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Abstract

This thesis considers conformal field theory in its supersymmetric extension as well as
in its relaxation to logarithmic conformal field theory.

Compactification of superstring theory on four-dimensional complex manifolds obey-
ing the Calabi-Yau conditions yields the moduli space of N = (4, 4) superconformal
field theories with central charge c = 6 which consists of two continuously connected
subspaces. This thesis is concerned with the subspace of K3 compactifications which
is not well known yet. In particular, we inspect the intersection point of the Z2 and
Z4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corre-
sponding points on the subvarieties geometrically, and give an explicit isomorphism of
the three conformal field theory models located at that point, a specific Z2 and a Z4

orbifold model as well as the Gepner model (2)4. We also prove the orthogonality of the
two subvarieties at the intersection point. This is the starting point for the programme
to investigate generic points in K3 moduli space. We use the coordinate identification
at the intersection point in order to relate the coordinates of both subvarieties and
to explicitly calculate a geometric geodesic between the two subvarieties as well as its
generator. A generic point in K3 moduli space can be reached by such a geodesic orig-
inating at a known model. We also present advances on the conformal field theoretic
side of deformations along such a geodesic using conformal deformation theory. Since a
consistent regularisation of the appearing deformation integrals has not been achieved
yet, the completion of this programme is still an open problem.

Moreover, we regard a relaxation of conformal field theory to logarithmic confor-
mal field theory. The latter allows the indecomposable action of the L0 Virasoro mode
within a representation of the conformal symmetry. In particular, we study general aug-
mented cp,q minimal models which generalise the well-known (augmented) cp,1 model
series. We calculate logarithmic nullvectors in both types of models. But most impor-
tantly, we investigate the low lying Virasoro representation content and fusion algebra
of two general augmented cp,q models, the augmented c2,3 = 0 model as well as the
augmented Yang-Lee model at c2,5 = −22/5. These exhibit a much richer structure
as the cp,1 models with indecomposable representations up to rank 3. We elaborate
several of these new rank 3 representations in great detail and uncover astonishing
features. Furthermore, we argue that irreducible representations corresponding to the
Kac table domain of the proper minimal models cannot be included into the theory. In
particular, the true vacuum representation is rather given by a rank 1 indecomposable



but not irreducible subrepresentation of a rank 2 representation. We generalise these
generic examples to give the representation content and the fusion algebra of general
augmented cp,q models as a conjecture. Finally, we open a new connection between
logarithmic conformal field theory and quantum spin chains by relating some represen-
tations of the augmented c2,3 = 0 model to the representation content of a c = 0 model
which describes an XXZ quantum spin chain.
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Chapter 1

Introduction

Reality is a question of perspective; the further you get from the
past, the more concrete and plausible it seems—but as you ap-
proach the present, it inevitably seems more and more incredible.
Salman Rushdie: Midnight’s Children

Conformal field theory (CFT) has become a very important and vibrant area of re-
search since its break-through on the mathematical physics’ stage in the mid 80’s. The
mathematical elaboration of the Virasoro algebra [1], the algebra of local conformal
transformations, and its representation theory [2, 3] inspired Belavin, Polyakov and
Zamolodchikov to present the first concise study of two-dimensional quantum field the-
ory which exhibits local conformal invariance and, at the same time, to construct an
important series of examples, the so-called minimal models [4]. This was the final step
of a long development in which conformal symmetry was slowly incorporated into a
quantum field theoretic framework. Indeed, already in 1958, Thirring had constructed
the first quantum CFT model in two dimensions, the famous Thirring model [5], not
realising its local conformal properties at that time. This model is known today as one
of the continuous CFT torus models at central charge c = 1. For a very enlightening
review of this exciting historical development we refer to [6].

From that time on, conformal field theory quickly became a key ingredient in nu-
merous branches of mathematical physics. It is important for the description of two-
dimensional phase transitions in statistical physics (see e.g. [7, 8, 9]) as well as for the
description of the quantised string theory worldsheet (see e.g. [10, 11]). And even in
the modern string theoretic approach in the context of D-branes the so-called bound-
ary conformal field theory provides the microscopical description [12, 13, 14, 15, 16].
Furthermore, implications of CFT can be found in Seiberg Witten theory [17], in solid
state physics as e.g. the quantum Hall effect [18, 19, 20], and certainly in the whole
field of integrable systems. And perhaps even most importantly, CFT has inspired
quite a lot of modern mathematical work with such topics as vertex operator algebras
[21, 22, 23] or mirror symmetry [24, 25, 26].

7



8 Chapter 1. Introduction

But the pure Virasoro algebra of local conformal transformations does not seem to
be sufficient for current applications. The direction of research has, hence, diversified
in several directions. Either the conditions of local conformal symmetry are restricted
further by the inclusion of more symmetries; especially for theories with a lot of param-
eters, which e.g. describe higher dimensional string compactification spaces, a larger
symmetry algebra often guarantees that the theory is well-behaved or, at least, that the
number of representations stays comparatively small. Or one tries to generalise local
conformal field theories by relaxing the conditions just in such a way that one keeps
most of the astonishing properties of CFT and, at the same time, describes a much
larger variety of theories.

In this thesis, we will present advances in both of these possible ways of extend-
ing CFT, the supersymmetric extension of the symmetry algebra as well as logarithmic
conformal field theory which represents a generalised implementation of conformal sym-
metry in quantum field theory.

The supersymmetric extension of the conformal symmetry algebra is mainly mo-
tivated by string theory. String theory is a mathematically promising suggestion of
how to bring together the two vital, but seemingly incompatible concepts in today’s
description of the physical world, general relativity and quantum theory. The confor-
mal invariance of string theory’s central physical entity, the Polyakov action, naturally
incorporates CFT in the string theory framework. However, string theory cannot be
developed into a consistent theory with any possible relation to the real world with-
out the inclusion of supersymmetry, an extension of the usual Lie type symmetries
by an odd symmetry between bosons and fermions. Indeed, without the inclusion of
supersymmetry string theory would exhibit very unphysical states, so-called tachyons
which exhibit a negative mass, and furthermore would suffer from a much more severe
hierarchy problem in the mass scales.

String theory is a quantum field theory of one-dimensional objects whose spatial ex-
tension can be seen at length scales of order of the Planck scale lPlanck = 4.13·10−33 cm,
the relevant scale for gravity phenomena. Actually, most efforts in describing string
theory still resort to a string quantum mechanics; the advances in string field theory are
still very scarce. In spacetime this one-dimensional string sweeps out a two-dimensional
surface, the so-called worldsheet of the string. The above mentioned Polyakov action
governs the embedding of this worldsheet into spacetime. Now, considerations of mak-
ing the theory mathematically consistent force spacetime to be of dimension ten (for
the supersymmetric string). This is a bitter pill to swallow for physicists, who think
that they live in four spacetime dimensions, and it is a challenge to make sense of
this. The most promising and very frequently used approach follows and generalises
the ideas of Kaluza, who long before the advent of string theory described an electro-
magnetic theory in a higher dimensional space, and Klein, who got rid of their extra
dimensions by simply curling them up to length scales which are not visible any more.
This method of compactification can be performed on more general manifolds than the
Kaluza Klein torus. These manifolds have to be compatible with supersymmetry as well
as the conformal structure of the theory and, hence, have to obey the so-called Calabi
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Yau conditions, i.e. they have to be complex Ricci flat manifolds of holonomy SU(d/2).
Other ideas of how to make sense of a higher dimensional string theory spacetime have
arisen rather recently in connection with braneworld scenarios. These scenarios lo-
cate the standard model interactions on a four-dimensional subspace of spacetime, a
so-called brane; only gravity is free to propagate in all of spacetime.

In this thesis we will be concerned with compactifications of superstring theory,
actually of type II superstring theory. But instead of compactifying on six-dimensional
Calabi-Yau manifolds, which would reduce the spacetime dimensionality to the de-
sired four, we will rather regard compactifications on four-dimensional manifolds which
respect the Calabi-Yau conditions. Due to the difficulties of a compactification on
a general six-dimensional Calabi-Yau manifold, our proceeding proves to have sev-
eral advantages. Besides the reduced dimensionality of space these four-dimensional
compactification spaces induce an even higher amount of supersymmetry, N = (4, 4)
supersymmetry. Although pretty awkward from a phenomenological point of view this
high amount of supersymmetry is very nice for structural studies as it avoids instanton
corrections and induces the possibility to view problems from different perspectives due
to the appearing further symmetry relations. On the other side, compactifying on four-
dimensional manifolds we encounter as possibilities not only the well understood sixteen
dimensional moduli space of torus compactifications, but also the eighty dimensional
moduli space of quantum K3 surfaces. Hence, these four-dimensional compactifica-
tions provide us with interesting toy models in order to finally understand realistic
six-dimensional compactifications and, as we will see, already this reduced problem
proves to be very hard in the generic case.

Although the general mathematical properties of K3 surfaces are well known (see
e.g. [27]), the precise physical properties of sigma models on these complex surfaces
together with their quantum properties as the B-field and, hence, of the respective
string vacua are only known for a nullset of theories in that moduli space, like Gepner
or most of the orbifold models. A lot of pioneering work on the general structure of
the K3 moduli space and the placement of the above mentioned special models within
has been done in e.g. [28, 29, 30, 31, 32, 33]. In this thesis, we clarify some open points
about the already known part of the moduli space and, furthermore, present advances
towards an exploration of the generic points in K3 moduli space.

In [31, 32] it was shown that the subvarieties of Z2 and Z4 orbifold compactifications
in the K3 moduli space intersect in one point. But their argument was given in a rather
indirect way. First, it made use of the identification of the quantum surface with its
conformal field theory and performed the identification on the level of the corresponding
conformal field theories. The two corresponding Z2 and Z4 orbifold conformal field
theories were proven to be equivalent to the Gepner like model (2̂)4, a Z2 orbifold of
the Gepner model (2)4. Secondly, it inferred the identification of two of these three
conformal field theories from the identification of two other specific theories via the
orbifold procedure.

In chapter 3 we first give an explicit identification of the two lattices and four-
planes corresponding to the two different orbifold conformal field theories at the point
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of intersection. This provides us with a geometric proof that the two quantum K3
surfaces are isomorphic. Secondly, we elaborate the explicit identification of the three
conformal field theories at that point and prove the orthogonality of the two subvarieties
of Z2 and Z4 orbifold compactifications at their point of intersection. This is a new
feature of the intersection which has not been clear up to now. As a byproduct we see
and confirm properties of twistfields in Z4 orbifold models.

This explicit identification of the Z2 and Z4 orbifold conformal field theories at the
point of intersection enables us to relate the coordinates of the Z2 and Z4 orbifold
subvarieties in moduli space. This is, indeed, not a trivial task as the algebraically
geometric arguments [31] of how to embed the orbifold moduli spaces into the larger
K3 moduli space lead to different ways of embedding for different orbifold groups.
Using this coordinate transition we explicitly construct a geometric geodesic between
these two subvarieties in moduli space and determine its generator. Although this last
calculation can only be done by a numerical iteration process, we use the method of
continued fractions in order to determine the exact transition element (of a desired
form) and, in this way, the exact generator.

The main open problem in K3 moduli space is the study of the vast space of yet un-
known sigma models besides the highly symmetric Gepner and orbifold models. Most
promisingly this problem can be solved by studying the CFT models along geodesics in
moduli space which originate and/or terminate at known points. Geometrically, it is
possible to determine these geodesics as well as their generators as described above. On
the conformal field theory side this problem is solved locally by the conformal defor-
mation theory (see e.g. [34]). However, the integration of these conformal deformations
along a geodesic prove to be intricate; we will describe and comment on advances in
these studies.

The second part of this thesis deals with logarithmic conformal field theories (log-
arithmic CFTs) which have attracted quite a lot of attention in recent years. These
theories are a generalisation of standard CFT which also allows for reducible but in-
decomposable action of the Virasoro modes. There are already quite a number of
applications in such different fields as statistical physics (e.g. [35, 36, 20, 37]), string
theory (e.g. [38, 39, 40]) and Seiberg Witten theory (e.g. [17]) which necessarily incor-
porate this generalisation of CFT. In particular, we will present a new connection of
logarithmic CFTs to quantum spin chains [41], which have lately received great atten-
tion within the field of the AdS/CFT correspondence (see e.g. [42, 43]). Nevertheless,
studying logarithmic CFTs has only just begun because we still know only few loga-
rithmic models explicitly and the efforts to disentangle the general structure prove to
be much more complicated and tedious as in ordinary CFT.

The most prominent examples of logarithmic CFTs up to now have emerged from
studying a specific series of the so-called minimal models in CFT, the cp,1 models.
As standard minimal models these actually emerge to be trivial as they provide zero
representation content. On the other hand, if one takes into account representations
corresponding to an enlarged Kac table, one encounters non-trivial models which in-
clude representations with indecomposable structure. This is the reason why we like to
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call these “augmented cp,1 minimal models”. These models are fairly well-understood
by now. The representation theory of their rank 2 indecomposable Virasoro represen-
tations has been analysed completely in [44, 45, 46, 47], and a thorough understanding
of the representations of the modular group corresponding to the enlarged triplet W-
algebra [48] of these models has been reached in [49, 50, 51, 52]. Especially the c2,1 = −2
model has been understood very well as it is isomorphic to a free field construction of
the symplectic fermions [53, 54].

But going beyond representation theory we find that the calculation of explicit cor-
relation functions proves to be much more intricate and tedious than in the ordinary
CFT case [55, 56]. The construction of nullvectors, the key tool in CFT for the cal-
culation of correlation functions, has already been addressed in [57, 58, 59, 60] for the
case of indecomposable representations. However, the type of logarithmic nullvectors
calculated so far only describes a very special case. Already for the cp,1 models the
generic logarithmic nullvectors are beyond the scope of this procedure. In this thesis
we will describe the more general situation which applies to all representations of the
cp,1 models and also to generalised models described below.

On the other hand, the cp,1 models are only quite special representatives of the
general class of augmented cp,q models [50]. Although these models have already been
addressed in some papers (see e.g. [61]), not much is known yet, neither about higher
rank representations nor about nullvectors nor about correlation functions. There are,
however, good indications that exactly these models might describe important statis-
tical systems, such as percolation. In particular, we will show that the augmented
c2,3 = 0 model might describe the representations which were calculated numerically
in [41].

In this thesis we want to uncover the Virasoro representation theory of the general
augmented cp,q models. We will attack this problem from two sides. First, we will use
the above mentioned refined version of logarithmic nullvector calculation in order to
find constraints on the possible structure of higher rank representations in these models.
As a main tool of exploration, however, we employ the calculation of the fusion product
of representations. The concept of the fusion product lies at the heart of conformal
representation theory and has been subject to many thorough mathematical studies
(see e.g. [62, 63, 64, 65, 66]). It governs the representation theoretic aspects of the
operator product expansion and, hence, puts severe constraints on all n-point-functions
in CFT. It follows that the fusion product actually dictates which set of representations
of the Virasoro algebra at a certain conformal weight can be combined into a consistent
CFT model. Hence, starting with a set of representations known to be included in
the theory the successive application of the fusion product will actually lead us to the
whole consistent representation space of a model. Our calculation of the augmented
cp,q models will pick as its starting point the augmentation of the minimal model Kac
table domain by its border.

The algorithm which we use to compute these fusion products relies on the work
of [67, 45]. In [67] W. Nahm showed that the main information characterising a re-
presentation can be found in a small quotient space of this representation, called the
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special subspace, which is finite for the large class of so-called quasirational CFTs. He
actually proved that the fusion of quasirational representations leads again to a finite
number of quasirational representations. In [45] M. Gaberdiel and H. Kausch used the
Nahm algorithm of the proof in [67] to propose a procedure how to efficiently calculate
a fusion product of two quasirational representations. This procedure was successfully
applied to the augmented cp,1 models in [45].

For this thesis we have implemented the Nahm algorithm and the procedure of [45]
to calculate the representation content and the fusion products of the lower lying Vi-
rasoro representations for the general augmented cp,q models. The explicit calculations
comprise a wide range of examples for two specific models, the augmented c2,3 = 0 and
the augmented Yang-Lee model at c2,5 = −22/5. Especially for the augmented c2,3 = 0
model we present a very thorough exploration of the full lower fusion algebra. These
two special models are then used to deduce the general structure of the representation
content and the fusion algebra in augmented cp,q models.

The resulting representation content appears to be much richer as in the special
augmented cp,1 models. We encounter several new types of rank 2 representations and,
in particular, several examples of rank 3 representations. There have been studies of
Jordan cells with rank higher than 2 on the level of correlation functions and Ward
identities in the CFT literature before [68, 69, 70, 57, 55, 56, 71, 72]. However, the
models and their representations discussed in this paper are the first ones where we can
see explicitly how a higher rank structure appears while generating a representation
as a Virasoro module from some groundstates. We discuss the three lowest rank 3
representations which are accessible for the augmented c2,3 = 0 model in great detail.
To our surprise, they seem to be constructed out of rank 2 representations in much
the same way as the rank 2 representations are constructed out of irreducible ones.
As a further astonishing fact, we show that irreducible representations corresponding
to weights in the Kac table domain of the proper minimal models cannot be included
consistently into the model as soon as we augment it with irreducible representations
corresponding to the Kac table border. In particular, the vacuum representation is
not given by an irreducible representation, but appears to be a rank 1 indecomposable
subrepresentation of a rank 2 representation.

This thesis is structured as follows. In chapter 2 we give an extensive introduction
to conformal field theory. This presentation, though, does not claim completeness, but
is mainly concerned with the topics of the vast field of CFT which are relevant for this
thesis. In particular, it includes an introduction to the supersymmetric extension of
CFT, to logarithmic CFT, as well as to the specific models which appear in this thesis.
In the context of orbifold theories, we calculate the supersymmetric Z4 partition func-
tion very carefully and deduce special properties of twisted fields which are important
to the next chapter.

Chapter 3 contains the first main part of this thesis. It deals with K3 compactifica-
tions of type II superstring theories. After a short introduction to the geometric aspects
of K3 surfaces and the corresponding moduli space we analyse the point of intersection
of the Z2 and Z4 subvarieties in moduli space in sections 3.2 – 3.3. Section 3.4 presents
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the construction of a geometric geodesic as well as its generator, and, finally, section
3.5 discusses how to relate this geodesic to a deformation of conformal field theories
and how to calculate such a deformation.

The second main part of this thesis is contained in chapter 4. It is concerned with
the determination of higher rank representations in the framework of logarithmic CFT.
After an introduction to the models of interest in this chapter we explain how to calcu-
late nullvectors of representations with higher rank structure in section 4.2. Section 4.3,
then, introduces the Nahm algorithm to calculate fusion products of representations.
In section 4.4 - 4.5 this Nahm algorithm is exploited to determine the representation
content and the fusion algebra of two special models, the augmented c2,3 = 0 and the
augmented Yang-Lee model. In particular, it is shown how some representations of
the augmented c2,3 = 0 model appear in the description of a XXZ quantum spin chain.
Section 4.6 extrapolates these results and conjectures the representation content as well
as the fusion rules for general augmented minimal models.

The appendices contain several explicit results of calculations of chapter 4. Ap-
pendix A presents the L0 action on the lowest states of the three determined rank 3
representations, appendix B lists the fusion products as calculated using the Nahm
algorithm on the computer, and appendix C comprises some examples of logarithmic
nullvectors.

Some results of this work have already been published in

• H. Eberle, On explicit results at the intersection of the Z2 and Z4 orbifold subva-
rieties in K3 moduli space, JHEP 08 (2004) 015, [hep-th/0407170].

• H. Eberle and M. Flohr, Notes on generalised nullvectors in logarithmic CFT,
Nucl. Phys. B741 (2006) 441–466, [hep-th/0512254].

• H. Eberle and M. Flohr, Virasoro representations and fusion for general aug-
mented minimal models, [hep-th/0604097].





Chapter 2

Conformal field theory

2.1 General structures in conformal field theory

In this section we want to give a brief introduction to the basics of conformal field
theory (CFT). The importance of two-dimensional field theory which exhibits conformal
symmetry has first been acknowledged in the seminal paper [4]. Since then, a vivid
field of study has also lead to a plentitude of good reviews as e.g. [73, 74, 9]. A more
axiomatic approach to the subject can be found in [75, 76, 32]. Our presentation collects
the most important facts necessary for the subsequent chapters.

The following list contains the essential ingredients of a unitary conformal field
theory:

• We start with a bigraded Hilbert space of states H over C, i.e.

H =
⊕

h,h̃

V (h; h̃) .

This space contains the unique vacuum V (0; 0) = C |0 〉. The subspaces of definite
grading V (h; h̃) are finite dimensional and the grading is bounded from below as
it represents the energy which is supposed to be bounded from below in a phy-
sical theory. The grading is called the holomorphic respectively antiholomorphic
conformal weight.

• The Hilbert space H is naturally endowed with a sesquilinear form, the so-called
“Shapovalov form”

〈Φ1|Φ2〉 = C(Φ1,Φ2) δh1,h2 δh̃1,h̃2
|Φ1〉 ∈ V (h1; h̃1), |Φ2〉 ∈ V (h2; h̃2)

where C(Φ1,Φ2) signifies a constant depending on the two states. Furthermore,
we demand that the vacuum is normalised to 〈0|0〉 = 1. Notice, that this sesquilin-
ear form respects the bigrading of H.

15
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• The states in H uniquely correspond to fields Φ(z, z̄) on a Riemann surface with
local coordinates z. This “state-field correspondence” manifests itself in the ap-
plication of a field to the vacuum which yields the corresponding state

Φ(0, 0) |0 〉 = |Φ 〉 .

• We also need maps Fn which map n states to the space Fn(z1, . . . , zn) of func-
tions which are real analytic with the exception of countably many poles (zi −
zj)

−m+r (z̄k − z̄l)−n+r (i 6= j, k 6= l, r ∈ R ⊂ R countable and m,n ∈ N), i.e.

Fn : H⊗n → Fn(z1, . . . , zn) .

• The fields are connected by a map called “operator product expansion” (OPE)

H×H −→ H{z, z̄}

where H{z, z̄} signifies the space of real analytic functions with the following pole
structure at z = 0

f(z, z̄) =
∑

r∈R,n∈Z

arnz
r+nz̄r R ⊂ R countable .

To obtain a well-defined CFT we only allow for finitely many terms with r < 0
or r + n < 0 for which the coefficients arn 6= 0 in f(z, z̄).

• We further need a special field T (z) of conformal weight (h, h̃) = (2, 0) as well as
its antiholomorphic correspondence T̃ (z̄). The charge of a field wrt T (z) is given
by its grading. Hence, T (z) represents the energy momentum tensor; sometimes
it is also called “Virasoro field”.

Using the state field correspondence we can translate these n point functions or “cor-
relators” to the better known appearance in terms of fields

|Φ(1) 〉 ⊗ . . .⊗ |Φ(n) 〉 Fn7−→ 〈 0 | Φ(1)(z1, z̄1) . . .Φ
(n)(zn, z̄n) |0 〉 .

In this presentation we see that consistency requires the n point functions Fn to be
compatible with the Shapovalov form and the OPE as the OPE can be translated to
an OPE of fields in a similar way

Φ(1)(z1, z̄1) Φ(2)(z2, z̄2) =
∑

|Φ(i)〉∈H
(z1 − z2)hi−h1−h2(z̄1 − z̄2)h̃i−h̃1−h̃2 Φ(i)(zi, z̄i) . (2.1)

The special form of the exponents applies to fields corresponding to eigenstates of the
zero-mode L0 of the energy momentum tensor to be defined below; in particular, it
applies to the important class of primary fields which will be introduced shortly.
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The energy momentum tensor T (z) is the generator of the conformal symmetry
transformations on the fields of the theory and, hence, leads to conformal Ward iden-
tities. Its OPE with itself can be shown to be

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ non singular terms . (2.2)

The parameter c is called the “central charge” and is one of the main classifying pa-
rameters of a CFT model.

The Virasoro field is actually part of the most important subspace of H, the space of
holomorphic fields which is also called the holomorphic W-algebra. These holomorphic
fields generate the symmetry transformations of the theory. Certainly, there also is an
antiholomorphic counterpart, the antiholomorphic W-algebra.

In the following we want to restrict ourself to holomorphic fields on the Riemann
sphere C

∗. All these fields can be expanded into Laurent series of modes

Φ(z) =
∑

n∈Z

Φn z
−n−h

where the modes Φn can be calculated as a contour integral

Φn =
1

2πi

∮

|z|<ε
dz zh+n−1 Φ(z) .

The OPE of two fields can be translated into a commutator of the modes of these fields
using the following contour prescription

[Φm,Ψn] =

∮

0
dz

∮

0, |z|>|w|
dw zhΦ+m−1 whΨ+n−1 Φ(z) Ψ(w)

−
∮

0
dw

∮

0, |w|>|z|
dz zhΦ+m−1 whΨ+n−1 Φ(z) Ψ(w)

=

∮

0
dw

∮

w
dz zhΦ+m−1 whΨ+n−1 Φ(z) Ψ(w) . (2.3)

Performing this with the above OPE of the Virasoro field (2.2) yields the celebrated
“Virasoro algebra”

[Lm, Ln] = (m− n)Lm+n +
c

12
(m− 1)m (m+ 1) δm+n,0 m,n ∈ Z .

In particular, the modes L−1, L0 and L1 generate translations, scale transformations
as well as the special conformal transformation, respectively. They are exactly the
generators of the global conformal group SL(2,C). These three generators close wrt
the Virasoro algebra and, hence, form a subalgebra. The application of L0 on a state
|Φi 〉 ∈ V (hi, h̃i) yields its conformal weight hi.

We will sometimes need the construction of a “normal ordered product” of two
fields. In terms of the mode expansion this normal ordered product is given by an
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ordering of the modes such that all modes which annihilate the vacuum are placed
right to the creation modes. The normal ordered product can also be constructed
directly from the OPE of two fields if the OPE exhibits only one singularity by

: ΦiΦj : (z) = lim
w→z

(Φi(z)Φj(w)− 〈Φi(z)Φj(w) 〉) .

But often, the OPE of two fields exhibits more than one singularity which all have to be
subtracted, e.g. for fields which are not free. Then, the subtraction scheme gets more
involved and leads to a modified normal ordering prescription and a modified Wick
theorem [9].

In unitary theories we can split H completely into irreducible representations of the
holomorphic and antiholomorphic Virasoro algebra. These are generated by “primary
fields” ψh,h̃, i.e. fields with the following properties

L0 ψh,h̃ = h ψh,h̃ Ln ψh,h̃ = 0 ∀n > 0

L̃0 ψh,h̃ = h̃ ψh,h̃ L̃n ψh,h̃ = 0 ∀n > 0 .

The other fields in the representation are then constructed by application of Ln and
L̃n, n < 0. They are called “descendant fields”.

Let us have a closer look at these representations and let us, for simplicity, restrict
to the holomorphic side of H. Then the freely generated so-called “Verma module” on
a highest weight state vh to the highest weight h is given by

M(h) = {L−n1 . . . L−nk
vh|n1 ≥ . . . ≥ nk > 0, k ∈ Z

+} .
In order to find the irreducible or at least indecomposable representation we need to
identify the largest true subrepresentation of M(h) which decouples from the rest of
the representation and need to construct the respective factor module.

A subrepresentation can be generated from any “singular vector” v in M(h), i.e.
a vector which obeys Lpv = 0 ∀p > 0 and which is, hence, a highest weight state of
its own; and certainly we can also have unions of such representations. On the other
hand, a subrepresentation only decouples from the rest of the representation and can,
thus, be factored out if it consists of “nullvectors”, i.e. vectors which are orthogonal to
all other vectors in the Hilbert space of states H wrt the Shapovalov form. As long as
a representation is irreducible, singular vectors are at the same time nullvectors and
generate subrepresentations which are null in H. However, the interrelation between
singular vectors and nullvectors becomes much more intricate as soon as we deal with
indecomposable but not irreducible representations as in section 2.2 or in chapter 4.

The field content of a Verma module or any smaller irreducible representation R
of the Virasoro algebra which has been constructed from a Verma module by factor-
ing out the maximal decoupling subrepresentation can be summarised in the so-called
“character of the module”

χ(c,h)(τ) = tr R qL0− c
24 q = e2πiτ

=
∞∑

n=0

β(h, c;n) qn+h− c
24
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where the trace has to be taken over the whole representation R and the integer con-
stants β(h, c;n) give the number of states in that representation at level n. The char-
acter of a generic Verma module is given by

χVir
(c,h)(τ) =

qh+ 1−c
24

η(q)
;

η(q) signifies the standard η function with

1

η(q)
= q−

1
24

∞∏

n=1

1

1− qn
= q−

1
24

∞∑

i=0

p(i) qi

where p(i) denotes the number of partitions of the integer i.
The above properties of primary fields also induce their transformation properties

under local conformal transformations z 7→ w(z)

Φ′(w, w̄) =

(
dw

dz

)h(dw̄

dz̄

)h̃

Φ(z, z̄) ,

where the prime indicated the internal symmetry transformation of the field itself. An
n point function of primary fields, hence, transforms according to

〈Φ1(w1, w̄1) . . .Φn(wn, w̄n) 〉 =

=

n∏

i=1

(
dwi

dzi

)h

i

(
dw̄i

dz̄i

)h̃i

〈Φ1(z1, z̄1) . . .Φn(zn, z̄n) 〉 .

Now, the form of all 1, 2 and 3 point functions of primary fields is already restricted
by their transformation properties, i.e. by the behaviour of primary fields under con-
formal transformations, to the form

〈Φ(z, z̄) 〉 = 0

〈Φ1(z, z̄)Φ2(w, w̄) 〉 =
CII δh1,h2 δh̃1,h̃2

(z − w)h1(z̄ − w̄)h̃1

〈Φ1(z1, z̄1)Φ2(z2, z̄2)Φ3(z3, z̄3) 〉 = CIII

∏

i<j

1

(zi − zj)hij

∏

i<j

1

(z̄i − z̄j)h̃ij
(2.4)

where h12 = h1 + h2−h3 etc. and where CII and CIII represent the structure constants
of the 2 respectively 3 point function. The above form of the 3 point function finally
justifies the special form of the OPE of two primary fields given in (2.1).

If we want to calculate the OPE of two fields Φ1(z) and Φ2(w) which belong to
two representations of the Virasoro algebra the conformal representation theory re-
stricts the possible representations of resulting fields quite severely. The result of such
considerations is summarised in the so-called “fusion product” of two fields denoted

Φ1 ⊗f Φ2 =
∑

i∈∆

Φi
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where the set ∆ is to be determined by representation theory. Except for the ex-
plicit structure constants the fusion product contains all vital information about the
behaviour of the OPE in a CFT model; the analytic behaviour is already determined
by conformal transformation properties as in the above 3 point function or in the OPE
(2.1).

The CFT partition function

If we want to perform perturbation theory e.g. in string theory we have to take care
that the CFT is well-defined on all Riemann surfaces. The most important restrictions
to the field content can already be seen regarding the genus g = 1 surfaces.

The genus g = 1 zero point amplitude corresponds to the worldsheet of a torus,
which we take to be defined by the two periods ω0 and ω1. Making the fields propagate
on this torus yields the so-called “partition function” of the theory of form

Z(τ) = tr H
(
qL0− c

24 q̄L̃0− c
24

)
q = exp(2πiτ)

with the “modular parameter” τ = ω0/ω1. The trace in Z(τ), which has to be taken
over the complete Hilbert space of states H, originates in the additional periodicity in
the time direction on the torus worldsheet. If we regard Z(τ) as a formal polynomial
in q and q̄ it is easy to read of the field content which consistently propagates on this

torus. Indeed, the coefficient of a monomial qh− c
24 q̄h̃− c

24 is an integer number and
yields the number of fields with conformal weight (h, h̃).

The reason for this very nice behaviour of the partition function can be found
in the inherent symmetry of the torus worldsheet. The lattice periods of the torus
are unique only up to transformations in the “modular group” SL(2,Z). Hence, the
partition function is also supposed to be invariant under this group action, i.e. modular
invariant. A SL(2,Z) transformation of the modular parameter τ can be written as

τ 7−→ aτ + b

cτ + d
a, b, c, d ∈ Z and ad− bc = 1 .

The modular group is generated e.g. by the following two generators

T : τ 7−→ τ + 1

S : τ 7−→ −1

τ
.

Thus, it is sufficient to show invariance under these two generators if one wants to show
invariance under the whole modular group.

If one knows the characters of the complete set of representations in the CFT model
one can also write down the partition function in terms of these characters

Z(τ) =
∑

h,h̃

Nh,h̃ χh(τ) χh̃(τ̄)
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where Nh,h̃ denotes the multiplicity of the occurrence of the respective (h, h̃) repre-
sentation. Certainly, the possible Nh,h̃ are restricted to those which yield a modular
invariant partition function Z(τ).

Modular invariance restricts the number of possible partition functions and, hence,
the possible field content of CFT very severely. It can actually be shown to be sufficient
to guarantee a well-defined CFT. Modular functions and modular forms, which are the
building blocks of our modular invariant partition functions, are very well-studied ob-
jects of the mathematical literature with a plentitude of nice and astonishing properties.
We will only need some special modular functions in this thesis and will quote them as
well as some of their properties when needed.

Superconformal field theory

The holomorphic W-algebra quite frequently contains more symmetry fields than just
the Virasoro field. One very important case of such an extension is the superconformal
field theory which incorporates supersymmetry in the CFT setting. Then, the W-
algebra additionally contains at least one supercurrent G(z) with OPEs

T (z)G(w) =
3/2

(z − w)2
G(w) +

∂w G(w)

z −w + . . .

G(z)G(w) =
2/3 c

(z − w)3
+

2T (w)

z − w + . . . ;

the fermionic (h, h̃) = (3/2, 0) field G(z) is the worldsheet superpartner of the Virasoro
field T (z). We will mainly deal with an extended form of supersymmetry, N = 2
supersymmetry. The extended supersymmetry introduces even three more fields to the
W-algebra besides the Virasoro field, two supercurrents G1(z) and G2(z) as well as a
bosonic U(1) current J(z). We prefer to work in the following basis

G±(z) =
1√
2

(
G1(z)± iG2(z)

)
.

Then the complete N = 2 superconformal algebra is given by [77]

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z −w)
+ . . .

T (z)G±(w) =
3/2

(z − w)2
G±(w) +

∂w G±(w)

z − w + . . .

T (z)J(w) =
J(w)

(z − w)2
+
∂wJ(w)

z − w + . . .

G+(z)G−(w) =
2/3 c

(z − w)3
+

J(w)

(z − w)2
+

2T (w) + ∂wJ(w)

z − w + . . .

J(z)G±(w) = ±G
±(w)

z − w + . . .
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J(z)J(w) =
c/3

(z −w)2
+ . . . . (2.5)

The supersymmetry which is mediated by the supercurrents associates a fermion
to every boson and vice versa (due to the extended N = 2 supersymmetry bosons and
fermions are collected in even larger N = 2 multiplets). Both bosons and fermions can
fulfil two different types of boundary conditions; for both types of fields there are, hence,
two different sectors in the theory: the “Ramond” (R) sector which obeys antiperiodic
boundary conditions on the plane and the “Neveu-Schwarz” (NS) sector which obeys
periodic boundary conditions on the plane. These two sectors lead to different mode
expansions and, hence, to different expressions of the N = 2 mode algebra (with a = 0
for the R and a = 1/2 for the NS sector) [77]

[Lm, Ln] = (n−m)Lm+n +
c

12
n(n2 − 1)δm+n,0

[Jm, Jn] = − c

3
mδm+n,0

[Lm, Jn] = mJm+n
[
Lm, G

±
n±a

]
=

(
(n± a− m

2
)
)
G±

m+n±a
[
Jm, G

±
n±a

]
= ±G±

m+n±a

{
G+

m+a, G
−
n−a

}
= 2Lm+n + (n−m− 2a)Jn+m +

c

3

(
(m+ a)2 − 1

4

)
δm+n,0 .

