
−
1 ∂θ+1

− θ+
2 θ
−
2 ∂θ+2

)F2 = 0.
(4.36)

Since the two-point function depends on six coordinates it is fixed up to a
constant. It can be expanded around the four Grassmannian variables θ+

1 , θ−1 ,
θ+

2 and θ−2 , yielding sixteen components. One component is purely bosonic and
not conjugate to any θ. Four components appear as functions of z1, z2 times one
of the Grassmannian variables. Another six are conjugate to θ+

1 θ
−
1 . θ+

1 θ
+
2 , θ+

1 θ
−
2 ,

θ+
2 θ
−
2 , θ−1 θ

+
2 and θ−1 θ

−
2 , there are four terms coming with one of the combinations

of three θ’s (θ+
1 θ
−
1 θ

+
2 , θ+

1 θ
−
1 θ
−
2 , θ+

1 θ
+
2 θ
−
2 and θ−1 θ

+
2 θ
−
2 ). Additionally, there is one

term proportial to the combination θ+
1 θ
−
1 θ

+
2 θ
−
2 . The components have to be of

same gradation, so the constants associated with combinations of one or three
Grassmannian coordinates are Grassmannian-valued as well.
Using (4.29) and (4.30) constraints the ansatz to:

F2 = z−h1−h2
12 (a+ (b1θ

+
1 + b2θ

−
1 + b3θ

+
2 + b4θ

−
2 )z

1
2
12

+(c1θ
+
1 θ
−
1 + c2θ

+
1 θ

+
2 + c3θ

+
1 θ
−
2 + c4θ

+
2 θ
−
2 + c5θ

−
1 θ

+
2 + c6θ

−
1 θ
−
2 )z−1

12

(d1θ
+
1 θ
−
1 θ

+
2 + d2θ

+
1 θ
−
1 θ
−
2 + d3θ

+
1 θ

+
2 θ
−
2 + d4θ

−
1 θ

+
2 θ
−
2 )z

− 3
2

12

+eθ+
1 θ
−
1 θ

+
2 θ
−
2 z
−2
12 )

(4.37)
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where bi and di are Grassmannian constants. Using (4.31) yields h1 = h2.
Constants bi and di are fixed to be zero. This is because for Φh1,q1(Z1) =
φ1(z1)+θ+

1 ψ
−
1 (z1)+θ−1 ψ

+
1 (z1)+θ+

1 θ
−
1 g1(z1), the correlators of some component

fields are zero:

〈φ1(z1)θ+
2 ψ
−
2 (z2)〉 = 〈φ1(z1)θ−2 ψ

+
2 (z2)〉

= 〈θ+
1 θ
−
1 g1(z1)θ+

2 ψ
−
2 (z2)〉 = 〈θ+

1 θ
−
1 g(z2)θ−2 ψ

+
2 (z2)〉 = 0

(4.38)

and corresponding equations with exchanged lower indices. Remaining con-
stants satisfy c1 = −aq1, c4 = aq2, q1 = −q2. Equations (4.35) and (4.36)
return c6 = c2 = 0, c1 = a(−h1 + h2 − q1), c3 = a(2h1 + q1), c4 = aq2) and
c5 = a(2h2+q2) for the components proportional to one anticommuting variable,
which in particular means:

〈θ+ψ−1 (z1)θ+
2 ψ
−
2 (z2)〉 = 〈θ−1 ψ

+
1 (z1)θ−2 ψ

+
2 (z2)〉 = 0.

The only remaining constant is e and it can be fixed as e = h(h + 1) by
solving equation (4.35) for level three. Putting all constants together (4.37)
reads:

〈Φ(Z1)Φ(Z2)〉 = 1
z2h12

(1 +
q2(θ+1 θ

−
1 +θ+2 θ

−
2 )

z12

+
(2h−q2)θ+1 θ

−
2

z12
+

(2h+q2)θ−1 θ
+
2

z12
+

2h(2h+1)θ+1 θ
−
2 θ
−
1 θ

+
2

z212
).

(4.39)

Now the usefulness of the set of coordinates we call the superdifferences
Z12, θ+

12, θ−12 for solving conformal Ward identities can be demonstrated. We
introduce a complimentary set of coordinates W12, ξ+

12, ξ−12 (which one might
call the “supersums”):

Z12 = z1 − z2 − θ+
1 θ
−
2 − θ

−
1 θ

+
2 (4.40)

W12 = z1 + z2 − θ+
1 θ
−
2 − θ

−
1 θ

+
2 (4.41)

θ+
12 = θ+

1 − θ
+
2 , θ−12 = θ−1 − θ

−
2 (4.42)

ξ+
12 = θ+

1 + θ+
2 , ξ−12 = θ−1 + θ−2 . (4.43)

Rewriting the conformal Ward identities (4.29)-(4.36) in the new coordinates
and simplyfing leads a set of equations which are more convenient to solve. In
particular, for the Ward identity corresponding to L−1 one obtains:

∂W12F2 = 0 (4.44)

G+
1
2

and G−1
2

, annihilating the vacuum, produce the following set of simple equa-

tions that immediately imply F2 = F2(Z12, θ
+
12, θ

−
12):

∂ξ+12
F2 = 0 (4.45)

∂ξ−12
F2 = 0. (4.46)

This can be used to simplify the equation corresponding to L0, producing:

(h1 + h2 + Z12∂Z12
+ 1

2 (θ+
12∂θ+12

+ θ−12∂θ−12
))F2 = 0. (4.47)
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We take the ansatz:

F2(Z12, θ
+
12, θ

−
12) = f(Z12) + θ+

12f+(Z12) + θ−12f−(Z12) + θ+
12θ
−
12f+−(Z12)

to take the form:

F2 = aZ−h1−h2
12 + b+θ

+
12Z
−h1−h2
12 + b−θ

−
12Z
−h1−h2− 1

2
12 + cθ+

12θ
−
12Z
−h1−h2−1
12 .

Introducing the new version of J0-action (4.32) first, using (4.45) and (4.46)
yields:

(q1 + q2 − θ+
12∂θ+12

+ θ−12∂θ−12
)F2 = 0. (4.48)

Using the ansatz, we obtain three possible solutions:

q1 + q2 = b+ = b− = 0 (4.49)

q1 + q2 + 1 = a = b− = c = 0 (4.50)

q1 + q2 − 1 = a = b+ = c = 0. (4.51)

The action of L1 on the vacuum results in the following equation:

(2(h1 − h2)(2Z12 + θ+
12ξ
−
12 + θ−12ξ

+
12)

+2Z12(ξ+
12∂θ+12

+ ξ−12∂θ−12
)− (θ+

12ξ
−
12 + θ−12ξ

+
12)(θ+

12∂θ+12
+ θ−12∂θ−12

)

+2q2(θ+
12ξ
−
12 + ξ+

12θ
−
12))F2 = 0.

(4.52)

This equation rules out (4.50) and (4.51) and fixes h1 = h2 and c = aq2. Thus,
the two-point function is:

F2 = a(Z−h1−h2
12 + q2θ

+
12θ
−
12Z
−h1−h2−1
12 ). (4.53)

This result appeared in [73] as:

〈Φ(Z1)Φ(Z2)〉 = Z−2h1
12 eq2

θ
+
12θ
−
12

Z12 δh1,h2
δq1,−q2 . (4.54)

G±1
2

leads to the following set of Ward identities:

(((h1 − h2)± 1
2 (q1 − q2))θ±12 + ((h1 + h2)± 1

2 (q1 + q2))ξ±12

+(ξ±12θ
∓
12 − Z12)∂θ∓12

+ Z12ξ
±
12∂Z12

)F2 = 0.

which are not necessary due to [L1, G
±
− 1

2

] = G±1
2

. In the same way, (4.47) is not

necessary due to [L1, L−1] = 2L0.
The three-point function F3 is dependent on nine variables:

F3 = F3(z1, z2, z3, θ
+
1 , θ

−
1 , θ

+
2 , θ

−
2 , θ

+
3 , θ

−
3 , ξ

+
1 , ξ

−
1 , ξ

+
2 , ξ

−
2 , ξ

+
3 , ξ

−
3 ). (4.55)

The superdifferences and supersums read:

Zij = zi − zj − θ+
i θ
−
j − θ

−
i θ

+
j

Wij = zi + zj − θ+
i θ
−
j − θ

−
i θ

+
j
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θ±ij = θ±i − θ
±
j

ξ±ij = θ±i + θ±j .