In a N = 2 superconformal field theory the conditions for a primary state extend
to

Ln |Φ 〉 = 0 G±
r |Φ 〉 = 0 Jm |Φ 〉 = 0 n, r,m > 0 .

This leads to the following OPEs of a primary field with the symmetry currents

T (z)Φ(w) =
h

(z − w)2
Φ(w) +

1

z − w ∂wΦ(w) + . . . (2.6)

J(z)Φ(w) =
q

z − wΦ(w) + . . . (2.7)

G±(z)Φ(w) =
Φ̃±(w)

z − w + . . . (2.8)

where q represents the U(1) charge wrt J(z) and Φ̃±(z) the superpartners of Φ(z).
There is a special type of primary field which is of central importance for supercon-

formal field theories, the so-called “chiral primary fields”. These obey the additional
condition

G+
1/2 |Φ 〉 = 0 respectively G+(z)Φ(w) = regular .

It can be shown that



2.1. General structures in conformal field theory 23

• a field is chiral exactly if h = q/2,

• the conformal weight of chiral primary fields has an upper bound of c/6,

• the OPE of two chiral primary fields does not contain a singular term and its
constant term is a chiral primary again. Thus, the chiral primaries form a ring,
the “chiral ring”.

Analogously, we define the “anti-chiral primary fields” by

G−
1/2 |Φ 〉 = 0 respectively G−(z)Φ(w) = regular .

They form the “anti-chiral ring” and obey h = −q/2. Coupling of the holomorphic and
the antiholomorphic sector actually yields four rings, the (c, c), (a, a), (c, a), and (a, c)
ring.

The partition function of a superconformal field theory is defined to be that of the
bosonic subtheory [32]. But, due to the different boundary conditions it naturally splits

into four parts, the NS and R parts as well as the two twisted versions ÑS and R̃

Z(τ) =
1

2

(
ZNS + ZR + ZgNS

+ Z eR

)
.

The two twisted parts are constructed by inclusion of the fermion number operator
(−1)F which commutes with bosons, anticommutes with fermions and is 1 on the
SL(2,C) invariant vacuum |0〉. The two NS parts are e.g. given by

ZNS(τ, z) = trNS

(
qL0− c

24 q̄L̃0− c
24 yJ0 ȳJ̃0

)

ZgNS
(τ, z) = trNS

(
(−1)F qL0− c

24 q̄L̃0− c
24 yJ0 ȳJ̃0

)
.

with y = exp(2πiz). These supersymmetric partition functions, furthermore, include
the U(1) current J(z) in order to keep track of the U(1) charges of the fields. The
coefficients of the different monoms in q, q̄, y and ȳ yield the numbers of fields with the
exponents as weights respectively charges.

Although the partition function only ranges over the bosonic space of states, this
natural split makes it possible to access the full field content. Indeed, ZNS and ZR

contain all bosonic and fermionic fields of the NS respectively R sectors.
Mapping the CFT from the plane to a cylinder, which we need to do in order to form

a torus, actually inverts the boundary conditions; periodic (P ) boundary conditions
become antiperiodic (A) and vice versa. This leads to the following list of boundary
conditions for the different sectors; they are presented as tuples denoting both the
boundary condition in (imaginary) time as well as in space direction

(A,A) ; NS

(P,A) ; ÑS

(A,P ) ; R

(P, P ) ; R̃ . (2.9)
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On the other hand, N = 2 superconformal field theories can be shown to possess
so-called “spectral flow operators” which transfer between the different sectors. This
spectral flow allows to calculate all sectors of the partition function as soon as one part
is fixed [77].

The explicit models of compactification on a complex two-dimensional torus or
K3 examined in chapter 3 actually exhibit an even higher extension of supersymmetry,
N = 4 supersymmetry in the holomorphic as well as in the antiholomorphic sector. The
corresponding superconformal algebra is generated by four supercurrents, the Virasoro
field and an su(2)1 Kac-Moody algebra of three bosonic U(1) currents [78, 79, 80, 81,
32]. But as for our purposes we will always choose a suitable N = 2 subalgebra of this,
we will not explore N = 4 supersymmetry further.

2.2 Logarithmic conformal field theory

Logarithmic conformal field theory is a generalisation of ordinary CFT which allows for
an indecomposable action of the L0 Virasoro mode. These higher rank Jordan cells wrt
the L0 action actually lead to the appearance of logarithms in correlation functions and
OPEs. It is this symptom which is responsible for the admittedly somewhat strange
naming of “logarithmic CFT”. We will give a short introduction to this phenomenon
as well as the terminology as needed in this thesis in the following. Logarithmic CFT
models are non-unitary theories. Nevertheless, they mostly exhibit the same basic
ingredients and conditions as the unitary CFTs introduced in section 2.1. An important
exception applies to the h = 0 subspace of H which might not contain only one unique
state, the vacuum, but which also may exhibit a higher rank Jordan cell. Its Shapovalov
form has to be adapted accordingly, and the vacuum may even not be normalisable as
for ghost systems. The notation is intended to stay close to that of the review [82].
Other important introductions to this topic can be found in [83, 84, 85].

Let us regard such a representation with higher rank indecomposable L0 action and
let us first assume that we have a Jordan cell of lowest weight states with weight h of
rank r. Without loss of generality this Jordan cell can be taken to be spanned by a
basis of states

|h;n〉 =
1

n!
θn |h〉 ∀ n = 0, . . . , r − 1

on which the action of the Virasoro modes is given by

L0|h;n〉 = h |h;n〉 + (1− δn,0) |h;n− 1〉
≡ (h+ ∂θ)|h;n〉 ,

Lp|h;n〉 = 0 ∀ p > 0 ;

the basis can always be re-diagonalised in order to bring the matrix of the L0 action
into such a standard Jordan diagonal form. As already defined in [82], θ is a nilpotent
variable with θr = 0 and a handy tool to organise the Jordan cell states with the same



2.2. Logarithmic conformal field theory 25

weight. Due to their almost primary behaviour with the only defect of an additional
term in the indecomposable L0 action we will call the |h;n〉 “logarithmic primary”.
We also note that |h; 0〉 is indeed a true primary state. The variable n = 0, . . . , r − 1
denotes the position of the state in the Jordan cell; we will call this position the “Jordan
level” of that state as well as its descendants in that respective Jordan cell. The states
with Jordan level n > 0 are also frequently called the “logarithmic partners” of |h; 0〉,
especially in the case of rank r = 2.

But, it is certainly not vital to assume that such a higher rank Jordan cell or the
Jordan cell with the highest rank in the respective representation already appear at
lowest weight level. We might e.g. encounter a rank 2 Jordan cell at level l, i.e. we have
a groundstate |h〉 and a Jordan cell at level l

L0 |h+ l; 1〉 = (h+ l) |h+ l; 1〉+ |h+ 1; 0〉
L0 |h+ l; 0〉 = (h+ l) |h+ l; 0〉

where |h + l; 0〉 is a descendant of |h〉. The logarithmic partner |h + l; 1〉, however, is
a second generating state for this rank 2 representation. The important difference to
the previous case is that the logarithmic partner state is now not logarithmic primary
but can be and usually is mapped to lower level descendants of |h〉 by positive Virasoro
modes. All other higher rank indecomposable representations can be treated in a similar
manner.

It appears that all lowest states of a Jordan cell are always singular states. Up to
now as well as in this thesis there is no indication that a higher rank representation could
be constructed with another setup in a consistent way. In particular, the descendant
|h+ l; 0〉 which is a building block of the rank 2 Jordan cell in the above described rank
2 representation is a singular descendant of |h〉. But, different from the ordinary CFT
case this singular vector is not automatically a nullvector of the theory. It certainly
is a nullvector in the Virasoro module spanned on |h〉. However, the inclusion of
the logarithmic partner state |h + l; 1〉 provides a state which has a non-vanishing
Shapovalov form with this singular descendant.

The generalised L0 action with higher rank behaviour also induces generalised log-
arithmic two-point-functions which yield the following Shapovalov form on a Jordan
cell of states [55]

〈h; k|h; l〉 =





0 ∀ l + k < r − 1
1 ∀ l + k = r − 1

Dl+k−r+1 ∀ l + k > r − 1
(2.10)

for constant Dj , j = 1, . . . , r − 1.
Furthermore, we can exploit the introduced formalism to deduce that the action of

any function of the Virasoro zero-mode and the central charge operator f(L0, C) on
such a Jordan cell state is given by [82]

f(L0, C) |h;n〉 =

n∑

k=0

1

k!

(
∂k

∂hk
f(h, c)

)
|h;n− k〉 . (2.11)
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As in the ordinary CFT case we can associate a field Ψ(h;n)(w) to each state in
Hilbert space |h;n〉. Going back to the case where the Jordan cell is spanned on the
lowest weight level h, Φh(w) := Ψ(h;0)(w) is a primary field and the Ψ(h;n)(w), n > 0,
are its logarithmic primary partners. The action of the Virasoro modes onto these
logarithmic fields is then given by

L−k(z) Ψ(h;n)(w)

=
(1− k)h
(z − w)k

Ψ(h;n)(w)− 1

(z − w)k−1

∂

∂w
Ψ(h;n)(w) + (1− δn;0)

1− k
(z − w)k

Ψ(h;n−1)(w) .

However, due to the indecomposable structure L−k is not a diagonalisable operator any
more. One can use these operators L−k to extend the conformal Ward identities to the
logarithmic case. Then, these identify the logarithmic two- and three-point-functions
uniquely up to structure constants.

These equations can easily be extended to the more complicated logarithmic repre-
sentations taking into account the descendant behaviour of fields which are (singular)
descendants of fields of lower conformal weight.

2.3 Important models

In the following we give an overview over the four types of conformal field theory models
which are important in this thesis. These are the minimal models, the Gepner models
as well as the torus sigma models and orbifolds thereof.

2.3.1 The Kac determinant and minimal models

The Kac determinant parameterises the relation between conformal charges c and spec-
tra of conformal weights hr,s at which we encounter nullvectors. It is, hence, an inge-
nious tool to explore interesting conformal field theories with relatively few and small
representations.

Let us start with the Gram matrix M of Shapovalov forms of all basis states of
the Verma module M(h) with each other. This matrix is block diagonal as states of
different descendant level l have vanishing Shapovalov form with each other. According
to Kac, the determinant of the level l block M l of M can be factorised according to
(see e.g. [9])

detM (l) = αl

∏

r,s≥1,rs≤l

[
h− hr,s(c)

]p(l−rs)

where p(l−rs) signifies the number of partitions of the integer l−rs and αl is a positive
constant. The zeros of the Kac determinant are given by the central charge

c = cp,q = 1− 6
(p− q)2
pq

1 ≤ p, q ∈ Z
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where p and q do not have a common divisor as well as the highest weight spectrum

hr,s =
(pr − qs)2 − (p− q)2

4pq
1 ≤ r ∈ Z, 1 ≤ s ∈ Z .

Accordingly, theories with weights of the form hr,s at the corresponding central charge
cp,q exhibit a rich nullvector structure to be described below. Furthermore, this Kac
determinant shows that for central charge c < 1 we can only consistently construct uni-
tary theories, i.e. theories which do not exhibit negative norm states, for the restricted
series of cm+1,m.

The so-called “minimal models” are a series of such conformal field theories which
manage to extract the smallest possible representation theory from the Kac table
of weights for some central charge cp,q by relating all weights to some standard cell
{(r, s)|1 ≤ r < q, 1 ≤ s < p} subject to the relation [4, 9]

hr,s = hq−r,p−s . (2.12)

All larger weights are related to this standard cell by the addition of integers according
to the relations [4, 9]

hr,s = hr+q,s+p

hr,s + rs = hq+r,p−s = hq−r,p+s

hr,s + (q − r)(p− s) = hr,2p−s = h2q−r,s (2.13)

as long as they are in the bulk and not on the border or corners of this standard cell
Kac table, i.e. as long as their indices do not obey r = i q or s = j p for some i, j ∈ Z.

These larger weights in the Kac table bulk are exactly the weights of the nullvector
descendants of the highest weights in the above standard cell. To be precise we actually
find that the maximal subrepresentation of M(h) for h in the bulk of the Kac table
is generated by two singular vectors v1, v2. The highest weight representations gener-
ated on v1 and v2, however, each contain two subrepresentations which are again both
generated from two singular vectors; but actually both subrepresentations of M(v1)
and M(v2) coincide. We therefore arrive at an embedding structure or “embedding
cascade” of nullvectors as depicted in figure 2.1b [3, 9] whose weights are exactly the
integer shifted weights appearing in the Kac table.

The corresponding characters are given by the Rocha-Caridi character formula [86]

χ(r,s)(q̂) =
1

η(q̂)

∑

n∈Z

[
q̂(2pqn+pr−qs)2/4pq − q̂(2pqn+pr+qs)2/4pq

]

where we have changed the customary name for the modular parameter to q̂ = e2πiτ

just for this equation in order to prevent the reader from mixing this up with the
parameter q of the minimal model.
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b

(r,s)

(kq+r , (−1)  s + p (1−(−1)  )/2)(q+r,p−s) (2q+r,s) (3q+r,p−s)

(r,4p−s)(r,2p+s)(r,2p−s)

(q,s) (2q,p−s) (3q,s) (4q,p−s)

((−1)  r + q (1−(−1)  )/2,(k+1)p)(r,p) (q−r,2p) (r,3p) (q−r,4p)

((k+1)q, (−1)  s + p (1−(−1)  )/2)

kk

(r , (−1)  s + kp + p (1−(−1)  )/2)k k

k

k

k

k

a

Figure 2.1: Nullvector embedding structure [9]

The irreducible representations V(r,s) with weights hr,s in this standard cell and the
described nullvector embedding structure have been shown to close under the following
so-called BPZ fusion rules [4]

V(r1,s1) ⊗f V(r2,s2) =

min(r1+r2−1,2q−r1−r2−1)∑

r3=|r1−r2|+1

step 2

min(s1+s2−1,2p−s1−s2−1)∑

s3=|s1−s2|+1

step 2

V(r3,s3) ,

where ⊗f denotes the fusion product. We notice that the above excluded weights for
r = i q or s = j p with i, j ∈ Z, do not pop up in these fusion rules; they are, hence,
simply ignored in these minimal models.

2.3.2 Torus sigma models

Bosonic toroidal CFTs

Another important example of CFT models is represented by “toroidal conformal field
theories”, which are mainly motivated by string theory. A bosonic toroidal CFT is
given by a nonlinear sigma model of the Polyakov action

SPol =

∫
d2z (Gij +Bij) ∂Xi∂̄Xj

whose coordinate fields Xi, i = 1 . . . d, are compactified on a torus; the dimensionality
of this torus target space is denoted by d. The geometry of this sigma model is described
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by the two background fields, the metric Gij and the asymmetric background B-field
Bij , B ∈ Skew(d× d,R)/Skew(d× d,Z).

The torus which this theory is compactified on is given by a lattice Λ; it is isomorphic
to the coset space R

d/Λ. Let λi by the generators of this lattice Λ and let µi ∈ Λ∗ be
the dual vectors to these generators. We want to restrict to the examination of closed
strings, i.e. we introduce the worldsheet periodicity in the spatial direction. But, due to
the periodicity conditions in the coset target space this worldsheet periodicity condition
on the coordinate fields has to be relaxed to

Xi(e
2πiz, e−2πiz̄) = Xi(z, z̄) + 2πwi w ∈ Λ

(as the complex coordinate z has been chosen to be radial z = eσ0+iσ1). The vector w
describes the winding of the string around the compact dimensions.

The field content of the torus CFT is described by quantum numbers wrt the d
holomorphic U(1) currents ji(z) = i∂Xi with OPE

ji(z) jj(w) ∼ δij
(z − w)2

as well as their antiholomorphic counterparts ̃i(z). The Sugawara construction then
yields an energy momentum tensor

Tbos(z) =
∑

i

: ji ji : (z) .

The central charge can, thus, be calculated to be c = d.

The primary fields of this theory are given by vertexoperators V(Pl,Pr)(z, z̄) whose
charges (Pl, Pr) wrt the above U(1) currents J = (j1, . . . , jd)

t span the charge lattice
Γ(Λ, B) ⊂ R

d,d. The conformal weight of a vertexoperator is then given by (h, h̃) =(
P 2

l
2 ,

P 2
r
2

)
. Each element of this charge lattice Γ(Λ, B) can be parameterised by two

vectors λ ∈ Λ and µ ∈ Λ∗ (with B∗ = ΛTBΛ, B̃ = 1
2B

∗) [9, 32]

(Pl(µ, λ), Pr(µ, λ)) =
1√
2

(
µ−B∗λ+ λ, µ−B∗λ− λ

)

=

(
p+

(
1

2
− B̃

)
w, p−

(
1

2
+ B̃

)
w

)
;

p = 1√
2
µ signifies the momentum, and w =

√
2λ the winding of the string on the

respective torus. The scalar product is the standard scalar product on R
d,d

〈
(Pl(µ, λ), Pr(µ, λ)), (P ′

l (µ
′, λ′) , P ′

r(µ
′, λ′))

〉
= Pl(µ, λ)P ′

l (µ
′, λ′)− Pr(µ, λ)P ′

r(µ
′, λ′) .

Hence, we see that Γ(Λ, B) is actually a selfdual even integer lattice with signature
(d, d), i.e.
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• Λ = Λ∗

• 〈e, e〉 ∈ 2 Z ∀ e ∈ Γ(Λ, B) .

The even integrality of this lattice is a direct consequence of the locality of conformal
fields wrt each other and the integrality of the conformal spin h− h̃. The torus parti-
tion function whose form is dictated by modular invariance is then responsible for the
selfduality of the lattice. Indeed, the partition function of a bosonic torus theory can
be shown to be [9]

Ztor
Γ (τ) =

1

|η(τ) |2
∑

(Pl,Pr)∈Γ(Λ,B)

q
P2

l
2 q

P2
r
2 q = e2πiτ . (2.14)

The OPE of such vertexoperators is given by

VP1(z1, z̄1)VP2(z2, z̄2) = cP2(−P1) z
P t

1rP2r

12 z̄
P t

1lP2l

12 VP1+P2(z2, z̄2) + . . . .

cP2(−P1) is called a cocycle factor and depends on the charge vectors of both ver-
texoperators. These cocycle factors arise because in higher dimensional lattices the
representation of affine algebras via the Kac-Frenkel-Siegal mechanism produces non-
trivial structure constants and, hence, relative phases cannot be neglected any more,
but have to be chosen such as to conform with the respective representation.

Rules for cocycle factors of a holomorphic vertexoperator algebra

The following presentation refers to [87]. The OPE of holomorphic vertexoperators can
be written as

Vα(z)Vβ(w) = ε(α, β)(z − w)α.βVα+β ,

with α, β ∈ Ξ the lattice of a Lie group. The relation to the above convention is given
by λ = α/

√
2, µ = (α+ B∗α)/

√
2. Besides the bare exponential : exp(iαφ(z)) :, these

vertexoperators Vα(z) include a cocycle-operator c(α) which behaves according to

c(α)c(β) = ε(α, β)c(α + β) .

Analysing this algebra, [87] find the following rules for the cocycle sign ε(α, β) of the
vertexoperator OPE

• ε(−α,−β) = ε(α, β)

• ε(α,−α) = 1, the hermiticity condition

• ε(α, 0) = ε(0, β) = 1

• ε(α, β)ε(α + β, γ) = ε(α, β + γ)ε(β, γ)



2.3. Important models 31

• ε(α, β) = −(−1)α.β+α2β2
ε(β, α) where (−1)α2β2

= 1 for even lattices.

If we want to construct an orbifold theory of a torus theory, in addition, we want to
demand the invariance of the cocycle signs under the orbifold group action G

• ε(Θα,Θβ) = ε(α, β) ∀ Θ ∈ G.

A convenient choice of cocycle factor which obeys the above constraints is given by
(see e.g. [88])

cP2(−P1) = exp

[
i

2
π(pt

2w1 − pt
1w2)

]
. (2.15)

For a holomorphic vertexoperator the right charge has to be (per definition) zero,
i.e. µ−B∗λ = λ, hence

(Pl, Pr) = (
√

2λ, 0) λ ∈ Λ .

Inserting this into (2.15) yields a cocycle factor

cP2(−P1) = exp

[
i

4
π(P t

L2(1−B∗)PL1 − P t
L1(1−B∗)PL2)

]

= exp

[
i

2
πP t

L1B
∗PL2

]
(2.16)

and the corresponding cocycle sign ε(PL1, PL2) = cP2(−P1).

Supersymmetric toroidal CFTs

This bosonic toroidal CFT can be extended to a supersymmetric theory by inclusion
of d fermionic superpartners ψi(z) of conformal weight h = 1/2 to the U(1) currents
ji. Consequently, these obey the following OPE

ψi(z) ψj(w) ∼ δij
z − w .

This supersymmetric extension yields a central charge of c = 3d/2. We now restrict the
examination to theories of even dimension d = 2D whose complex structure is more
suitably expressed by the following choice of basis (i = 1, . . . , D)

X
(i)
± =

1√
2
(Xi ± iXi+D)

j
(i)
± =

1√
2
(ji ± iji+D)

ψ
(i)
± =

1√
2
(ψi ± iψi+D) . (2.17)
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This set of fields yields the following non-vanishing OPEs

j
(i)
+ (z) j

(j)
− (w) ∼ δij

(z − w)2

ψ
(i)
+ (z) ψ

(j)
− (w) ∼ δij

z − w .

The superconformal toroidal theory compactified on an even dimensional torus ex-
hibits N = 2 supersymmetry. The extended N = 2 supersymmetric Virasoro algebra
is given in the above coordinates as [32]

T (z) =

d/2∑

i=1

[
: j

(i)
+ j

(i)
− : (z) +

1

2
: ψ

(i)
+ ∂ψ

(i)
− : (z) +

1

2
: ψ

(i)
− ∂ψ

(i)
+ : (z)

]

G±(z) =
√

2

d/2∑

i=1

: ψ
(i)
± j

(i)
∓ : (z)

J(z) =

d/2∑

i=1

: ψ
(i)
+ ψ

(i)
− : (z) (2.18)

as well as a similar antiholomorphic symmetry algebra. For the following let us signify
such a supersymmetric toroidal theory with torus lattice Λ and B-field B by T (Λ, B).

The field content of these superconformal torus models is summarised in its partition
functions. There are four different parts of the partition function corresponding to the
four different sectors of the supersymmetric theory (as introduced in section 2.1)

ZNS
Γ (τ, z) = Ztor

Γ (τ) ·
∣∣∣ θ3(τ,z)

η(τ)

∣∣∣
d

Z
gNS
Γ (τ, z) = Ztor

Γ (τ) ·
∣∣∣ θ4(τ,z)

η(τ)

∣∣∣
d

ZR
Γ (τ, z) = Ztor

Γ (τ) ·
∣∣∣ θ2(τ,z)

η(τ)

∣∣∣
d

Z
eR
Γ (τ, z) = Ztor

Γ (τ) ·
∣∣∣ θ1(τ,z)

η(τ)

∣∣∣
d

(2.19)

with the bosonic torus partition function Z tor
Γ (τ) as in equation (2.14). The θ functions

are given by (see e.g. [9, 32])

θ1(τ, z) = i

∞∑

n=−∞
(−1)n q

1
2
(n− 1

2
)2 yn− 1

2

= i q
1
8 y−

1
2

∞∏

n=1

(1− qn)(1 − qn−1y)(1− qny−1)

θ2(τ, z) =
∞∑

n=−∞
q

1
2
(n− 1

2
)2 yn− 1

2
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= q
1
8 y−

1
2

∞∏

n=1

(1− qn)(1 + qn−1y)(1 + qny−1)

θ3(τ, z) =
∞∑

n=−∞
q

1
2
n2
yn

=

∞∏

n=1

(1− qn)(1 + qn− 1
2 y)(1 + qn− 1

2 y−1)

θ4(τ, z) =

∞∑

n=−∞
(−1)n q

1
2
n2
yn

=
∞∏

n=1

(1− qn)(1− qn− 1
2 y)(1− qn− 1

2 y−1)

with q = e2πiτ and y = e2πiz. The additional modular parameter z describes the U(1)
charge of the respective fields which is coupled to their fermionic field contribution. But
sometimes, we also like to express the bosonic part of the partition function in terms
of θ functions. For this purpose, we only need the special Jacobi form θi(τ) := θi(τ, 0).

In the following table we also note the transformation behaviour of the η as well as
the θ functions under the two generators of the modular group T : τ 7→ τ + 1, z 7→ z
and S : τ 7→ −1/τ, z 7→ −z/τ .

T S

θ1(τ, z) eiπ/4 θ1(τ, z) i eiπz2/τ
√
−iτ θ1(τ, z)

θ2(τ, z) eiπ/4 θ2(τ, z) eiπz2/τ
√
−iτ θ4(τ, z)

θ3(τ, z) θ4(τ, z) eiπz2/τ
√
−iτ θ3(τ, z)

θ4(τ, z) θ3(τ, z) eiπz2/τ
√
−iτ θ2(τ, z)

η(τ) eiπ/12 η(τ)
√
−iτ η(τ)

The moduli space of toroidal CFTs

The moduli space of bosonic torus CFTs in dimension d is given by the Narain moduli
space [89, 90]

Mtor = O(Γ(d,d))\O(d, d)/(O(d) ×O(d)) .

This moduli space parameterises all possible even integer selfdual charge lattices Γd,d

in R
d,d. Indeed, O(d, d)/(O(d) × O(d)) is a Grassmannian space whose points can be
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viewed as positive definite d-planes in R
d,d. But a positive definite d-plane Π uniquely

splits a vector p ∈ R
d,d into a sum p = pL + pR with pL ∈ Π and pR ∈ ΠT , the

orthogonal complement of Π. Then, determining the maximal even selfdual lattice of
such pairs (pL, pR) uniquely yields Γd,d. O(Γ(d,d)) is the automorphism or duality group
of this lattice. Its action simply re-arranges the charges and, hence, does not change
the theory. Define the lattice M = (ΛT )−1. Then, the map from the description with
lattice Λ and B-field B to the moduli space can easily be seen to be [32, 26]

v : O(d)\(Gl(d) × Skew(d)) 7−→ O(d, d)/(O(d) ×O(d))

v(Λ, B) =

(
M 0
0 Λ

) (
11 −B
0 11

)
.

As the supersymmetric extension does not introduce further parameters into this
theory the space of all supersymmetric torus CFTs is also given by the above moduli
space Mtor.

In chapter 3 we will only be interested in theories in d = 4 dimensions. As described
in [31], one can actually apply the celebrated triality isomorphism to the moduli space
in d = 4. The phenomenon of triality describes a set of automorphisms of so(4, 4)
which permute the basic and the two spin representations S+ and S− arbitrarily (the
signature of the space does not matter for this result) [91]. In our case, the two spin
representations are given by SO+(Hodd) and SO+(Heven) whereHodd andHeven denote
the spaces of odd respectively even cohomology of the target space torus.

Up to now, we have described the torus moduli space in terms of B and Λ, i.e.
in terms of the torus one-cycles. Hence, we can use triality to achieve an equally
well-defined description in terms of the even Z cohomology of a torus T

H even(T,Z) := H0(T,Z)⊕H2(T,Z)⊕H4(T,Z) .

This space is naturally endowed with the scalar product

(ω1, ω2) 7→
∫

T
ω1 ∧ ω2 ∀ ω1, ω2 ∈ H even(T,Z)

which is certainly 0 if ω1 ∧ ω2 is not a 4-form.

First, we need to transform the B-field to the second cohomology class. The skew-
symmetric linear transformation B ∈ Skew(R4) is mapped to Λ2(R4) via

b =
∑

i<j

Bij ei ∧ ej .

Its corresponding dual is defined to be

b̌ =
∑

kl,i<j

1

2
εijklBkl ei ∧ ej .
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Furthermore, let V = det(Λ) be the volume of the torus. Then, triality induces the
parameterisation [31, 26]

s(Λ, B) = V 1/2




V −1 0 0
0 Λ2(M) 0
0 0 1






1 b̌ −1
2 〈b, b〉

0 11 −b
0 0 1




where s maps again to the moduli space Mtor.
This description of the moduli space in terms of the even cohomology of the target

space is quite natural and important as soon as one wants to relate this to the moduli
space of K3 compactification, the other possibility of N = (4, 4) supersymmetric com-
pactification in d = 4 dimensions. Indeed, K3 spaces only exhibit an even cohomology,
their odd cohomology is trivial. Hence, one is forced to describe its moduli space in
terms of even cohomology. We will come back to that in chapter 3.

2.3.3 Orbifold sigma models

Orbifolding torus models

The orbifold procedure is a method to obtain a new conformal field theory from an old
one by dividing the latter by one of its finite symmetry (sub-)groups [92, 93, 94, 95]. In
the following we want to restrict our attention to the construction of orbifold theories
from torus theories. Our overview mainly sticks to the presentation in [95, 32].

The finite symmetry groups of interest in the torus case are the space and point
groups. We regard space groups S which consist of a semi-direct product of a finite
rotation group R and a translation group T

S = Ro T .

The corresponding point group P , on the other hand, only consists of the finite rotation
subgroup of S. As already described above, a torus can be thought of as the coset
space R

d/Λ; but this is nothing more than an orbifold of the space R
d by a space group

with trivial rotation group and translation group Λ. As we have already used up the
translational freedom we will only be interested in the point groups. Nevertheless, these
point groups have to respect the isometry group of the torus. This restricts the point
groups to the set of cristallographical groups which have already been classified in two
and three dimensions.

From the field theoretic perspective the orbifold procedure reduces the field content
inherited from the original theory to those fields which are invariant under the orbifold
group G. On the other hand, new fields appear in the theory, so-called “twisted fields”
or “twistfields”. Their origin can easily be understood from the torus point of view. Due
to the identification of the identity with the orbifold group the periodicity conditions
for the winding states have to be relaxed. Actually, the periodicity only requires the
state to come back with the same boundary value modulo the action of some element
of the orbifold group. This relaxation of conditions yields new states.
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In order to see the exact field content of an orbifold theory let us regard how to
construct the partition function of an orbifold. We introduce the projection operator
which projects to the states which are invariant under the orbifold group G

P =
1

|G|
∑

h∈G

h .

Starting with the torus partition function (2.14) this yields its G-invariant part

ZG =
1

|G|
∑

h∈G

tr H
(
h qL0− c

24 q̄L̄0− c
24

)

=
1

|G|
∑

h∈G

h

11

;

in the second line we introduce a useful notation which will become clearer in due
course.

Taking into account that qL0− c
24 q̄L̄0− c

24 induces a time translation we can think of
h 11 as describing fields which are twisted in time

X(ξ0 + 1, ξ1) = hX(ξ0, ξ1) X(ξ0, ξ1 + 1) = X(ξ0, ξ1)

where ξ0 and ξ1 denote the time respectively space direction on the world sheet.
Now, we proceed demanding modular invariance of our new partition function. But

as ZG is not yet modular invariant we are forced to include further traces into the
partition function which describe states which are twisted in the spatial direction

X(ξ0, ξ1 + 1) = gX(ξ0, ξ1) ,

i.e. which fulfil the boundary conditions of periodicity only up to g ∈ G. We will denote
the Hilbert space of spatially g twisted states by Hg and the corresponding traces by

h

g

(with an h twist in the time direction). Indeed, the modular transformations of these
trace are given by [95, 32]

h

g

(τ + 1) = (g◦h)

g

(τ)

h

g

(−1

τ
) = g

h

(τ) .

But before we can write down the full orbifold partition function we need to note
that G transformed fields behave as

hX(ξ0, ξ1 + 1) = (hgh−1) hX(ξ0, ξ1) ∀h ∈ G .
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This identifies Hg
∼= Hhgh−1 . Therefore, we only want to sum over the different cosets

{hgh−1, h ∈ G} of G. This yields the following twisted part of the partition function

ZG
twist =

1

|G|
∑

h,g∈G

hgh−1=g,g 6=11

tr Hg

(
hqL0− c

24 q̄L̄0− c
24

)

=
1

|G|
∑

h,g∈G

hgh−1=g, g 6=11

h

g

and, finally, the full modular invariant partition function of an orbifold CFT

ZG
orb =

1

|G|
∑

h,g∈G

hgh−1=g

h

g

. (2.20)

The superconformal Z4 orbifold partition function

The motivation to our above derivation of the orbifold partition function was basically
the bosonic torus partition function. But certainly the orbifold construction can easily
be extended to superconformal torus models, simply applying equation (2.20) to the
superconformal torus partition function (2.19).

In practice, the easiest way to obtain the orbifold partition function is simply ap-
plying the modular group to the G invariant part of the torus partition function until
one has collected all contributions necessary for the whole partition function to close
under the modular group. This is straight forward in the bosonic case, but for the
superconformal case we have to take into account that the generators of the modular
group S and T change the boundary conditions and, hence, map the different sectors
into each other according to [73]

T : (A,A)←→ (P,A) (A,P ), (P, P ) invariant

S : (P,A)←→ (A,P ) (A,A), (P, P ) invariant

where (., .) signifies the either periodic (P ) or antiperiodic (A) boundary conditions in
time respectively space direction. The different sectors have boundary conditions as
described in (2.9) This mixing of sectors by action of the modular group is actually
the conformal field theoretic reason that we do need all four of these sectors; only Z eR
would be modular invariant for itself.

In chapter 3 we will need the twistfield content of the RR groundstates of a Z4

orbifold. We have, hence, performed the above programme and calculated the R-sector
of the partition function of a Z4 orbifold to be

ZΓ, R
Z4

=
1

4




 1

|η(σ)|8
∑

p∈Γ

qp2
l /2q̄p2

r/2


 ·

∣∣∣∣
θ2(σ, z)

η(σ)

∣∣∣∣
4

+ 8

∣∣∣∣
η(2σ)

θ2(2σ)

∣∣∣∣
2

·
∣∣∣∣
θ2(2σ, 2z)

η(2σ)

∣∣∣∣
2
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+ 16

∣∣∣∣
η(σ)

θ2(σ)

∣∣∣∣
4

·
∣∣∣∣
θ1(σ, z)

η(σ)

∣∣∣∣
4

+ 16

∣∣∣∣
η(σ)

θ4(σ)

∣∣∣∣
4

·
∣∣∣∣
θ3(σ, z)

η(σ)

∣∣∣∣
4

+ 16

∣∣∣∣
η(σ)

θ3(σ)

∣∣∣∣
4

·
∣∣∣∣
θ4(σ, z)

η(σ)

∣∣∣∣
4

+ 8

∣∣∣∣
η(σ

2 )

θ4(
σ
2 )

∣∣∣∣
4

·
∣∣∣∣
θ3(

σ
2 , z)

η(σ
2 )

∣∣∣∣
4

+ 8

∣∣∣∣∣
(η(σ)θ3(σ))1/2

θ3(2σ)− iθ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) + iθ2(2σ, 2z))

(η(σ)θ3(σ))1/2

∣∣∣∣
2

+ 8

∣∣∣∣∣
(η(σ)θ4(σ))1/2

θ3(2σ) + θ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) − θ2(2σ, 2z))

(η(σ)θ4(σ))1/2

∣∣∣∣
2

+ 8

∣∣∣∣∣
(η(σ)θ3(σ))1/2

θ3(2σ) + iθ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) − iθ2(2σ, 2z))

(η(σ)θ3(σ))1/2

∣∣∣∣
2

+ 8

∣∣∣∣∣
(η(σ)θ2(σ))1/2

θ3(
σ
2 ) + θ4(

σ
2 )

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(

σ
2 , 2z) + θ4(

σ
2 , 2z))

(η(σ)θ2(σ))1/2

∣∣∣∣
2

 ;

in each term the first factor gives the bosonic part, the second the fermionic. The first
three terms constitute the untwisted sector, the other seven terms the different twisted
sectors.

By keeping the bosonic and fermionic parts separate during the calculation we can
actually see how much of the conformal weight is contributed from a bosonic and how
much from a fermionic constituent of some field. This is a quite interesting question
for twistfields as the non-trivial monodromy behaviour induces unusual bosonic and
fermionic constituents. To see this for a useful example, we expand the terms six to
nine each of which yields a leading contribution of

2
(
(qq̄)−1/6 (qq̄)3/16

)
·
(
(qq̄)−1/12 (qq̄)1/16

)
· 1 .

The first big bracket gives the bosonic contribution, separating the overall modular
factor first, the second bracket gives the fermionic contribution. Hence we find eight
fields of overall conformal weight (h, h̃) = (1

4 ,
1
4) where a hb = 3

16 part originates
from bosonic degrees of freedom, a hf = 1

16 part from fermionic. This perfectly well
coincides with the conformal weights of Z4 twistfields generating cuts for either bosonic
or fermionic fields found in [95].

Similarly, we calculated the NS sector part of the Z4 orbifold partition function to
be

ZΓ,NS
Z4

=
1

4




 1

|η(σ)|8
∑

p∈Γ

qp2
l /2q̄p2

r/2


 ·

∣∣∣∣
θ3(σ, z)

η(σ)

∣∣∣∣
4

+ 8

∣∣∣∣
η(2σ)

θ2(2σ)

∣∣∣∣
2

·
∣∣∣∣
θ3(2σ, 2z)

η(2σ)

∣∣∣∣
2

+ 16

∣∣∣∣
η(σ)

θ2(σ)

∣∣∣∣
4

·
∣∣∣∣
θ4(σ, z)

η(σ)

∣∣∣∣
4

+ 16

∣∣∣∣
η(σ)

θ4(σ)

∣∣∣∣
4

·
∣∣∣∣
θ2(σ, z)

η(σ)

∣∣∣∣
4

+ 16

∣∣∣∣
η(σ)

θ3(σ)

∣∣∣∣
4

·
∣∣∣∣
θ1(σ, z)

η(σ)

∣∣∣∣
4

+ 8

∣∣∣∣
η(σ

2 )

θ4(
σ
2 )

∣∣∣∣
4

·
∣∣∣∣
θ3(

σ
2 , z)

η(σ
2 )

∣∣∣∣
4

+ 8

∣∣∣∣∣
(η(σ)θ3(σ))1/2

θ3(2σ)− iθ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) + iθ2(2σ, 2z))

(η(σ)θ3(σ))1/2

∣∣∣∣
2
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+ 8

∣∣∣∣∣
(η(σ)θ4(σ))1/2

θ3(2σ) + θ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) − θ2(2σ, 2z))

(η(σ)θ4(σ))1/2

∣∣∣∣
2

+ 8

∣∣∣∣∣
(η(σ)θ3(σ))1/2

θ3(2σ) + iθ2(2σ)

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(2σ, 2z) + iθ2(2σ, 2z))

(η(σ)θ3(σ))1/2

∣∣∣∣
2

+ 8

∣∣∣∣∣
(η(σ)θ2(σ))1/2

θ3(
σ
2 ) + θ4(

σ
2 )

∣∣∣∣∣

2

·
∣∣∣∣
(θ3(

σ
2 , 2z)− θ4(σ

2 , 2z))

(η(σ)θ2(σ))1/2

∣∣∣∣
2

 .

Again, the first three terms constitute the untwisted sector, the other seven terms the
different twisted sectors. The parts of the partition function related to the other two
sectors ÑS and R̃ can be obtained in the same manner or as well by application of the
spectral flow.

In this section, we have dissected the partition function of a very special super-
conformal orbifold model in order to obtain the special properties of twistfields. For a
more general review of superconformal orbifold partition functions see [96].

The OPE of vertex operators with groundstate twistfields

There has already been quite some research about correlation functions and OPEs in
orbifolds of torus theories [97, 95, 98, 99, 100, 101, 102, 88, 103, 26]. In chapter 3 we
will, in particular, make use of the general OPE of a vertex operator of the original
torus theory with a groundstate twistfield of a ZN orbifold theory. We will, hence,
review this special OPE in the following.

Let us restrict our attention to the cyclic orbifold group G = ZN . Then the form
of an OPE of a torus vertexoperator V torus

p (z) and a groundstate twistfield T l
f (w) is

uniquely determined by the following properties:

• The monodromy around the orbifold fixed points, i.e.

V torus
p (z) −→ V torus

θ p (z)

where we move the vertexoperator around a twistfield T l
f (w) which is located at

such a fixed point f ; θ is the matrix of the representation of the orbifold group
generator on the torus lattice. This determines the analytic behaviour of the OPE
on the nfold covering space of C.

• The known OPE of the torus vertexoperators.

In [26] these properties were used to show that this OPE looks like

V torus
P (µ,λ)(z)T

l
f (w) = (z − w)h (z̄ − w̄)h̃ g(PL, PR) ζ

µ(Nxf )l
N T l

f ′(w) + . . .
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with (h, h̃) the conformal dimension of V torus
P (µ,λ), ζN := exp 2πi/N , and the translated

fixpoint

xf ′ = xf + [(1− θ)−1λ] = xf


 1

n(f)

n(f)−1∑

1

kθkλ


 .

f = (1 − θ) xf ∈ Λ signifies the fixpoint the twistfield lives at; xf ∈ I gives the
location of that fixed point, where I can be taken as a subgroup of order n(f) of
H1(T,R)/H1(T,Z) of the torus T which is orbifolded.

The same OPE has been calculated in [88] making use of the mode expansion of the
fields. In this setting, a careful treatment of the zero modes allows for the calculation
of the coupling parameter g(PL, PR). This coupling parameter is independent of the
position of the fixpoint and can be determined to be [88]

g(PL, PR) = eπipt(1−θ)−1w g′l(PL, PR)

with the vertex operator coupling constant (d/2 signifies the complex dimension)

g′l(PL, PR) =

d/2∏

µ=1

δ(l kµ)−(hµ+h̃µ)

δ(kµ) = N2
N−1∏

a=1

(
2 sin

πa

N

)−2 cos(2πakµ)

hµ =
1

2
||P µ

L ||2, h̃µ =
1

2
||P µ

R||2 .

2.3.4 Supersymmetric minimal models and Gepner models

In this section we introduce a supersymmetric version of the minimal models and we
show how tensor products of these can be used to construct consistent GSO projected
models with a central charge c ∈ 3Z

+. These so-called Gepner models are indeed
interesting models for string theory compactifications. The presentation in this section
is mainly based on the reviews [104, 105, 32].

The N = 2 supersymmetric Minimal Model

There is also a corresponding series of unitary minimal models wrt the N = 2 super-
symmetric extension of the Virasoro algebra [106, 107, 108]. These models have central
charges

c =
3k

k + 2
k = 2, . . .
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They can be constructed either as a tensor product of the Zk parafermions and a free
boson or as the following coset model

SU(2)k ⊗ U(1)2
U(1)k+2,diag

.

The fields Φl
m,s;m̄,s̄ of the theory are labeled by the corresponding quantum numbers

of this coset model with l = l̄ referring to SU(2)k. The spectrum of conformal weights
and U(1) charges of these fields is given by

hl
m,s =

l(l + 2)−m2

4(k + 2)
+
s2

8
mod 1 Ql

m,s =
m

k + 2
− s

2
mod 2 ; (2.21)

it is constraint by the following rules:

• The spectrum is restricted to the domain 0 ≤ l ≤ k, m = −k − 1, . . . , k + 2 and
s = −1, . . . 2. Fields are, hence, identified according to m ∼ m ± (2k + 4) and
s ∼ s± 4.

• The sum of the three quantum numbers has to be even, i.e. l+m+ s ≡ 0 mod 2.

• Fields are equivalent according to

Φl
m,s;m̄,s̄ ∼ Φk−l

m+k+2,s+2;m̄+k+2,s̄+2 .

The fields with odd s belong to the Ramond sector, the fields with even s to the Neveu-
Schwarz sector of this N = 2 supersymmetric theory. The fields of left and right-handed
spectral flow are given by U± 1

2
= Φ0

±1,±1;0,0 respectively Ū± 1
2

= Φ0
0,0;±1,±1.

For fields with |m − s| ≤ l the mod relations in (2.21) are irrelevant. However, to
find the correct integer to be added for all fields one has to go back to the (holomorphic)
characters of these supersymmetric models

χl
m,s(σ, z) =

k∑

j=1

cl4j+s−m(σ) Θ2m−(k+2)(4j+s), 2k(k+2)(σ,
z

k + 2
)

and find the lowest weights appearing in their spectrum. The cl
m signify the “string

functions” of SU(2) and Θl,k, |l| ≤ k, are the classical theta functions at level k. Now,
we can also give the partition function of the NS-sector of the (k) supersymmetric
minimal model

ZNS =
1

2

∑

l=0,···,k
l=−k−1,···,k+2

l+m≡0(2)

(
χl

m,0(σ, z) + χl
m,2(σ, z)

) (
χl

m,0(σ̄, z̄) + χl
m,2(σ̄, z̄)

)
.
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The partition functions of the other sectors are obtained using spectral flow.
Due to the incorporation of the Zk parafermions into these models the statistics are

quite complicated. In particular, it is not that easy to say when these fields behave as
fermions. Especially when dealing with tensor products of these minimal models we
need to use the following rule [109]

Φl1
m1,s1;m̄1,s̄1

⊗ Φl2
m2,s2;m̄2,s̄2

= (−1)
1
4
(s1−s̄1)(s2−s̄2) Φl2

m2,s2;m̄2,s̄2
⊗ Φl1

m1,s1;m̄1,s̄1

to track the negative signs due to fermionic behaviour.
The fusion rules for the holomorphic components of Φl

m,s;m̄,s̄(z, z̄) = ψl
m,s(z) ψ̄

l
m̄,s̄(z̄)

are again given by a BPZ like set of rules

[
ψl

m,s

]
×
[
ψl′

m′,s′

]
=

min(l+l′,2k−l−l′)∑

l′′=|l−l′| step 2

[
ψl′′

m+m′ ,s+s′

]
.

In the following, we will in particular need the (2) supersymmetric minimal model.
This model at c = 3/2 can be identified with a tensor product of the Ising Model (the
ordinary minimal model at c4,3 = 1/2 which is at the same time the k = 2 parafermionic
theory) and the free boson at radius

√
2. This allows the following field identification

Φl
m,s;m̄,s̄ = Ξl

m−s;m̄−s̄(z, z̄) e
i

2
√

2
(−m+2s)φ(z)

e
i

2
√

2
(−m̄+2s̄)φ̄(z̄)

with

Ξ0
j;̃(z, z̄) = Ξ2

j±2;̃±2(z, z̄) = ξ0
j (z) ξ0

̃ (z̄) ξ0
0 = 11, ξ0

2 = ψ

and Ξ1
1;1(z, z̄) = Ξ1

−1;−1(z, z̄) = σ(z, z̄) as well as Ξ1
1;−1(z, z̄) = Ξ1

−1;1(z, z̄) = µ(z, z̄); σ
and µ are the generating groundstates of the two (1/16, 1/16) representations of the
Ising model with coupled holomorphic and antiholomorphic sectors (see e.g. [73, 9] for
more details about this model). This field identification reduces the calculation of (2)
model correlation functions to that of Ising and torus model correlation functions which
are easy to do.

The construction of the N = 2 supersymmetric model as a tensor product of a
Zk parafermion and a free boson yields the following representation of the N = 2
Super-Virasoro algebra

T (z) = TPf(z)−
1

2
∂φ ∂φ

G−(z) =

√
2k

k + 2
ψ1 e

i
q

k+2
k

φ(z)

= ψ(z) ei
√

2φ(z) ≡ Φ0
0,2;0,0

G+(z) =

√
2k

k + 2
ψk−1 e

−i
q

k+2
k

φ(z)

= ψ(z) e−i
√

2φ(z) ≡ Φ0
0,−2;0,0

J(z) = −i
√

k

k + 2
∂φ(z) =

−i√
2
∂φ(z) ;
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the first expression always refers to the holomorphic symmetry algebra of the general
(k) supersymmetric minimal model, the second to the specialised version of k = 2.
TPf signifies the energy momentum tensor of the respective parafermionic theory. The
U(1) charges given in (2.21) are indeed just the charges of the fields wrt J(z). The
normalisation of the algebra is consistent with

G+(z)G−(w) ∼ 2c

3
(z − w)−3 + 2J(w)(z − w)−2 + . . . .

Building Gepner models

For any set of positive integers ki, i = 1, . . . , r, which yield a central charge of c =∑r
i=1

3ki
ki+2 = 3d/2 with d ∈ 2Z

+ we can obtain a consistent CFT based on the tensor
product

⊗r
i=1(ki). Such a model is called a “Gepner model” [110, 111].

Let us first study the symmetry group of this tensor product. Each minimal model
factor contributes a Zk+2 symmetry

Φl
m,s;m̄,s̄ 7−→ e

2πi m+m̄
2(k+2) Φl

m,s;m̄,s̄

which originates in its parafermionic subtheory. We will denote the elements of the
resulting Abelian symmetry group

∏r
i=1 Zki+2 with a = [a1, . . . , ar] and introduce the

frequently used scalar product •

a, b ∈
r∏

i=1

Zki+2 : a • b :=

r∑

i=1

aj bj
kj + 2

.

In order to construct the Gepner model we need to implement a valid GSO pro-
jection on the above tensor product of supersymmetric minimal models. This can be
done in the following two ways:

• One constructs an orbifold of the tensor product
⊗r

i=1(ki) wrt the cyclic group
generated by the element β = [1, 1, . . . , 1] ∈

∏r
i=1 Zki+2.

• One enhances the W-algebra with the current U =
⊗r

i=1 Φ0
2,2;0,0 and only keeps

a maximal set of fields which are local to each other. This set certainly contains
the W-algebra.

This maximal set of the above second point has to be invariant under β as well. In
practice it is, thus, useful to combine both methods. First, one enhances theW-algebra
with U and calculates all new fields which are obtained from OPEs with U . Then, one
just keeps the fields which are invariant under the action of β.

Let us now turn to the model of special interest in this thesis, the Gepner model
(2)4. In this model, the action of U on the holomorphic NS-sector characters of one
constituent (2) model has several orbits

• l = 1: exchange of m = 1 ↔ m = −1;
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• l = 2: χ0
0,0 → χ0

2,2 → χ2
0,2 → χ2

2,0 → χ0
0,0

• l = 2: χ0
0,2 → χ0

2,0 → χ2
0,0 → χ2

2,2 → χ0
0,2

while the antiholomorphic characters stay the same. On the other hand, the action of
β produces four different phase factors on the constituent fields

ζm m mod4 fields

1 0 Φ0
0,0;0,0,Φ

0
0,2;0,0,Φ

0
0,0;0,2,Φ

0
0,2;0,2

Φ2
0,0;0,0,Φ

2
0,2;0,0,Φ

2
0,0;0,2,Φ

2
0,2;0,2

i 1 Φ1
1,0;1,0,Φ

1
1,2;1,0,Φ

1
1,0;1,2,Φ

1
1,2;1,2

−1 2 Φ2
2,0;2,0,Φ

2
2,2;2,0,Φ

2
2,0;2,2,Φ

2
2,2;2,2

Φ2
−2,0;−2,0,Φ

2
−2,2;−2,0,Φ

2
−2,0;−2,2,Φ

2
−2,2;−2,2

−i 3 Φ1
−1,0;−1,0,Φ

1
−1,2;−1,0,Φ

1
−1,0;−1,2,Φ

1
−1,2;−1,2 .

This table lists only the fields which have the same holomorphic and antiholomorphic
field content. But as the phase factor ζm only depends on the holomorphic quantum
numbers, the table is easily generalised to asymmetric fields generated via the action
of U .

Now, we have collected all ingredients to construct (2)4 Gepner fields along the lines
of the above programme. In the following, we give a list of some typical examples:

(Φ1
1,0;1,0)

⊗4 =
(
σ(z)e

− i
2
√

2
ϕ(z)

e
− i

2
√

2
ϕ̄(z̄)
)⊗4

(Φ1
3,2;1,0)

⊗4 =
(
σ(z)e

i
2
√

2
ϕ(z)

e
− i

2
√

2
ϕ̄(z̄)
)⊗4

Φ0
0,0;0,0 ⊗ Φ0

0,0;0,0 ⊗ Φ2
2,0;2,0 ⊗ Φ2

2,0;2,0(z)

= 11⊗ 11⊗ e−
i√
2
ϕ(z)

e
− i√

2
ϕ̄(z̄) ⊗ e−

i√
2
ϕ(z)

e
− i√

2
ϕ̄(z̄)

Φ0
0,2;0,0 ⊗ Φ0

0,2;0,0 ⊗ Φ2
2,0;2,0 ⊗ Φ2

2,0;2,0(z)

= ψ(z)ei
√

2ϕ(z) ⊗ ψ(z)ei
√

2ϕ(z) ⊗ e−
i√
2
ϕ(z)

e
− i√

2
ϕ̄(z̄) ⊗ e−

i√
2
ϕ(z)

e
− i√

2
ϕ̄(z̄)

Φ1
−1,−2;1,0 ⊗ Φ1

−3,−2;−1,0 ⊗Φ2
0,2;2,0 ⊗ Φ0

4,2;−2,0(z)

= σ(z)e
− 3i

2
√

2
ϕ(z)

e
− i

2
√

2
ϕ̄(z̄) ⊗ σ(z)e

− i
2
√

2
ϕ(z)

e
i

2
√

2
ϕ̄(z̄) ⊗ ei

√
2ϕ(z)e

− i√
2
ϕ̄(z̄)

⊗ ψ(z)ψ̄(z̄)e
i√
2
ϕ̄(z̄)

.

The fields of the holomorphic symmetry algebra in the Gepner model are con-
structed as the sum of fields which act as the respective generator in just one of the
models and as the identity in all the other, e.g.

J(z) =

4∑

i=1

11⊗ . . .⊗ Ji ⊗ . . .⊗ 11 .
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Orbifolds of Gepner models

A Gepner model possesses a large residual symmetry group

Gab = (

r∏

i=1

Zki+2)/ZM M = lcm {ki + 2; i = 1, . . . , r}

(which still has to be reduced further if we want to leave invariant the spectral flow
and, hence, spacetime supersymmetry).

This symmetry group and its subgroups can be used to construct new CFTs via the
orbifolding technique. As the whole symmetry group is Abelian let us, without loss of
generality, regard a cyclic subgroup H ' ZA generated by an element a. In order to
construct the orbifold we enhance the W-algebra with the current [32]

Ua =

r⊗

i=1

Φ0
2 aj , 2aj ;0,0 ,

add all fields which are results of OPEs with U a, and only keep a maximal subset
of fields which are local to each other. But similarly to the above described GSO
projection, this maximal set of fields local to each other is identical to the set of fields
which are invariant under H. In practice, the last of these two options is the more
comfortable way to go. We will call an orbifold of a Gepner model a “Gepner like
model”.

There are two orbifolds of the Gepner model (2)4 which are important in this thesis:

• The Gepner like model (2̂)4 is obtained by an orbifold wrt the group Z2 ≡
〈[2, 2, 0, 0]〉 ∈ Gab. It can also be constructed via enhancing the W-algebra of
(2)4 with the two currents [32]

J̃12 = Φ0
4,2;0,0 ⊗ Φ0

4,2;0,0 ⊗ Φ0
0,0;0,0 ⊗Φ0

0,0;0,0

J̃34 = Φ0
0,0;0,0 ⊗ Φ0

0,0;0,0 ⊗ Φ0
4,2;0,0 ⊗Φ0

4,2;0,0 .

• The Gepner like model (2̃)4 denotes the orbifold wrt the group Z2 × Z2 ≡
〈[2, 2, 0, 0], [2, 0, 2, 0]〉 ∈ Gab. This model can also be obtained by enhancing the
W-algebra of (2)4 with the above simple current J̃12 as well as with all currents
obtained from J̃12 by permutation of its factors [32].





Chapter 3

Observations on the moduli space

of conformal sigma models

compactified on K3

The moduli space of conformal field theory models with central charge c = 6 and
N = (4, 4) supersymmetry can be separated into two independent components. The
first is given by the supersymmetric extension of the well explored 16-dimensional
Narain moduli space of supersymmetric torus theories which is briefly discussed in
section 2.3.2. The second component is given by the moduli space of conformal sigma
models which are compactified on K3 surfaces, or rather of the moduli space of quantum
extensions of these compactifications which also include the moduli of the important
asymmetric background B-field. It is this second component which we still know very
little about and which we want to uncover some new features about in this chapter.

The moduli space of K3 compactifications has already been studied in a series of
publications [28, 112, 29, 30, 31, 32, 113, 33]. So far, this moduli space has been
identified as an orbifold of a symmetric space by a maximal discrete symmetry group
with Hausdorff quotient. Furthermore, it has been shown how to embed certain specific
K3 surfaces, so-called orbifold surfaces, within this moduli space. This has lead to a
nice embedding picture of several conformal field theory models with a large symmetry
algebra, Zn orbifold models and several Gepner models, within this moduli space. Due
to their larger symmetry algebra, however, these models do not represent the generic
inhabitant of this moduli space—about the generic models we know almost nothing.

In this chapter we want to examine several aspects of the K3 moduli space, which
will hopefully bring us closer to the study of its generic points. After a short introduc-
tion to the geometry of the K3 component of the moduli space we will re-examine a very
special point in this moduli space. This special point is the intersection point of the Z2

and Z4 orbifold subvarieties and has also been shown to be equal to a certain orbifold
of the Gepner model (2)4 [31, 32]. However, the proof of this identification has been
rather indirect. We will give an explicit proof of this identification, on the geometric
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side in section 3.2 as well as for the three different conformal field theory models in
section 3.3. It is this explicit identification of the geometric points which enables us to
relate the coordinates on the Z2 and Z4 orbifold subvarieties. In section 3.4 we then
show how to use this coordinate transition in order to calculate a geometric geodesic
between these two subvarieties as well as the generating matrix of this geodesic. We
conclude this chapter by exploring the possibilities to describe such a geodesic on the
conformal field theory side using conformal deformation theory.

The calculations presented in sections 3.2 and 3.3 have already been published in
[114]. For further steps in the exploration of the K3 moduli space see e.g. [115].

3.1 Introduction to the geometry of the K3 moduli space

In the following we present the most important facts about the geometry of the K3
moduli space which are needed for the consequent sections. We try to stick to the
conventions of [31, 32, 33], where a much more detailed presentation is given.

A classical K3 surface is defined to be a compact complex Kähler manifold of com-
plex dimension 2. Its topology is summarised in its Hodge numbers, the dimensions of
its Dolbeault cohomology classes,

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
0 0

1 20 1
0 0

1

.

It is a quite remarkable fact that a K3 surface only exhibits even cohomology. A more
detailed introduction to K3 surfaces as well as their (complex) algebraic geometry can
be found in [30] or in the mathematics literature, e.g. in [116].

The general structure of the K3 moduli space is given by

O+(Γ(4,20))\O+(4, 20)/SO(4)×O(20) ∼= O+(Γ(4,20))\O(4, 20)/O(4)×O(20)

where O+(Γ(4,20)) signifies the discrete duality group. As we are only interested in local
properties in this chapter, we will only deal with the unique smooth, simply connected
covering space O(4, 20)/O(4) × O(20). This is a Grassmannian space whose points
can be described by a four-plane in an even selfdual 24-dimensional lattice Γ(4,20) of
signature (4, 20). Such even selfdual lattices are known to be unique up to isometries
for a given signature (m,n) if m > 0 and n > 0 (see e.g. [30]).

But now we want to allocate specific conformal field theory models within this
moduli space. In [31, 32] it has been deduced that the moduli spaces which can be
generated from the torus moduli space via the Zn (n = 2, 3, 4, 6) orbifold procedure
are actually embedded in the larger K3 moduli space. For each of these orbifold sub-
varieties [31, 32] describe an embedding and give the explicit coordinates within this
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(2)

(2) (2)

4

4 4^ ~

Figure 3.1: Snapshot of the relevant theories as embedded in K3 moduli space

Z4 orbifold subvariety

Z2 orbifold subvariety

embedding, i.e. they describe the four-planes within the corresponding reference lat-
tices. The reference lattices, though, are different for different n as we will see below.
It was an important insight of [31, 32] to show that the reference lattice is actually
spanned by the whole even Z cohomology

H even(X,Z) := H0(X,Z) ⊕H2(X,Z)⊕H4(X,Z)

of a K3 surface X. The four-plane within this reference lattice is then described by the
geometric data of metric, B-field and volume. As for the torus moduli space in section
2.3.2 the cohomology lattice is endowed with the natural scalar product

(ω1, ω2) 7→
∫

X
ω1 ∧ ω2 ∀ ω1, ω2 ∈ H even(X,Z)

which vanishes if ω1 ∧ ω2 is not a 4-form.

In this chapter we are only concerned with two of the above orbifold subvarieties,
the Z2 and Z4 orbifold subvarieties. These two subvarieties actually intersect in one
point which is also isomorphic to another conformal field theory model, the Gepner like
model (2̂)4 which is described in section 2.3.4. The situation is depicted in figure 3.1.
The other two points located in the picture, the Gepner model (2)4 and the Gepner
like model (2̃)4 will play a role in section 3.4. In the following section we will give the
specific reference lattices as well as the prescription how to construct the four-plane
from the data of the underlying torus model for both Z2 and Z4 orbifold models.
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3.2 Geometric intersection of the Z2 and Z4 subvarieties

Let us perform the orbifolding procedure of section 2.3.2 on all tori in the torus moduli
space wrt the discrete symmetry groups Z2 and Z4. In this manner we achieve two
further moduli spaces which are 16- respectively 8-dimensional. These two orbifold
moduli spaces have been shown to be embedded into the K3 moduli space as Z2 and
Z4 (orbifold) subvarieties [31, 32].

It has also been shown by conformal field theory arguments that these two subvari-
eties intersect in one specific point. Unfortunately, however, the reference lattices have
to be chosen quite differently for the two embeddings of the Z2 and Z4 subvarieties such
that the geometric identification of that specific point is definitely not clear. Given the
high dimensionality of the lattice as well as its nontrivial signature it is also not obvious
from inspection that both lattices actually have the same structure.

In this section we will prove the geometric identification of these two points by
giving an explicit isomorphism between the two bases of the two embedding spaces
which maps both lattices and four-planes into each other.

3.2.1 Reference lattices and four-planes for Z2 and Z4 orbifold models

First we need to review the reference lattices and the construction of the embedded
four-plane for both Z2 and Z4 orbifold models as described in [31, 32, 33].

Let us start with the torus model T (Λ, B). From section 2.3.2 we know that using
the triality isomorphism the torus moduli space can equally well be described by ro-
tations in its even cohomology class Heven(T ,R). This is the perfect starting point to
find a suitable embedding of orbifolds of these tori into the K3 moduli space bearing
in mind that the K3 moduli space actually only exhibits even cohomology.

If we take an orbifold of a torus model by some group G only the part of the
cohomology survives which is invariant under G. This trivially accounts for the fact
that Z2 and Z4 orbifolds do not have any nontrivial odd cohomology. On the other
hand, performing this orbifold procedure we produce singularities, the fixpoints of
the G action on the torus. In order to get a mathematically well-defined surface we
need to blow-up these singularities to locally projective circles (as described in [30]
or in [116] p.182 in more detail). This introduces new cohomology cycles, so-called
exceptional divisors Ei ∈ H2 (X,Z). In the orbifold limit they have zero volume and,
most importantly, self-intersection number ||Ei||2 = −2. These additional elements of
the second cohomology class account for the much higher dimensionality of h1,1 in the
K3 case in contrast to the torus case. We call such a surface with blown-up orbifold
singularities an orbifold surface.

Usually, one needs more than one exceptional divisor to blow-up an orbifold sin-
gularity. The case of a Z2 singularity is just the exception where we indeed need only
one such exceptional divisor E with 〈E,E〉 = −2. The case of a Z4 singularity is al-
ready more complicated; we need three exceptional divisors E (+), E(0) and E(−) with
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intersection matrix

〈Ei, Ej〉i,j=+,0,− =



−2 1 0
1 −2 1
0 1 −2


 .

In general, the singularities of a complex two-dimensional surface can be classified
by the A, D, E groups. The singularities produced by cyclic groups Zn, which are
interesting for our purposes, are resolved by exceptional divisors with an intersection
matrix which is the negative of the Cartan matrix of An−1.

Furthermore, for any such orbifold surface X, let υ◦ ∈ H0 (X,Z) and υ ∈ H4 (X,Z)
be the generators of the respective one-dimensional cohomology groups, with 〈υ◦, υ〉 =
1, ||υ◦||2 = ||υ||2 = 0. Also let Pjk := spanF2

(fj, fk) with j, k ∈ {1, . . . , 4} and fj the
jth standard basis vector. And, let µi be the dual vectors to the generators λi of Λ.

We can now give the reference lattice of a Z2 orbifold of T (Λ, B), which we call
K(Λ, B). The orbifold group acts via multiplication by −1 on R

4. The lattice of
even cohomology Γ = Heven (X,Z) of the K3 surface X corresponding to K(Λ, B) is
generated by

υ̂ =
√

2 υ ,

υ̂◦ =
1√
2
υ◦ − 1

4

∑

i∈I

Ei +
√

2 υ (3.1)

and the sublattice Γ̂Z2 (using Êi := − 1√
2
υ +Ei)

Γ̂Z2 := spanZ


 1√

2
µj ∧ µk +

1

2

∑

i∈Pjk

Êi+l , Êm; l,m ∈ I


 . (3.2)

I = (F2)
4 parametrises the sixteen Z2 orbifold fixpoints which have been blown up with

one exceptional divisor each.
Similarly let Z4(Λ, B) signify the Z4 orbifold of T (Λ, B), where the orbifold group

acts like µ1 7→ µ2, µ2 7→ −µ1, µ3 7→ −µ4, µ4 7→ µ3. The lattice of the even cohomology
Γ = Heven (Y,Z) of the corresponding K3 surface Y is generated by1

υ̂ = 2 υ ,

υ̂◦ =
1

2
υ◦ − 1

4

∑

i∈I(2)

Ei −
1

8

∑

i∈I(4)

(3E
(+)
i + 4E

(0)
i + 3E

(−)
i ) + 2 υ

and the sublattice Γ̂Z4 spanned by (using Êi := −〈Ei, υ̂
◦〉 υ̂ +Ei)

1

2
µ1 ∧ µ2 +

1

2
Ê(0,0,1,0)+ε(1,1,0,0) +

1

4

∑

i∈P34∩I(4)

Êi+ε(1,1,0,0) with ε ∈ {0, 1} ,

1We apologise for the abuse of notation using the same symbols Ê etc. as in the K(Λ, B) models in
order to prevent a proliferation of indices. We hope that a distinction between the different models is
clearly visible from the context.
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1

2
µ3 ∧ µ4 −

1

2
Ê(1,0,0,0)+ε(0,0,1,1) −

1

4

∑

i∈P12∩I(4)

Êi+ε(0,0,1,1) with ε ∈ {0, 1} ,

1

2
(µ1 ∧ µ3 + µ4 ∧ µ2)−

1

2

∑

i∈P13

Êi+j + Êj with j ∈ I(4) ,

1

2
(µ1 ∧ µ4 + µ2 ∧ µ3)−

1

2

∑

i∈P14

Êi+j + Êj with j ∈ I(4) ,

Êk with k ∈ I(2) ∪ I(4) .

I(4) = {0000, 0011, 1100, 1111} parametrises the four Z4 orbifold fixpoints whose blow-
up produces three exceptional divisors each, I (2) = {0100, 0001, 0111, 1101, 0110, 0101}
the six Z2 orbifold fixpoints.

The four-plane which is embedded into these reference lattices is then described by
the geometric data of the underlying torus model (see section 2.3.2)

• the metric described by the three-plane ΣT = 〈σi〉i=1,2,3,

• the B-field, in its description b =
∑

i<j Bij ei ∧ ej mapped to the second cohomo-
logy class,

• and the volume VT .

The resulting four-plane x is spanned by the four vectors

Ξi = σi − 〈b, σi〉 υ ∀ i = 1, 2, 3

Ξ4 = υ◦ + b+

(
VT −

〈b, b〉
2

)
υ . (3.3)

The Z2 orbifold K(Z4,0)

The geometric data of the torus model with lattice Λ = Z
4 and vanishing B-field B = 0

is easily summarised to be

ΣT =
〈
e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3

〉

VT = 1

BT = 0 =⇒ b = 0 .

This yields the following positive definite four-plane representing the special model
K(Z4, 0), the Z2 orbifold of T (Z4, 0). The given lattice vectors Ai lie within the above
described lattice of signature (4, 20) for Z2 orbifold surfaces and are pairwise orthogonal
and of norm ||Ai|| = 4:

A21 =
√

2 (e1 ∧ e2 + e3 ∧ e4)
A22 =

√
2 (e1 ∧ e3 + e4 ∧ e2)
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A23 =
√

2 (e1 ∧ e4 + e2 ∧ e3)

A24 = 2υ̂◦ +
1

2

∑

i∈I(2)

Êi + 3 υ̂ .