The three-point function was found in [73]. For the purpose of this thesis, it is
necessary to re-derive this result using superconformal Ward identities to analyse
logarithmic behaviour of superfields. The three-point function depends on nine
variables, but spans a six-dimensional space. Since there are eight Ward iden-
tities, there must be a quantity R(Z12,Z31,Z23, θ

+
12, θ

+
31, θ

+
23, θ

−
12, θ

−
31, θ

−
23) which

is invariant under the remaining differential operators. The general solution is
a special solution multiplied by an arbitrary function of the invariant. This
invariant is known [73] and reads:

R =
θ+

12θ
−
12

Z12
+
θ+

31θ
−
31

Z31
+
θ+

23θ
−
23

Z23
. (4.56)

Although not obvious at the first glance, this invariant is nilpotent: R2 = 0.
As usual, we first use translational invariance:

(L1
−1 + L2

−1 + L3
−1)F3 = (∂z1 + ∂z2 + ∂z3)F3 = 0. (4.57)

Using differences zij = zi−zj and sums wij = wi+wj we first realize that the
three differences are not linearly independent. Thus, to span the whole three-
dimensional space we must use one of the wij to build a basis. For the choice
{z12, z31, w23} equation (4.57) returns ∂w23

F3 = 0. This and other choices are
equivalent to the following differential equations:

∂W12
F3 = ∂W31

F3 = ∂W23
F3 = 0.

Thus, translational invariance imposes the dependence on Z12, Z31, Z23 with-
out missing any solutions.

Because the differences span a two-dimensional space, dependence of the
three-point function on only two of the zij is required, though we keep all three
of them to give the solution a more symmetric form. We use the identities
imposed by the invariance under G±1

2

:

(G+,1

− 1
2

+G+,2

− 1
2

+G+,3

− 1
2

)F3 =

(−∂θ−1 − ∂θ−2 − ∂θ−3 + θ+
1 ∂z1 + θ+

2 ∂z2 + θ+
3 ∂z3)F3 = 0

(4.58)

(G−,1− 1
2

+G−,2− 1
2

+G−,3− 1
2

)F3 =

(−∂θ+1 − ∂θ+2 − ∂θ+3 + θ−1 ∂z1 + θ−2 ∂z2 + θ−3 ∂z3)F3 = 0.
(4.59)

In terms of supersums and superdifferences these equations read:

(∂ξ−12
+ ∂ξ−31

+ ∂ξ−23
)F3 = 0 (4.60)

(∂ξ+12
+ ∂ξ+31

+ ∂ξ+23
)F3 = 0. (4.61)

Again, we can eliminate the dependence of two of the ξ±ij to obtain:

∂ξ+12
F3 = ∂ξ+31

F3 = ∂ξ+23
F3 = ∂ξ−12

F3 = ∂ξ−31
F3 = ∂ξ−23

F3 = 0.
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Global dilation invariance implies:

(L1
0 + L2

0 + L3
0)F3 =

(h1 + h2 + h3 + 1
2

(
θ+

1 ∂θ+1
+ θ−1 ∂θ−1

+ θ+
2 ∂θ+2

+ θ−2 ∂θ−2
+ θ+

3 ∂θ+3
+ θ−3 ∂θ−3

)
+z1∂z1 + z2∂z2 + z3∂z3)F3 = 0.

(4.62)
This translates to:

(L1
0 + L2

0 + L3
0)F3 =

(h1 + h2 + h3 + Z12∂Z12
+ Z31∂Z31

+ Z23∂Z23

+ 1
2 (θ+

12∂θ+12
+ θ−12∂θ−12

+ θ+
31∂θ+31

+ θ−31∂θ−31
+ θ+

23∂θ+23
+ θ−23∂θ−23

))F3 = 0.

(4.63)
Expanding the ansatz, one obtains sixty-four term with corresponding func-

tions of Zij . Taking a closer look at (4.63), it is obvious that functions conjugate
n,m, k ∈ {1, 2} Grassmannian variables of the type θ±12, θ

±
31, θ

±
23 are of the form

Z
−h1−h2−n2 +h3

12 Z
−h1−h3−n2 +h2

31 Z
−h2−h3−n2 +h1

23 . The differential equation gener-
ated by J0-invariance reads:

(J1
0 + J2

0 + J3
0 )F3 =

(θ−1 ∂θ−1
− θ+

1 ∂θ+1
+ θ−2 ∂θ−2

− θ+
2 ∂θ+2

+ θ−3 ∂θ−3
− θ+

3 ∂θ+3
+ q1 + q2 + q3)F3 = 0.

(4.64)
It translates to the new variables :

(J1
0 + J2

0 + J3
0 )F3 =

(θ−12∂θ−12
− θ+

12∂θ+12
+ θ−23∂θ−23

− θ+
23∂θ+23

+ θ−31∂θ−31
− θ+

31∂θ+31
+ q1 + q2 + q3)F3 = 0.

(4.65)
This equation is satisfied for terms where a variable θij± always appears

together with its counterpart variable θ∓ij . In this case, we have q1 +q2 +q3 = 0.
The number of terms is reduced to eight.

(L1
1 + L2

1 + L3
1)F3 = (2h1z1 + 2h2z2 + 2h3z3

+z1(θ+
1 ∂θ+1

+ θ−1 ∂θ−1
) + z2(θ+

2 ∂θ+2
+ θ−2 ∂θ−2

) + z3(θ+
3 ∂θ+3

+ θ−3 ∂θ−3
)

+z2
1∂z1 + z2

2∂z2 + z2
3∂z3 + q1θ

+
1 θ
−
1 + q2θ

+
2 θ
−
2 + q3θ

+
3 θ
−
3 )F3 = 0.

(4.66)

Substituting and simplifying, the Ward identity can be brought in the following

42



form:

(L1
1 + L2

1 + L3
1)F3 =

(h1(W31 − Z31) + h2(W12 − Z12) + h3(W23 − Z23)

+ 1
2 (Z12ξ

+
12 + W12θ

+
12 + 1

2 (ξ−12 + θ−12)ξ+
12θ

+
12)∂θ+12

+ 1
2 (Z12ξ

−
12 + W12θ

−
12 + 1

2 (ξ+
12 + θ+

12)ξ−12θ
−
12)∂θ−12

+ 1
2 (Z23ξ

+
23 + W23θ

+
23 + 1

2 (ξ−23 + θ−23)ξ+
23θ

+
23)∂θ+23

+ 1
2 (Z23ξ

−
23 + W23θ

−
23 + 1

2 (ξ+
23 + θ+

23)ξ−23θ
−
23)∂θ−23

+ 1
2 (Z31ξ

+
31 + W31θ

+
31 + 1

2 (ξ−31 + θ−31)ξ+
31θ

+
31)∂θ+31

+ 1
2 (Z31ξ

−
31 + W31θ

−
31 + 1

2 (ξ+
31 + θ+

31)ξ−31θ
−
31)∂θ−31

+(W12 − 1
2 (ξ+

12θ
−
12 + ξ−12θ

+
12))Z12∂Z12

+(W23 − 1
2 (ξ+

23θ
−
23 + ξ−23θ

+
23))Z23∂Z23

+(W31 − 1
2 (ξ+

31θ
−
31 + ξ−31θ

+
31))Z31∂Z31

+ q1
4 (ξ+

12 + θ+
12)(ξ−12 + θ−12) + q2

4 (ξ+
23 + θ+

23)(ξ−23 + θ−23)

+ q3
4 (ξ+

31 + θ+
31)(ξ−31 + θ−31))F3 = 0.

(4.67)

Using the ansatz:

∆ij = hj + hj − hk

η(Z) = Z−∆12
12 Z−∆31

31 Z−∆23
23

F3 = η(Z)σ(Z, θ)

where σ(Z, θ) is a function with dimension one, and writing:

(L1
1 + L2

1 + L3
1)F3 = (Lq + Lh + L∂θ + L∂Z)F3 = 0

where Lq, Lh, L∂θ and L∂Z are terms containing q, h, derivatives with respect
to one of the θ’s and Z’s, respectively, we can obtain a differential equation for
σ. First we note that:

(L∂Z + Lh)η = 0.