The space orthogonal to this four-plane is likewise spanned by the following pairwise
orthogonal lattice vectors of norm ||Ai|| = −4

A1 =
√

2 (e1 ∧ e2 − e3 ∧ e4)
A2 =

√
2 (e1 ∧ e3 − e4 ∧ e2)

A3 =
√

2 (e1 ∧ e4 − e2 ∧ e3)

A4 = 2 υ̂◦ +
1

2

∑

i∈I(2)

Êi + υ̂

A5 =
1

2
(Ê0000 − Ê1100 − Ê0011 + Ê1111 − Ê1010 − Ê1001 − Ê0110 − Ê0101)− υ̂

A6 =
1

2
(Ê0000 − Ê1100 − Ê0011 + Ê1111 + Ê1010 + Ê1001 + Ê0110 + Ê0101) + υ̂

A7 =
1

2
(Ê0000 + Ê1100 + Ê0011 + Ê1111 − Ê1010 + Ê1001 + Ê0110 − Ê0101) + υ̂

A8 =
1

2
(Ê0000 + Ê1100 + Ê0011 + Ê1111 + Ê1010 − Ê1001 − Ê0110 + Ê0101) + υ̂

A9 =
1

2
(Ê1000 + Ê0100 + Ê0010 + Ê0001 − Ê1110 − Ê1101 − Ê1011 − Ê0111)

A10 =
1

2
(Ê1000 + Ê0100 − Ê0010 − Ê0001 + Ê1110 + Ê1101 − Ê1011 − Ê0111)

A11 =
1

2
(Ê1000 − Ê0100 + Ê0010 − Ê0001 + Ê1110 − Ê1101 + Ê1011 − Ê0111)

A12 =
1

2
(Ê1000 − Ê0100 − Ê0010 + Ê0001 − Ê1110 + Ê1101 + Ê1011 − Ê0111)

A13 =
1

2
(Ê0000 − Ê1100 + Ê0011 − Ê1111 − Ê1010 + Ê1001 − Ê0110 + Ê0101)

A14 =
1

2
(Ê0000 − Ê1100 + Ê0011 − Ê1111 + Ê1010 − Ê1001 + Ê0110 − Ê0101)

A15 =
1

2
(Ê0000 + Ê1100 − Ê0011 − Ê1111 − Ê1010 − Ê1001 + Ê0110 + Ê0101)

A16 =
1

2
(Ê0000 + Ê1100 − Ê0011 − Ê1111 + Ê1010 + Ê1001 − Ê0110 − Ê0101)

A17 =
1

2
(Ê1000 + Ê0100 + Ê0010 − Ê0001 − Ê1110 + Ê1101 + Ê1011 + Ê0111) + υ̂

A18 =
1

2
(Ê1000 + Ê0100 − Ê0010 + Ê0001 + Ê1110 − Ê1101 + Ê1011 + Ê0111) + υ̂

A19 =
1

2
(Ê1000 − Ê0100 + Ê0010 + Ê0001 + Ê1110 + Ê1101 − Ê1011 + Ê0111) + υ̂

A20 =
1

2
(Ê1000 − Ê0100 − Ê0010 − Ê0001 − Ê1110 − Ê1101 − Ê1011 + Ê0111)− υ̂ .
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The Z4 orbifold Z4(
1√
2
D4,B

∗)

Now we want to look at the special theory Z4(
1√
2
D4, B

∗), with the lattice D4 = {x∈
Z4|
∑
xi ≡ 0 (2)}. The geometric data of the corresponding torus model is given by

ΣT =
〈
2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3),

(e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3),
2 e3 ∧ e4 − (e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3)

〉

VT =
1

2

BT = B̃∗ =⇒ b = e1 ∧ e2 +
1

2
(e1 ∧ e3 + e4 ∧ e2)−

1

2
(e1 ∧ e4 + e2 ∧ e3)

where the B field in this theory is given as the Λ∗ ⊗ R→ Λ⊗ R map

B∗ =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 . (3.4)

In this model the positive definite four-plane representing this point in moduli space is
spanned by the following pairwise orthogonal lattice vectors of norm ||Bi|| = 4 (within
the above described lattice of signature (4, 20) for Z4 orbifold surfaces)

B21 = 2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3)− υ̂

B22 = (e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3)
B23 = 2 e3 ∧ e4 − (e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3)
B24 = 4 υ̂◦ + 2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3)

+
∑

i∈I(2)

Êi +
1

2

∑

i∈I(4)

(3Ê
(+)
i + 4Ê

(0)
i + 3Ê

(−)
i ) + 4 υ̂ .

The space orthogonal to this four-plane is likewise spanned by the following pairwise
orthogonal lattice vectors of norm ||Bi|| = −4

B1 = 2 (e1 ∧ e2 − e3 ∧ e4) + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3)
B2 = 4 υ̂◦ + 2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3)

+
∑

i∈I(2)

Êi +
1

2

∑

i∈I(4)

(3Ê
(+)
i + 4Ê

(0)
i + 3Ê

(−)
i ) + 3 υ̂

B3 = Ê0100 − Ê0111

B4 = Ê0001 − Ê1101

B5 = Ê0110 − Ê1010
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B6 = Ê0100 + Ê0111 + υ̂

B7 = Ê0001 + Ê1101 + υ̂

B8 = Ê0110 + Ê1010 + υ̂

B9 =
1

2
(Ê

(+)
0000 + 2Ê

(0)
0000 + Ê

(−)
0000 + Ê

(+)
1100 + 2Ê

(0)
1100 + Ê

(−)
1100 + Ê

(+)
0011 − Ê

(−)
0011

−Ê(+)
1111 + Ê

(−)
1111) + υ̂

B10 =
1

2
(Ê

(+)
0000 + 2Ê

(0)
0000 + Ê

(−)
0000 + Ê

(+)
1100 + 2Ê

(0)
1100 + Ê

(−)
1100 − Ê

(+)
0011 + Ê

(−)
0011

+Ê
(+)
1111 − Ê

(−)
1111) + υ̂

B11 =
1

2
(Ê

(+)
0000 + 2Ê

(0)
0000 + Ê

(−)
0000 − Ê

(+)
1100 − 2Ê

(0)
1100 − Ê

(−)
1100 − Ê

(+)
0011 + Ê

(−)
0011

−Ê(+)
1111 + Ê

(−)
1111)

B12 =
1

2
(Ê

(+)
0000 + 2Ê

(0)
0000 + Ê

(−)
0000 − Ê

(+)
1100 − 2Ê

(0)
1100 − Ê

(−)
1100 + Ê

(+)
0011 − Ê

(−)
0011

+Ê
(+)
1111 − Ê

(−)
1111)

B13 =
1

2
(Ê

(+)
0000 + Ê

(−)
0000 + Ê

(+)
1100 + Ê

(−)
1100 + Ê

(+)
0011 + Ê

(−)
0011 + Ê

(+)
1111 + Ê

(−)
1111) + υ̂

B14 =
1

2
(Ê

(+)
0000 + Ê

(−)
0000 − Ê

(+)
1100 − Ê

(−)
1100 + Ê

(+)
0011 + Ê

(−)
0011 − Ê

(+)
1111 − Ê

(−)
1111)

B15 =
1

2
(Ê

(+)
0000 + Ê

(−)
0000 + Ê

(+)
1100 + Ê

(−)
1100 − Ê

(+)
0011 − Ê

(−)
0011 − Ê

(+)
1111 − Ê

(−)
1111)

B16 =
1

2
(Ê

(+)
0000 + Ê

(−)
0000 − Ê

(+)
1100 − Ê

(−)
1100 − Ê

(+)
0011 − Ê

(−)
0011 + Ê

(+)
1111 + Ê

(−)
1111)

B17 =
1

2
(Ê

(+)
0000 − Ê

(−)
0000 + Ê

(+)
1100 − Ê

(−)
1100 − Ê

(+)
0011 − 2Ê

(0)
0011 − Ê

(−)
0011

+Ê
(+)
1111 + 2Ê

(0)
1111 + Ê

(−)
1111)

B18 =
1

2
(Ê

(+)
0000 − Ê

(−)
0000 + Ê

(+)
1100 − Ê

(−)
1100 + Ê

(+)
0011 + 2Ê

(0)
0011 + Ê

(−)
0011

−Ê(+)
1111 − 2Ê

(0)
1111 − Ê

(−)
1111)

B19 =
1

2
(Ê

(+)
0000 − Ê

(−)
0000 − Ê

(+)
1100 + Ê

(−)
1100 + Ê

(+)
0011 + 2Ê

(0)
0011 + Ê

(−)
0011

+Ê
(+)
1111 + 2Ê

(0)
1111 + Ê

(−)
1111) + υ̂

B20 =
1

2
(Ê

(+)
0000 − Ê

(−)
0000 − Ê

(+)
1100 + Ê

(−)
1100 − Ê

(+)
0011 − 2Ê

(0)
0011 − Ê

(−)
0011

−Ê(+)
1111 − 2Ê

(0)
1111 − Ê

(−)
1111)− υ̂ .

3.2.2 Identification of lattice vectors at the intersection point

In [31] it was shown by indirect arguments that the conformal field theories associated
with the K3 geometries at K(Z4, 0) and Z4(

1√
2
D4, B

∗) can be identified and therefore

signify the same point in K3 moduli space. Here, we want to give a direct proof that
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the geometries associated with these theories are indeed the same. It is given by the
following identification of the respective lattices of both theories which also identifies
the four-planes placed within these lattices

A1
∼= B6 A2

∼= −B5

A3
∼= −B4 A4

∼= −B15

A5
∼= B2 A6

∼= −B13

A7
∼= B14 A8

∼= B16

A9
∼= −B1 A10

∼= B3

A11
∼= B8 A12

∼= B7

A13
∼= −B9 A14

∼= −B10

A15
∼= B11 A16

∼= B12

A17
∼= −B17 A18

∼= −B18

A19
∼= B19 A20

∼= −B20

A21
∼= −B21 A22

∼= B22

A23
∼= B23 A24

∼= B24 .

(3.5)

As this is a highly symmetric point in moduli space this identification is certainly only
one of a great variety of possible ones.

Proof. In order to prove the above statement (3.5) we first need to express the gen-
erators of one lattice in terms of the respective basis. We choose to take the generators
of the lattice Γ(K(Z4, 0)) of K(Z4, 0) and express them in terms of the Ai, i = 1, . . . , 24.
Using the above equivalence we can, hence, find the vectors equivalent to these gener-
ators in the R–span of the other lattice, spanR(Bi; i = 1, . . . , 24). These vectors have
to be shown to be lattice vectors in Γ(Z4

1√
2
D4, B

∗) again. Now, as already explained

in the beginning of section 3.1, both lattices are known to be even selfdual of signature
(4, 20) and are, hence, unique up to isometries. As both bases Ai and Bj consist of
pairwise orthogonal vectors and as the identification (3.5) preserves the norm of these
basis vectors, the identification preserves the scalar product on the whole lattice. Thus,
as this set of vectors is known to be generators for one of the two lattices, it has to
generate the other as well.

On the other hand, the four-planes are spanned by A21, A22, A23, and A24 in
Γ(K(Z4, 0)) and B21, B22, B23, and B24 in Γ(Z4(

1√
2
D4, B

∗)), and are thus identified.

Hence, we have given a simultaneous isomorphism of both lattices and both four-planes
which describe the two theories K(Z4, 0) and Z4(

1√
2
D4, B

∗). This proves that both these

theories signify the same point in K3 moduli space.

We have performed the explicit calculation for all generators of Γ(K(Z4, 0)) as given
in (3.1) and (3.2). We want to present a choice of typical examples of this calculation.
Each time we first express a generator of Γ(K(Z4, 0)) in terms of the orthogonal basis
of Ai, then we use the identification given in equation (3.5) to rewrite this expression
in terms of the Bj , and finally we express the result in terms of a sum of lattice vectors
of Γ(Z4(

1√
2
D4, B

∗)) (either given as single vectors or collected in big brackets):
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Ê0100 −

1

4
(−Ê(+)
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(Ê

(+)
0000 + Ê
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(+)
0011 + Ê
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(−)
0000) +

1

2
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(−)
1111) +

1

2
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υ̂◦ =
1

4
(−A4 +A5 −A6 −A7 −A8 −A17 −A18 −A19 +A20 + 3A24)

=̂
1

4
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3.3 Identification of CFTs at the (2̂)4 Gepner point

Let us now turn to the conformal field theoretic identification at the (2̂)4 Gepner point.
[31, 32] have shown that two orbifold CFTs, the Z2 orbifold K(Z4, 0) and the Z4 orbifold
Z4(

1√
2
D4, B

∗) (now regarded as CFTs), coincide with the same Gepner like theory (2̂)4,

a Z2 orbifold of the Gepner model (2)4 as described in section 2.3.4. The last identifi-
cation has been achieved via first identifying the two theories K( 1√

2
D4, B

∗) and (2̃)4 (a

(Z2)
2 orbifold of (2)4 as described in section 2.3.4) and then showing that the same Z2

orbifold action transforms both theories to the above two theories Z4(
1√
2
D4, B

∗) and

(2̂)4. In this section we want to present the explicit identification of these three CFT
models.

First recall that certain superconformal field theories at c = 6 can be identified using
the following steps if they have a specifically enlarged symmetry algebra ([31, 32]):

• The partition function has to agree in each sector.

• The current part of the holomorphic symmetry algebra Ah, i.e. the algebra of the
fields with (h, h̃) = (1, 0) has to agree. The su(2)2

1 part of the symmetry algebra
which originates in the N = 4 supersymmetry structure has to be enhanced by at
least a u(1)4. Hence, we need u(1)6 ⊂ Ah for this argument to work. The same
applies to the antiholomorphic symmetry algebra Ah̃.

• Denote the U(1) currents in su(2)2
1 as J (1), J (2), the U(1) currents in u(1)4 as

j1, . . . , j4. Define the “bosonic” Hilbert subspace

Hb :=
{
|ϕ〉 ∈ H

∣∣∣J (k)
0 |ϕ〉 = 0 ∀ k ∈ {1, 2}

}
.

Then the charge lattice w.r.t. the subalgebra u(1)4

Γb :=
{
γ ∈ R

d,d
∣∣∣ ∃|ϕ〉 ∈ Hb : jk0 |ϕ〉 = γk|ϕ〉 ∀ k ∈ {1, . . . 4}

}

has to be isomorphic to the same selfdual lattice in both theories as well. It
suffices to show this agreement for a set of generators |ϕ〉 of this selfdual lattice.
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The main idea of the proof of this statement ([31, 32]) is that w.r.t. the u(1)4 subalgebra
the bosonic part of these theories can be viewed as a toroidal theory in d = 4 dimensions,
which is uniquely determined by its charge lattice. The identification of the partition
function and the supersymmetry algebra then determine the complete supersymmetric
theories to be isomorphic.

In the special case of our three theories the partition functions have already been
shown to agree in [31]. For example, the NS sector part of the partition function of
K(Z4, 0) is given by [31, 32]

ZNS
Γ(Z4,0)(σ, z) =

1

2

[
1

4

(∣∣∣θ2(σ)

η(σ)

∣∣∣
4
+
∣∣∣θ3(σ)

η(σ)

∣∣∣
4
+
∣∣∣θ4(σ)

η(σ)

∣∣∣
4)2

+
∣∣∣θ3(σ)θ4(σ)

η(σ)2

∣∣∣
4
+
∣∣∣θ2(σ)θ3(σ)

η(σ)2

∣∣∣
4
+
∣∣∣θ2(σ)θ4(σ)

η(σ)2

∣∣∣
4
]
·
∣∣∣θ3(σ, z)
η(σ)

∣∣∣
4
.

We now elaborate the enhanced symmetry algebras for the three theories as well as the
lattices of (1/4, 1/4) Ramond groundstate fields explicitely. The (1/4, 1/4) Ramond
groundstate fields generate Hb as they are the lowest components of the supersymmetric
groundstate fields.

3.3.1 The symmetry algebra of K(Z4, 0)

We already know the supersymmetric generators in the symmetry algebra of K(Z4, 0)
from section 2.3.2. Thus, we still need to extract the additional holomorphic vertex
operators with (h, h̃) = (1, 0). The charge lattice of K(Z4, 0) is given by

(Pr(µ, λ), Pl(µ, λ)) =
1√
2

(µ+ λ, µ− λ) =

(
p+

1

2
w, p− 1

2
w

)
,

with w =
√

2λ ∈
√

2Λ =
√

2Z
4 and p = 1√

2
µ ∈ 1√

2
Λ∗ = 1√

2
Z

4.

Hence we get four additional holomorphic U(1) currents which are invariant under
Z2 action ei 7→ −ei i ∈ {1, . . . , 4} (using the convention VP = Vλ,µ)

Ui = V inv
ei,ei

= V t
ei,ei

+ V t
−ei,−ei

i = 1, . . . , 4 .

The cocycle factors for a u(1)4 algebra of holomorphic vertex operators are naturally
1. Hence we get the OPE

Ui(z)Uj(w) = 2δij(z −w)−2 +O(1) .

The total, enhanced holomorphic symmetry algebra can be diagonalised as (with the

complexified toroidal bosonic currents j
(k)
± and their superpartners ψ

(k)
± as given in
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section 2.3.2)

J ′ := (ψ
(1)
+ ψ

(1)
− + ψ

(2)
+ ψ

(2)
− ) J ′+ :=

√
2ψ

(1)
+ ψ

(2)
+ J ′− :=

√
2ψ

(2)
− ψ

(1)
−

A′ := (ψ
(1)
+ ψ

(1)
− − ψ

(2)
+ ψ

(2)
− ) A′+ :=

√
2ψ

(1)
+ ψ

(2)
− A′− :=

√
2ψ

(2)
+ ψ

(1)
−

P ′ = 1
2(U1 + U2 + U3 + U4)

Q′ = 1
2(U1 + U2 − U3 − U4)

R′ = 1
2(U1 − U2 + U3 − U4)

S′ = 1
2(U1 − U2 − U3 + U4) .

This diagonalisation of the U(1) currents has the advantage that P ′ and Q′ are already
invariant under the Z4 operation

e1 7→ e2 e2 7→ −e1
e3 7→ −e4 e4 7→ e3 . (3.6)

This Z4 operation acts the same way on the currents j i and their superpartners ψi.

3.3.2 The symmetry algebra of Z4(
1√
2
D4,B

∗)

Remember the definition of D4 and B∗ in (3.4). It is now easier to study the symme-
try algebra of the Z2 orbifold K( 1√

2
D4, B

∗) first and to get the symmetry algebra of

Z4(
1√
2
D4, B

∗) by an explicit orbifold action thereafter.

Hence, let us first look for additional holomorphic vertex operators in K( 1√
2
D4, B

∗).

Due to Λ = 1√
2
D4 the left charges of these are given as roots out of the root system of

D4

(Pl, Pr) =
1√
2

(µ−B∗λ+ λ, µ−B∗λ− λ) = (αi, 0) αi ∈ D4 ,

which leads to the following cocycle factor on the root system of D4 (derived in (2.16))

cα2(−α1) = exp

[
i

2
παt

1B
∗α2

]
.

The roots of D4 are given as linear combinations of the unit vectors α = ei±ej. Hence,
we can change the basis of the vertex operators in the holomorphic algebra to the more
useful linear combination (following [31])

W±
ij :=

1

2

(
V inv

ei+ej
± V inv

ei−ej

)
,

where

V inv
α (z) = (V torus

α + V torus
−α )
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is the Z2 invariant linear combination of the torus vertex operators V torus. We directly
observe the symmetry of the indices W±

ij = W±
ji .

One can now calculate the OPEs of all the W±
ij . In order to make the full su(2)6

1

symmetry visible we re-write them in the following form

J := (ψ
(1)
+ ψ

(1)
− + ψ

(2)
+ ψ

(2)
− ) J+ :=

√
2ψ

(1)
+ ψ

(2)
+ J− :=

√
2ψ

(2)
− ψ

(1)
−

A := (ψ
(1)
+ ψ

(1)
− − ψ

(2)
+ ψ

(2)
− ) A+ :=

√
2ψ

(1)
+ ψ

(2)
− A− :=

√
2ψ

(2)
+ ψ

(1)
−

P := W−
14 +W−

23 P± := 1√
2

(
(W+

12 +W+
34)± i(W−

24 −W−
13)
)

Q := W+
12 −W+

34 Q± := 1√
2

(
(W−

24 +W−
13)± i(W−

14 −W−
23)
)

R := W+
14 +W+

23 R± := 1√
2

(
(W+

24 −W+
13)± i(W−

12 +W−
34)
)

S := W+
24 +W+

13 S± := 1√
2

(
(W−

12 −W−
34)± i(W+

14 −W+
23)
)

(3.7)

where the su(2)1 currents J , J ± are normalised to fulfil the following OPEs

J (z) J ±(w) ∼ ± 2 (z − w)−1 J ±(w)

J+(z) J −(w) ∼ ± 2 (z − w)−2 + 2 (z − w)−1 J (w)

J (z) J (w) ∼ ± 2 (z − w)−2 . (3.8)

Let us now turn to the symmetry algebra of the Z4(
1√
2
D4, B

∗) model. [31] have

shown that it is enhanced to su(2)2⊗u(1)4 which is just given by the symmetry currents
of (3.7) which are invariant under the Z4 operation (3.6). These are

J, J±; P, P±; A; Q; R; S .

There are no new holomorphic (1, 0) currents in the twisted sectors.

3.3.3 Non–twisted groundstate (1

4
, 1

4
) fields

The torus theory contains eight groundstate ( 1
4 ,

1
4 ) fields in the Ramond sector. These

generate the Clifford algebra of groundstates for the Ramond sector. They can be
diagonalised to have charges which are non-vanishing only wrt to one of the currents
J , A (as in (3.7)) and its respective antiholomorphic counterpart

• E±
J having charges (±1,±1) w.r.t. J , J̄

• F±
J having charges (±1,∓1) w.r.t. J , J̄

• E±
A having charges (±1,±1) w.r.t. A, Ā

• F±
A having charges (±1,∓1) w.r.t. A, Ā.



62 Chapter 3. Observations on K3 moduli space

All of these fields survive the Z2 orbifolding, but only six of them,

E±
J , F±

J , E±
A ,

survive the above Z4 orbifolding with the action of equation (3.6). As the two torus
symmetry fields J and A are made up of free fermions (the superpartners of the bosonic
currents of the torus theory) a representation for these eight groundstate fields can be
written down in terms of a suitable bosonisation.

3.3.4 Twisted groundstate (1

4
, 1

4
) fields in Z4(

1√
2
D4,B

∗)

The other groundstate ( 1
4 ,

1
4) fields have to come from the twisted sectors. Let us first

regard the action of the additional symmetry generators on the groundstate twistfields
of this theory. For Z4(

1√
2
D4, B

∗) we have the lattice Λ = 1√
2
D4 = 1√

2
Λd where Λd will

be the lattice numbering our fixpoints, i.e. f ∈ Λd. The representation of the orbifold
group generator is given by

θ4 =




0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 θ2 = θ2

4 =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 . (3.9)

Z2 twistfields

For Z2 twistfields we have a coupling of (see section 2.3.3)

g(N=2)(α, 0) =
1

4
e

1
2
πi(α+B∗α)t(1−θ2)−1α =

i

4

due to ||α||2 = 2 and the antisymmetry of B∗. Furthermore, the translation of the
fixpoint in the OPE of the holomorphic vertex operator and the twistfield is given by

xf 7→ xf + (1− θ2)−1λ = xf +
1

2

α√
2
.

Hence we get an OPE of

Vei+ej (z) T
(N=2)
f (w) = (V t

ei+ej
(z) + V t

−ei−ej
(z)) T

(N=2)
f (w)

= g(N=2)(α, 0)(z − w)−1

(
eiπ(α+B∗α)t(

√
2xf ) + e−iπ(α+B∗α)t(

√
2xf )

)
T

(N=2)
f ′ (w)

=
i

2
eiπ(α+B∗α)t(

√
2xf ) T

(N=2)

[xf+ 1
2
√

2
α]

(w) .
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Now using this OPE, we can diagonalise the groundstate twistfields wrt the action of
the enhanced symmetry generators

E±
P =

∑

δ1=δ2
δ3=δ4

(−1)δ3T
(N=2)
δ ± i

∑

δ1 6=δ2
δ3 6=δ4

(−1)δ2+δ3T
(N=2)
δ

F±
P =

∑

δ1 6=δ2
δ3=δ4

T
(N=2)
δ ± i

∑

δ1=δ2
δ3 6=δ4

(−1)δ1T
(N=2)
δ

E±
Q =

∑

δ1=δ2
δ3=δ4

T
(N=2)
δ ± i

∑

δ1 6=δ2
δ3=δ4

(−1)δ3T
(N=2)
δ

F±
Q =

∑

δ1=δ2
δ3 6=δ4

(−1)δ1+δ3T
(N=2)
δ ± i

∑

δ1 6=δ2
δ3 6=δ4

(−1)δ2T
(N=2)
δ

E±
R =

∑

δ1=δ2
δ3=δ4

(−1)δ1T
(N=2)
δ ± i

∑

δ1 6=δ2
δ3 6=δ4

T
(N=2)
δ

F±
R =

∑

δ1 6=δ2
δ3=δ4

(−1)δ2+δ3T
(N=2)
δ ± i

∑

δ1=δ2
δ3 6=δ4

(−1)δ3T
(N=2)
δ

E±
S =

∑

δ1=δ2
δ3=δ4

(−1)δ1+δ3T
(N=2)
δ ± i

∑

δ1=δ2
δ3 6=δ4

T
(N=2)
δ

F±
S =

∑

δ1 6=δ2
δ3=δ4

(−1)δ1T
(N=2)
δ ± i

∑

δ1 6=δ2
δ3 6=δ4

(−1)δ3T
(N=2)
δ ,

where the index indicates the U(1) current (P , Q, R or S) this field is charged with.
The respective holomorphic and antiholomorphic charges are (±1,±1) for fields E±

·
and (±1,∓1) for fields F±

· . The charges wrt the respective other three currents as well
as J and A vanish. The following ten fields are invariant under the Z4 action (3.6) and
are, hence, contained in Z4(

1√
2
D4, B

∗) as well

E±
P , F

±
P ; E±

Q ; E±
R ; E±

S .

Z4 twistfields

In the case of Z4 twistfields the vertex operator coupling amounts to (see section 2.3.3)

g
(N=4) ′
l (α, 0) =

1

8
∀ l = 1, 3 .

The total coupling constant g(N=4)(α, 0) still depends on the order of the twist as we
will see below. The fixpoint of the twistfield is translated due to the action of the vertex
operator

xf 7→ xf ′ = xf + (1− θl
4)

−1λ = xf +
1

2
(1 + θl

4)
α√
2
.
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Hence we get an OPE for l = 1 of

Vei+ej (z) T
(N=4) l=1
f (w) = (V t

ei+ej
(z) + V t

−ei−ej
(z)) T

(N=4) l=1
f (w)

= g(N=4) ′(α, 0) e
1
2
πi(α+B∗α)t 1

2
(1+θ4) α(z −w)−1

(
eiπ(α+B∗α)t(

√
2xf ) + e−iπ(α+B∗α)t(

√
2xf )

)
T

(N=4) l=1
f ′ (w)

=
1

4
eiπ(α+B∗α)t(

√
2xf )e

iπ
2

αtL1α T
(N=4) l=1

[xf+ 1
2
√

2
(1+θ4)α]

(w)

as well as for l = 3 of

Vei+ej (z) T
(N=4) l=3
f (w) = (V t

ei+ej
(z) + V t

−ei−ej
(z)) T

(N=4) l=3
f (w)

= g(N=4) ′(α, 0) e
1
2
πi(α+B∗α)t 1

2
(1+θ4)α (z − w)−1

(
e3iπ(α+B∗α)t(

√
2xf ) + e−3iπ(α+B∗α)t(

√
2xf )

)
T

(N=4) l=3
f ′ (w)

=
1

4
e3iπ(α+B∗α)t(

√
2xf )e

iπ
2

αtL3α T
(N=4) l=3

[xf+ 1
2
√

2
(1−θ4)α]

(w)

with

L1 =




0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


 L3 =




1 0 0 0
0 1 0 0
0 0 0 −1
0 0 1 0


 .

Using this OPE one can diagonalise the twistfields according to

qA qQ qR qS

N1 := (T 1
0000 + T 1

1100) + i(T 1
1111 − T 1

0011) +1
2 +1

2 +1
2 −1

2

N2 := (T 1
0000 + T 1

1100)− i(T 1
1111 − T 1

0011) +1
2 +1

2 −1
2 +1

2

N3 := (T 1
0000 − T 1

1100) + i(T 1
1111 + T 1

0011) +1
2 −1

2 +1
2 +1

2

N4 := (T 1
0000 − T 1

1100)− i(T 1
1111 + T 1

0011) +1
2 −1

2 −1
2 −1

2

N5 := (T 3
0000 + T 3

1100) + i(T 3
1111 − T 3

0011) −1
2 −1

2 +1
2 −1

2

N6 := (T 3
0000 + T 3

1100)− i(T 3
1111 − T 3

0011) −1
2 −1

2 −1
2 +1

2

N7 := (T 3
0000 − T 3

1100) + i(T 3
1111 + T 3

0011) −1
2 +1

2 +1
2 +1

2

N8 := (T 3
0000 − T 3

1100)− i(T 3
1111 + T 3

0011) −1
2 +1

2 −1
2 −1

2

where all of these are not charged under J and P and the antiholomorphic charges are
just the same as the holomorphic ones. The charge wrt A cannot be derived from the
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above OPE, as it is a current made up of the ( 1
2 , 0) fermions of the torus theory. In

section 2.3.3 we show that a very careful calculation of the R–Sector partition function
— keeping the factors originating from the bosonic and fermionic characters well apart
— reveals that the Z4 groundstate twistfields are made up of a bosonic twistfield of
conformal weight hb = 3

16 and a fermionic twistfield of conformal weight hf = 1
16 . This

perfectly well corresponds to the general formulae for bosonic twistfields hb = 1
2

k
N (1− k

N )

and the one for fermionic twistfields hf = 1
2

k
N derived in [95] by CFT methods. But one

also observes, inspecting the partition function, that these fields are uncharged wrt the
other current J made up of ( 1

2 , 0) fermions. Hence, they have to be charged under A.
To see this we translate our specific orbifold action (3.9) to the complexified torus fields
of (2.17). Then the orbifold action acts on both complex dimensions of the torus in just
the opposite way, i.e. with multiplication with phases which are complex conjugate to
each other. (This corresponds to the fact that the first two real dimensions are rotated
just the opposite way as the last two by (3.9).) However, following the derivation in [95],
this means that in the above formula for the twisted fermionic conformal weights hf we
have to take k for the first dimension and −k for the second. But J and A, as defined
in (3.7), measure the fermionic content in both complex dimensions independently

(with currents of the form ψ
(i)
+ ψ

(i)
− in the complex dimension i). J adds the fermionic

content, A subtracts it. Knowing that (by convention) l in T l refers to the first complex
dimension the claimed charges follow.

3.3.5 Twisted groundstate (1

4
, 1

4
) fields in K(Z4, 0)

This time we only have Z2 twistfields with generator θ2 (3.9). The lattice vectors are
given by ei, and hence the fixpoint of the twistfield is translated due to the action of
the vertex operator (see section 2.3.3)

xf 7→ xf ′ = xf + (1− θ2)−1ei = xf +
1

2
ei .

The fixpoints are elements of the finite group xf ∈ 1
2Z

4/Z4. The coupling is given as
above

g(N=2)(α, 0) =
1

4
e

1
2
πi(

√
2ei)t 1

2
(
√

2ei) =
i

4
.

It follows an OPE (with Σf = T
(N=2)
f )

Ui(z) Σf (w) = (V t
ei,ei

(z) + V t
−ei,−ei

(z)) Σf (w)

= g(N=2)(α, 0) (
√

2ei, 0)(z − w)−1

(
e
2πi( 1√

2
ei)t(

√
2xf )

+ e
2πi(− 1√

2
ei)t(

√
2xf )

)
Σf ′(w)

=
i

2
eiπet

ixf Σ[xf+ 1
2
ei]

(w) .
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This OPE yields the following diagonalisation of the twistfields (N ′
i / j means: N ′

i re-

spectively N ′
j)

qP qQ qR qS

E′ ±
P :=(Σ0000−Σ1100−Σ0011+Σ1111−Σ1010−Σ1001−Σ0110−Σ0101)

±i(Σ1000+Σ0100+Σ0010+Σ0001−Σ1110−Σ1101−Σ1011−Σ0111)
±1 0 0 0

E′ ±
Q :=(Σ0000−Σ1100−Σ0011+Σ1111+Σ1010+Σ1001+Σ0110+Σ0101)

±i(Σ1000+Σ0100−Σ0010−Σ0001+Σ1110+Σ1101−Σ1011−Σ0111)
0 ±1 0 0

E′ ±
R :=(Σ0000+Σ1100+Σ0011+Σ1111−Σ1010+Σ1001+Σ0110−Σ0101)
±i(Σ1000−Σ0100+Σ0010−Σ0001+Σ1110−Σ1101+Σ1011−Σ0111)

0 0 ±1 0

E′ ±
S :=(Σ0000+Σ1100+Σ0011+Σ1111+Σ1010−Σ1001−Σ0110+Σ0101)

±i(Σ1000−Σ0100−Σ0010+Σ0001−Σ1110+Σ1101+Σ1011−Σ0111)
0 0 0 ±1

N ′
1 / 6

:=(Σ0000−Σ1100+Σ0011−Σ1111−Σ1010+Σ1001−Σ0110+Σ0101)

±i(Σ1000+Σ0100+Σ0010−Σ0001−Σ1110+Σ1101+Σ1011+Σ0111)
±1

2 ±1
2 ±1

2 ∓1
2

N ′
3 / 8

:=(Σ0000+Σ1100−Σ0011−Σ1111−Σ1010−Σ1001+Σ0110+Σ0101)

±i(Σ1000−Σ0100+Σ0010+Σ0001+Σ1110+Σ1101−Σ1011+Σ0111)
±1

2 ∓1
2 ±1

2 ±1
2

N ′
2 / 5

:=(Σ0000−Σ1100+Σ0011−Σ1111+Σ1010−Σ1001+Σ0110−Σ0101)

±i(Σ1000+Σ0100−Σ0010+Σ0001+Σ1110−Σ1101+Σ1011+Σ0111)
±1

2 ±1
2 ∓1

2 ±1
2

N ′
4 / 7

:=(Σ0000+Σ1100−Σ0011−Σ1111+Σ1010+Σ1001−Σ0110−Σ0101)

±i(−Σ1000+Σ0100+Σ0010+Σ0001+Σ1110+Σ1101+Σ1011−Σ0111)
±1

2 ∓1
2 ∓1

2 ∓1
2

where all of these are not charged under J and A and the antiholomorphic charges are
just the same as the holomorphic ones.

3.3.6 Fields of the Gepner model (2̂)4

It is easier to describe the field content of the more symmetric Gepner model (2̃)4 with
ŝu(2)61 symmetry algebra first and then to derive the field content of (2̂)4 by orbifolding.
Details about the calculations in Gepner models and especially about how to compute
the (2) superminimal model as a tensor product of a c = 1 theory and an Ising model
are summarised in section 2.3.4. Following [31], we define Xij to be the Gepner model
field with Φ0

4,2;0,0 as the ith and jth tensor factors and Φ0
0,0;0,0 elsewhere, and Yij to

be the Gepner Model field with Φ0
−2,2;0,0 as the ith and jth tensor factors and Φ0

2,2;0,0

elsewhere. Furthermore, let Ji be the U(1) current of the ith minimal model. Then,
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the complete ŝu(2)61 symmetry algebra of (2̃)4 is given by

J ′′ := J1 + J2 + J3 + J4 J ′′± :=
√

2 (Φ0
∓2,2;0,0)

⊗4

A′′ := J1 + J2 − J3 − J4 A′′+ :=
√

2 Y12 A′′− :=
√

2 Y34

P ′′ := J1 − J2 + J3 − J4 P ′′+ :=
√

2 Y13 P ′′− :=
√

2 Y24

Q′′ := J1 − J2 − J3 + J4 Q′′+ :=
√

2 Y14 Q′′− :=
√

2 Y23

R′′ := i(X13 −X24) R′′± := i√
2
(X14 +X23)± 1√

2
(X12 +X34)

S′′ := i(X13 +X24) S′′± := i√
2
(X14 −X23)∓ 1√

2
(X12 −X34) ,

(3.10)

with the ŝu(2)1 normalised as in equation (3.8).