This leads to the equation:

Lqσ + L∂θσ + L∂Zσ = 0. (4.68)

From the structure of this equation one might guess the suitable ansatz:

F3 = Z−∆12
12 Z−∆31

31 Z−∆23
23

· exp(A12
θ+12θ

−
12

Z12
+A31

θ+31θ
−
31

Z31
+A23

θ+23θ
−
23

Z23
).

Indeed, this equation satisfies the Ward identity for L1. Expanding σ we
have:

σ = 1 +A12
θ+12θ

−
12

Z12
+A31

θ+31θ
−
31

Z31
+A23

θ+23θ
−
23

Z23

+A12A23
θ+12θ

−
12θ

+
23θ
−
23

Z12Z23
+A12A31

θ+12θ
−
12θ

+
31θ
−
31

Z12Z31
+A23A31

θ+23θ
−
23θ

+
31θ
−
31

Z23Z31
.

(4.69)
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The next term disappears due to θ±12θ
±
23θ
±
31 = 0. All of the terms chancel in

(4.68) except for Lq and terms containing Zij∂θ±ij
:

Lqσ + 1
2 (Z12ξ

+
12∂θ+12

+ Z12ξ
+−
12 ∂θ−12

+ Z23ξ
+
23∂θ+23

+ Z23ξ
−
23∂θ−23

+Z31ξ
+
31∂θ+31

+ Z31ξ
−
31∂θ−31

)σ ≡

(Lq + LZξ∂θ )σ = 0.

(4.70)

Now it can be verified easily that (the index i on σ indicates the therm containing
i nilpotent variables):

0 = LZξ∂θσ0

Lqσ0 = −LZξ∂θσ2

Lqσ2 = −LZξ∂θσ4

Lqσ4 = 0,

(4.71)

with following Aij :
q1 = A31 −A12

q2 = A12 −A23

q3 = A23 −A31

⇒ q1 + q2 + q3 = 0.

Thus, the complete ordinary N=2 three-point function reads:

F3 = C123Z
−∆12
12 Z−∆31

31 Z−∆23
23

· exp(A12
θ+12θ

−
12

Z12
+A31

θ+31θ
−
31

Z31
+A23

θ+23θ
−
23

Z23
)(1 + αR)δq1+q2+q3,0 = 0.

It is easy to see that multiplying by the invariant R is equivalent to addition
of α to the coefficients Aij . For completeness, we present the Ward identities
corresponding to G±− 1

2

, which in new coordinates read:

(
− (Z12 − ξ±12θ

∓
12)∂θ∓12

− (Z23 − ξ±23θ
∓
23)∂θ∓23

− (Z31 − ξ±31θ
∓
31)∂θ∓31

+ξ±12Z12∂Z12
+ ξ±23Z23∂Z23

+ ξ±31Z31∂Z31

+(ξ±12 + θ±12)(h1 ± q1
2 ) + (ξ±23 + θ±23)(h2 ± q2

2 ) + (ξ±31 + θ±31)(h3 ± q3
2 )
)
F3 = 0.

The general n-point function in N=2 superconformal theory reads:

Fn =

 n∏
i<j

Z
−∆ij

ij

 exp

 n∑
i<j

Aij
θ+
ijθ
−
ij

Zij

 f(x1, ...x3n−8)δ∑n
i=1 qi=0. (4.72)

Here, f(x1, ...x3n−8) is a function of the 3n − 8 invariants and the constants
satisfy:

Aij = −Aji, ∆ij = ∆ji,

n∑
j=1,i6=j

Aij = −qi,
n∑

i=1,i6=j

∆ij = 2∆i.
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4.7 Correlation Functions in N=2 LSCFT

There have been different approaches considering correlation functions in log-
arithmic field theory. We will mostly follow [45], this approach is very general
and whose notation is the most compact. For a one-form dzh on the Riemann
sphere, we can consider replacing h → hIn. The differential form acts on the
n-component vector, containing conformal fields of dimension h:

Φ =


φ0

...

φn−1

 .

One can go further and try to generalize the one form by adding a non-
diagonal term hI → hI + H, which represents the Jordan cell structure of the
dilation generator L0 (the unit matrix is going to be omitted from now on). This
matrix is obviously nilpotent of degree n: Hn

1 = 0. Using ab = exp (b log a), we
arrive at the following expression:

dzh+H1 = dzh
n−1∑
n=0

Hi(log dz)i

i!
.

Although there appears not to be a rigorous treatment of the somewhat
unusual quantity log dz in the literature, the differential form seems to be well-
defined and leads to the transformation law:

Φ′(z) =

(
∂z′

∂z

)h+H

Φ(z′).

In the next step, we change the description of Φ from a vector bundle to
the associated G-bundle, which amounts to the replacement of vector Φ by a
matrix. To write down the matrix explicitly, one has to fix the convention since
we have the choice between H of the form:

H =



0 1
. . . 0

. . .
. . .

. . .
. . .

0
. . .

. . . 1

0 0
. . . 0


,

which is called a upper shift matrix, or of the form:

H =



0
. . . 0 0

1
. . .

. . . 0

. . .
. . .

. . .
. . .

0
. . . 1 0


,
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which is a lower shift matrix. By acting on a matrix with a upper (lower)
shift matrix literally shifts the components one row up (down) and replaces the
last (first) row with zeroes. Here, without loss of generality, we introduce non-
diagonalizable structure using upper shift matrices. Then the (quasi-)primary
fields are expressed as:

Φ =


φ0

...

φn−1

 → Φ =

n−1∑
i=0

Hiφn−1−i =



φn−1 φn−2
. . . φ0

0
. . .

. . .
. . .

. . .
. . .

. . . φn−2

0
. . . 0 φn−1


.

The n-point function can be expressed as the vacuum expectation value of the
tensor product of the fields, with explicit dependence on Hi:

Fn(z1, ..., zn, θ
+
1 , ..., θ

+
n , θ

−
1 , ..., θ

−
n , H1, ...,Hn) =

〈0|Φ(z1, θ
+
1 , θ

−
1 , H1)⊗ ...⊗Φ(zn, θ

+
1 , θ

−
n , Hn)|0〉.

This matrix-valued correlation function contains all the information about
correlation functions between primary and quasiprimary fields which are or are
not part of a Jordan cell. The tensor product signs are going to be dropped
in the following. Let us turn our attention to the logarithmic version of the
two-point function. One can consider Jordan cells in correlation functions by
replacing:

h1 → Ih1 + J, h2 → Ih2 +K

q1 → Iq1 + P, h2 → Ih2 +Q.

The matrices J , K, P , Q take the off-diagonal action of L0 into account and
have rank M , N , R and S, respectively. They are nilpotent:

JM = KN = PR = QS = 0

JM−1,KN−1, PR−1 =, QS−1 6= 0.

Equations (4.44), (4.45) and (4.46) do not involve h, q and are not modified by
off-diagonal action so we can formally write:

F2(z1, z2, θ
+
1 , θ

−
1 , θ

+
2 , θ

−
2 , J,K, P,Q) = F2(Z12, θ

+
12, θ

−
12, J,K, P,Q).

Equation (4.47) now reads:

(h1 + J + h2 +K + Z12∂Z12
+ 1

2 (θ+
12∂θ+12

+ θ−12∂θ−12
))F2 = 0.

This has the solution:

F2 = AZ−h1−J−h2−K
12 +B+θ

+
12Z
−h1−J−h2−K− 1

2
12 +B−θ

−
12Z
−h1−J−h2−K− 1

2
12

+Cθ+
12θ
−
12Z
−h1−J−h2−K−1
12 .
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Here, the coefficients are constant matrices which depend on the choice of the
Jordan cells involved. Equation (4.48) in the logarithmic case reads:

(q1 + P + q2 +Q− θ+
12∂θ+12

+ θ−12∂θ−12
)F2 = 0.

This returns following conditions on the prefactors:

(q1 + q2 + P +Q)C = 0.

(q1 + q2 + P +Q+ 1)B+ = 0

(q1 + q2 + P +Q− 1)B− = 0

(q1 + q2 + P +Q)A = 0.

The matrix P + Q is per definition invertible because it is non-singular, so is
I(q1 + q2). Multiplying with the respective inverse matrices yields three non-
trivial (where not all the coefficient matrices are zero) solutions:

q1 + q2 = 0⇒→ B+ = B− = 0, (P +Q)A = (P +Q)C = 0

q1 + q2 = 1⇒ A = B+ = C = 0, (P +Q)B− = 0

q1 + q2 = −1⇒ A = B− = C = 0, (P +Q)B+ = 0.

Finally, we use the logarithmic version of (4.52):

(2(h1 + J − h2 −K)(2Z12 + θ+
12ξ
−
12 + θ−12ξ

+
12)

+2Z12(ξ+
12∂θ+12

+ ξ−12∂θ−12
)− (θ+

12ξ
−
12 + θ−12ξ

+
12)(θ+

12∂θ+12
+ θ−12∂θ−12

)

+2(q2 +Q)(θ+
12ξ
−
12 + ξ+

12θ
−
12))F2 = 0.

The only possible non-trivial solution remaining is q1 + q2 = 0. Additionally,
one obtains C = A(q2 +Q), h1 = h2 and (J −K)A = 0. Thus, the most general
logarithmic two-point function is:

F2 = A(Z−2h1−J−K
12 + (q2 +Q)θ+

12θ
−
12Z
−2h1−J−K−1)δh1,h2δq1,−q2 (4.73)

(J −K)A = (P +Q)A = 0.

It can easily be seen that logarithmic behaviour is reproduced for indecompos-
able L0. For a two-dimensional Jordan cell of fields containing Φ′ and Φ with
P = Q = 0, one can retrieve correlation functions:

〈Φh,qΦh,−q〉 = 0

〈Φ′h,qΦh,−q〉 = a(Z−2h
12 + q2θ

+
12θ
−
12Z
−2h1−1
12 )

〈Φ′h,qΦ′h,−q〉 = Z−2h
12 (1 + q2θ

+
12θ
−
12Z
−1)(a+ blog(Z12).

In theories with an extended Cartan algebra, one has to account for the even-
tually appearing indecomposable representations with respect to the additional
elements of the algebra. By introducing Jordan blocks by hand, one obtains a
large variety of possible transformation properties on the space of fields.
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Previously in the literature [45], it was assumed that the zero mode of
the affine U(1)-current J which appears in the N=2 theory is in general non-
diagonalizable and can account for a more complex logarithmic structure com-
pared with N=0 and N=1 cases. Although in general operators of an extended
algebra can posses non-diagonalizable structure, in case of supersymmetrically
extended algebras this turns out to be incorrect.

First of all, from the N=2 algebra we know that since J0 and L0 commute,
they are both simultaneously triangularizable. In correlation functions of de-
generate fields, logarithms appear when singular vectors in a Virasoro module
lead to Fuchsian differential equations, which solutions can not be expanded
in series but also posses logarithmic terms. A consequence of this is that the
OPE of two certain degenerate fields has logarithmic terms as well. Although
explicit, simple formulae for singular vectors are not known for N = 2 (some
progress was made in [72]), Fuchsian differential equations of second order do
not exist for nilpotent variables in general.

If one introduces indecomposable representations with respect to J0, the
resulting logarithmic partners decouple completely from the theory. Let us as-
sume that J0 is non-diagonalizable, acting on a two-component field containing
Φ′ and Φ. Then from (4.73) we can extract the correlation functions of the
components:

〈Φh1,q1Φh2,q2〉 = 0

〈Φ′h1,q1Φh2,q2〉 = 0

〈Φ′h1,q1Φ′h2,q2〉 = Z−2h
12 (1 + q2θ

+
12θ
−
12Z
−1
12 )δh1,h2

δq1,−q2 .

This result means that the two-point function of two logarithmic fields be-
haves exactly like a two-point function of two regular primary superfields. This
already leads to the conclusion that defining a Jordan cell for J0 has no effect
on the correlators of the theory if we set Φ′ → Ψ and Φ → 0, where Ψ is an
ordinary primary field. The correlation functions with respect to L0 behave

exactly as in N = 0, 1-theory. Replacing hi by hi +Hi the ansatz
∏
i<j Z

∆ij

ij is
solved for:

2(hi +Hi) =
n∑

j=2,i<j

∆ij .

Thus, for n > 2, the correlation functions can be obtained from ordinary ones
using the derivation trick.

4.8 N=3 SCFT

Generators of superconformal transformations closing to the N=3 super Virasoro
algebra act on the space spanned by one complex and three Grassmannian
variables. We will denote the nilpotent variables as θ1, θ2, θ3 and use lower
indices to designate the position. Schwimmer and Seiberg ([76]) found that
there are only two unitary representations of the N=3 algebra, which are labeled
by c = 3

2 , h = 0, q = 0 and c = 3
2 , h = 1

4 , q = 1
2 . Obviously, the algebra turns

out to be very restrictive. We will discuss the N=3 in its full generality, making
use of this important result later.
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The most general infinitesimal transformation consistent with the conformal
condition reads (using the Einstein summation convention from now on):

z 7→ z + a(z) + αi(z)θ
i +

1

2
αij(z)θ

iθj + α123(z)θ1θ2θ3.

The eight classical generators of the superconformal transformations read:

lm = −zm(z∂z +
1

2
(m+ 1)θi∂θi)

gir = zr−
1
2 (zθi∂z − z∂θi + (r +

1

2
)θiθj∂θj )

tim = zm−1(zεijkθ
j∂θk −mθ1θ2θ3∂θi)

ψr = −zr− 1
2 (θ1θ2θ3∂z +

1

2
εijkθ

iθj∂θk).

Additionally to gir, we have another odd generator ψr. These transformations
give rise to following classical graded algebra:

[lm, ln] = (m− n)lm+n

{gir, gjs} = 2δij lr+s + εijk(r − s)tkr+s

[lm, g
i
r] = (

m

2
− r)gir+m

[tim, t
j
n] = −εijktkm+n

[lm, t
i
n] = −ntim+n

[tim, g
j
r ] = δijmψr+m − εijkgkr+m
{ψm, ψn} = 0

[lm, ψs] = −(
m

2
+ s)ψm+s

{gir, ψs} = tir+s

[tim, ψs] = 0.

The set of operators annihilating the vacuum reads:

X|0〉 = 0⇔ X ∈ {ln, gir, tim, ψs : n ≥ −1, r ≥ −1

2
,m ≥ 0, s ≥ 1

2
}.

The generators of the group Osp(2|3) are the closed subset of this set of opera-
tors:

{l−1, l0, l1, g
i
1
2
, gi− 1

2
, ti0},

containing twelve generators. This leads to twelve potentially useful Ward iden-
tities.

The gauge transformations that leave the z-coordinate invariant are tim,
which satisfy a su(2) algebra. Thus, a representation of the N=3 supercon-
formal algebra carries an implicit su(2) index transforming under an operator
Ji:

[Ji, Jj ] = −1

2
εijkJk (4.74)
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so that the OPE of the stress-energy tensor:

T(Z) = θ1θ2θ3L(z) +
1

2
εijkθ

iθjGk(z) + θiT i(z) + ψ(z) (4.75)

with a superfield reads:

T(Z1)Φ(Z2) =
hθ112θ

2
12θ

3
12

Z2
12

Φ(Z2) +
θ112θ

2
12θ

3
12

Z12
∂z1Φ(Z2)

+
εijkθ

i
12θ

j
12D

k
2

4Z12
Φ(Z2) +

θi12Ji
Z12

Φ(Z2).

The covariant derivative is defined as:

Di = ∂θi + θi∂z,

and the superdifferences read:

Z12 = (z1 − z2 − θi1θi2)

θi12 = (θi1 − θi2).

The infinitesimal transformations on primary superfields are:

[Lm,Φ(Z)] = zm(h(m+ 1) + z∂z +
1

2
(m+ 1)θi∂θi +

m(m+ 1)

2z
εijkθ

iθjJk)Φ(Z)

[Gis,Φ(Z)] = −zs− 1
2 (h(s+ 1

2 )θi + 1
2θ
iz∂z − 1

2z∂θi + 1
2 (s+ 1

2 )θiθj∂θj

+(s+ 1
2 )(εijkθ

jJk − 1
z (s2 − 1

4 )θ1θ2θ3Ji)Φ(Z)

[T im,Φ(Z)] = zm−1(mh2 εijkθ
jθk − z

2 εijkθ
j∂θk + m

2 θ
1θ2θ3∂θi

+zJi −mθiθkJk)Φ(Z)

[ψs,Φ(Z)] = zs−
1
2 (−hz (s− 1

2 )θ1θ2θ3 + 1
2θ

1θ2θ3∂z

+ 1
4εijk(θiθj∂θk − θiJi)Φ(Z).