The (1
4 ,

1
4) fields corresponding to Ramond groundstates can thus be diagonalised

wrt the action of the above currents

E′′ ±
J = (Φ0

∓1,∓1;∓1,∓1)
⊗4

F ′′ ±
J = (Φ0

∓1,∓1;±1,±1)
⊗4

E′′ ±
A = (Φ0

∓1,∓1;∓1,∓1)
⊗2 ⊗ (Φ0

±1,±1;±1,±1)
⊗2

F ′′ ±
A = (Φ0

∓1,∓1;±1,±1)
⊗2 ⊗ (Φ0

±1,±1;∓1,∓1)
⊗2

E′′ ±
P = Φ0

∓1,∓1;∓1,∓1 ⊗ Φ0
±1,±1;±1,±1 ⊗ Φ0

∓1,∓1;∓1,∓1 ⊗ Φ0
±1,±1;±1,±1

F ′′ ±
P = Φ0

∓1,∓1;±1,±1 ⊗ Φ0
±1,±1;∓1,∓1 ⊗ Φ0

∓1,∓1;±1,±1 ⊗ Φ0
±1,±1;∓1,∓1

E′′ ±
Q = Φ0

∓1,∓1;∓1,∓1 ⊗ Φ0
±1,±1;±1,±1 ⊗ Φ0

±1,±1;±1,±1 ⊗ Φ0
∓1,∓1;∓1,∓1

F ′′ ±
Q = Φ0

∓1,∓1;±1,±1 ⊗ Φ0
±1,±1;∓1,∓1 ⊗ Φ0

±1,±1;∓1,∓1 ⊗ Φ0
∓1,∓1;±1,±1

E′′ ±
R = (Φ1

2,1;2,1)
⊗4 + (Φ1

2,1;−2,−1)
⊗4

±
[
(Φ1

2,1;2,1 ⊗ Φ1
2,1;−2,−1)

⊗2 − (Φ1
2,1;−2,−1 ⊗ Φ1

2,1;2,1)
⊗2
]

F ′′ ±
R = (Φ1

2,1;2,1)
⊗2 ⊗ (Φ1

2,1;−2,−1)
⊗2 + (Φ1

2,1;−2,−1)
⊗2 ⊗ (Φ1

2,1;2,1)
⊗2

±i
[
Φ1

2,1;−2,−1 ⊗Φ1
2,1;2,1 ⊗ Φ1

2,1;2,1 ⊗ Φ1
2,1;−2,−1

+Φ1
2,1;2,1 ⊗ Φ1

2,1;−2,−1 ⊗ Φ1
2,1;−2,−1 ⊗ Φ1

2,1;2,1

]

E′′ ±
S = (Φ1

2,1;2,1)
⊗4 − (Φ1

2,1;−2,−1)
⊗4

∓
[
(Φ1

2,1;2,1 ⊗ Φ1
2,1;−2,−1)

⊗2 + (Φ1
2,1;−2,−1 ⊗ Φ1

2,1;2,1)
⊗2
]

F ′′ ±
S = (Φ1

2,1;2,1)
⊗2 ⊗ (Φ1

2,1;−2,−1)
⊗2 − (Φ1

2,1;−2,−1)
⊗2 ⊗ (Φ1

2,1;2,1)
⊗2

±i
[
Φ1

2,1;−2,−1 ⊗Φ1
2,1;2,1 ⊗ Φ1

2,1;2,1 ⊗ Φ1
2,1;−2,−1

−Φ1
2,1;2,1 ⊗ Φ1

2,1;−2,−1 ⊗ Φ1
2,1;−2,−1 ⊗ Φ1

2,1;2,1

]
.

As in section 3.3.4 the index indicates the U(1) current this field is charged with,
holomorphic respectively antiholomorphic charges (±1,±1) for E±

· and (±1,∓1) for
F±

· .
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Now, as (2̂)4 is gained from (2̃)4 by an Z2 orbifold generated by

[2′, 2′, 0, 0] :
4⊗

i=1

Φli
mi,si;m̄i,s̄i

7→ e
2πi
8

(m̄1−m1−m̄3+m3)
4⊗

i=1

Φli
mi,si;m̄i,s̄i

,

the surviving ŝu(2)21 ⊗ û4 symmetry algebra of (2̂)4 is given by the currents

J, J±; A; P, P±; Q; R; S.

Of the above Ramond groundstate fields the following are invariant under the orbifold
group action

E′′ ±
J , F ′′ ±

J ; E′′ ±
A ; E′′ ±

P , F ′′ ±
P ; E′′ ±

Q ; E′′ ±
R ; E′′ ±

S .

The list of ( 1
4 ,

1
4) fields in (2̂)4 has to be completed by the following twistfields (wrt

the above orbifold construction as described in the end of section 2.3.4)

T1 = Φ1
2,1;2,1 ⊗ Φ0

−1,−1;−1,−1 ⊗ Φ1
2,1;2,1 ⊗ Φ0

1,1;1,1

T2 = Φ1
2,1;2,1 ⊗ Φ0

1,1;1,1 ⊗ Φ1
2,1;2,1 ⊗ Φ0

−1,−1;−1,−1

T3 = Φ0
−1,−1;−1,−1 ⊗ Φ1

2,1;2,1 ⊗ Φ0
1,1;1,1 ⊗ Φ1

2,1;2,1

T4 = Φ0
1,1;1,1 ⊗ Φ1

2,1;2,1 ⊗ Φ0
−1,−1;−1,−1 ⊗ Φ1

2,1;2,1

T5 = Φ1
2,1;−2,−1 ⊗ Φ0

−1,−1;−1,−1 ⊗ Φ1
2,1;−2,−1 ⊗ Φ0

1,1;1,1

T6 = Φ1
2,1;−2,−1 ⊗ Φ0

1,1;1,1 ⊗ Φ1
2,1;−2,−1 ⊗ Φ0

−1,−1;−1,−1

T7 = Φ0
−1,−1;−1,−1 ⊗ Φ1

2,1;−2,−1 ⊗ Φ0
1,1;1,1 ⊗Φ1

2,1;−2,−1

T8 = Φ0
1,1;1,1 ⊗ Φ1

2,1;−2,−1 ⊗ Φ0
−1,−1;−1,−1 ⊗Φ1

2,1;−2,−1 .

These can be diagonalised wrt to the action of the invariant U(1) currents

qJ qA qP qQ qR qS

N ′′
1 / 2 = T3 ± T7 0 +1

2 0 +1
2 ±1

2 ±1
2

N ′′
3 / 4 = T1 ∓ T5 0 +1

2 0 −1
2 ±1

2 ±1
2

N ′′
5 / 6 = T4 ± T8 0 −1

2 0 −1
2 ±1

2 ±1
2

N ′′
7 / 8 = T2 ∓ T6 0 −1

2 0 +1
2 ±1

2 ±1
2

3.3.7 Explicit identification of the three theories

We can now explicitly identify the three CFTs (2̂)4, K(Z4, 0) and Z4(
1√
2
D4, B

∗) wrt

their the symmetry algebras and their lattices of ( 1
4 ,

1
4) fields. The identification of the
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symmetry algebra is not totally fixed (this reflects the high amount of symmetry of
these theories); one possible way of identifying the currents is

J ' J ′′ ' J ′ J± ' J ′′± ' J ′±

A ' A′′ ' P ′

P ' P ′′ ' A′ P± ' P ′′± ' A′±

Q ' Q′′ ' Q′

R ' R′′ ' R′

S ' S′′ ' S′ .

Comparing the charges wrt the above currents this leads to the following identification
of (1

4 ,
1
4) fields

E±
J ' E′′±

J ' E′±
J F±

J ' F ′′±
J ' F ′±

J

E±
A ' E′′±

A ' E′±
P

E±
P ' E′′±

P ' E′±
A F±

P ' F ′′±
P ' F ′±

A

E±
Q ' E′′±

Q ' E′±
Q

E±
R ' E′′±

R ' E′±
R

E±
S ' E′′±

S ' E′±
S

Ni = N ′
i = N ′′

i ∀ i ∈ {1, . . . , 8} . (3.11)

This identification implies the important observation that the Z2 and Z4 orbifold
subvarieties in K3 moduli space, which intersect in only one point as described earlier,
are orthogonal to each other. In order to see this it is important to recall some facts
about conformal deformation theory (see section 3.5 and [34, 95, 31, 32]). The possible
exact marginal deformation fields in these c = 6 theories are not charged under the U(1)
current J of the SUSY algebra and can be generated as the (1, 1) superpartners of ( 1

2 ,
1
2)

NS fields which again can be generated via spectral flow from ( 1
4 ,

1
4) Ramond fields.

Now we have two types of deformation fields within our orbifold theories. Deformation
fields which originate from the original torus theory generate all the deformations along
the orbifold subvarieties and are well understood. The corresponding ( 1

4 ,
1
4) Ramond

fields in K(Z4, 0) are E′±
A and F ′±

A , the ones in Z4(
1√
2
D4, B

∗) are E±
A . On the other

hand, we do not understand very much about deformations with twistfields. The ( 1
4 ,

1
4)

Ramond fields corresponding to these deformations are given by E ′±
P , E′±

Q , E′±
R , E′±

S ,

N ′
i in K(Z4, 0), and E±

P , F±
P , E±

Q , E±
R , E±

S , Ni in Z4(
1√
2
D4, B

∗). Now the orbifold group

selection rules imply that the deformation fields originating from the torus theory and
the twisted deformation fields are orthogonal wrt the Zamolodchikov metric as any two
point function of the two types has to vanish. Now the identification in (3.11) implies
that torus deformations of one theory are identified with twistfield deformations of the
respective other. This, the fact that deformations along the orbifold subvarieties are
generated by torus deformations and the orthogonality of the two types of deformation
fields prove the above stated orthogonality of the Z2 and Z4 orbifold subvarieties.



70 Chapter 3. Observations on K3 moduli space

3.4 A geometric geodesic in K3 moduli space

In the following we want to present one example of how to calculate a geodesic between
two different points in moduli space. We choose the geodesic between the two points
which are related to the two Gepner models (2)4 and (2̃)4 and which, hence, lie on the
Z4 respectively Z2 subvarieties of the K3 moduli space. The situation is depicted in
figure 3.1.

We first need to find the transition matrix between these two points and then dissect
this transition matrix in order to find the generator of the geodesic.

3.4.1 Finding the transition matrix

In section 3.2 the transition between the Z2 and Z4 subvarieties in K3 moduli space has
been given in terms of the two bases Ai respectively Bi, i = 1, . . . , 24. For our current
purpose it is more efficient to first switch to yet two other bases. For models in the Z2

subvariety we introduce the basis

a1 = 1√
2
(e1 ∧ e2 + e3 ∧ e4) = 1

2 A21

a2 = 1√
2
(e1 ∧ e3 + e4 ∧ e2) = 1

2 A22

a3 = 1√
2
(e1 ∧ e4 + e2 ∧ e3) = 1

2 A23

a3 = υ̂◦ + 1
4

∑
i∈I(2) Êi + 3

2 υ̂ = 1
2 A24

a5 = −1
2A9 a9 = −1

2A2 a13 = −1
2A13 a17 = −1

2A6 a21 = −1
2A17

a6 = 1
2A5 a10 = 1

2A1 a14 = −1
2A14 a18 = 1

2A7 a22 = −1
2A18

a7 = 1
2A10 a11 = 1

2A12 a15 = 1
2A15 a19 = −1

2A4 a23 = 1
2A19

a8 = −1
2A3 a12 = 1

2A11 a16 = 1
2A16 a20 = 1

2A8 a24 = −1
2A20

and for models in the Z4 subvariety the following one

b1 =
1√
2
(e1 ∧ e2 + e3 ∧ e4)

b2 =
1√
2
(e1 ∧ e3 + e4 ∧ e2)

b3 =
1√
2
(e1 ∧ e4 + e2 ∧ e3)

b4 =
√

2 υ̂◦ +

√
2

4

( ∑

i∈I(2)

Êi +
1

2

∑

i∈I(4)

(3Ê
(+)
i + 4Ê

(0)
i + 3Ê

(−)
i )

)
+

5
√

2

4
υ̂

b5 =
1√
2
(e1 ∧ e2 − e3 ∧ e4)

b6 =
√

2 υ̂◦ +

√
2

4

( ∑

i∈I(2)

Êi +
1

2

∑

i∈I(4)

(3Ê
(+)
i + 4Ê

(0)
i + 3Ê

(−)
i )

)
+

3
√

2

4
υ̂
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bi =
1

2
Bi−4 ∀ i ∈ {7, . . . , 24} .

In terms of these the change of basis from ai to bi is given by (just transferring (3.5))

X =
1√
2




−1 0 1 1 0 1
−1 1 −1 1 1 1
1 1 1 −1 −1 −1
1 0 0 1 0 0 06×18

−1 0 −1 1 2 1
−1 0 0 1 0 2

018×6 1118




(3.12)

i.e. the matrix X is only non-trivial in the upper 6× 6 dimensional block.
According to [31] the Gepner model (2)4 can be identified with the Z4 orbifold of

the torus model with lattice Λ = Z
4 and vanishing B-field B = 0, T (Z4, 0). Similarly to

K(Z4, 0) in section 3.2.1 we can extract the following geometric data of the underlying
torus

ΣT =
〈
e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 + e4 ∧ e2, e1 ∧ e4 + e2 ∧ e3

〉

VT = 1

BT = 0 =⇒ b = 0 .

Then equation (3.3) yields the following four vectors within the Z4 reference lattice
which span the corresponding four-plane

ξ1 =
1√
2
(e1 ∧ e2 + e3 ∧ e4)

ξ2 =
1√
2
(e1 ∧ e3 + e4 ∧ e2)

ξ3 =
1√
2
(e1 ∧ e4 + e2 ∧ e3)

ξ4 =
√

2 υ̂◦ +

√
2

4

( ∑

i∈I(2)

Êi +
1

2

∑

i∈I(4)

(3Ê
(+)
i + 4Ê

(0)
i + 3Ê

(−)
i )

)
+

5
√

2

4
υ̂

(the vectors have been orthonormalised). Remembering that the corresponding O(4, 20)
element is given by the matrix which maps this four-plane to the standard four-plane,
we find that in the basis bi the O(4, 20) element for the Gepner point (2)4 is given by
the identity

O(2)4 = 1124 .

Similarly, [31] have shown that the (2̃)4 Gepner like model can be identified with
the Z2 orbifold of the torus of lattice Λ = 1√

2
D4 and B-field B∗ as given in equation
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(3.4). As for Z4(
1√
2
D4, B

∗) in section 3.2.1 this amounts to the geometric data

ΣT =
〈
2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3),

(e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3),
2 e3 ∧ e4 − (e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3)

〉

VT =
1

2

BT = B̃∗ =⇒ b = e1 ∧ e2 +
1

2
(e1 ∧ e3 + e4 ∧ e2)−

1

2
(e1 ∧ e4 + e2 ∧ e3) .

The corresponding four-plane is spanned by the vectors

ζ1 =
1

2
(2 e1 ∧ e2 + (e1 ∧ e3 + e4 ∧ e2)− (e1 ∧ e4 + e2 ∧ e3))−

1√
2
υ̂

ζ2 =
1

2
((e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3))

ζ3 =
1

2
(2 e3 ∧ e4 − (e1 ∧ e3 + e4 ∧ e2) + (e1 ∧ e4 + e2 ∧ e3))

ζ4 =
√

2 υ̂◦ +
(
e1 ∧ e2 +

1

2
(e1 ∧ e3 + e4 ∧ e2)−

1

2
(e1 ∧ e4 + e2 ∧ e3)

)√2

4

∑

i∈I(2)

Êi

+
√

2 υ̂

(again the vectors have been orthonormalised). As above this yields an O(4, 20) element
which signifies (2̃)4 in moduli space. Using (3.12) in order to transfer to the basis ai

we finally get the matrix O(e2)4




− 3

2

1

2
0 − 1

2
0 1

√

2
0 0 0 − 1

2
0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 0 − 3

2
1 1

√

2

1
√

2
0 0 0 1 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0

1 1 1

2
0 − 1

√

2
− 1

√

2
0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0

0 0 1

2
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0

− 1

2
− 1

2
−1 1

2

√
2 1

√

2
0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

−1 0 − 1

2
0 0

√
2 0 0 0 0 0 0 0 0 0 0 0 0 − 1

2
0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1

√

2
0 − 1

√

2

1
√

2
0 0 0 0 0

√
2 0 0 0 0 0 0 0 0 1

√

2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

− 1
√

2
0 0 − 1

√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −

√
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




.
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This is a block diagonal matrix with a nontrivial 8× 8 block

M :=




−3
2

1
2 0 −1

2 0 1
2

√
2 −1

2 −1

0 0 −3
2 1 1

2

√
2 1

2

√
2 1 1

2

1 1 1
2 0 −1

2

√
2 −1

2

√
2 0 1

2

0 0 1
2 1 0 0 0 1

2

−1
2 −1

2 −1 1
2

√
2 1

2

√
2 1

2 0

−1 0 −1
2 0 0

√
2 0 −1

2

1
2

√
2 0 −1

2

√
2 1

2

√
2 0 0

√
2 1

2

√
2

−1
2

√
2 0 0 −1

2

√
2 0 0 0 −

√
2




of signature (4, 4) and the identity in the rest of the space. For the further discussion it
is sufficient to analyse this block M and to find the Lie algebra element which generates
this block as the identity is trivially generated. We will, hence, also use M to signify the
special element O(2̃)4 of O(4, 20) in the further discussion as long as the mathematics
is not effected by this additional identity block; we apologise for this abuse of notation
but hope that this choice actually contributes to a clearer presentation.

3.4.2 Calculating the generator of the geodesic

Due to the fact that we deal with a symmetric space O(4, 20)/O(4)×O(20) the tangent
spaces at all points are isomorphic to that one of the identity. Hence, our choice of
where to put the identity in O(4, 20) and, thus, what coordinates we use does not
affect the calculation of the generator of the geodesic as the generator is an element
of the tangent space. This justifies our nice choice of coordinates in section 3.4.1. We
have actually placed the (2)4 model at the identity point and only need to dissect the
transition matrix M to (2̃)4.

Before we proceed we note that we still calculate in the covering space O(4,20)/(O(4)
×O(20)) of the K3 moduli space. We do not take into account the maximal discrete
symmetry group which we have to divide the covering space by to gain the proper K3
moduli space. Certainly, the effects of this group action have to be considered after a
geodesic has been calculated in the covering space; this is probably done most efficiently
knowing the corresponding CFT deformation.

Let us denote the geodesic by

γ : t −→ exp(At) t ∈ [0, 1]

with exp(A) = M . Our task is, hence, to find A, the logarithm of M . Usually the
functions exp and log are defined for matrices just by formally applying the respective
Taylor series of these functions. But neither is this a numerically very practicable way
nor do we have a sufficiently large domain of definition, in particular for log. On the
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other hand, it is possible to diagonalise the matrix M over C as it is an orthogonal
matrix (with signature). Our strategy in calculating exp as well as log will thus be
to diagonalise the matrix, to apply the respective function to its diagonal matrix of
eigenvalues and to perform the change of basis back to the undiagonalised coordinates.
It is easily seen that this procedure is indeed equivalent to the Taylor series, where
defined, as the matrix of change of basis which diagonalises a polynomial Am is the
same as the one for the diagonalisation of A itself. This works perfectly well for exp, but
for log we have to be careful in the determination of the branch in C if some eigenvalues
are not positive real.

To see how we can overcome this problem with log let us have a closer look at the
Lie algebra of our specific symmetric space (see e.g. [117] for more details). The Lie
algebra o(p, q) of O(p, q) has a Cartan decomposition

o(p, q) = k + p

such that each matrix can be split according to

o(p, q) 3 X =

(
T1 K
K t T2

)
(3.13)

with T1 and T2 skew symmetric. Then, k is the subalgebra of o(p, q) spanned by the
skew symmetric matrices T1 and T2 and p is the subspace of symmetric matrices of
form

(
0 K
K t 0

)
.

The component k is also the Lie algebra of the factor group O(p) × O(q). But un-
fortunately, the crucial component p is not a subalgebra and, hence, the Lie algebra
of O(p, q)/O(p) × O(q) cannot be taken to be p. Nevertheless, for each conjugacy
class [M ] ∈ O(p, q)/O(p) × O(q) there is always one element of the conjugacy class
N := exp(B) ∈ [M ] for which the generator B is in p, i.e. for which B is symmetric.

Taking the logarithm of such an N is pretty easy as the eigenvalues of the symmetric
matrix B have to be real and, thus, the logarithm of the eigenvalues of N has to be
real as well; the question of which branch to take vanishes. But on the level of a group
manifold with high dimensionality it is very hard to solve the respective constraints to
find such an element of a conjugacy class; and the split of the Lie algebra element A,
which can be easily performed on the Lie algebra level as in (3.13), does not transfer
to the group level (via exp) because p is not a subalgebra.

We can, however, use this split on the Lie algebra level to devise the following
iterative procedure to get a symmetric generator B starting with M . Define a matrix
Minter with initial value M and an orthogonal matrix T , initially taken to be the
identity. Then perform iteratively:

1. Take the logarithm of the matrix Minter as described above; the result is called
a.
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2. Perform a Cartan decomposition of a as in (3.13); the element of k is called t.

3. Calculate the corresponding group element Tinter = exp(t).

4. Minter is rotated to Minter 7→Minter T
−1
inter. Similarly T 7→ Tinter T .

This iteration quickly leads to a separation of M into an element Minter ∈ [M ] which
is a generated by a symmetric generator and a rotation T = M−1

interM of very high
accuracy. In our example hundred iterations were enough for an accuracy of at least
10−10.

The only elements of the factor group which this algorithm does not “detect” are
sign flips in an even number of columns, i.e. elements of the form




(−1)i1 0 0
0 (−1)i2 0

. . .

0 0 (−1)id




with i1 + i2 + . . .+ id ≡ 0 mod 2. These can easily be corrected by hand inspecting the
signs of the eigenvalues of the resulting Minter.

Due to the size of the involved matrices this iteration cannot be performed with
exact numbers. Turning back to our specific example we find the numerical solution

Minter =




1.6058 −0.16903 −0.33806 −0.16903 0.084520 0.84515 −0.71714 0.71714

−0.16903 1.7748 −0.25355 0.084520 1.0142 0.42258 0.95618 −0.35857

−0.33806 −0.25355 1.4368 0.084520 −0.84515 −0.59161 0.23905 −0.35857

−0.16903 0.084520 0.084520 1.0987 0.0 −0.084520 0.11952 −0.47809

0.084520 1.0142 −0.84515 0.0 1.6058 0.33806 0.23905 0.0

0.84515 0.42258 −0.59161 −0.084520 0.33806 1.4368 −0.11952 0.23905

−0.71714 0.95618 0.23905 0.11952 0.23905 −0.11952 1.5213 −0.33806

0.71714 −0.35857 −0.35857 −0.47809 0.0 0.23905 −0.33806 1.3522




(rounded to five digits for a better display).

But, as this matrix should only involve rational numbers and roots of these, that
is to say pretty easy numbers, we can try to get the exact answer using the method of
continued fractions. Continued fractions are a popular tool in number theory (see e.g.
[118]). They choose a different hierarchy of displaying numbers instead of the additive
hierarchy of e.g. the decimal system in the following form

x0 +
1

x1 +
1

x2 +
1

x3 + . . .

.

The nice thing about this style of displaying real numbers is that rational numbers and
fractions are very easily recognisable:
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• Rational numbers have a continued fraction representation which definitely ter-
minates.

• Roots of quadratic equations with rational coefficients have a continued fraction
representation which becomes periodic at some point.

Now, if one knows a real number to a quite high accuracy and if this number is sup-
posed to be either a rational number or a root of a quadratic equation, one usually
observes either the break up of the continued fraction (i.e. the appearance of a very
large number xi) or the first few periods in the continued fraction representation of its
approximation. In this way one can guess the continued fraction representation of the
exact number and retrieve this number by re-calculating it from its exact continued
fraction representation.

Applying this method to the above Minter yields

N =




19

70

√
35 −1/35

√
35 − 2

35

√
35 −1/35

√
35 1

70

√
35 1/7

√
35 − 3

35

√
70 3

35

√
70

−1/35
√

35 3/10
√

35 − 3

70

√
35 1

70

√
35 6

35

√
35 1/14

√
35 4

35

√
70 − 3

70

√
70

− 2

35

√
35 − 3

70

√
35 17

70

√
35 1

70

√
35 −1/7

√
35 −1/10

√
35 1/35

√
70 − 3

70

√
70

−1/35
√

35 1

70

√
35 1

70

√
35 13

70

√
35 0 − 1

70

√
35 1

70

√
70 − 2

35

√
70

1

70

√
35 6

35

√
35 −1/7

√
35 0 19

70

√
35 2

35

√
35 1/35

√
70 0

1/7
√

35 1/14
√

35 −1/10
√

35 − 1

70

√
35 2

35

√
35 17

70

√
35 − 1

70

√
70 1/35

√
70

− 3

35

√
70 4

35

√
70 1/35

√
70 1

70

√
70 1/35

√
70 − 1

70

√
70 9

35

√
35 − 2

35

√
35

3

35

√
70 − 3

70

√
70 − 3

70

√
70 − 2

35

√
70 0 1/35

√
70 − 2

35

√
35 8

35

√
35




.

We have checked that this N is indeed an element of O(4, 4) and that T = N−1M is
an element of the orthogonal factor group. The eigenvalues of N are

n1 = 1/4
√

35 + 1/4
√

3 + 1/4

√
22 + 2

√
35
√

3

n2 = 1/4
√

35 + 1/4
√

3− 1/4

√
22 + 2

√
35
√

3

n3 = 1/4
√

35− 1/4
√

3 + 1/4

√
22 − 2

√
35
√

3

n4 = 1/4
√

35− 1/4
√

3− 1/4

√
22 − 2

√
35
√

3

n5 = 1/4
√

35 + 1/4
√

3 + 1/4

√
22 + 2

√
35
√

3

n6 = 1/4
√

35 + 1/4
√

3− 1/4

√
22 + 2

√
35
√

3

n7 = 1/4
√

35− 1/4
√

3 + 1/4

√
22 − 2

√
35
√

3

n8 = 1/4
√

35− 1/4
√

3− 1/4

√
22 − 2

√
35
√

3 .

The symmetric Lie algebra element B, however, is not describable by such easy numbers
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as it involves logarithms. We, hence, only give a numerical approximation here

B =




0.0 0.0 0.0 0.0 0.044250 0.68381 −0.54611 0.54611

0.0 0.0 0.0 0.0 0.77231 0.34190 0.75658 −0.27305

0.0 0.0 0.0 0.0 −0.68381 −0.43041 0.21047 −0.27305

0.0 0.0 0.0 0.0 0.0 −0.044250 0.062580 −0.42094

0.044250 0.77231 −0.68381 0.0 0.0 0.0 0.0 0.0

0.68381 0.34190 −0.43041 −0.044250 0.0 0.0 0.0 0.0

−0.54611 0.75658 0.21047 0.062580 0.0 0.0 0.0 0.0

0.54611 −0.27305 −0.27305 −0.42094 0.0 0.0 0.0 0.0




.

Thus, we have finally achieved to calculate the exact element N in the conjugacy
class [M ] of the transition from (2)4 to (2̃)4 which is generated by a completely sym-
metric element B of the Lie algebra. In this situation, B can be determined exactly
as a matrix of entries which at worst contain logarithms of square roots, or, as above,
as a numerical approximation to arbitrary precision. B is, indeed, the generator of the
geodesic between (2)4 and (2̃)4. The calculations in this section have been performed
with the help of the computer algebra system Maple.

3.5 Deforming CFT along a geodesic

How can we describe the conformal field theory of a generic point in the K3 moduli
space? We have already seen how to span geodesics in the geometric picture of the mod-
uli space which start and/or end at points which correspond to known theories. The
most promising way to describe a generic model in moduli space is to take a geodesic
between that point and a point of a known model and to find a corresponding defor-
mation of the conformal field theories along this geodesic. Finding such a deformation
of CFTs is certainly the hardest challenge of such a project and has not been solved
yet. Nevertheless, we want to describe the current state of our research on this point
and comment on the possibilities of how to proceed further.

3.5.1 Conformal deformation theory

Infinitesimally, this deformation is described by the conformal deformation theory [34].
Its main idea is to add a (first) small perturbation to the action functional of the form

δ S =
∑

i

gi

∫
d2z Oi(z, z̄) ; (3.14)

the gi signify the coupling constants of that perturbation and the Oi(z, z̄) the perturbing
fields. In order to keep the theory conformal and, in particular, scale invariant the
coupling constants have to be dimensionless. Counting dimensions in δ S restricts the
perturbing fields to be of conformal dimension (h, h̃) = (1, 1). Perturbations of this
sort are called “marginal” in contrast to relevant and irrelevant perturbations which
both introduce scales into the theory. However, in order to guaranty globally that
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the new perturbed theories are again conformal one has to require even more. The
marginal operators have to stay marginal in the perturbed theories and even should
not mix with other marginal operators; otherwise, they would introduce a scale as soon
as one would integrate the local deformation to a global one. Marginal operators with
such a property are called “exact marginal”. This specific condition is elaborated in
more detail below. In addition we also demand that the perturbing fields Oi(z, z̄) are
hermitian in order to keep the real structure of the CFT.

Let us start to work out the deformation of the two-point-function to lowest order.
We choose a basis of marginal operators normalised as

〈Oi(z, z̄) Oj(w, w̄) 〉 =
δij

(z − w)2
. (3.15)

The first order deformation is simply given by the derivative of the new perturbed the-
ory wrt the coupling constant. There are two possible ways to calculate the derivative.
First we can take it of the general CFT form of a two-point-function as given in (2.4)

∂

∂gi
〈Φα(x, x̄) Φβ(0, 0) 〉 =

(
−2

∂h

∂gi
log(x)− 2

∂h̃

∂gi
log(x̄)

)
〈Φα(x, x̄) Φβ(0, 0) 〉 (3.16)

using for simplicity translational invariance in order to set the second coordinate equal
to zero. The second way of taking the derivative exploits the deformed action functional
as

∂

∂gi
〈Φα(x, x̄) Φβ(0, 0) 〉 =

∫
d2w 〈Oi(w, w̄)Φα(x, x̄) Φβ(0, 0) 〉

= Ciαβ
III x

−2hα x̄−2h̃α

∫
d2w

|x |2
|w − x |2|w |2 (3.17)

where in the second line we have used the general CFT form of a three-point-function
with coupling constant C iαβ

III (2.4) as well as the known conformal weight of Oi(w, w̄).
We need to regularise the last integral, e.g. by the cutoff ε. This reduces the integral
to the integration domain

G̃ε(x) = {w ∈ C | |w − x |> ε, |w |> ε} .

But, using Sl(2,C) invariance of the correlation function, we can simplify the integral
performing the Sl(2,C) transformation

γ : z(z′) =
xz′

z′ + x

to primed coordinates. In particular, this transformation maps 0 to 0 and x to x ′ →∞.
For small ε→ 0 the integration domain is mapped to

Gε(x) = {w ∈ C | ε <|w |< |x |
2

ε
} .
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This, finally, leads to the following result for (3.17)

∂

∂gi
〈Φα(x, x̄) Φβ(0, 0) 〉 = C iαβ

III x
−2hα x̄−2h̃α

∫

Gε(x)
d2w

1

|w |2

= Ciαβ
III x

−2hα x̄−2h̃α 2π log
|x |2
ε2

. (3.18)

The infinities at the ε→ 0 singularity of this result are eliminated by the usual renor-
malisation programme of field theory. The fields Φα(x, x̄) have to be renormalised by
the subtraction of the corresponding infinite parts in order to get a finite result in
3.18. This finite result, however, can be compared to our first way of calculating the
perturbation in equation (3.16). In this manner we get the first order perturbation of
the conformal weight

∂h

∂gi
= −πC iαα

III

∂h̃

∂gi
= −πC iαα

III . (3.19)

Now we can proceed to explain the integrability conditions of exact marginality.
The crucial point is to examine the renormalisation of the marginal operators Oi(z, z̄)
themselves during the perturbation. This renormalisation is given by [119]

Oi 7−→ Oi + giπ log ε2


Ciii

III Oi +
∑

j

Ciij
III Oj


 . (3.20)

But a marginal operator is only exact if its conformal weight is not changed during the
perturbation and, secondly, if it does not mix with other marginal operators. According
to equation (3.19) the first of these two conditions amounts to the vanishing of C iii

III = 0,

the second to that of C iij
III = 0 for all Oj in the theory.

This can be generalised to higher orders. In case that we know that all derivatives
of the conformal weight ∂lh

∂gl
i

vanish up to order n we get analogously to equation (3.16)

∂n+1

∂gn+1
i

〈Φα(x, x̄) Φα(0, 0) 〉 =

=

(
−2

∂n+1h

∂gn+1
i

log(x)− 2
∂n+1h̃

∂gn+1
i

log(x̄)

)
〈Φα(x, x̄) Φβ(0, 0) 〉 . (3.21)

Inductively, we can conclude that the conformal weight of a field does not change to
all orders if the following perturbation integrals

∫
d2w1 . . .

∫
d2wn+1 〈Φα(x, x̄) Φα(0, 0)Oi(w1) . . . Oi(wn+1) 〉c , (3.22)

regularised by a cutoff ε, do not exhibit logarithmic divergencies.
These considerations lead to the following necessary conditions for exact marginality

[32]:
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• The integrals over n-point-functions in (3.22) do not exhibit logarithmic diver-
gencies; in particular, we have C iii

III = 0 to first order.

• Ciij
III = 0, i.e. the exact marginal operators do not mix with any other (h, h̃) =

(1, 1) operator.

These conditions are not linear. Consequently, linear combinations of exact margi-
nal operators are not necessarily exact marginal again. The most prominent example
of such a behaviour can be found in the moduli space of c = 1 bosonic torus theories at
the meeting point of the ordinary torus and the orbifold line [120]. For supersymmetric
theories, though, we do not know of any case of such peculiar behaviour.

Above, we have only described the perturbation of the two-point-function which
yields the perturbation of the conformal weights and, hence, the new spectrum. In
order to see how the whole CFT evolves under the perturbation one also needs to
inspect the perturbation of the three-point-functions and, thus, the structure constants
of the theory. The procedure follows the same lines as above, only that the integrals
to be calculated become even more complicated. Let us, hence, stick to the easier (and
still very difficult) problem to find the perturbed conformal weights.

3.5.2 Conformal deformations in K3 moduli space

The K3 moduli space is an 80-dimensional parameter space which is naturally endowed
with 80 exact marginal operators at each of its points. These are given as the (h, h̃) =
(1, 1) supersymmetric partners of the 80 (h, h̃) = (1/2, 1/2) groundstates [31]. This
supersymmetry relation has actually been used by Dixon to argue that these (1, 1)
fields are exact marginal to all orders [95]; the argument uses a re-ordering of the
contours as well as the OPE of the supercurrents in the superconformal algebra.

In order to describe a deformation of conformal field theories along a geodesic it
would be sufficient to know the first non-trivial order of the deformation. The first
order deformation would be by far the easiest to calculate as seen in the previous
section. Unfortunately, the symmetry of the known theories in moduli space, which
could be used as a starting point for the deformation, is so high that almost all three-
point-functions which contain only one marginal field and which are, hence, relevant
for perturbations to first order vanish. This has been observed for Z2 orbifolds in [103]
and the analysis of respective correlation functions in the Gepner model yields a similar
picture.

Hence, it is necessary to calculate perturbations at least to second order. This means
that we have to be able to perform double volume integrals over four-point-functions.
One can try to handle these integrals with a cut-off regularisation. This is certainly
well-defined, but leads to a hard case by case study of the integrals which has only
been performed for a few examples (see e.g. [121, 103]). This method is certainly not
suitable for the large number of integrals which have to be evaluated when calculating
in a Gepner model framework.
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On the other hand, these integrals are nicely manageable with complex calculus
methods as in [122, 123, 124, 125, 126, 127, 128], but only if the integral is regularised
in some analytic way; a cut-off cuts away pieces of the complex plane and is, thus, not
suitable for complex calculus arguments. The method of analytic regularisation has
been introduced by Speer [129, 130] as a generalisation of dimensional regularisation.
The theory is simply regularised by the analytic continuation of one or some of its
physical parameters to the complex regime. After such a consistent regularisation, the
renormalisation is performed by the usual BPHZ subtraction and the physical limit.

However, it has not yet been possible to identify such an analytic continuation which
is at the same time effective and well-defined:2

• Continuation in the dimension, i.e. dimensional regularisation, yields contradic-
tory results already for such a simple theory as the bosonic c = 1 model; part
of the second order perturbation simply contradicts the first order perturbation.
The reason for this failure should simply be that all these conformal field theory
models are very specific to dimension two. Changing the dimension one would
at least have to change the basis of fields drastically (from vertexoperators to
polynomials) in order to get physically meaningful results.

• A continuation in the conformal weights seems arbitrary. One can actually choose
the manner of continuation in such a way that there is no contradiction between
first and second order. But this does not yield an obviously favoured continuation,
and worse, the way of doing this changes uncontrollably from integral to integral.

• A continuation of the central charge is probably the most well-defined method
from a conformal field theoretic standpoint. The only problem is that it is usually
not possible! In particular, the theories which are studied in this chapter are very
specific, especially the Gepner models, and do not belong to a continuum of
conformal field theories with respect to the central charge. There is, however, the
conjecture and hope that all CFTs are describable by a free field construction. If
we were able to describe one of our theories by a free field construction, this way
of continuing the central charge should be feasible.

For the time being, however, the question of how to consistently regularise the
appearing complex volume integrals remains the main unsolved question of the defor-
mation project. A smaller question which also needs to be resolved after a successful
renormalisation is how to identify the marginal operator with a geometric generator of
a geodesic. This question should be solvable by exploring the plentitude of symmetries
in K3 moduli space, although it might be a tedious quest due to the high dimensionality
of the space in question.

In the next section we present the way of calculating a quite general class of dou-
ble volume integrals which we used to analyse the possibility of the different analytic

2We thank A.B. Zamolodchikov for enlightening discussions about the following points.
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continuations. The results of these calculations can be written in terms of hypergeo-
metric functions. As the continuation variable appears within the parameters of these
hypergeometric functions we need to expand these with respect to their parameters
in order to be able to continue the renormalisation process, in particular, to get the
correct subtractions. This is most efficiently done by methods developed in [131] where
infinite sums of ratios of gamma functions are expanded into generalised Euler Zagier
sums. We have adapted the corresponding programme of [132] to our needs, especially
implementing the expansion around parameters at rational numbers along the lines
of [133]. All these calculations have been implemented using C++ and the computer
algebra package GiNaC [134].

3.5.3 Calculation of the two–loop integral

In the following we want to present one very promising way of calculating the double
volume integrals. Our elaboration is based on ideas of [122] and [124] how to use the
Stokes theorem in order to separate complex volume integrals into products of contour
integrals.

How to calculate complex volume integrals

In CFT any physical correlation function C can be written as monodromy invariant real
bilinear product of the holomorphic and antiholomorphic conformal blocks, fα resp. f̄α,

C(w1, . . . , wn) = fα(w1, . . . , wn)Qαβ f̄β(w̄1, . . . , w̄n) .

The reality condition requires the matrix Qαβ to be hermitian. We introduce the
following shorthand for the above hermitian quadratic form

(f, g)Q = fαQαβ ḡβ .

In the following we want to calculate the complex volume integral

I =

∫
d2w

(
fα(w, z0, . . . , zm), f̄β(w̄, z̄0, . . . , z̄m)

)
Q
.

The calculation of multiple complex volume integrals can be reduced to this case in-
ductively as we will show for an example in the next section.

For any fixed point P on the complex w plane define

f̂(w) =

∫ w

P
dz f(z) .

Then, for any domain A in the complex w plane we can now use the complex Stokes
theorem (see e.g. [9])

∫

A
d2z ∂zF (z, z̄) =

i

2

∫

∂A
dz̄ F (z, z̄)
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Figure 3.2: Separation of the complex plane into annuli

in order to rewrite the complex volume integral over A according to
∫

A
d2w (f, f)Q =

∫

A
d2w ∂w(f̂ , f)Q =

i

2

∫

∂A
dz̄ (f̂ , f)Q . (3.23)

The w plane contains m+ 2 possible singular points z0, . . . , zm+1 where we can delib-
erately put z0 = 0 and where zm+1 signifies the point at infinity. We now split the
complex w plane into m+1 annuli Al = {w ∈ C| |zl−1| < |w| < |zl|}, l ∈ {1, . . . ,m+1}.
This induces a split of the integral into

I =

m+1∑

l=1

IAl
.

Let us first regard the annulus A2 as an example how to calculate these integrals.
We choose the contour of A2 to run as given in figure 3.2: C1, from P1 to P2, the circle
|w| = |z2|; S1, from P2 to P3, the line between z2 and z1 just below the cut between the
two points; −C2, from P3 to P4, the circle |w| = |z1| in opposite direction; −S2, from
P4 to P1, the line between z1 and z2 just above the cut between the two points. In the
picture we have put the singular points onto the real line for simplicity. In general one
has to deform the contours suitably. We now define two further shorthands

JC ≡
∫

C
dz̄ (f̂ , f)Q(z, z̄)

(IC)α ≡
∫

C
dz fα(z) ,

where, in the definition of JC , we choose the fixed point P of f̂ to be the starting point
of the contour C. Using (3.23) we find the four contributions to IA2
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• C1:
i
2

∫ P2

P1
dw̄
(∫ w

P1
dzf(z), f

)
Q

= i
2JC1

• S1:
i
2

∫ P3

P2
dw̄
(∫ P2

P1
dz f(z) +

∫ w
P2

dz f(z), f
)

Q
= i

2 [(IC1 , IS1)Q + JS1 ]

• −C2: − i
2

∫ P4

P3
dw̄
(∫ P4

P1
dz f(z) +

∫ w
P4

dz f(z), f
)

Q
= − i

2 [(IS2 , IC2)Q + JC2 ]

• −S2: − i
2

∫ P4

P1
dw̄
(∫ w

P1
dzf(z), f

)
Q

= − i
2JS2 .

The fact that each annulus does not contain any singular points leads to the identity

IC1 + IS1 − IC2 − IS2 = 0 . (3.24)

Furthermore, knowing the monodromy behaviour across the cut between the fixed
points zl−1 and zl allows us to relate the two integrals IS1 and IS2 via the monodromy
matrix Ml

(IS1)α = (Ml)αβ (IS2)β . (3.25)

Due to the monodromy invariance and, hence, single valuedness of (f, f)Q around any
singular points and across any cuts, JS1 has to equal JS2 and, thus, these contribu-
tions cancel. Analogously, the JC1 contribution of annulus Al has to cancel the −JC2

contribution of annulus Al+1. Hence, we are only left with products of contour integrals.
Concerning the singular points at z0 = 0 and zm+1 = ∞ we assume that contours

around these points vanish if we take the radius of the contour to 0 (for z0) or to ∞
(for zm+1). This corresponds to the assumption that these singular points are not of
integral type.

Now we can use (3.24) and (3.25) in order to express the ISi contributions by IC1 and
IC2 . We hence reach the total contribution of the annulus Al to I (already neglecting
the JC terms)

IAl
=

i

2
((IC1 , IS1)Q − (IS2 , IC2)Q)

=
i

2

(
(IC1 , IC2 − IC1)Q(11−Ml)−1 − (IC1 − IC2 , IC2)(11−Ml)−1Q

)

=
i

2

(
(IC2 , IC2)(11−Ml)−1Q − (IC1 , IC1)(11−Ml)−1Q

)
,

where we have used the unitarity of Q in the second equality and the invariance of Q
under monodromy transformations in the third. Defining Il to be the integral on the
contour |w| = |zl| and summing up all contributions we finally get

I =
∑

l

IAl
=
i

2

m+1∑

l=1

[
(Il−1, Il−1)(11−Ml)−1Q − (Il, Il)(11−Ml)−1Q

]

=
i

2

m∑

k=1

(Ik, Ik)[(11−Mk+1)−1−(11−Mk)−1]Q .
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Calculation of a specific two–loop integral

We want to study the following special example, the integral

J(z, w) = (z − w)f (z̄ − w̄)f̄

∫
d2xd2y (x− w)a (x̄− w̄)ā (z − x)b (z̄ − x̄)b̄

(y − w)d (ȳ − w̄)d̄ (z − y)e (z̄ − ȳ)ē (x− y)c (x̄− ȳ)c̄ . (3.26)

Without loss of generality we can set w = 0 and drag z out of the integral by a change
of coordinates

x′ =
x

z
y′ =

y

z
.

This results in

J(z, 0) = za+b+c+d+e+f+2 z̄ā+b̄+c̄+d̄+ē+f̄+2 J(1, 0) .

Hence we need to investigate

J(1, 0) =

∫
d2xd2y xa x̄ā (1− x)b (1− x̄)b̄ yd ȳd̄ (1 − y)e (1− ȳ)ē (x− y)c (x̄− ȳ)c̄ .

The relevant conformal block functions are given by

fabdec(x, y) = xa (1− x)b yd (1− y)e (x− y)c .

For the following calculations we put qa := exp(πia) and use the conventions that
contours are taken to be positive in a counterclockwise direction as well as that we will
always start with the identity on the sheet above the cut closest to the identity (in
order to keep track of phase factors).

The diagonal case

Let us first study the easiest version of J(1, 0), the diagonal case. This means that
Q = 11, that we have equal holomorphic and antiholomorphic exponents, a = ā etc.,
and that we only deal with f(x, y) := fabdec(x, y).

The outer x integration has singular points at 0, 1 and∞. Hence we need to regard
the two annuli 0 < |x| < 1 and 1 < |x| <∞.

Case 1: 0 < |x| < 1

In order to perform the y integration we can just apply the algorithm of section 3.5.3
one to one. The situation of this integral with singular points at 0, x, 1 and ∞ is
depicted in figure 3.3. We choose the cuts to run from 0 to x to 1 to ∞. Although
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Figure 3.3: Singular points and the choice of cuts in the y plane

we have depicted x on the real axis in figure 3.3 for simplicity, it is only bound to the
above constraint 0 < |x| < 1. We get

∫

0<|x|<1
d2y |f(x, y)|2 = − i

2

[
(1− q2

d)
−1 − (1− q2

cq
2
d)

−1
]
∣∣∣∣∣

∫
|ζ|=|x|

(|ζ|=|x|−ε)

dζ f(x, ζ)

∣∣∣∣∣

2

− i

2

[
(1− q2

cq
2
d)

−1 − (1− q2
cq

2
dq

2
e)

−1
]
∣∣∣∣∣

∫
|ζ|=1

(|ζ|=1−ε)

dζ f(x, ζ)

∣∣∣∣∣

2

. (3.27)

Here we introduced an infinitesimal ε > 0 in order to keep track of sign factors when
calculating a stack of contours later on. The first term corresponds to the |y| = |x|
contributions of the annuli A1 and A2, the second to the |y| = 1 contributions of the
annuli A2 and A3 (see figure 3.3). The contributions at 0 and∞ vanish by assumption.
The monodromy factor M2 e.g. can be calculated taking y around x and 0, which
amounts to a phase of q2

cq
2
d.

Now we want to perform the x integration in the region 0 < |x| < 1. In section
3.5.3 we argued that any JC type contribution of an annulus will cancel against a
respective term of another annulus due to single valuedness of the physical correlator.
Hence, we will present the following calculation up to these JC terms as we do not
need to calculate them. As by assumption the contributions at 0 and ∞ vanish, the
only contribution will come from the contour at |x| = 1 (obviously from the annulus
A1 = 0 < |x| < 1). The integral over the first term in (3.27) yields

∫

0<|x|<1
d2x

∣∣∣∣∣

∫
|ζ|=|x|

(|ζ|=|x|−ε)

dζ f(x, ζ)

∣∣∣∣∣

2

=

= − i
2
(1− q2

aq
2
cq

2
d)

−1

∣∣∣∣∣

∫
|ξ|=1

(|ξ|=1−ε)

dξ

∫
|ζ|=|ξ|

(|ζ|=|ξ|−ε)

dζ f(ξ, ζ)

∣∣∣∣∣

2
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Figure 3.4: Cuts and contours in the ζ plane

= − i
2
(1− q2

aq
2
cq

2
d)

−1

∣∣∣∣(−1 + q2
aq

2
cq

2
d)

∫ 1

0
dξ (−1 + q2

d)

∫ ξ

0
dζ f(ξ, ζ)

∣∣∣∣
2

= − i
2
(1− q−2

a q−2
c q−2

d ) |1− q2
d|2

∣∣∣∣
∫ 1

0
dξ

∫ ξ

0
dζ ξa (1− ξ)b ζd (1− ζ)e (ξ − ζ)c

∣∣∣∣
2

= − i
2
(1− q−2

a q−2
c q−2

d ) |1− q2
d|2

∣∣∣∣
∫ 1

0
dξ

∫ 1

0
dt ξa+c+d+1 (1− ξ)b td (1− t)c (1− ξt)e

∣∣∣∣
2

= − i
2
(1− q−2

a q−2
c q−2

d ) |1− q2
d|2 |F (a+ c+ d+ 1, b, d, c, e)|2 , (3.28)

where we use the shorthand

F (a, b, d, e, c) :=

∫ 1

0
dx

∫ 1

0
dy xa (1− x)b yd (1− y)e (1− xy)c .

Two important comments are due concerning this calculation:

• When calculating the monodromy factor in the first equality of (3.28) we have to
take into account that together with x we have to take the whole ζ integral around
0. That means that we have to take x and ζ around 0 and, very importantly, also
x around ζ during this process as we have imposed the condition |ζ| = |x| − ε.

• The second equality in (3.28) is a result of the contraction of the contours around
the cuts. In figure 3.4 the cuts of the ζ plane are depicted as chosen earlier
on, together with the ζ contour (dashed line), the contracted ζ contour (dotted



88 Chapter 3. Observations on K3 moduli space

line) as well as the ξ contour (solid line). The cuts in the ξ plane run from 0
to 1 to ∞. Hence, contracting the ξ integral around the cut on the real line, we
automatically take the contracted contour of the ζ integral to the real line as well,
from above for ξ in the upper halfplane, from below for ξ in the lower halfplane.
But the difference in phases between these two cases amounts to exactly the same
phasefactor as just calculated for the monodromy factor. The difference in phases
between the two segments of the ζ integration is just given by taking ζ around 0
(and certainly the opposite direction along the real line).

The integral over the second term in (3.27) yields

∫

0<|x|<1
d2x

∣∣∣∣∣

∫
|ζ|=1

(|ζ|=1−ε)

dζ f(x, ζ)

∣∣∣∣∣

2

=

= − i
2
(1− q2

a)
−1

∣∣∣∣∣

∫
|ξ|=1

(|ξ|=|ζ|−ε)

dξ

∫
|ζ|=1

(|ζ|=1−ε)

dζ f(ξ, ζ)

∣∣∣∣∣

2

= − i
2
(1− q2

a)
−1

∣∣∣∣(−1 + q2
a)

∫ 1

0
dξ

[
−
∫ 1

ξ
dζ f(ξ, ζ)−

∫ ξ

0
dζ f(ξ, ζ)

+ q2d

∫ ξ

0
dζ f(ξ, ζ) + q2

cq
2
d

∫ 1

ξ
dζ f(ξ, ζ)

]∣∣∣∣
2

= − i
2
(1− q−2

a )

∣∣∣∣(1− q2
cq

2
d)

∫ 1

0
dξ

∫ 1

ξ
dζ f(ξ, ζ) + (1− q2

d)

∫ 1

0
dξ

∫ ξ

0
dζ f(ξ, ζ)

∣∣∣∣
2

= − i
2
(1− q−2

a )
∣∣q−1

c (1− q2
cq

2
d) F (a+ c+ d+ 1, e, a, c, b)

+ (1− q2
d) F (a+ c+ d+ 1, b, d, c, e)

∣∣2 . (3.29)

This time we have to add the following remarks:

• The monodromy factor in the first equality of (3.29) is calculated just taking x
around 0. This time the ζ integral does not depend on x.

• The cut structure in the ζ plane (see figure 3.3, take y = ζ) determines the
ordering between the two contours. As x is encircled by the contour of ζ, the ξ
contour has to lie within the ζ contour.

• The second equality is again a result of the contraction of the contours around the
cuts. The difference in phase factor between the ξ integration above and below
the cut is again given by the same factor as the one in the monodromy calculation,
q2a. This time, the ζ integration also starts and ends at 1, going around 0. But
as the ζ plane contains the singular point ξ on the cut between 0 and 1, we have
to split the integration at ξ.
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Figure 3.5: Singular points and the choice of cuts in the y plane

• Going around ξ on a tiny half-circle between the integration
∫ ξ
0 and

∫ 1
ξ amounts

to an additional phase of qc. But this phase drops out of the calculation naturally
if we arrange for the difference ±(ξ − ζ) in f(ξ, ζ) to be always positive. Only if

we go around the full circle from
∫ ξ
1 (on the upper halfplane) to

∫ 1
ξ (on the lower

halfplane) the function does not know about the sheet any more and we have to
add an additional monodromy factor of q2

c . Furthermore, our convention about
the orientation of contours always dictates whether to take qC or q−1

C .

• The fourth equality uses the following calculational trick for the first term

∫ 1

0
dξ

∫ 1

ξ
dζ f(ξ, ζ) =

∫ 1

0
dζ

∫ ζ

0
dξ f(ξ, ζ)

= q−1
c

∫ 1

0
dζ

∫ ζ

0
dξ ζd (1− ζ)e xia (1− ξ)b (ζ − ξ)c

= q−1
c F (a+ c+ d+ 1, b, d, c, e) .

Otherwise, it proceeds the same way as in (3.28).

Case 2: 1 < |x| <∞

In the second case, 1 < |x| < ∞, the calculation works very much the same way as
in the first. Hence, we are only going to point out the major differences. We have
depicted the position of the singular points 0, x, 1 and ∞, cuts and the annuli within
the y plane in figure 3.5. We choose the cuts to run from 0 to 1 to x to ∞. Again
remember that although we have depicted x on the real axis in figure 3.5 for simplicity,
it is only bound to the above constraint 1 < |x| <∞. We get

∫

1<|x|<∞
d2y |f(x, y)|2 = − i

2

[
(1− q2

d)
−1 − (1 − q2

dq
2
e)

−1
]
∣∣∣∣∣

∫
|ζ|=1

(|ζ|=1+ε)

dζ f(x, ζ)

∣∣∣∣∣

2
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− i

2

[
(1− q2

dq
2
e)

−1 − (1− q2
cq

2
dq

2
e)

−1
]
∣∣∣∣∣

∫
|ζ|=|x|

(|ζ|=|x|−ε)

dζ f(x, ζ)

∣∣∣∣∣

2

, (3.30)

where again we have introduced an infinitesimal ε in order to keep track of the order
of multiple contours.

Now, the integral over the first term in (3.30) is similar to the second x integration
in the 0 < |x| < 1 case. We have

∫

1<|x|<∞
d2x

∣∣∣∣∣

∫
|ζ|=1

(|ζ|=1+ε)

dζ f(x, ζ)

∣∣∣∣∣

2

=

=
i

2
(1− q2

aq
2
b q

2
c )

−1

∣∣∣∣∣

∫
|ξ|=1

(|ξ|=|ζ|+ε)

dξ

∫
|ζ|=1

(|ζ|=1+ε)

dζ f(ξ, ζ)

∣∣∣∣∣

2

=
i

2
(1− q2

aq
2
b q

2
c )

−1

∣∣∣∣∣

∫
|ζ|=1

(|ζ|=1+ε)

dζ

∫
|ξ|=1

(|ξ|=|ζ|+ε)

dξ f(ξ, ζ)

∣∣∣∣∣

2

=
i

2
(1− q2

aq
2
b q

2
c )

−1

∣∣∣∣(−1 + q2
d)

∫ 1

0
dζ

[
−
∫ 1

ζ
dξ f(ξ, ζ)−

∫ ζ

0
dξ f(ξ, ζ)

+ q2a

∫ ζ

0
dξ f(ξ, ζ) + q2

aq
2
c

∫ 1

ζ
dξ f(ξ, ζ)

]∣∣∣∣
2

=
i

2
(1− q2

aq
2
b q

2
c )

−1 |1− q2
d|2

∣∣∣∣(1− q2
aq

2
c )

∫ 1

0
dζ

∫ 1

ζ
dξ f(ξ, ζ)

+(1− q2
a)

∫ 1

0
dζ

∫ ζ

0
dξ f(ξ, ζ)

∣∣∣∣
2

=
i

2
(1− q2

aq
2
b q

2
c )

−1 |1− q2
d|2

∣∣(1− q2
aq

2
c ) F (a+ c+ d+ 1, b, d, c, e)

+ qc (1− q2
a) F (a+ c+ d+ 1, e, a, c, b)

∣∣2 . (3.31)

The only differences to the calculation in (3.29) are slightly different monodromy factors
due to the changed singular structure and the additional step in the second equality
of (3.31) where we interchanged the order of the integrals and, hence, changed the cut
structure. As we approach the circle |x| = 1 from above this time, the ξ and ζ contours
are interchanged in comparison to the calculation in (3.29). But as we want to use
the same argument as in (3.29), a change of the integrations seems reasonable. We are
allowed to do this as both contours are independed of each other (in contrast to the
calculation in (3.28)) as long as we keep the same ordering.

The integral over the second term in (3.30) is quite similar to the first x integration
in the 0 < |x| < 1 case. The situation of the cuts in the ζ plane in this case is shown in
the first picture of figure 3.6. As this cut structure is not very useful for our calculation,
we change it to a linear combination of these cuts, depicted in the second picture of
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Figure 3.6: Change of cuts in the ζ plane

3.6. This change of basis for the cuts is allowed as it does not cross any of our contours.
Hence, we have
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∣∣2 . (3.32)

Three important remarks are due:

• Calculating the monodromy factor for the first equality of (3.32) we have to
take the whole ζ integral around 0 together with x, as in (3.28). Hence, we get
contributions from taking x around 0 and 1, from taking ζ around 0 and 1 and
from taking x around ζ (due to the ε assignment which orders the contours).

• The second equality is reached by contraction of the contours around the cuts.
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Figure 3.7: Contours in the ζ plane after the contraction of the ξ contour

The contraction in the ζ plane is shown in the second picture of figure 3.6. Figure
3.7 shows the situation after we have also contracted ξ. Doing this we have
taken both contours to the real line simultaneously. The two cases of ξ being in
the upper and the lower halfplane are depicted. In the calculation, accordingly,
we have first written down the contribution to the ξ integration in the upper
halfplane, then the one in the lower. Both contributions contain four separate
terms of the ζ integration which has to be split according to figure 3.7. Note that
by our convention we always start on the sheet in the upper halfplane to the very
right.

• One has to be careful to give the phase factor which separates the 0 < ζ < 1
integration at ξ the right orientation. We have depicted the right phase factors
in figure 3.7 as well.

Summing up the contributions

Now we need to sum up the contributions. In particular, this means that we have
to multiply the four contributions of (3.28), (3.29), (3.31) and (3.32) with the correct
monodromy factors given in the equations (3.27) and (3.30). This sums up to
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F (a+ c+ d+ 1, b, d, c, e)F (a + c+ d+ 1, e, a, c, b) .

Here we have used the reality of F (a+ c+ d+1, b, d, c, e) and F (a+ c+ d+1, e, a, c, b).
This can be evaluated to

J = −1

4
(sin(π(a+ b+ c)) sin(π(c+ d+ e)) sin(π(a + b+ c+ d+ e)))−1

× [sin(πb) sin(πd) (sin(π(2a + b+ 3c+ d+ 2e)) − sin(π(b+ c+ d+ 2e))

− sin(π(2a+ b+ c+ d)) + sin(π(b+ c+ d)) + sin(π(b− c− d))
+ sin(π(−b− c+ d))) F (a+ c+ d+ 1, b, d, c, e)2

+ sin(πa) sin(πe) (sin(π(a+ 2b+ 3c+ 2d+ e)) − sin(π(a+ c+ 2d+ e))

− sin(π(a+ 2b+ c+ e)) + sin(π(a+ c+ e)) + sin(π(a− c− e))
+ sin(π(−a− c+ e))) F (a+ c+ d+ 1, e, a, c, b)2

−8 sin(πa) sin(πb) sin(πd) sin(πe) sin(π(a+ b+ 2c+ d+ e))

F (a+ c+ d+ 1, b, d, c, e)F (a + c+ d+ 1, e, a, c, b)] .

This result is now manifestly real and invariant under the exchange a ↔ d, b ↔ e,
which amounts to changing the order of the integration (or the exchange of x and y)
in the original integral.
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The off-diagonal case

Demanding that J(1, 0) originates from a physical correlator puts strict constraints on
the possible off-diagonal cases. First the difference between the holomorphic and the
antiholomorphic exponents (e.g. a − ā) has to be an integer, second for each J(1, 0)
we have to find the same integral with holomorphic and antiholomorphic exponents
exchanged and the prefactor complex conjugated. Hence, assuming real prefactors the
only possible off-diagonal case amounts to the hermitian form given by

Q = p ·
(

0 1
1 0

)
p ∈ R ,

with the two functions

f1(x, y) = xa (1− x)b yd (1− y)e (x− y)c .

f2(x, y) = xa+na (1− x)b+nb yd+nd (1− y)e+ne (x− y)c+nc ni ∈ Z .

But as all prefactors only depend on phases the changes in the calculation are not
very severe, because the difference between the holomorphic and the antiholomorphic
exponents is integer (i.e. they produce the same phases, almost always!). Thus, let us
just enumerate the changes which have to be made:

• All monodromy factors are the same as in the diagonal case.

• The calculation of the integrals stays the same as long as only 2π phases, i.e.
squares of qs = exp(πis) factors, are involved. The only other factor appearing is
qc. This produces an extra minus-sign in some places if nc is odd.

• We have to distinguish which of the functions F (a + c + d + 1, b, d, c, e) etc.
originates from integrals with holomorphic or antiholomorphic exponents.

• As we now sum up two off-diagonal products of block-functions the result is
doubled in most places, in comparison to the diagonal case.

Hence we reach a total result for the off-diagonal case of
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(
F (a+ c+ d+ 1, e, a, c, b) F (ā+ c̄+ d̄+ 1, b̄, d̄, c̄, ē)

+qnc F (a+ c+ d+ 1, b, d, c, e) F (ā+ c̄+ d̄+ 1, ē, ā, c̄, b̄)
)

= −1

2
(sin(π(a+ b+ c)) sin(π(c+ d+ e)) sin(π(a+ b+ c+ d+ e)))−1

× [sin(πb) sin(πd) (sin(π(2a + b+ 3c+ d+ 2e)) − sin(π(b+ c+ d+ 2e))

− sin(π(2a + b+ c+ d)) + sin(π(b+ c+ d)) + sin(π(b− c− d))
+ sin(π(−b− c+ d))) F (a+ c+ d+ 1, b, d, c, e) F (ā+ c̄+ d̄+ 1, b̄, d̄, c̄, ē)

+ qnc sin(πa) sin(πe) (sin(π(a+ 2b+ 3c+ 2d+ e)) − sin(π(a+ c+ 2d+ e))

− sin(π(a+ 2b+ c+ e)) + sin(π(a+ c+ e)) + sin(π(a− c− e))
+ sin(π(−a− c+ e))) F (a+ c+ d+ 1, e, a, c, b) F (ā+ c̄+ d̄+ 1, ē, ā, c̄, b̄)

−4 sin(πa) sin(πb) sin(πd) sin(πe) sin(π(a+ b+ 2c+ d+ e))(
F (a+ c+ d+ 1, e, a, c, b) F (ā+ c̄+ d̄+ 1, b̄, d̄, c̄, ē)

+qnc F (a+ c+ d+ 1, b, d, c, e) F (ā+ c̄+ d̄+ 1, ē, ā, c̄, b̄)
)]

.

It is apparent that the possible minus-signs qnc only effect the relation between the four
major terms. Furthermore, we notice that the result is symmetric wrt the exchange of
the holomorphic and antiholomorphic part.

This completes our calculation of the specific integral (3.26). Almost all integrals
which appear in the second order deformation of two point functions in the (2)4 Gepner
model and orbifolds thereof are of this still relatively simple form. Hence, we were able
to calculate the relevant integrals for the second order perturbation in these models for
a given analytic regularisation. But, as already discussed in section 3.5.2, we have not
succeeded in finding a suitable regularisation scheme which is at the same time effective
and well-defined within the whole model and which would, thus, allow for a consistent
renormalisation of the perturbed fields. This problem still remains to be solved.





Chapter 4

Higher rank indecomposable

structures in augmented minimal

models

The key feature of logarithmic conformal field theories as described in section 2.2 is
the appearance of non-irreducible but indecomposable representations. Indeed, the
action of the L0 operator on the states of these representations can be cast in the
indecomposable form of Jordan cells.

The logarithmic CFT models which are best understood up to now are certainly
given by the extension of the minimal model series which we will introduce as “aug-
mented cp,1 minimal models” below [48, 49, 50, 45, 46, 47]. These models exhibit
Virasoro representations with indecomposable structures up to rank 2 which have been
constructed explicitly in [45].

In this chapter, we will show that these augmented cp,1 minimal models are only spe-
cial cases of the extension of general cp,q minimal models. These so-called “augmented
cp,q minimal models” generically exhibit a much richer structure than the augmented
cp,1 models. In particular, they contain representations with Jordan cells up to rank 3
as well as several new types of rank 2 representations.

After an introduction to the terminology in section 4.1 we will investigate the aug-
mented cp,q minimal models as representations of the Virasoro algebra using two dif-
ferent tools. First, we will explore the possibility of having nullvectors in higher rank
indecomposable representations in section 4.2. Then, we will introduce the second tool
in section 4.3, the explicit construction of the fusion product of two representations.
In sections 4.4 and 4.5 we will apply this most powerful second tool to two special
models, the augmented c2,3 = 0 and the augmented c2,5 = −22/5 model, respectively.
This, finally, leads us to conjecturing the representation content and the fusion alge-
bra for general augmented cp,q models in section 4.6. The appendices contain material
to several explicit calculations in this chapter. Appendix A presents the explicit Jor-
dan diagonalisation of L0 in the three rank 3 representations which we discuss in this

97
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chapter. Appendix B collects the explicitly calculated fusion rules in both models, the
augmented c2,3 = 0 and c2,5 = −22/5 model. Finally, we present several examples of
higher rank logarithmic nullvectors in appendix C.

4.1 What are augmented minimal models?

In this section we want to introduce the notion of “augmented minimal models” as one
possible extension of the minimal model series. Thereby, we will keep our focus mainly
on representations of only the Virasoro algebra.

Introducing augmented minimal models

In section 2.3.1 we have seen that already a small standard cell {(r, s)|1 ≤ r < q, 1 ≤
s < p} of the whole infinite Kac table suffices in order to describe the finite number of
representations of a minimal model. In particular, this standard cell does not include
weights on its border, i.e. weights which obey either r = q or s = p. Furthermore, these
weights on the border do not appear in any higher embedding structure of nullvectors
in this minimal set of representations—they are simply ignored for minimal models.

Hence, the question arises what happens if we include states of weights on the
border of the standard cell as irreducible representations in our theory. This, indeed,
leads to consistent conformal field theory models, but with regard to representations
of the Virasoro algebra the inclusion of these weights actually forces us to include
representations of weights in the whole infinite Kac table into our model. We only
retain the relation (2.12) which identifies two equal weights across the diagonal of the
Kac table. Such models we call “augmented minimal models”.

Let us first make the terminology more precise. We will call weights whose indices
obey r = i q and s = j p (i, j ∈ Z) “on the corners of the Kac table” and weights whose
indices obey (exclusively) either r = i q or s = j p (i, j ∈ Z) “on the border of the Kac
table”. All other weights which already appear in the minimal models we call “in the
bulk of the Kac table”. An extract of the (infinite) Kac table for c2,3 = 0 is given in
table 4.1. In this table we have indicated the border as areas with lighter shade and
the corners as areas with darker shade; the bulk consists of the unshaded areas.

We also need to introduce the notion of a “weight chain” for conformal weights on
the border or in the bulk. These weight chains are supposed to be a handy storage
of information about the weights on successive embedding levels in the embedding
structures of figure 2.1. A weight chain for weights on the border is a list of all weights
which differ just by integers, ordered by size without multiplicity (see figure 2.1a):

W border
(r,p) := {hr,p, hq−r,2p, hr,3p, ...} ∀r < q ,

W border
(q,s) := {hq,s, h2q,p−s, h3q,s, ...} ∀s < p .

To form a weight chain for weights in the bulk we take a likewise list of weights differing
just by integers, ordered by size without multiplicity. Then we map this list into a list
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Table 4.1: Kac table for c2,3 = 0

s

1 2 3 4 5

1 0 5
8 2 33

8 7

2 0 1
8 1 21

8 5

3 1
3 − 1

24
1
3

35
24

10
3

4 1 1
8 0 5

8 2

5 2 5
8 0 1

8 1

r 6 10
3

35
24

1
3 − 1

24
1
3

7 5 21
8 1 1

8 0

8 7 33
8 2 5

8 0

9 28
3

143
24

10
3

35
24

1
3

10 12 65
8 5 21

8 1

11 15 85
8 7 33

8 2

of sets, the first set just consisting of the lowest weight, then every next set consisting
of the next two weights. Regarding figure 2.1b we get

W bulk
(r,s) := {hr,s, {hr,2p−s, hq+r,p−s}, {hr,2p+s, h2q+r,s}, ...} ∀r < q, s < p .

Of course, the nullvector embedding structure for irreducible representations corre-
sponding to weights in the bulk stays the same as for the corresponding representations
in the proper minimal models of section 2.3.1; one retains the same two string twisted
picture of figure 2.1b. However, as already explained in [45] the nullvector embedding
structure actually collapses to a string for representations with weights on the corners
or the border—as depicted in figure 2.1a.

It is very important to keep in mind that the nullvectors corresponding to these
higher weights in figure 2.1 are only true nullvectors within representations that are
generated as a Virasoro module from one (!) singular vector, i.e. irreducible repre-
sentations. This picture changes as soon as there appears indecomposable structure
within the representation, as we will see shortly. Nevertheless, these vectors keep their
prominent role even within higher rank representations.

Augmented cp,1 models

The only well studied augmented models up to now are contained in the series cp,1,
p = 2, 3, . . . (see e.g. [82, 45, 46, 44, 47, 49, 50]). These models have been observed to
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A B

|h;0> |h;1>

|h+l;1>

|h>

|h+l;0> |h+l;1>

|h+m;1>

0

l

m

n

Figure 4.1: Rank 2 representations for weights on the border

contain representations with non-trivial Jordan blocks up to rank 2 and, thus, belong
to the few examples of logarithmic CFTs. We just want to give a quick introduction
to the higher rank representations appearing in these models.

First we need to observe that the cp,1 models are quite exceptional representatives
of the general augmented minimal models as they do not have any weights in their Kac
table bulk. As described in [45], they consistently contain irreducible representations
to all their weights on the corners and the border as well as two possible types of rank
2 Virasoro representations which, though, only appear for weights on the border.

We have depicted these two types of rank 2 representations in figure 4.1 following
the graphical conventions of [45]. The black dots correspond either to generating fields,
i.e. fields which are not describable as descendants of some other field, or to singular
descendants of these which, although they are null in the module of their parent field,
have a non-vanishing Shapovalov form with some other field of the whole higher rank
representation. The crosses, on the other hand, represent true nullvectors of the whole
higher rank representation. Finally, we take horizontal arrows to denote indecompos-
able action (of L0), arrows pointing upwards to denote a descendant relation and arrows
pointing downwards to denote a non-trivial action of positive Virasoro modes. Arrows
towards a true nullvector are usually depicted as dashed. But as explained more thor-
oughly in section 4.2, nullvectors which are built in part on a Jordan cell field with
higher Jordan level always have to contain contributions from descendants of fields
with lower Jordan level as well, especially from descendants of the primary field. The
corresponding arrows have to be understood in this way. Furthermore, we indicate the
levels on the right or left hand side of each picture. The naming of the fields follows
our convention of section 2.2.