The OPE of the super stress-energy tensor with itself is:

T(Z1)T(Z2) =
c

Z12
+
θ1

12θ
2
12θ

3
12

2Z2
12

T(Z2)+
θ1

12θ
2
12θ

3
12

Z12
∂z2T(Z2)+

εijkθ
i
12θ

j
12D

k
2

4Z12
T(Z2).

This OPE gives rise to the quantum N=3 algebra (note the extra factors
of 1

2 appearing compared to the classical algebra, besides the usual central
extension):

[Lm, Ln] = (m− n)Lm+n − cm(m2 + 1)δm+n,0

{Gir, Gjs} =
δij
2
Lr+s +

εijk
2

(r − s)T kr+s − c(r2 − 1

4
)δr+s,0δij

[Lm, G
i
r] = (

m

2
− r)Gir+m

50



[T im, T
j
n] = −εijk

2
T km+n +mcδijδm+n,0

[Lm, T
i
n] = −nT im+n

[T im, G
j
r] =

1

2
(δijmψr+m − εijkGkr+m)

{ψr, ψs} = cδr+s,0

[Lm, ψs] = −(
m

2
+ s)ψm+s

{Gir, ψs} =
1

2
T ir+s

[T im, ψs] = 0.

For representation theory, it is useful to make a coordinate transformation
map the generators to a diagonal su(2) basis. We define:

θ+ = 2(iθ1 − θ2)

θ− = 2(iθ1 + θ2)

θH = iθ3

The central charge is fixed:

k = −4c.

Although this basis turns out to be very convenient to work with, the algebra,
written down explicitly, becomes rather lengthy:

[Lm, Ln] = (m− n)Lm+n +
k

4
m(m2 − 1)δm+n,0

{GHr , GHs } = −32Lr+s − 16k(r2 − 1

4
)δr+s,0

{G+
r , G

−
s } = 16Lr+s + 8k(r2 − 1

4
)δr+s,0 + 8(r − s)THr+s

{G±r , GHs } = 8(r − s)T±r+s

[Lm, G
±,H
r ] = (

m

2
− r)G±,Hr+m

[THn , T
H
m ] = kmδm+n,0

[THm , T
±
n ] = ±T±m+n

[T+
m , T

−
n ] = 2THm+n + 2kmδm+n,0

[Lm, T
±,H
n ] = −nT±,Hm+n

[THm , G
±
r ] = ±G±r+m

[THm , G
H
r ] = −2THr+s

[T±m , G
H
r ] = −2G±m+r

[T∓m , G
±
r ] = −GHr+m ± 8mψr+m
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[ψr, ψs] = −k
4
δr+s,0

[Lm, ψs] = −(
m

2
+ s)ψm+s

{ψs, GHr } = −2THr+s

{ψs, G±r } = ∓T±r+s
[T±m , T

±
n ] = [T±m , G

±
r ] = {G±r , G±s } = [T±,Hm , ψs] = 0.

The twelve generators of superconformal transformations relevant for solving
super Ward identities, written in the new basis, read explicitly:

[L−1,Φ(Z)] = ∂zΦ(Z) (4.76)

[L0,Φ(Z)] = (h+ z∂z + 1
2 (θ+∂θ+ + θ−∂θ− + θH∂θH ))Φ(Z) (4.77)

[L1,Φ(Z)] = (2hz + z(z∂z + θ+∂θ+ + θ−∂θ− + θH∂θH )

+ 1
8θ

+θ−JH + 1
4θ

+θHJ− − 1
4θ
−θHJ+)Φ(Z)

(4.78)

[GH− 1
2

,Φ(Z)] = −4(θH∂z + ∂θH )Φ(Z) (4.79)

[GH1
2

,Φ(Z)] = (−8hθH − 4θHz∂z − 4z∂θH − 4θHθ−∂θ−

−4θHθ+∂θ+ + θ−J+ − θ+J−)Φ(Z)
(4.80)

[G±− 1
2

,Φ(Z)] = ±(θ±∂z + 8∂θ∓)Φ(Z) (4.81)

[G±1
2

,Φ(Z)] = (±2hθ± ± θ±z∂z ± 8z∂θ∓ + θ+θ−∂θ∓

+2θHJ± + θ±JH)Φ(Z)
(4.82)

[TH0 ,Φ(Z)] = (θ−∂θ− − θ+∂θ+ + JH)Φ(Z) (4.83)

[T±0 ,Φ(Z)] = (∓ 1
2θ
±∂θH ± 4θH∂θ∓ + J±)Φ(Z). (4.84)

We note that by constructing superfields from superfunctions, we can obtain
q = 0 and q = 1 representations explicitly. Making use of three Grassmannian
variables, there are eight possible terms in the expansion of a superfunction.
One can regard the set:

{1, θH , θ+, θ−, θHθ+, θ+θ−, θHθ−, θHθ+θ−}

as a basis of a superfield. The coefficients are functions of Z12 which are fixed

by L0. Then the bases of the eigenstates of
−→
J 2 and JH are given by:

j = 0, q = 0 : {1, θ+θ−θH}

j = 1, q = 1 : {θ+, θ+θH}

j = 1, q = 0 : {θH , θ+θ−}

j = 1, q = −1 : {θ−, θ−θH}.

(4.85)

Thus, it is easy to construct j = 0 and j = 1 representations in superspace
using ordinary functions containing nilpotent, anticommuting variables. Other
su(2)-representations require more complicated constructions.
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4.9 Indecomposable Representations
with Respect to su(2)-Operators

From the onset, it is not quite obvious how to introduce irreducible representa-
tions with respect to a given su(2) algebra and how they transform under ladder
operators. This was noticed in [45]. We will answer this question here.

There are two commuting (simultaneously triangulazable) operators
−→
J 2,

JH . Naively, both of them can possess Jordan cell structure independently
from each other. The operators satisfy following commutation relations:

[Ji, Jk] = −1

2
εijkJk

J+ = 2(iJ1 − J2)

J− = 2(iJ1 + J2)

JH = −2iJ3.

The highest-weight state with respect to JH is mapped to:

|q〉 → i

2
|q〉.

The computation of the correlation functions is much more complicated in
N=3 theory due to the presence of su(2) generators. We will elaborate on that in
the next section. The representation theory of the su(2) subspace is completely
analogous to the quantum mechanical angular momentum. The generators in
the diagonal basis satisfy:

[J±, JH ] = ∓J± (4.86)

[J+, J−] = 2JH . (4.87)

The diagonal operator
−→
J 2 can be expressed as:

−→
J 2 = J+J− + (JH)2 − JH . (4.88)

Thus, primary superfields can be labeled by quantum numbers j, q which are

eigenvalues of
−→
J 2 and JH , respectively. From the action of (4.88) on highest-

weight states we know that action on corresponding highest-weight states is:

−→
J 2|h, j, q〉 = j(j + 1)|h, j, q〉

and that the highest-weight states have q = j. Using J+|q〉 = a+(q)|q + 1〉 and
J−|q〉 = a−(q)|q − 1〉:

〈q|J+J−|q〉 = (〈q|(J−)†)J−|q〉 = a−(q)2 = j(j + 1)− q(q − 1)

⇒ a−(q) =
√
j(j + 1)− q(q − 1)

〈q|J−J+|q〉 = (〈q|(J+)†)J+|q〉 = a+(q)2 = j(j + 1)− q(q + 1)

⇒ a+(q) =
√
j(j + 1)− q(q + 1).
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Thus, we obtain the usual action of the ladder operators on highest-weight
states, with J−|q = −j〉 = 0.

Preservation of commutation relations on a given indecomposable represen-

tation with respect to JH or
−→
J 2 determines the embedding structure under

ladder operators.

One could try to construct indecomposable
−→
J 2. In this case JH must be

diagonal and the ladder operators have to mix between different representations
j to satisfy (4.88). However, it can be easily shown that in this case it is not

possible to satisfy (4.86). In fact,
−→
J 2, as a quadratic Casimir operator, exists

only on a given representation and is not part of the algebra, since an algebra
is equipped with a bilinear form only and the notion of multiplication is not
defined for elements of an algebra.