Let us first describe the generic rank 2 representation which is shown as case B

in figure 4.1. This representation is realised for every weight h on the border of the
Kac table. The levels l, m and n given in the picture are just the successive levels of
the respective weight chain of h. In order to see the translation to the notation of [45]
let us denote (r, s) to be the Kac labels of the weight h + l. Now, the representation
of type B has a primary groundstate |h〉 = ξr,s. The first Jordan cell, however, only
appears at the next weight in the weight chain at level l. This Jordan cell consists of
the singular descendant of |h〉 at level l which we call |h + l; 0〉 = φr,s as well as the
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so-called “logarithmic partner” |h+ l; 1〉 = ψr,s. As the notation already suggests, both
fields are related by the indecomposable L0 action

L0 |h+ l; 1〉 = (h+ l) |h+ l; 1〉 + |h+ l; 0〉
L0 |h+ l; 0〉 = (h+ l) |h+ l; 0〉 .

Although the singular descendant |h+ l; 0〉 is a nullvector within the module generated
by its parent field |h〉, it is promoted to be non-null by the inclusion of its logarithmic
partner. Hence, |h〉 does not generate a proper irreducible (sub)representation, but
|h + l; 0〉 does—the next nullvector on |h〉, which appears at the next level m in the
weight chain, is a proper one. There is, however, no nullvector yet at level m which in-
corporates descendants from the logarithmic partner |h+ l; 1〉. The first such nullvector
is encountered even one level further up the weight chain, at level n.

Hence, we need two fields to generate this representation, the groundstate |h〉 and
the logarithmic partner |h + l; 1〉. The logarithmic partner, however, is not a primary
state but is mapped to |h〉 by some polynomial of positive Virasoro modes. As argued
in [45], if there is no additional singular vector on |h〉 on a level lower than l, this
polynomial can be chosen as monomial such that

(L1)
l |h+ l; 1〉 = β |h〉 Lp |h+ l; 1〉 = 0 ∀ p ≥ 2 (4.1)

for a constant β depending on the representation. Indeed, as there is only one singular
descendant at level l we can use the freedom to redefine |h + l; 1〉 by the addition of
level l descendants of |h〉 to make the Lp action on |h+ l; 1〉 vanish for all p ≥ 2. But,
due to the fact that the first singular vector appears at level l, there is a unique l − 1
descendant ξD of |h〉 = ξr,s with

(L1)
l−1 ξD = |h〉 Lp ξ

D = 0 ∀ p ≥ 2 ; (4.2)

these vanishing conditions reduce the number of length l− 1 positive Virasoro monoms
supposed to map this state to zero by one (actually (L1)

l−1 is excluded). Hence, we
have exactly as many vanishing conditions as free parameters for a possible descendant
field, not counting the overall normalisation. As there is no singular state at this level,
the equations have only one solution. The freedom of normalisation can then be used
to fix the (L1)

l−1 action. On the other hand, the state L1 |h + l; 1〉 also fulfils the
requirement that it vanishes under the action of Lp for all p ≥ 2. We have just seen
that such a state is unique and, thus, it follows that

L1 |h+ l; 1〉 = β ξD

for some constant β. Now, we have used up all freedom to define |h + l; 1〉 with the
exception of adding multiples of |h+ l; 0〉. But as |h+ l; 0〉 is a singular descendant this
does not effect any of the mappings with positive Virasoro modes. Therefore, β is the
unique and defining parameter of the representation.
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The second type of rank 2 representation is depicted in figure 4.1 A. It is a degen-
erate version of case B where the Jordan cell appears at the first weight of a border
weight chain. In this case, we cannot have a groundstate at a lower weight, but the two
generating states of the representation are just the two Jordan cell states |h; 0〉 = φ1,s

and |h; 1〉 = ψ1,s. Hence, we also do not need an additional parameter β. |h; 0〉 is pri-
mary and generates an irreducible subrepresentation; |h; 1〉 = ψ1,s is now what we call
“logarithmic primary”, i.e. primary with the exception of the indecomposable action of
L0 (see section 2.2).

But as these cp,1 models do not contain any bulk in their Kac table, we do not expect
them to be generic. In order to understand the generic features of general augmented
cp,q models we will study the two easiest candidates for augmented models with non-
empty bulk of the Kac table in the following sections of this chapter, the augmented
c2,3 = 0 model as well as the augmented Yang-Lee model with c2,5 = −22/5. And
indeed, the existence of representations with weights in the Kac table bulk induces an
even richer structure with indecomposable representations up to rank 3.

For the cp,1 models it was shown that they actually have a larger W algebra as
symmetry algebra, the triplet algebra W(2, 2p − 1, 2p − 1, 2p − 1). We have strong
hints that such a larger W algebra is also the underlying symmetry algebra of the
generic augmented cp,q models [135]. The effective Kac table of these theories with
enlarged symmetry algebra can then again be reduced to a standard cell, which is
larger than their minimal model counterpart, though. This standard cell is given by
{(r, s)|1 ≤ r < n q, 1 ≤ s < np} with n usually an odd integer larger than 1, e.g. 3
for the above mentioned triplet algebras of the cp,1 models. In this thesis, however, we
want to concentrate mainly on the pure Virasoro representation theory and, hence, do
not restrict our Kac table in any way if not stated otherwise.

4.2 Exploring logarithmic nullvectors

In this section we explain how to calculate logarithmic nullvectors, i.e. nullvectors in
higher rank representations which also involve descendants of higher Jordan levels. We
present logarithmic nullvectors in different kinds of higher rank representations.

We first review logarithmic nullvectors in representations of arbitrary rank where
the Jordan cell lies on the lowest weight level and give a clarifying proof of the equations
present in the literature [82]. We then discuss and give explicit new results for rank
2 logarithmic nullvectors in augmented cp,1 models with the more general setup of a
first Jordan cell at arbitrary level. This is shown to be in accordance with the rank
2 representations of the augmented cp,1 models known in the literature. We finally
present a survey of logarithmic nullvectors in possible rank 2 representations of the
above mentioned types in the general augmented c2,3 = 0 model. In this way, we
can put severe constraints on the possible rank 2 representations appearing in the
augmented c2,3 = 0 model which we show to be in accordance with the findings of the
fusion calculation in section 4.4.
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The results of this section as well as the corresponding appendix C have already
been published in [136].

4.2.1 Jordan cells on lowest weight level

Let us recall the construction of nullvectors in a logarithmic representation in which
the states of the Jordan cell are all lowest weight states [57, 58, 82]. We will especially
clarify the respective procedure in [82] and give a proof of the proposed logarithmic
nullvector conditions.

We want to construct vectors which are null on the whole logarithmic representation.
Following [82] we choose the general ansatz

|χ(n)
h,c〉 =

r−1∑

j=0

∑

|n|=n

bnj (h, c)L−n |h; ∂j
θa(θ)〉 (4.3)

with a(θ) =
∑r−1

i=0 ai
1
i! θ

i and the usual multi-index notation for the modes Ln. Choos-

ing the states |h; j〉 instead of |h; ∂j
θa(θ)〉 on the right hand side would have yielded

the same generality of the ansatz and in the end the same set of solutions. We prefer
this special ansatz, however, for two reasons. First of all it already incorporates our
knowledge that in this form of logarithmic representations there will only be a non-
trivial action of the L0 modes in the end of the nullvector calculation and that this is
given by derivatives wrt θ onto lower ranks. This justifies the ∂ j

θ part of the ansatz.
On the other hand, by including lower orders of θi into a(θ) we solve for nullvectors of
lower rank subrepresentations at the same time. For this we will always treat the am

as arbitrary parameters.

Now, we can calculate the level n nullvector conditions for arbitrary k and nl,
|nl| = n, as follows (the index l indicates a suitable enumeration of the multi-indices
n):

〈h; r − 1− k|Lnl
|χ(n)

h,c〉

=
r−1∑

j=0

∑

|n|=n

bnj (h, c)
r−1∑

m=j

am〈h; r − 1− k|Lnl
L−n |h;m− j〉

=

r−1∑

j=0

∑

|n|=n

r−1∑

m=j

am bnj (h, c) 〈h; r − 1− k|
m−j∑

t=0

1

t!

(
∂t

∂ht
fnl,n(h, c)

)
|h;m− j − t〉

=

r−1∑

m=0

am

m∑

j=0

∑

|n|=n

m−j∑

t=0

bnj (h, c)
1

t!

(
∂t

∂ht
fnl,n(h, c)

)

×
(
δt,m−j−k +

m−j−k−1∑

s=0

δs,tDm−j−k−s

)
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=:

r−1∑

m=0

amA′
nl

(m, k) , (4.4)

where in the second step we used (2.11) due to the logarithmic primarity of the Jordan
cell ground states |h;m〉 as well as in the third step the Shapovalov form (2.10). As

we want to keep the am as arbitrary parameters the nullvector conditions on |χ(n)
h,c〉 are

equivalent to the identical vanishing of all A′
nl

(m, k).

Let us calculate the terms proportional to δt,m−j−k in A′
nl

(m, k) first:

m∑

j=0

∑

|n|=n

m−j∑

t=0

bnj (h, c)
1

t!

(
∂t

∂ht
fnl,n(h, c)

)
δt,m−j−k

=
m−k∑

j=0

∑

|n|=n

bnj (h, c)
1

(m− k − j)!

(
∂m−k−j

∂hm−k−j
fnl,n(h, c)

)

=: Anl
(m− k) .

It is important to notice that the Anl
(m − k) indeed only depend on the difference

m− k.
We now show that the vanishing of the Anl

(m−k) is necessary and already sufficient
for the vanishing of the nullvector conditions in (4.4) by using complete induction over
m − k. For m − k = 0 we trivially find A′

nl
(m, k) = Anl

(m − k). This can easily be
inferred from (4.4) noting that in the fourth line the summation over t actually only
runs from 0 to m− j − k, consequently the one over j only from 0 to m− k. On the
other hand we find for general m− k

A′
nl

(m, k)−Anl
(m− k)

=

m∑

j=0

∑

|n|=n

m−j−k−1∑

t=0

bnj (h, c)
1

t!

(
∂t

∂ht
fnl,n(h, c)

)
Dm−j−k−t

=

m−k−1∑

j=0

∑

|n|=n

m−k−1∑

t=j

bnj (h, c)
1

(t− j)!

(
∂t−j

∂ht−j
fnl,n(h, c)

)
Dm−k−t

=

m−k−1∑

t=0

Dm−k−t

∑

|n|=n

t∑

j=0

bnj (h, c)
1

(t− j)!

(
∂t−j

∂ht−j
fnl,n(h, c)

)

=
m−k−1∑

t=0

Dm−k−tAnl
(t) .

But this vanishes due to the induction assumption Anl
(t) = 0 for all t < m−k. Hence,

the vanishing of A′
nl

(m, k) is equivalent to the vanishing of Anl
(m − k) and therefore

the statement is proven.
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Now, if we regard these calculations with ar−1 as the only non-vanishing parameter,
we see that we still retain the whole set of conditions, Anl

(r − 1 − k) = 0 for all
k = 0, . . . , r− 1. On the other hand, taking another ai with i < r − 1 as the only non-
vanishing parameter automatically yields the respective set of conditions for a rank
i+1 nullvector, a nullvector of a rank i+1 logarithmic subrepresentation. This indeed
justifies our chosen ansatz as well as keeping the parameters am arbitrary.

Furthermore, this calculation shows that any nullvector wrt a (logarithmic or irre-
ducible) representation is automatically a nullvector to any larger logarithmic repre-
sentation containing the former one as a subrepresentation.

The third fact we would like to stress is that, generically, the nullvector of some
rank r logarithmic representation is not a pure descendant of the Jordan cell state with
rank index r, but always contains descendants of the other Jordan cell states with lower
rank index, including the groundstate of the irreducible representation.

4.2.2 Logarithmic nullvectors for cp,1

Already for the well-studied cp,1 models, however, the representations with Jordan cells
on the lowest level analysed in the preceeding section are not the end of the story but
rather only very special cases [45]. For the generic rank 2 logarithmic representations in
these models one needs a generalised way of calculating logarithmic nullvectors, which
we will develop in the following.

The ansatz

As described in section 4.1 there are two possible types of rank 2 Virasoro representa-
tions appearing in the augmented cp,1 models which we depict in figure 4.1.

The case of a Jordan cell built solely on logarithmic primary fields which we dis-
cussed in section 4.2.1 corresponds to case A in figure 4.1. This case is, though, just
the exceptional case for the lowest rank 2 representation of a border weight chain; it
only appears with a Jordan cell on the lowest weight of this chain.

The generic rank 2 representation which is shown as case B in figure 4.1, however,
requires a more general ansatz of logarithmic nullvectors. Loosing the prerequisite of
logarithmic primarity of all Jordan cell fields we cannot assume that only polynomials
in the Virasoro null-mode and the central charge operator contribute to the matrix
elements in the calculation of the nullvector conditions — we now have to take into
account operators (L−1L1)

j , j > 0, as well. Hence, the relation between the nullvector
polynomials on the different Jordan cell states is not governed by the action of L0 and,
thus, derivatives by θ alone. An ansatz of the form (4.3) is not reasonable any more.

Instead, we propose the more general ansatz for the generic rank 2 representation

|χ(n)
h,c〉 =

∑

|n|=n−l

bn1 (h, c)L−n |h+ l; 1〉 +
∑

|m|=n

bm0 (h, c)L−m |h〉 . (4.5)
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Here we choose a notation close to section 4.2.1 describing a state by its weight and
enumerating Jordan cell states according to the L0 action

L0|h;n〉 = h |h;n〉+ (1− δn,0) |h;n − 1〉 .

The ansatz (4.5) certainly incorporates general level n− l descendants of |h + l; 0〉 as
|h + l; 0〉 is just a level l singular descendant of |h〉 itself. However, we need this more
general ansatz (4.5) because building descendants only on the Jordan cell states we
would miss out several states of the rank 2 representation which are descendants of
level n of |h〉, but cannot be written as descendants of |h+ l; 0〉.

This ansatz leads to the following complete set of nullvector conditions

0
!
= 〈h+ l; 1|Lni |χ

(n)
h,c〉

=
∑

|n|=n−l

bn1 (h, c) 〈h + l; 1|Lni L−n |h+ l; 1〉+
∑

|m|=n

bm0 (h, c) 〈h + l; 1|Lni L−m |h〉

=
∑

|n|=n−l

bn1 (h, c) 〈h + l; 1|F (1)
ni ,n(Ll

−1 L
l
1, L0, C) |h+ l; 1〉

+
∑

|m|=n

bm0 (h, c) 〈h + l; 1|F (2)
ni ,n(Ll

−1, L
l
−1 L

s
0, L

l
−1 C

t) |h〉 (4.6)

as well as

0
!
= 〈h|Lmj |χ

(n)
h,c〉

=
∑

|n|=n−l

bn1 (h, c) 〈h|Lmj L−n |h+ l; 1〉+
∑

|m|=n

bm0 (h, c) 〈h|Lmj L−m |h〉

=
∑

|n|=n−l

bn1 (h, c) 〈h|F (3)
mj ,n(Ll

1, L
s
0 L

l
1, C

t Ll
1) |h+ l; 1〉

+
∑

|m|=n

bm0 (h, c) 〈h + l; 1|F (4)
mj ,n(L0, C) |h〉 , (4.7)

for any s, t > 0. Several remarks are necessary. The functions F (1), . . . , F (4) indicate
what polynomials of Virasoro generators we can reduce the interior of the above matrix
elements to by successively using the Virasoro algebra, the level matching condition as
well as properties of the states which these modes are applied to. Although we are
not able to reduce these to polynomials solely of L0 and C as in section 4.2.1, these
properties make possible a fair amount of reduction to functions which are polynomials
only of specific combinations of the four operators L−1, L0, L1 and C. More specifically
the function F (2) actually only depends on terms proportional to Ll

−1, L
l
−1 L0, L

l
−1 L

2
0,

. . . as well as Ll
−1 C, Ll

−1C
2, . . . This follows from the fact that to the right this function

acts on a primary field, to the left however on a field which vanishes under the action
of Lp, p ≥ 2, and whose weight is just at level l above |h〉.
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As discussed earlier, we do not retain such nice interrelations between the nullvector
polynomials as in section 4.2.1 which could be cast into the θ calculus. But we can still
find remnants of such relations as e.g. by looking at the nullvector conditions given by
the application of level n descendants of |h+ l; 0〉 onto the nullvector ansatz

0
!
= 〈h+ l; 0|Lnj |χ

(n)
h,c〉

=
∑

|n|=n−l

bn1 (h, c) 〈h + l; 0|Lnj L−n |h+ l; 1〉+
∑

|m|=n

bm0 (h, c) 〈h + l; 0|Lnj L−m |h〉

=
∑

|n|=n−l

bn1 (h, c) 〈h + l; 0|F (1)
nj ,n(Ll

−1 L
l
1, L0, C) |h + l; 1〉

+
∑

|m|=n

bm0 (h, c) 〈h + l; 0|F (2)
nj ,n(Ll

−1, L
l
−1 L

s
0, L

l
−1 C

t) |h〉

=
∑

|n|=n−l

bn1 (h, c) 〈h + l; 0|F (1)
nj ,n(Ll

−1 L
l
1, L0, C) |h + l; 1〉 . (4.8)

These conditions are clearly a subset of the conditions (4.7) as |h + l; 0〉 is just a
descendant of |h〉. Now we make use of the Shapovalov form (2.10) to deduce that the
only terms contributing to the matrix elements in (4.8) can come from contributions of

F
(1)
nj ,n(Ll

−1 L
l
1, L0, C) |h+l; 1〉 which are proportional to |h+l; 1〉. But then we can insert

these vanishing equations back into (4.6) concluding that the terms in (4.6) proportional
to D1 (of the Shapovalov form) already vanish on their own — a consequence of a
subset of the relations (4.7). This is a reminiscence of the fact that in section 4.2.1 the
conditions A′

nl
(m, k) can be split into the conditions Anl

(m − k) which only depend
on the difference m− k. Hence, we can conclude that any logarithmic nullvector of the
proposed kind does not depend on the constants of the Shapovalov form.

Implementation on the computer

Now, one can put the Virasoro-algebraic calculations on the computer and solve the
resulting equations for possible logarithmic nullvectors.

We have implemented these calculations in C++ using the computer algebra pack-
age GiNaC [134]. We constructed new classes for the algebraic objects fields, fieldmodes,
products of fieldmodes as well as descendant fields. The implemented Virasoro relations
(as well as possibly further commutation relations) are used for direct simplification of
descendant fields towards the normal ordered standard form as soon as these are con-
structed. It is important to note that within the procedure the application of modes
to the field has priority to the commutation of modes in order to reduce the blow-up
of the number of terms within the calculation.

The calculation of matrix elements is performed in two steps. First, all fieldmodes
within the matrix elements are used to construct a descendant state on the ket-state
which is then automatically simplified (see above). Then the correct coefficients are
picked using the properties of the bra-state as well as the Shapovalov form.
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The main property which has to be implemented into the fields, besides their con-
formal weight (and possibly fermion number), is their behaviour under the action of
non-negative Virasoro modes. We picked conformal primarity as the standard and
implemented deviations from that in a list which is pointed to by a member of each
instance. E.g. for calculations of representation type B (see figure 4.1) we had to
implement the indecomposable L0 action as well as the non-vanishing L1 action which
maps |h; 1〉 to the unique level (l − 1) descendant of |h− l〉 with properties (4.2).

Results

We have calculated the above logarithmic nullvector equations for the c2,1 = −2
representation R2,1 with lowest lying vector ξ2,1 at h = 0 and Jordan cell (φ2,1 =
L−1 ξ2,1 , ψ2,1) at h = 1, a representation of type B (see figure 4.1). We found the fol-
lowing first nontrivial logarithmic nullvector at level 6 (above the lowest lying vector)

(
m1L

6
−1 +m2L−2L

4
−1 +m3L−3L

3
−1 + (

16

3
− 4m1 +

16

3
β − 2m2)L

2
−2L

2
−1

+(−12− 12m1 + 6β)L−4L
2
−1 + (−20

3
− 2m3 − 16m1 −

56

3
β − 2m2)L−3L−2L−1

+(
4

3
− 16m1 +

10

3
β − 2m2)L−5L−1 − 8βL−4L−2 + 6βL2

−3 − 4βL−6

)
ξ2,1

+
(
L5
−1 − 10L−2L

3
−1 + 6L−3L

2
−1 + 16L2

−2L−1 − 12L−4L−1 − 8L−3L−2 + 4L−5

)
ψ2,1 .

This level is indeed the expected one as the Kac table of c2,1 = −2 gives us a third
nullvector condition for h = 0 exactly at level 6 as well as a corresponding second
nullvector condition for h = 1 at level 5. Hence, we confirm the existence of a further
nontrivial nullvector at the expected level in the logarithmic rank 2 representation R2,1

derived by different means in [45].

We notice that up to the overall normalisation of this state the nullvector polynomial
applied to the second Jordan cell state ψ2,1 is unique. On the other hand, the nullvector
polynomial on ξ2,1, which serves as a correction to the effects of the indecomposable
action on ψ2,1, still exhibits three degrees of freedom. But, we know that there is an
ordinary nullvector at level 2 above h = 1 in the irreducible subrepresentation whose
descendants span a parameter space of dimension three at level 5 (above h = 1). Adding
such a descendant of this nullvector will certainly not alter our equations and, hence,
accounts for the additional three degrees of freedom mi, i = 1, 2, 3.

In the same manner, one can calculate logarithmic nullvectors in all rank 2 logarith-
mic representations in the cp,1 models, limited only by computer power and memory.
We give a second example for a type B logarithmic nullvector in appendix C.1.

4.2.3 Possible logarithmic nullvectors for c2,3 = 0

The cp,1 models might be the best-studied logarithmically conformal models but they
still are quite special cases of the general augmented cp,q models, which we still know
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much less about. Hence, an even more exciting question than the above construction
of predicted logarithmic nullvectors surely is whether one can use these techniques
to explore the shapes of the supposedly more complicated logarithmic representations
in general augmented CFTs. In the following we will attack this question for the
augmented model c2,3 = 0 which seems sufficiently generic to show all the features of
general augmented cp,q models.

Due to the underlying enhanced W symmetry all possible types of representations
can already be found within the restricted Kac table area {(r, s)|1 ≤ r < 3 q, 1 ≤ s < 3}
in the augmented cp,1 case. For the remaining part of this section it, thus, seems useful
to restrict our attention to the restricted Kac table area {(r, s)|1 ≤ r < 3 q, 1 ≤ s < 3 p}
for the general augmented cp,q models as well.

Weights on the corners and borders of the augmented Kac table of c2,3 = 0

We propose that fields associated to weights on the corner and the borders of the
augmented Kac table of c2,3 = 0 are contained in the same types of representations as
the corresponding ones in the cp,1 models.

Within the above restricted Kac table area the weights on the corners, h = −1/24,
35/24, only appear once modulo the relations (2.12) and accordingly only exhibit the
usual two nullvector conditions. Hence, there are no new (logarithmic) representations
to be expected besides the ordinary irreducible Virasoro representation built on ground-
states with these weights. Indeed, these weights give exactly the prelogarithmic fields
which have been shown to be primary and to generate an irreducible representation,
but not to admit an embedding into any larger indecomposable representation [137].

The weights on the borders of the Kac table actually appear in the same kind of
triplets of two equal conformal weights and one which is shifted by some positive integer
as we know it from the cp,1 models (again modulo the relations (2.12)). The triplets
are T1 := {1/8, 1/8, 33/8}, T2 := {5/8, 5/8, 21/8} and T3 := {1/3, 1/3, 10/3}. We also
find the same nullvector structure concerning these weights within the Kac table as
we know it from the corresponding representations of the cp,1 models. Hence, we have
checked the existence of the typical logarithmic nullvectors for all cases which were
accessible to computer power and memory.

First we have checked for the first logarithmic nullvector in representation type A

(see figure 4.1) and found the expected ones for all three triplets, on level 8 for T1, on
level 10 for T2 as well as on level 9 for T3. The result for T1 can be found in appendix
C.2.

A check for the first logarithmic nullvector in representation type B was only pos-
sible for the triplet T2. In this case, we have a Jordan cell for h = 21/8 with a lower
lying field at h = 1/8. We find the first nontrivial logarithmic nullvector at level 16
which seems to be just at the limit of our current computing power and ability. The
first logarithmic nullvectors for type B representations corresponding to the other two
triplets are expected at even higher levels, at 18 and 20 for T3 resp. T1.

These results are indeed compatible with our above proposition and a nice and
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nontrivial check for its validity.

Weights in the bulk of the augmented Kac table of c2,3 = 0

For possible logarithmic representations corresponding to weights in the bulk of the
Kac table, however, we do not have any prototypes yet. Hence, we are now going to
explore the main candidates for such representations and elaborate constraints on their
shapes using our techniques of constructing logarithmic nullvectors. We notice two
main differences to the situation on the borders.

First of all, the bulk of the augmented Kac table of c2,3 = 0 (see table 4.1) exhibits
an even higher abundance of equal numbers (up to integer shift) than in the cp,1 models,
which is a clear sign of logarithmic representations there. Up to the relations (2.12)
and within the restricted Kac table area of consideration we find a nonuplet N =
{0, 0, 0, 1, 1, 2, 2, 5, 7} of weights which are equal up to integer shift and which contain
one weight with triple degeneracy, h = 0. It does not seem very likely that this
nonuplet just splits into three triplets of the types analysed above. On the contrary,
the analysis of the corresponding modular functions even suggests the possibility of a
rank 3 logarithmic representation, and certainly predicts the existence of several more
complicated rank 2 logarithmic representations constructed with weights within this
set [135].

On the other hand, we have to notice that the embedding structure for nullvectors
is different in the bulk in contrast to the linear embedding structure on the border
(discussed in [45]). In the bulk the embedding structure is given by the more generic
two string twisted picture, depicted in figure 2.1b.

Now, inspecting the nonuplet N of bulk weights we expect the usual irreducible
representations to the integer weights h = 0, 1, 2, 5, 7 as well as rank 2 representations
corresponding to Jordan cells at weight h = 0, 1, 2. We have depicted a list of possible
candidates for rank 2 representations corresponding to these bulk weights in figure 4.2.
These pictures represent the low lying embedding structure of these candidates using
the same symbols as in section 4.2.2. Additionally, we have indicated the conformal
weight on the different levels to the left of each picture as well as the unknown higher
embedding structure by question marks (“?”). We have checked for the lowest nontrivial
logarithmic nullvectors for all these candidates and summarise the results in table 4.2.

Type C. The calculations for the type C representations have been performed using
the methods of section 4.2.1. For this type we even managed to calculate one rank 3
logarithmic nullvector; i.e. the first rank 3 logarithmic nullvector with lowest weight
Jordan cell at h = 0 appears at level 12.

Type E. We were able to apply the procedure of section 4.2.2 directly to the type E

representation because we do not encounter any additional nullvector below the level
of the Jordan cell and because we can take (L0 − 1) to map |1; 1〉 to a proper singular
descendant of |0〉, i.e. L−1 |0〉.
Type F. In case of the type F representation we actually encounter an additional
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Figure 4.2: Candidates for rank 2 representations for weights in the bulk of c = 0

Table 4.2: Lowest logarithmic nullvectors of candidates for bulk representations

type lowest weight rank level of lowest
logarithmic nullvector

C 0 2 5
C 1 2 11
C 2 2 10
C 0 3 12
D 1 2 > 14
E 0 2 12
F 0 2 12
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nullvector below the level of the Jordan cell. This can, however, be remedied quite
easily. Due to the lower lying nullvector at level 1 there is no state which L1 could
map |2; 1〉 to. But certainly L2 can take the job to map |2; 1〉 directly down to |0〉, a
mapping unique up to normalisation. This yields the new conditions

L2|2; 1〉 = β |0〉 Lp|2; 1〉 = 0 for p = 1 and p ≥ 3 .

The singular descendant in the Jordan cell is therefore given by |2; 0〉 = L−2 |0〉.
This feature of an additional nullvector below the level of the Jordan cell clearly

shows the novelty of the bulk representations in contrast to the ones on the border
described in [45]; it arises due to the more intricate embedding structure for these
bulk representations compared to the embedding structure for representations on the
border. A generalisation to similar cases with additional nullvectors on levels lower than
the Jordan cell seems straightforward though more tedious due to the more complex
embedding structure of nullvectors which are not on the “nice” level 1.

Type D. The case of the type D representation is more questionable. Here, we
actually do not have a singular descendant of |1〉 on the level of the Jordan cell, hence
no primary state which (L0 − 2) could map |2; 1〉 to. A priori it is not clear whether
it is necessary for L0 to map |2; 1〉 to a singular descendant of |1〉. Hence we took
(L0 − 2) to map |2; 1〉 to the only existing descendant of |1〉 at level 1 which is though
not singular, i.e. L−1 |1〉. The results of possible logarithmic nullvectors, however, do
not seem to offer a particular rich structure up to the accessible levels (see table 4.2).

We include the explicit results for the two cases E and F in appendix C.3. It is
quite interesting to inspect e.g. the result for type F. Although we actually did not
impose the relation L−1|0〉 = 0 into the computer programme, the result incorporates
such a nullvector or, to be a bit more cautious, at least the independence of the result
from this particular descendant; indeed, all descendants of L−1|0〉 just appear with free
parameters. This corresponds to the additional freedom due to lower nullvectors in the
irreducible subrepresentation discussed in the end of section 4.2.2. On the other hand,
the second singular vector on |0〉 on level 2 does not pop up in the same manner as a
possible nullvector in this result; rather, the result is consistent with our ansatz where
we actually impose that the level 2 singular vector on |0〉 is not a nullvector for the whole
rank 2 representation. Hence, we take the first observation of the independence from
L−1|0〉 as a strong hint that a representation where both these singular descendants are
not null in the whole logarithmic representation is not favoured by our calculations.

4.3 How to calculate fusion products

An even more powerful tool to gain information about a consistent set of representations
which form a conformal field theory model is given by the fusion product analysis.
Our calculation of fusion products is based on an algorithm first developed by W.
Nahm [67] to prove that the fusion of quasirational representations contains only finitely
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many quasirational subrepresentations and, hence, that the category of quasirational
representations is stable. In [45] this algorithm was generalised. They also described
a procedure how one can use this algorithm to get (computationally usually sufficient)
constraints to fix the field content of the fusion product at a given level.

In this section we want to give a short summary of the Nahm algorithm and the
procedure described in [45]. We will then present the specific properties of our particular
implementation. The next three sections will apply this method to the two general
augmented models at central charge c2,3 = 0 and c2,5 = −22/5 and give a conjectured
generalisation of the resulting higher rank representations and fusion rules to arbitrary
augmented cp,q models.

Most of the results in sections 4.3 to 4.6 as well as the corresponding appendices A
and B are based on work already published in [138].

4.3.1 The Nahm algorithm

The nice and short presentation of the Nahm algorithm in [45] relies on the coproduct
formula. For a holomorphic field of conformal weight h and mode expansion

S(w) =
∑

l∈Z+h

wl−hS−l

it is given by [64, 139]

∆z,ζ(Sn) =

n∑

m=1−h

(
n+ h− 1

m+ h− 1

)
ζn−m (Sm ⊗ 11)

+ ε

n∑

l=1−h

(
n+ h− 1

l + h− 1

)
zn−l (11⊗ Sl)

= ∆̃z,ζ(Sn) ∀n ≤ 1− h

∆z,ζ(S−n) =

∞∑

m=1−h

(
n+m− 1

m+ h− 1

)
(−1)m+h−1 ζ−(n+m) (Sm ⊗ 11)

+ ε

∞∑

l=n

(
l − h
n− h

)
(−z)l−n (11⊗ S−l) ∀n ≤ h

∆̃z,ζ(S−n) =

∞∑

m=n

(
m− h
n− h

)
(−ζ)m−n (S−m ⊗ 11)

+ ε

∞∑

l=1−h

(
n+ l − 1

l + h− 1

)
(−1)l+h−1 z−(n+l) (11⊗ Sl) ∀n ≤ h ,

where ε = −1 if both Sm and the first field in the tensor product it is applied to are
fermionic and ε = +1 otherwise. Furthermore, z and ζ are the positions of the two fields
of the tensor product which this fused operator is applied to. Due to the symmetry
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of the fusion product there are two alternative ways of writing the comultiplication,
denoted ∆z,ζ and ∆̃z,ζ . Demanding that both ∆z,ζ and ∆̃z,ζ actually yield the same
result we get the fusion space of two representations Hi at positions zi, i = 1, 2,

H1 ⊗f H2 := (H1 ⊗H2)/(∆z1,z2 − ∆̃z1,z2) .

Remember that ⊗f denotes the fusion product of two representations.

In this chapter we will only look at representations wrt the Virasoro algebra A(L)
which is generated by the modes Ln of the h(L) = 2 Virasoro field L. We need the
following subalgebras

A0
−(L) := 〈L−n| 0 < n < h(L)〉

A−−(L) := 〈L−n|n ≥ h(L)〉
A±(L) := 〈Ln| ± n > 0〉

as well as the subalgebra of words with length of at least n

An(L) =
〈 m∏

j=1

L
kj

−lj

∣∣∣
m∑

j=1

lj ≥ n
〉
.

The essential information about a representation H is already encoded in its “special
subspace”, the quotient space

Hs := H / (A−−(L)H) .

We also need the family of filtrations of H given as quotient spaces

Hn := H / (An+1(L)H) .

Especially for irreducible H this space is equal to the set of descendants up to level n.

We want to restrict to a certain type of representations, the “quasirational repre-
sentations”. We use the definition of a quasirational representation that it is a repre-
sentation with finite special subspace. For quasirational representations of the Virasoro
algebra it has been shown that [67, 45]

(H1 ⊗f H2)
n ⊂ Hs

1 ⊗Hn
2 ∧ (H1 ⊗f H2)

n ⊂ Hn
1 ⊗Hs

2 . (4.9)

The proof uses the following Nahm algorithm which can be shown to map every state
of the tensor product H··

1 ⊗H··
2 to a state in the respective right hand side in (4.9) in a

finite number of steps.

We present the algorithm only for the first equation in (4.9) as the other version
works the same way by symmetry of the fusion product. In the following, we regard
the states of the tensor product to be at positions (z1, z2) = (1, 0). The two steps of
the Nahm algorithm are then given by:
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(A1) A vector ψ1 ⊗ ψ2 ∈ H1 ⊗H2 is rewritten in the form

ψ1 ⊗ ψ2 =
∑

i

ψi
1 ⊗ ψi

2 + ∆1,0(An+1(L)) (H1 ⊗H2)

with ψi
1 ∈ Hs

1. This can be achieved by the following recursive procedure.

The crucial step is to use the nullvector conditions on ψ1 to re-express it in the form

ψ1 =
∑

j

ψs
j +

∑

k

A−− χ
s
k ,

with ψs
j , χ

s
k ∈ Hs

1. We still need to get rid of the A−− action on the χs
k. We use

the following formula derived from the comultiplication formula and its translation
properties for m ≤ n [45]

(L−m ⊗ 11) =
n∑

l=m

(
l − h
m− h

)
∆1,0(L−l)

− ε
∞∑

l=1−h

(
m+ l − 1

m− h

)
(−1)h−m−1 (11 ⊗ Ll) + ∆1,0(An+1(L)) .

This formula actually enables us to replace the (L−m ⊗ 11) action in A−− χs
k ⊗ ψ2

by terms where A0
− or even the identity acts on the left hand vector of the tensor

product. This is true as in the range m ≤ l ≤ n the comultiplication ∆1,0(L−l) is
actually of the simple form A0

−⊗ 11 + 11⊗A−−. Now we have to take the result and
repeat this procedure starting again with the re-expression of the first fields ψ1 in
the tensor product. A simple count of the strictly decreasing level of modes during
the iteration shows that this algorithm has to terminate [67].