For a logarithmic pair with respect to JH , that is for a rank 2 Jordan cell
living in a representation j one has:

JH |j, q′〉 = q′|j, q′〉+ |j, q〉

JH |j, q〉 = q|j, q〉
−→
J 2|j, q′〉 = j(j + 1)|q′〉
−→
J 2|j, q〉 = j(j + 1)|q〉.

The state |j, q〉 is assumed to be a regular su(2)-representation. Equation
(4.86) implies that the ladder operators act as lowering and raising operators
on the representation |q′〉, obeying:

JH(J±|q′〉) = J±((q ± 1)|q′〉+ |q〉). (4.89)

This equation suggests that the ansatz for the action of ladder operators on
components of the logarithmic pair is given by:

J±|q′〉 = a±(q)|(q ± 1)′〉+ b(q)±|q ± 1〉.

J±|q〉 = c±(q)|q〉.

Using this ansatz on both sides of equation (4.89) returns a±(q) = c±(q).
Equation (4.87), acting on |q′〉 returns:

a−(q)a+(q − 1) = a+(q)a−(q + 1) + 2q (4.90)

a−(q)b+(q− 1) + b−(q)a+(q− 1) = a+(q)b−(q+ 1) + b+(q)a−(q+ 1) + 1. (4.91)

Similar conditions can be obtained by acting on different states of the theory,
e.g. the logarithmic partner and highest- and lowest states of the theory. Since
|q〉 is assumed to be an ordinary su(2) representation, the action of J± on that
state is:

J±|q〉 = a±|q〉 =
√
j(j + 1)− q(q ± 1)|q〉. (4.92)

A remarkable observation is that the derivation trick also works for logarith-
mic su(2) representations. In particular:

b±(q) = ∂qa
±(q).
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Thus, the action of J± on |q′〉 is given by:

J±|q′〉 =
√
j(j + 1)− q(q ± 1)|(q ± 1)′〉+

−q ∓ 1
2√

j(j + 1)− q(q ± 1)
|q ± 1〉.

We obtain a logarithmic representation of su(2) with respect to JH . The
unusual feature is that the ladder operators acting on logarithmic fields do
not produce a descendent of the logarithmic field alone but rather a linear
combination involving the logarithmic partner. For a rank two Jordan cell,
one obtains the following embedding diagram (the arrows indicate the action of
J−):

|q = j〉 • • |q′ = j〉
↓ ↙ ↓

|q = j − 1〉 • • |q′ = j − 1〉
↓ ↙ ↓
• •
...

...
...

• •
↓ ↙ ↓

|q = −j + 1〉 • • |q′ = −j + 1〉
↓ ↙ ↓

|q = −j〉 • • |q′ = −j〉

(4.93)

The derivation trick also holds for higher-dimensional Jordan cells, in which
case we obtain the embedding diagram (denoting the position of a field in the
Jordan cell by an upper index):

|q = j〉 |(q = j)(1)〉 · · · |(q = j)(n−1)〉 |(q = j)(n)〉
• • • •
↓ ↙ ↓ ↙ · · · ↙ ↓ ↙ ↓
• • • •
...

...
...

...
...

...
...

• • • •
↓ ↙ ↓ ↙ · · · ↙ ↓ ↙ ↓
• • • •

|q = −j〉 |(q = −j)(1)〉 · · · |(q = −j)(n−1)〉 |(q = −j)(n)〉

The main result of this section is the fact that it is indeed possible to define
an arbitrary, non-diagonal JH acting on a column of fields, which in turn can
be transformed to a Jordan cell form. However, the N=3 super Virasoro theory
does not contain such operators due to the mentioned fact that Fuchsian differ-
ential equations of second order in nilpotent variables would be required.

4.10 The Two-Point Functions in N=3 SCFT

As in N=2 theory, we perform yet another coordinate transformation to solve
the Ward identities. Again, the supersums and superdifferences turn out to be
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very convenient for this purpose:

θ±,Hij = θ±,Hi − θ±,Hj

ξ±,Hij = θ±,Hi + θ±,Hj

Zij = zi − zj +
1

8
(θ−i θ

+
j + θ+

i θ
−
j ) + θHi θ

H
j

Wij = zi + zj +
1

8
(θ−i θ

+
j + θ+

i θ
−
j ) + θHi θ

H
j .

We note that the subgroup SL(2, C) acts on the space of functions in the
completely analogous way as in N=0 theory. We also know that the supertrans-
lations in direction of nilpotent dimensions G±,H1

2

eliminate the dependence on

ξ±,Hij . Taking these facts into account, the derivatives transform as (ignoring

derivatives with respect to Wij and ξ±,Hij ):

∂z1 = ∂Z12

∂z2 = −∂Z12

∂θ±1
= ∂θ±12

+
1

8
θ∓2 ∂Z12

∂θ±2
= −∂θ±12 −

1

8
θ∓1 ∂Z12

∂θH1 = ∂θH12 + θH2 ∂Z12

∂θH2 = −∂θH12 − θ
H
1 ∂Z12

.

Since the transformation is straightforward and we discussed the details
explicitly in N=2 case already. We skip the technicalities and present the su-
perconformal Ward identities for the two-point function F2(Z12, θ

+
12, θ

−
12, θ

H
12) in

terms of supersums and superdifferences:

(L
(1)
−1 + L

(2)
−1)F2 = 0 (4.94)

(L
(1)
0 + L

(2)
0 )F2 = (h1 + h2 + Z12∂Z12

+
1

2
(θ+

12∂θ+12
+ θ−12∂θ−12

+ θH12∂θH12))F2 = 0

(L
(1)
1 + L

(2)
1 )F2 =

(h1(W12 + Z12 − 1
8 (θ−12ξ

+
12 + θ+

12ξ
−
12)− θH12ξ

H
12) + h2(W12 − Z12)

+ 1
16 (ξ+

12 + θ+
12)(ξH12 + θH12)J−1 + 1

16 (ξ+
12 − θ

+
12)(ξH12 − θH12)J−2

− 1
16 (ξ−12 + θ−12)(ξH12 + θH12)J+

1 − 1
16 (ξ−12 − θ

−
12)(ξH12 − θH12)J+

2

+ 1
32 (ξ+

12 + θ+
12)(ξ−12 + θ−12)JH1 + 1

32 (ξ+
12 − θ

+
12)(ξ−12 − θ

−
12)JH2

+(W12Z12 − 1
16Z12(θ−12ξ

+
12 + θ+

12ξ
−
12)− 1

2Z12θ
H
12ξ

H
12)∂Z12

+ 1
2 (Z12ξ

+
12 + W12θ

+
12 + 1

16θ
+
12ξ

+
12(ξ−12 + θ−12)− 1

2θ
H
12ξ

H
12(ξ+

12 + θ+
12))∂θ+12

+ 1
2 (Z12ξ

−
12 + W12θ

−
12 + 1

16θ
−
12ξ
−
12(ξ+

12 + θ+
12)− 1

2θ
H
12ξ

H
12(ξ−12 + θ−12))∂θ−12

+ 1
2 (Z12ξ

H
12 + W12θ

H
12 − 1

16 (θ−12ξ
+
12 + θ+

12ξ
−
12)(ξH12 + θH12))∂θH12)F2 = 0

(4.95)
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(G
H(1)

− 1
2

+G
H(2)

− 1
2

)F2 = 0 (4.96)

(G
H(1)
1
2

+G
H(2)
1
2

)F2 = (−4((h1 + h2)ξH12 + (h1 − h2)θH12)

− 1
2 (ξ+

12 + θ+
12)J−1 − 1

2 (ξ+
12 − θ

+
12)J−2 + 1

2 (ξ−12 + θ−12)J+
1 + 1

2 (ξ−12 − θ
−
12)J+

2

−4Z12ξ
H
12∂Z12

− 2(ξH12θ
−
12 + θH12ξ

−
12)∂θ−12

− 2(ξH12θ
+
12 + θH12ξ

+
12)∂θ+12

−4(Z12 − 1
16 (θ−12ξ

+
12 + θ+

12ξ
−
12)− 1

2θ
H
12ξ

H
12)∂θH12)F2 = 0

(4.97)

(G
±(1)

− 1
2

+G
±(2)

− 1
2

)F2 = 0 (4.98)

(G
±(1)
1
2

+G
±(2)
1
2

)F2 = (±h1(ξ±12 + θ±12)± h2(ξ±12 − θ
±
12)

+(ξH12 + θH12)J±1 + (ξH12 − θH12)J±2

+ 1
2 (ξ±12 + θ±12)JH1 + 1

2 (ξ±12 − θ
±
12)JH2 ± ξ±12Z12∂Z12

+(±8Z12 ∓ θ∓12ξ
±
12 − 4θH12ξ

H
12)∂θ∓12

± 1
2 (θ±12ξ

H
12 + ξ±12θ

H
12)∂θH12)F2 = 0

(4.99)

(T
H(1)
0 + T

H(2)
0 )F2 = (θ−12∂θ−12

− θ+
12∂θ+12

+ JH1 + JH2 )F2 = 0 (4.100)

(T
±(1)
0 + T

±(2)
0 )F2 = (∓ 1

2θ
±
12∂θH12 ± 4θH12∂θ∓12

+ J±1 + J±2 )F2 = 0. (4.101)

Equation (4.88) can be easily verified by consecutive application of genera-
tors on the right-hand side on one of four eigenstates of the su(2) algebra:

(( 1
2θ

+∂θH − 4θH∂θ−)(− 1
2θ
−∂θH + 4θH∂θ+)

+(θ+∂θ+ − θ−∂θ−)((θ+∂θ+ − θ−∂θ−)− 1))Φj,q = j(j + 1)Φj,q

⇒ 2(θ+∂θ+ + θ−∂θ− + θH∂θH

−θ+θ−∂θ−∂θ+ − θ+θH∂θH∂θ+ − θ−θH∂θH∂θ−)Φj,q = j(j + 1)Φj,q.
(4.102)

As a matter of fact, one can use this equation to generate another Ward
identity. We first assume that the superdifferences appear only with either
integer powers or powers which are products of hi with an integer. The Ward
identity for L0 returns the right functions associated with each element of the
basis. Thus, the ansatz for the two-point function is of the form:

F2 = a

Z
h1+h2
12

+
b+θ+12

Z
h1+h2+ 1

2
12

+
b−θ−12

Z
h1+h2+ 1

2
12

+
bHθH12

Z
h1+h2+ 1

2
12

+
c+Hθ+12θ

H
12

Z
h1+h2+1
12

+
c−Hθ−12θ

H
12

Z
h1+h2+1
12

+
c+−θ+12θ

−
12

Z
h1+h2+1
12

+
dθ+12θ

−
12θ

H
12

Z
h1+h2+ 3

2
12

.
(4.103)

In [71], two solutions of the two-point function were presented. The author
solved the superconformal Ward identities by substituting terms involving J−

57



into each other. The two solutions read (ignoring the constants and setting
h1 = h2 = h):

〈Φq1Φq2〉 =
1

Z2h
12

, q1 = q2 = 0 (4.104)

〈Φq1Φq2〉 =
θ+

12θ
H
12

Z2h+1
12

, q1 + q2 = 1, q1, q2 6= 0. (4.105)

We find that although correct, this picture is far from complete, since the
author of [71] failed to recognize the necessity of interpreting the eigenvalue
of JH as quantized superconformal isospin. Since we know that q must be an
integer or a half-integer and both q involved belong to highest-weight states,
the only possibility for the second solution is q1 = q2 = 1

2 . beginning from that,
we can derive all the other two-point functions of the theory.

It is an important observation that the quadratic Casimir operator J2 exists
in N=3 theory, generating an additional, although not independent Ward iden-
tity. To define a Casimir operator, one needs to consecutively apply operators
at the same superspace “points”. Since the points involve Grassmannian vari-
ables only, there is no problem with singularities and we don’t need to worry
about normal ordering. Consider a correlator of primary fields with q1 = j1 and
q2 = j2. A Casimir operator can be defined as:

T 2 = T−T+ + (TH)2 + TH . (4.106)

The first term annihilates the two-point function of primary fields and the third
term generates an already known Ward identity. The second term translates to:

((TH(1))2 + 2TH(1)TH(2) + (TH(2))2)F2 = 0. (4.107)

In terms of superdifferences, this relation reads (abbreviating q1 + q2 = x):

(−2θ+
12θ
−
12∂θ−12

∂θ+12
+ (1− 2x)θ+

12∂θ+12
+ (1 + 2x)θ−12∂θ−12

+ x2)F2 = 0. (4.108)

This Ward Identity holds for correlators of both lowest- and highest-weight
fields. The only nontrivial solutions are given by terms containing θ+

12, θ
+
12θ

H
12

for x = 1 and θ−12, θ
−
12θ

H
12 for x = −1. Since the terms containing one nilpotent

variable are already ruled out, we find one other candidate for a two-point
function, which indeed satisfies all the remaining Ward identities:

〈Φ− 1
2
Φ− 1

2
〉 =

θ−12θ
H
12

Z2h+1
12

. (4.109)

Using (4.97) on this function, we obtain conditions of the form:

〈(J−Φ 1
2
)Φ 1

2
〉+ 〈Φ 1

2
(J−Φ 1

2
)〉 = 〈Φ− 1

2
Φ 1

2
〉+ 〈Φ 1

2
Φ− 1

2
〉 =

θ−12θ
+
12

2Z2h+1
12

(4.110)

〈(J−Φ 1
2
)Φ 1

2
〉 − 〈Φ 1

2
(J−Φ 1

2
)〉 = 〈Φ− 1

2
Φ 1

2
〉 − 〈Φ 1

2
Φ− 1

2
〉 =

8

2Z2h
12

(4.111)

from which we obtain mixed correlators:

〈Φ− 1
2
Φ 1

2
〉 =

θ−12θ
+
12

4Z2h+1
12

+
4

Z2h
12

(4.112)
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〈Φ 1
2
Φ− 1

2
〉 =

θ−12θ
+
12

4Z2h+1
12

− 4

Z2h
12

. (4.113)

Thus, all five non-zero two-point functions of the N=3 theory have been
found. There are two fields in the theory which give non-trivial correlation
functions: the identity I and a su(2)-doublet Φ 1

2
. These are the two fields

identified in [76] in the c = 3
2 theory, where two representations in the NS sector,

labeled by h(q): 0(0) and 1
4 ( 1

2 ) have been found. It is a very intriguing fact that
only q = 0, q = 1

2 - states return non-zero two-point functions; presumably,
unitary N=3 representations for all c = 3

2k contain only fields with these two
values of q.

4.11 The N=3 n-Point Functions

For n-point functions, we have

n∑
a=1

(n − a) =
1

2
n(n − 1) coordinates labeled by

{(i, j)|1 ≤ i < j ≤ n}. We take as the general ansatz:

Fn = ξn(Z)σq1,...,qk(Z, θ)

ξn(Z) =
∏
i<j

Z
−∆ij

ij .

The number of fields in the correlator with qi 6= 0 is k.
Acting on this ansatz with superdifferential Ward operators produces a set

of equations for σq1,...,qk . We define σi,j , the σ-part if the two-point function at
points i and j, as:

σi,j =



1 qi = qj = 0
θ−ijθ

H
ij

Zij
qi = − 1

2 qj = − 1
2

θ+ijθ
H
ij

Zij
qi = + 1

2 qj = + 1
2

4 +
θ−ijθ

+
ij

4Zij
qi = − 1

2 qj = + 1
2

−4 +
θ−ijθ

+
ij

4Zij
qi = + 1

2 qj = − 1
2

0 otherwise.

The Ward identity for L0, for example (from (4.77)) produces a linear su-
perdifferential equation for σq1,...,qk :

L0σq1,...,qk =
∑
i<j

(Zij∂Zij +
1

2
(θ+
ij∂θ+ij

+ θ−ij∂θ−ij
+ θHij ∂θHij ))σq1,...,qk = 0. (4.114)

From TH0 we have the condition:

T H0 σq1,...,qk = (
∑
i<j

(θ−ij∂θ−ij
− θ+

ij∂θ+ij
) +

∑
i

JHi )σq1,...,qk = 0. (4.115)

The three-point correlation function 〈Φ 1
2
Φ 1

2
Φ 1

2
〉 is trivial, as is every correlator

containing an odd number of su(2)-doublets. Invariance under T±0 produces
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another equation:

T ±0 σq1,...,qk = (
∑
i<j

(∓1

2
θ±ij∂θHij ± 4θHij ∂θ∓ij

) +
∑
i

J±i )σq1,...,qk = 0, (4.116)

and invariance under GH1
2

leads to:

GH− 1
2

σq1,...,qk = (
∑
i<j

(−4Zijξ
H
ij ∂Zij − 2(ξHij θ

−
ij + θHij ξ

−
ij)∂θ−ij

−2(ξHij θ
+
ij + θHij ξ

+
ij)∂θ+ij

− 4(Zij − 1
16 (θ−12ξ

+
ij + θ+

ijξ
−
12)− 1

2θ
H
ij ξ

H
ij )∂θHij )

+
∑
i

(−θ+
i J
−
i + θ−i J

+
i ))σq1,...,qk = 0.

(4.117)

Because of [GH1
2

, GH1
2

] = −32L1 and [T±0 , G
H
1
2

] = −2G±1
2

, all the other Ward

identities are satisfied without returning new constraints.
Every σi,j satisfies (4.114)-(4.117), in that case the sum simplifies to one term

which is the part of super Ward identities acting on σi,j . With k=4 we have the
set of six coordinates labeled by {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}. There
are three pairwise contractions {((1, 2), (3, 4)), ((1, 3), (2, 4)), ((1, 4), (2, 3))}. In
general, there are (k− 1)!! ways to perform pairwise contractions of k elements.
This cooresponds to the number of choices of k

2 coordinates with uniquely dis-
tributed indices 1, .., k. If l labels elements of the ordered set of possible pairwise
contractions of k fields, we write for a particular realization l of pairwise con-
tractions:

(σq1,...,qk)l = (σi1,j1σi2,j2 ...σi k
2
,j k

2

)l =

k
2∏

m=1

(σim,jm)l

im < jm, i1 6= ... 6= i k
2
6= j1 6= ... 6= j k

2
.

Every particular contraction is a solution of (4.114)-(4.117).
The general solution can be obtained from a contraction of pairs of su(2)-

doublets and a summation over all possible contractions:

σq1,...,qk =

(k−1)!!∑
l=1

k
2∏
m

(σim,jm)l.

This is how it works in case n=4, k=4:

σq1,q2,q3,q4 = σq1,q2σq3,q4 + σq1,q3σq2,q4 + σq1,q4σq2,q3 .

We can give the qi particular values, for example to obtain the sum of all possible
contractions:

σ( 1
2 )1,(− 1

2 )2,(
1
2 )3,(− 1

2 )4 =

σ( 1
2 )1,−( 1

2 )2σ( 1
2 )3,(

1
2 )4 + σ( 1

2 )1,(
1
2 )3σ−( 1

2 )2,(− 1
2 )4 + σ( 1

2 )1,−( 1
2 )4σ−( 1

2 )2,(
1
2 )3 =

− θ
+
12θ
−
12

Z12
+

θ+34θ
−
34

Z34
+

θ+14θ
−
14

Z14
− θ+23θ

−
23

Z23

+
θ+12θ

−
12θ

+
34θ
−
34

16Z12Z34
+

θ+14θ
−
14θ

+
23θ
−
23

16Z14Z23
+

θ+13θ
−
13θ

+
24θ
−
24

16Z13Z24
.

(4.118)
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Equation (4.117) is then satisfied:

GH0 σ( 1
2 )1,(− 1

2 )2,(
1
2 )3,(− 1

2 )4 =(
(−θ−2 J

+
2 + θ+

1 J
−
1 )σ( 1

2 )1,(− 1
2 )2

)
σ( 1

2 )3,(− 1
2 )4

+σ( 1
2 )1,(− 1

2 )2

(
(−θ−3 J

+
4 + θ+

4 J
−
3 )σ( 1

2 )3,(− 1
2 )4

)
(

(θ+
1 J
−
1 + θ+

3 J
−
3 )σ( 1

2 )1,(
1
2 )3

)
σ(− 1

2 )2,(− 1
2 )4

+σ( 1
2 )1,(

1
2 )3

(
(−θ−2 J

+
2 − θ

−
4 J

+
4 )σ( 1

2 )3,(− 1
2 )4

)
(

(−θ−4 J
+
4 + θ+

1 J
−
1 )σ( 1

2 )1,(− 1
2 )4

)
σ(− 1

2 )2,(
1
2 )3

+σ( 1
2 )1,(− 1

2 )4

(
(−θ−2 J

+
2 + θ+

3 J
−
3 )σ(− 1

2 )2,(
1
2 )3

)
+(θ−2 J

+
2 + θ−4 J

+
4 − θ

+
1 J
−
1 − θ

+
3 J
−
3 )σ( 1

2 )1,(− 1
2 )2,(

1
2 )3,(− 1

2 )4 = 0.

(4.119)

The equation is satisfied because acting with J±i on the right and comparing
different θ±i we obtain contractions of different σq1,q2,q3,q4 , for example for θ+

1 :

σ(− 1
2 )1,(− 1

2 )2,(
1
2 )3,(− 1

2 )4 = σ(− 1
2 )1,(− 1

2 )2σ( 1
2 )3,(− 1

2 )4 + σ(− 1
2 )1,(

1
2 )3σ(− 1

2 )2,(− 1
2 )4

+σ(− 1
2 )1,(− 1

2 )4σ(− 1
2 )2,(

1
2 )3 .

After all this preparation, we can write the general n-point function (up to
functions in 1

2n(n− 3) independent cross-ratios), as:

〈q1, ..., qn〉 ∼



n∏
i<j

Z
−∆ij

ij k = 0

n∏
i<j

Z
∆ij

ij

(k−1)!!∑
l=1

k
2∏
m

(σim,jm)l k even

0 k odd

(4.120)

n∑
i=1,i<j

∆ij = 2hi. (4.121)

Due to the low representation content in q, we were able to give all n-point
functions in N=3 theory as far as they are constrained by superconformal Ward
identities. Null vectors could be used to provide further constraints on functions
of invariants. In the context of the logarithmic theory, correlation functions with
fields indecomposable with respect to L0 can be obtained by using the derivation
trick.
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Conclusions and Outlook

An interesting aspect of the N=3 theory we found is that all representations with
q 6= 0, 1

2 seem to decouple from the theory. This is a strong indicator that the
representation content in the Neveau-Schwarz sector of a given N=3 theory is
limited to these values of q. We conjecture that a similar result can be obtained
in the Ramond sector. In [76], it was found that in the c = 3

2 theory, there
are two representations given by h(q) = 1

16 (0) (corresponding to spin fields Σ)
and 5

16 ( 1
2 ). Obtaining Ramond correlation functions is more difficult since spin

fields have to be inserted to get the right boundary conditions. A vertex algebra
representation would simplify this calculation. However, to the knowledge of the
author, no such representation has been found yet.

We used the method of assuming irreducible representations to obtain cor-
relation functions of supersymmetric (logarithmic) fields. It was shown that for
super Virasoro theories, logarithmic representations exist only with respect to
L0. Therefore, logarithmic theories might be encountered in supersymmetric
extensions of known N = 0 models. The most important question remaining is
which regular logarithmic representations “survive” supersymmetrisation (and
if they do at all). The correlation functions of logarithmic fields are given by a
product of some combination of superdifferences times the N = 0 logarithmic
correlation functions with differences zij replaced by superdifferences Z12.

During the course of writing this thesis, it became obvious that the super-
symmetric logarithmic field theory is much simpler then previously conjectured.
Not only are there no indecomposable representations with respect to operators
of additional gauge symmetries, we did not find any evidence for suggested
similarity between “nilpotent-variable”-description of logarithmic fields and su-
perfields, since their transformation properties are already very different. The
apparent similarity becomes even less visible for N = 2 and N = 3 fields, in
which case superfields contain two bosonic, two fermionic and four bosonic,
four fermionic components, respectively, as opposed to one bosonic field and
any number of bosonic fields in conjunction with nilpotent variables in the log-
arithmic case.

We hope that this work will contribute to a better understanding of the
regular N=3 theory and the N=2 and N=3 logarithmic theories. However, a lot
of work remains to be done in the future. Even regular, two-dimensional CFT
remains a vast and productive field with many open questions. The classification
of all rational theories alone is a problem, and it is still not clear if it is tractable
at all. Our present understanding of ordinary logarithmic theories is even less
far from complete. Even seventeen years after their discovery, they stand out
somewhat strange and obscure, although highly interesting and applicable area
in conformal quantum field theory.
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