(A2) This step has to be applied to each term of the resulting sum from step (A1)
separately. The input, a resulting tensor product from (A1) ψ1 ⊗ ψ2 ∈ Hs

1 ⊗H2, is
rewritten as

ψ1 ⊗ ψ2 =
∑

t

ψt
1 ⊗ ψt

2 + ∆1,0(An+1(L)) (H1 ⊗H2) ,

where now ψt
1 ∈ A0

−Hs
1 and ψt

2 ∈ Hn
2 .

This is achieved by repeatedly using

∆1,0(L−I) = (11⊗ L−l) +
∑

k

ck (A0
− ⊗ L−Ik

)

for a word L−I = L−i1 L−i2 . . . of negative Virasoro modes with level |I| and constant
ck. This recursion has to finish as the Virasoro monomials L−Ik

are of strictly lower
level |Ik| < |I|. This formula is just the result of repeated use of the comultiplication
formula for a monomial of modes of the same field and for the special coordinates
(z, ζ) = (1, 0).



116 Chapter 4. Higher rank indecomposable structures

As we want to have the states in the fusion product which are projected to the
subspace (H1⊗fH2)

n we do not have to care about contributions ∆1,0(An+1(L)) (H1⊗
H2). It is then easy to see that iterated application of steps (A1) and (A2) will finally
yield the required result (4.9). This algorithm terminates in a finite number of steps
as the number of modes on both fields strictly decreases when re-expressing ψ1 in step
(A1) using its nullvector condition and does not increase in step (A2).

4.3.2 Constraints for the fusion algebra

By (4.9) we know that (H1 ⊗f H2)
n is actually embedded in the easily constructed

space F := Hs
1⊗Hn

2 . Hence, we want to find the full set of constraints which describes
(H1 ⊗f H2)

n in F .

The important idea of [45] was that one can find nontrivial constraints by applying
An+1 to states in F . We then have to use the Nahm algorithm in order to map the
resulting descendant states into our “standard” space F . By definition these descendant
states are divided out of (H1 ⊗f H2)

n and, hence, are supposed to vanish. Thus, their
mapping to F should evaluate to zero—if we acquire non-trivial expressions this simply
yields the desired constraints by imposing their vanishing.

This procedure is even improved if we use the nontrivial nullvector conditions on
the second field to replace the action of certain Virasoro monomials before performing
the Nahm algorithm. This introduces the information about the nullvector structure on
the second representation of the tensor product into the game; the information about
the nullvector structure on the first representation of the tensor product has already
been used in the Nahm algorithm itself.

As we noticed during our calculation it even improves the situation to include the
nullvector conditions on the tensor factors in the space F itself.

In the following we will denote the level n at which we perform the computation
with L. Certainly, one cannot perform this calculation for all of AL+1. We, hence,
restricted our computation to the application of Virasoro monomials

〈 m∏

j=1

L
kj

−lj
|

m∑

j=1

lj = L̃
〉
.

of equal level L̃. Usually we performed the calculation from L̃ = L+1 up to a maximal
L̃max. Both L and L̃max are given for the respective calculations in the appendix.

As we are limited to the calculation of a finite number of constraints this procedure
is only able to give a lower bound on the number of constraints and, hence, an upper
bound on the number of states in the fusion product at that level. On the other hand,
these constraints seem to be highly non-trivial such that already a very low L̃max > L,
often even L̃max = L+1, is sufficient to gain all constraints which yield representations
in a consistent fusion algebra. This already worked very well in [45] for the cp,1 model
case and as we will see it also works very well in the general augmented cp,q model case.
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Now, it is especially interesting to observe the action of positive Virasoro modes on
(H1 ⊗f H2)

L. The positive Virasoro modes, however, induce an action

Lm : (H1 ⊗f H2)
L → (H1 ⊗f H2)

L−m ∀m ≤ L .

It is important to note that the Lm map to a space of respective lower maximal level.
Hence, we need to construct all spaces of lower maximal level 0 ≤ n < L. To achieve
this we start with (H1 ⊗f H2)

L and successively impose the constraints which arise in
the above described way from the vanishing of the action of Virasoro monomials of
level m with n < m ≤ L on F .

4.3.3 Implementation for the cp,q models

As in section 4.2.2 we have implemented the main calculational tasks, especially the
Nahm algorithm and the calculation of the constraints, in C++ using the computer
algebra package GiNaC [134]. As basic ingredients in this algorithm we could again
use the classes for the algebraic objects fields, fieldmodes, products of fieldmodes and
descendant fields as well as the automatic evaluation method of the descendant fields
described in section 4.2.2. We also constructed a new class for tensor products of fields.

As GiNaC does not support factorisation we used the JordanForm package of the
computer algebra system Maple in order to get the Jordan diagonal form of the L0

matrix on the resulting space as well as the matrices of base change. This Maple
calculation is performed via command-line during the run of the C++ programme.

As we see in section 4.1 some irreducible representations in the general augmented
cp,q models have more than one nullvector (two, to be precise) which are completely
independent, i.e. such that none of these nullvectors can be written as a descendant
of the others. Hence, it is important to include both independent nullvectors into
the nullvector lists which are used for replacements in the calculation as explained
above. This is needed to provide the full information about the nullvector structure
of the original representations which are to be fused. Sometimes one even needs to
choose an L̃max large enough such that the second nullvector can also become effective.
The special subspace, however, is nevertheless determined by the level l of the lowest
nullvector

〈ψ,L−1ψ,L
2
−1ψ, . . . , L

l−1
−1 ψ〉 .

Besides the fusion of two irreducible representations we also implemented the pos-
sibility of fusing an irreducible representation with a rank 2 representation. Actually,
this generalisation is quite straight forward. Instead of one state which generates an
irreducible representation we now need two generating states. However, we have to be
careful because the second generating state, the logarithmic partner, is not primary.
Hence, we implemented the indecomposable action on this second generating field as
additional conditions proprietary to that field (as already done in section 4.2). We also
have to be careful to calculate the correct nullvector structure which includes besides
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an ordinary nullvector on the primary field the first logarithmic nullvector of the whole
indecomposable representation. We have calculated these logarithmic nullvectors using
the algorithm of section 4.2.

In order to speed up the algorithm we widely used hashing tables. This measure
actually resulted in a quite equal use of computing time and memory (on a standard PC
with up to 4GB memory); calculations which are on the edge of using up the memory
have run times between half a day and a few days.

The performance of the implemented algorithm is, however, quite hard to bench-
mark as it varies very much with different input and output. Concerning the input the
computing time rises with the level of the nullvectors—especially, the nullvector level
of the first tensor factor is crucial. We also need much more time to compute fusion
products with representations on weights that are strictly rational than corresponding
ones with integer weights. And then, the performance of course depends exponentially
on L as well as L̃, although the dependence on L is much stronger. Concerning the
output the computational power of Maple is frequently the limiting factor if we have a
large resulting L0 matrix.

We have also checked the correct implementation of the algorithm by reproducing
quite some fusion rules of the cp,1 models given in [45]. In particular, we reproduced
the Virasoro matrices for the example given in the appendix of [45]. We also noted
that the algorithm is very sensitive and fragile such that an only small change in the
parameters or the programme yields completely unreasonable results.

In contrast to the lowest cp,1 models we have to cover a much larger parameter
space with states of higher nullvectors already for the easiest general augmented cp,q

model, the augmented c2,3 = 0 model. We, hence, decided to calculate the fusion of
the lowest representations at L = 6 in order to be able to get results at the same L
for a large parameter space. For the higher fusion as well as the fusion with rank 2
representations we had to reduce L. Details as well as the results are given in appendix
B.

4.4 Fusion analysis of the augmented c2,3 = 0 model

In this section we explicitly discuss our calculations of the fusion product of repre-
sentations in the c2,3 = 0 augmented model which lead us to the conjectured general
fusion rules of section 4.6. We present examples for the newly appearing higher rank
representations and also elaborate the consistency conditions for the fusion product in
this case.

4.4.1 Higher rank representations

Representations of rank 2

Table 4.3 presents an overview over the specific properties of all rank 2 representations
we have calculated for this model. In our notation, the two parameters of the rank 2



4.4. Fusion analysis of the augmented c2,3 = 0 model 119

Table 4.3: Specific properties of rank 2 representations in c2,3 = 0

β1 β2 level of level of first level of first type

log. partner nullvector log. nullvector

R(2)(5/8, 5/8) – – 0 2 10 A

R(2)(1/3, 1/3) – – 0 3 9 A

R(2)(1/8, 1/8) – – 0 4 8 A

R(2)(5/8, 21/8) −5 – 2 10 16 B

R(2)(1/3, 10/3) 140/27 – 3 9 18 B

R(2)(1/8, 33/8) −700/81 – 4 8 20 B

R(2)(0, 1)5 1/3 – 1 2 7 G

R(2)(0, 1)7 −1/2 – 1 2 5 H

R(2)(0, 2)5 – −5/8 2 1 7 I

R(2)(0, 2)7 – 5/6 2 1 5 K

R(2)(1, 5) 2800/9 – 4 6 14 G

R(2)(1, 7) 30800/27 1100/9 6 4 14 I

R(2)(2, 5) −420 – 3 5 10 H

R(2)(2, 7) −880 −440/3 5 3 10 K

representation R(2) give the lowest weight and the weight of the logarithmic partner in
this representation, i.e. the weights of the two states which generate this representation.
The additional index will be explained when we discuss these particular representations
(see p. 122). Analogously, we denote an irreducible representation generated by a
highest weight state of weight h by V(h).

The first block contains the rank 2 representations to the three different weight
chains lying on the border of the Kac table, i.e. W border

(1,2) := {5/8, 21/8, 85/8, . . .},
W border

(3,1) := {1/3, 10/3, 28/3, . . .} and W border
(2,2) := {1/8, 33/8, 65/8, . . .}. There are two

different types of rank 2 representations which exhibit precisely the same structure as
the rank 2 representations of the augmented cp,1 models described in section 4.1. They
can, hence, be described by the same pictures in figure 4.1 A and B. This has already
been conjectured in section 4.2 by calculation of their first logarithmic nullvectors.

The first three representations in table 4.3 are the groundstate rank 2 representation
visualised in figure 4.1 A. They exhibit an indecomposable Jordan cell already on
the zeroth level. In this case the logarithmic partner state |h; 1〉 of the irreducible
ground state |h; 0〉 is logarithmic primary, i.e. it is primary with the exception of an
indecomposable action of L0

L0|h; 1〉 = h |h; 1〉 + |h; 0〉 .

|h; 0〉 actually spans an irreducible subrepresentation; its first nullvector (depicted as a
cross in the figure) is hence found on the level of the next weight h+l in the correspond-
ing weight chain. The descendants of |h; 1〉, however, do not form to give a nullvector
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at h+l. In order to find the first nullvector involving descendants of |h; 1〉 we have to go
one weight further in the weight chain. These representations are uniquely generated
by the two groundstates |h; i〉, i = 0, 1; there is no need of an additional parameter to
describe them.

The next three representations in table 4.3 are the first excited representations
of these three weight chains depicted in figure 4.1 B. The logarithmic partner state
|h+ l; 1〉 lies on that level l at which we would expect the first nullvector of the ground-
state |h〉 if the groundstate were to span an irreducible representation. Hence, the
subrepresentation generated by |h〉 is not irreducible, but only indecomposable. Actu-
ally the indecomposable action of L0 just maps |h + l; 1〉 to the singular l descendant
of |h〉 which we call |h + l; 0〉 and which normally would be the first nullvector of an
irreducible h representation

L0|h+ l; 1〉 = (h+ l) |h+ l; 1〉+ |h+ l; 0〉 .

|h + l; 0〉, on the other hand, spans an irreducible subrepresentation and yields its
first nullvector on the level of the second weight after h in the weight chain, called
h+m. In order to find the first logarithmic nullvector we have to go even one weight
further in the weight chain to h+n. Certainly, the logarithmic partner field cannot be
logarithmic primary; but as discussed in [45] it can still be made to at least vanish under
all Lp, p > 2. This induces one characteristic parameter β = β1 in this representation
due to the action of L1; we take β to parameterise the following equation (see section
4.1 for a more detailed explanation)

(L1)
l |h+ l; 1〉 = β |h〉 .

The structure visualised in figure 4.1 B is actually thought to be the generic type
of rank 2 representation for weights on the border. It should be found for every two
adjacent weights in a border weight chain. As in the cp,1 model case the representations
of the type depicted in figure 4.1 A can only be found for the first and hence lowest
weight of a weight chain. We have also successfully checked for the existence of the
first logarithmic nullvectors at the levels given in table 4.3 using the algorithm of [136].
Even the level 20 logarithmic nullvector was now accessible to our computational power
due to our explicit knowledge of β.

The second block of table 4.3 contains the specific properties of the lowest rank
2 representations which we found for weights in the weight chain of the Kac table
bulk, i.e. W bulk

(1,1) := {{0}, {1, 2}, {5, 7}, . . .}. There are four different types of rank
2 representations depicted in figure 4.3 which appear to be a generalisation of the
situation on the border for the case of figure 4.1 B. This generalisation has to take into
account the more complicated embedding structure of representations with weights in
the bulk—the linear picture of figure 2.1a has to be replaced by the two string twisted
picture of figure 2.1b. As we now have two possible nullvectors on every step of the
weight chain, of which only one is rendered non-null by the existence of a logarithmic
partner state of the same level, we actually also encounter cases I and K where there is
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Figure 4.3: Rank 2 representations for weights in the bulk

a true nullvector on a level lower than the logarithmic partner state. This is new and
makes the description of these particular cases more complicated.

Let us first describe the cases G and H. Starting with the lowest weight state |h〉
the first possible nullvectors are given by the next set in the weight chain at levels l and
m. In the present cases the corresponding singular descendant |h + l; 0〉 on |h〉 at the
lower of these two levels l is rendered to be non-null by the existence of a logarithmic
partner state |h+ l; 1〉. The indecomposable action of L0 on |h+ l; 1〉 is again given by

L0|h+ l; 1〉 = (h+ l) |h+ l; 1〉 + |h+ l; 0〉 .

Furthermore, the argument of section 4.1 still applies that due to the absence of a
nullvector on |h〉 on a level lower than the Jordan cell we can transform |h + l; 1〉 by
the addition of level l descendants of |h〉 such that it is annihilated by Lp ∀p ≥ 2. Then
L1 maps |h + l; 1〉 to the unique level l − 1 descendant of |h〉 which is annihilated by
Lp ∀p ≥ 2. As for representations with weights on the border we take the resulting one
parameter β = β1 to parameterise the equation

(L1)
l |h+ l; 1〉 = β |h〉 .

The second state corresponding to this set in the weight chain, the one at level m,
actually stays null in the rank 2 representation. This fixes the nullvector structure on
|h〉 as the embedding structure of figure 2.1 b tells us that the nullvectors of the next set
in the weight chain, at levels n and r, are joint descendants of the states corresponding
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to the previous set of weights. But as the singular state at level m is already a nullvector
the singular states at level n and r have to be null as well. The situation is somewhat
different for the descendants of the logarithmic partner as |h+ l; 1〉 is the starting point
of its embedding structure. The cases G and H correspond to the two possibilities
of having the first logarithmic nullvector on level r respectively n. There is, however,
no additional nullvector at the respective other weight. Examples for the case G are
R(2)(0, 1)5 and R(2)(1, 5), for the case H R(2)(0, 1)7 and R(2)(2, 5). Again, the lowest
representations play a special role as both cases are realised for lowest weight 0. Hence,
we indicate the level of the logarithmic descendant which is promoted to be non-null as
an index. It is important to note, however, that both cases are already distinguished
by their different β values.

Let us turn to the cases I and K. These exhibit very much the same structure as the
cases G and H. The crucial difference is the existence of a nullvector already on a level
lower than the level of the logarithmic partner. This fact prevents us from applying the
above argument how to describe the representation by only one parameter. The special
cases of R(2)(0, 2)5 and R(2)(0, 2)7 can nevertheless be reduced to one parameter quite
easily. As there is no non-null descendant of the lowest weight state |0〉 at level 1 the
only positive Virasoro mode which can map the logarithmic partner |2; 1〉 to a non-zero
state is L2. Hence, we take the one parameter β = β2 to parameterise the equation

L2 |2; 1〉 = β |0〉 .

This behaviour is, however, not generic. We find that we need at least two parameters
to describe these two kinds of rank 2 representations in general. To see this let us
regard all normal ordered monomials in Virasoro modes of length m. We are able
to transform |h + m; 1〉 by addition of level m descendants of |h〉 in such a way that
only the application of two such Virasoro monomials does not annihilate |h+m; 1〉. In
particular we have:

• For R(2)(1, 7) we find the two parameters β1 = 30800/27 and β2 = 1100/9 pa-
rameterising

(L1)
6 |7; 1〉 = β1 |1〉

(L1)
3 L3 |7; 1〉 = β2 |1〉 .

R(2)(1, 7) has been parameterised in such a way that the monomials (L1)
6 and

(L1)
3 L3 are the only ones with a non-trivial action on |7; 1〉. This yields the

following mappings of single Virasoro modes

L1 |7; 1〉 =
11

729

(
857

2
L−5 − 473L−4 L−1 − 721L−3 L−2 +

4279

12
L−3 L

2
−1

+
809

2
L2
−2 L−1 −

1295

12
L−2 L

3
−1

)
|1〉

L2 |7; 1〉 = 0
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L3 |7; 1〉 =
275

324

(
L3
−1 + 12L−2 L−1 − 24L−3

)
|1〉

Lp |7; 1〉 = 0 ∀p ≥ 4 .

• ForR(2)(2, 7) the two parameters are β1 = −880 and β2 = −440/3 parameterising

(L1)
5 |7; 1〉 = β1 |2〉

(L1)
2 L3 |7; 1〉 = β2 |2〉 .

This yields the following mappings of single Virasoro modes

L1 |7; 1〉 =
5

17

(
−143

3
L−4 +

44

3
L−3 L−1 +

49

3
L2
−2 − 6L−2 L

2
−1

)
|2〉

L2 |7; 1〉 = 0

L3 |7; 1〉 = −20

3

(
L2
−1 −

3

2
L−2

)
|2〉

Lp |7; 1〉 = 0 ∀p ≥ 4 .

In both cases L3 maps |h+m; 1〉 to a multiple of the unique descendant of |h〉 on level
l − 1 which is annihilated by Lp ∀p ≥ 2.

We conjecture that it actually suffices to have two parameters in order to charac-
terise rank 2 representations of type I and K. As we have a nullvector already on the
lower level l this unique state on level m − 1 which is annihilated by Lp ∀p ≥ 2 is a
descendant of this nullvector. Hence, we want to lift the restrictions by incorporating
one further non-zero mapping, the mapping by Lm−(l−1) to the unique state on level
l−1 which is annihilated by Lp ∀p ≥ 2, in order to ensure that we do not map into pure
descendants of the lower nullvector. This is, indeed, equivalent to demanding that the
application of all normal ordered positive Virasoro monomials of length m annihilates
|h+m; 1〉 except for Lm

1 and Ll−1
1 Lm−(l−1).

For all bulk rank 2 representations listed in table 4.3 we were able to see the level
of the first logarithmic nullvector already in the calculated fusion spectrum. We also
confirmed this lowest logarithmic nullvector using the algorithm of section 4.2. It is
remarkable to see that for the bulk rank 2 representations R(2)(0, 1)i and R(2)(0, 2)i,
i = 5, 7, we encounter the first nullvectors already on lower levels than the ones proposed
in section 4.2.3. However, the solutions in section 4.2.3 are given for general β; it is
only for the special βs in table 4.3 that we encounter solutions even on lower levels.

Representations of rank 3

Representations of rank 3 only appear for weights in the bulk. In the following we will
discuss the four lowest examples explicitly.

R(3)(0,0,1,1): Although we only encounter a rank 3 indecomposable structure in this
representation, we nevertheless need four states to generate it. We will see that this is
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Table 4.4: Number of states for R(3)(0, 0, 1, 1)

level number of states total number new null

Jordan Jordan Jordan of state subrepresentations

level 0 level 1 level 2

0 1 1 – 2 –

1 2 1 1 4 –

2 3 1 1 5 1

3 5 2 2 9 –

4 8 3 3 14 –

5 11 5 4 20 2

6 17 7 6 30 –

7 23? 11? 8? 42? 2

necessary and natural by two different ways of visualising the nullvector structure of
R(3)(0, 0, 1, 1). The explicit Jordan form of the L0 action on R(3)(0, 0, 1, 1) is given in
appendix A.1.

The first way starts out with the Jordan diagonalisation of the representation and
is shown in figure 4.4 L1. We have two groundstates |0; i〉, i = 0, 1, at level 0 which are
interrelated by the rank 2 indecomposable action of L0

L0 |0; 1〉 = |0; 0〉 L0 |0; 0〉 = 0 .

On level 1, the level of the first possible nullvector on |0; i〉, the Jordan cell is enhanced
to rank 3

L0 |1; 2〉 = |1; 2〉 + |1; 1〉
L0 |1; 1〉 = |1; 1〉 + |1; 0〉
L0 |1; 0〉 = |1; 0〉 .

A further fourth state of weight 1 decouples in the L0 action

L0 |1; 3〉′ = |1; 3〉′ ;

but this seeming decoupling is deceiving as the singular descendant of |0; 1〉 is actually
composed of the sum of the Jordan cell state |1; 1〉 and the “decoupling” state |1; 3〉 ′;
indeed the action of L−1 on |0; i〉, i = 0, 1, is given by

L−1 |0; 0〉 = |1; 0〉
L−1 |0; 1〉 = |1; 1〉 + |1; 3〉′ .
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Figure 4.4: Two ways to visualise R(3)(0, 0, 1, 1)
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The further nullvector structure is also depicted in figure 4.4 L1. We were able to
calculate all states up to level 6 explicitly. The total number of states is also attainable
for level 7, but in an indirect way via the second view on this representation to be
discussed below. We give a list of the total number of states in table 4.4; we split the
number according to the position of the state in the Jordan cell, which we also call the
“Jordan level” of that state as introduced in section 2.2. E.g. for level 5 there are four
rank 3 Jordan cells, one additional rank 2 Jordan cell plus the four which are subcells
of a rank 3 cell as well as six additional single eigenvalues.

Now we find one nullvector on level 2, the singular descendant L−2 |0; 0〉. This
nullvector has two singular descendants on level 5 and 7 which are also nullvectors
of |1; 0〉 = L−1 |0; 0〉 due to the bulk embedding structure. The “decoupling” state
|1; 3〉′ generates an irreducible representation with null singular vectors on level 5 and
7. These vectors as well as their descendants are the only nullvectors up to level 7. We
do not yet encounter a logarithmic nullvector up to this level.

In a second way of visualising this representation we can actually view it as an
indecomposable combination of rank 2 representations whose structure is given in much
the same way as in figure 4.1 A; we only have to replace the two lowest black dots by
the two rank 2 representations R(2)(0, 1)5 and the higher by R(2)(2, 7). Surprisingly,
we can also put R(3)(0, 0, 1, 1) in a likewise form with the lower two black dots replaced
by R(2)(0, 1)7 and the higher with R(2)(2, 5). Let us see how this comes about.

We choose the setup for the lowest levels as depicted in figure 4.4 L2: we have two
separate rank 2 representations with lowest states |0; 0〉 respectively |0; 1〉. |0; 0〉 has a
logarithmic partner at level 1, called m1, to its singular descendant m0 := L−1 |0; 0〉 =
|1; 0〉. Likewise, |0; 1〉 has a logarithmic partner at level 1, called m3, to its singular
descendant m2 := L−1 |0; 1〉 = |1; 1〉 + |1; 3〉′. Furthermore, both representations are
connected by the indecomposable L0 action on |0; 1〉. This directly promotes to the
indecomposable action of L0 on their L−1 descendants

L0m0 = |1; 0〉 L0m2 = |1; 2〉 + |1; 0〉

as well as the consistent L1 action

L1m0 = 0 L1m2 = 2 |0; 0〉 .

Now we still have to check whether we can find m1 and m3 which fit this setup. We
express m1 and m3 as linear combinations of the level 1 states |1; j〉, j = 1, 2, 3 and
impose the following conditions and parameters:

• L0m1 = m1 +m0,

• L1m1 = ξ1|0; 0〉,

• L0m3 = m3 +m2 + rm1 + sm0,

• L1m3 = ξ2|0; 1〉 + ξ3|0; 0〉.
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We find that s and ξ3 are actually irrelevant parameters which can be set to 0 using
the residual freedom. r and ξ2 are functions of ξ1. Hence, there is one free parameter
in this representation. It is most useful to just express r in terms of ξ1 and then study
the relation between ξ1 and ξ2 as these parameters are the defining parameters of the
rank 2 representations we started with. The relation is given by

(12 ξ1 + 1) (12 ξ2 + 1) = 25 .

There are only two solutions which fit the bulk rank 2 spectrum discussed above; they
also seem to be the most natural ones

ξ1 = ξ2 = − 1

2

ξ1 = ξ2 =
1

3
.

These two solutions exactly give the lower level rank 2 representations which we pro-
posed above to be the two lower dots in the figure 4.1 A like setup. In order to get
the respective representation corresponding to the higher dot of 4.1 A we just have to
count the number of states and compare these. As this higher rank 2 representation
only “fills up” states which would be null in a pure rank 2 setting, but are not null in
this rank 3 setting (e.g. L−2|0; 1〉) we do not need any further parameters to describe
this representation.

Therefore there is only the one additional parameter r besides the parameters of
the ingredient rank 2 representations which we need to describe R(3)(0, 0, 1, 1). It is
given in terms of ξ1 as

r =
−25

12 ξ1 + 1
.

Finally, we still need to explain how to determine the number of states for level 7
(as in table 4.4). If we want to use the total number of states to determine this higher
black dot in the above setting we can decide this question knowing the total number
of states of R(3)(0, 0, 1, 1) up to level 5 (R(2)(2, 5) and R(2)(2, 5) already differ at their
third level). But then, we can, in turn, easily use this setting in order to determine the
number of states for any higher level.

R(3)(0,0,2,2): The rank 3 representation R(3)(0, 0, 2, 2) looks much the same as the
previous one.

Again the first way to visualise the representation starts out with its Jordan dia-
gonalisation and is shown in figure 4.5 M1. We have two groundstates |0; i〉, i = 0, 1,
at level 0 which are interrelated by the rank 2 indecomposable action of L0

L0 |0; 1〉 = |0; 0〉 L0 |0; 0〉 = 0 .

On level 1 we encounter the first nullvector L−1|0; 0〉. The level 1 descendant of |0; 1〉
is not null, though, due to the rank 2 indecomposable structure. On level 2 the Jordan
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Table 4.5: Number of states for R(3)(0, 0, 2, 2)

level number of states total number new null

Jordan Jordan Jordan of state subrepresentations

level 0 level 1 level 2

0 1 1 – 2 –

1 1 – – 1 1

2 3 1 1 5 –

3 4 1 1 6 –

4 7 2 2 11 –

5 9 3 2 14 2

6 15? 5? 4? 24? –

7 19? 7? 4? 30? 2
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Figure 4.5: Two ways to visualise R(3)(0, 0, 2, 2)
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cell is enhanced to rank 3

L0 |2; 2〉 = 2 |2; 2〉 + |2; 1〉
L0 |2; 1〉 = 2 |2; 1〉 + |2; 0〉
L0 |2; 0〉 = 2 |2; 0〉 .

We find two further states on level 2: One of these is just the level 1 descendant of
L−1|0; 1〉, i.e. L2

−1|0; 1〉. The other one is a new state |2; 3〉′ which again seemingly
decouples in the L0 action

L0 |2; 3〉′ = 2 |2; 3〉′

but which is connected to the rank 3 cell by the descendant equations

L−2 |0; 0〉 = |2; 0〉
L−2 |0; 1〉 = |2; 1〉 + |2; 3〉′ .

The further nullvector structure is as depicted in figure 4.5 M1. We also give the
total number of states on the different levels in table 4.5. These numbers have been
calculated explicitly up to level 5 and extrapolated by a similar argument as in the
R(3)(0, 0, 1, 1) case up to level 7.

Let us come to the second way of visualising R(3)(0, 0, 2, 2). Again we can view
this representation as an indecomposable combination of rank 2 representations whose
structure is given in much the same way as in figure 4.1 A; this time we have to replace
the two lowest black dots by two rank 2 representations R(2)(0, 2)5 and the higher by
R(2)(1, 7). And as in the R(3)(0, 0, 1, 1) case we obtain the rank 3 representation in a
second way taking the lower two black dots to be R(2)(0, 2)7 and the higher one to be
R(2)(1, 5).

This comes about in almost the same way as in the R(3)(0, 0, 1, 1) case. The impor-
tant difference is that the existence of a nullvector on a level lower than the Jordan cell
in the constituent representations, e.g. R(2)(0, 2)7, leads to a shift in the true singular
vectors as soon as we combine them to the rank 3 representation. To see this let us
choose the setup for the lowest levels as depicted in figure 4.5 M2: we have two separate
rank 2 representations with lowest states |0; 0〉 respectively |0; 1〉. On level 1 we have
an ordinary nullvector descendant on |0; 0〉. The level 1 descendant on |0; 1〉, however,
is rendered non-null by the rank 2 structure; L−1|0; 1〉 is actually the lowest state of the
third rank 2 representation R(2)(1, h) which we also have to fill in to indecomposably
combine these rank 2 representations to R(3)(0, 0, 2, 2). Due to this non-vanishing L−1

action on |0; 1〉 the singular vector on |0; 1〉 is shifted to

m2 :=

(
L−2 −

3

2
L2
−1

)
|0; 1〉 .

We have to change our ansatz accordingly. We assume that both level 2 singular
descendants m0 := L−2 |0; 0〉 and m2 have logarithmic partnersm1 and m3 respectively.
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Furthermore, both separate rank 2 representations are connected by the indecom-
posable L0 action on |0; 1〉. This directly promotes to the indecomposable action of L0

on their level 2 descendants

L0m0 = 2m0 L0m2 = 2m2 +m0

as well as the consistent L2 action

L2m0 = 0 L2m2 = −5 |0; 0〉 .

In order to fit m1 and m3 to this setting we express them as linear combinations of the
level 2 states |2; j〉, j = 1, 2, 3 as well as L2

−1|0; 1〉 and impose the following conditions
and parameters:

• L0m1 = 2m1 +m0,

• L1m1 = 0,

• L2m1 = ξ1|0; 0〉,

• L0m3 = 2m3 +m2 + rm1 + sm0,

• L1m3 = 0,

• L2m3 = ξ2|0; 1〉.

The two parameters ξ1 and ξ2 are the defining parameters of the constituent rank 2
representations. We find that s is actually an irrelevant parameter which can be set to
0 using the residual freedom. r and ξ2 are functions of ξ1. We express r in terms of ξ1
and then study the relation between ξ1 and ξ2

(
1− 48

5
ξ1

) (
1− 48

5
ξ2

)
= 49 .

As in the R(3)(0, 0, 1, 1) case we find two solutions which at the same time fit the bulk
rank 2 spectrum and also seem to be the most natural ones

ξ1 = ξ2 = − 5

8

ξ1 = ξ2 =
5

6
.

These two solutions give just the lower level rank 2 representations proposed in the
setup above. Again, counting the number of states up to level 5 we uniquely determine
the third representation needed to complete this setup.

Besides the parameters ξi of the ingredient rank 2 representations we need one
additional parameter r to describe this construction of R(3)(0, 0, 2, 2). It is given by

r =
49

48
5 ξ1 − 1

.
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Table 4.6: Number of states for R(3)(0, 1, 2, 5)

level number of states total number new null

Jordan Jordan Jordan of state subrepresentations

level 0 level 1 level 2

0 1 – – 1 –

1 1 1 – 2 –

2 2 2 – 4 –

3 3 3 – 6 –

4 5 5 – 10 –

5 8 7 1 16 –

R(3)(0,1,2,5): The rank 3 representation R(3)(0, 1, 2, 5) is the only higher rank 3
representation which was accessible to our calculations up to that level at which the
rank 3 structure appears. From our knowledge of the other towers of representations
it should nevertheless be fair to conjecture that most of the generic features of rank 3
representations in these cp,q models are already visible in this example.

In table 4.6 we list the number of states as calculated. We have also included the
basis of states which brings L0 into Jordan diagonal form in appendix A.3.

Again we find two ways to visualise the embedding structure. The Jordan diago-
nalisation of L0 gives an embedding structure of the form depicted in figure 4.6 N1.
As the situation is even more complicated as for R(3)(0, 0, 1, 1) and R(3)(0, 0, 2, 2) we
have labeled the states according to the indexed basis which is chosen by the computer
and listed in appendix A.3. We can see that both singular vectors on n0, i.e. n4 at
level 1 and n23 at level 2, are incorporated into rank 2 Jordan cells. But nevertheless
we do not encounter a first rank 3 cell until level 5. The first vector of this rank 3
Jordan cell, n16, which is a true eigenvector, is given by the joint singular vector on
n4 and n23. As in the R(3)(0, 0, 1, 1) case there is a vector at level 5 which seems to
decouple from the representation. But again this decoupling in terms of the L0 action
is deceiving as this vector is a sum of descendents of n5 and n24 (see appendix A.3 for
the explicit expressions). Hence, as for R(3)(0, 0, 1, 1) this rank 3 representation needs
four generating states.

As a second way to visualise this representation we conjecture that we can construct
this representation by an indecomposable combination of the four rank 2 representations
R(2)(0, 1)7, twice R(2)(2, 5) and R(2)(7, 12) assembled as in figure 4.1 B; as before
we replace the black dots in figure 4.1 B by the respective rank 2 representations.
The picture that emerges is depicted in figure 4.6 N2. What are the hints at such a
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Figure 4.6: Two ways to visualise R(3)(0, 1, 2, 5)
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deconstruction of R(3)(0, 1, 2, 5)? First of all we find that

L1 n5 = −1

2
n0 ;

this equation reproduces the defining β parameter of R(2)(0, 1)7. Hence, the two lowest
generating states ofR(3)(0, 1, 2, 5), n0 and n5, generate a tower of states which resembles
the rank 2 representation R(2)(0, 1)7. The only difference to a true subrepresentation
R(2)(0, 1)7 is that the usual first nullvector on n0, n23 = L−2 n0, is rendered non-null
by its inclusion into an indecomposable rank 2 cell with

L0 n23 = 2n23

L0 n24 = 2n24 + n23 . (4.10)

In the R(3)(0, 0, 1, 1) and R(3)(0, 0, 2, 2) cases we have seen examples that the inde-
composable connection of two rank 2 cells of the same type of rank 2 representation
produces a rank 3 cell and a seemingly decoupling further state. But this is exactly the
structure we discover in this case at level 5—a rank 3 cell

L0 n16 = 2n16

L0 n17 = 2n17 + n16

L0 n18 = 2n18 + n17

as well as a seemingly decoupling state n70. Hence, we conjecture that n23 and n24 are
actually both the lower generators of towers of states which both resemble R(2)(2, 5),
but which are indecomposably connected according to equation (4.10). This structure
up to level 5 is in perfect agreement with the total count of states given in table 4.6.
Unfortunately, we cannot say anything about the embedding structure or the count
of states for higher levels and, thus, the inclusion of the fourth rank 2 representation
R(2)(7, 12) is highly conjectural. It is only lead by the intuition that in any rank 2
structure the first nullvectors on the true eigenstate have to have non-null correspond-
ing states on the side of the logarithmic partner due to the non-degeneracy of the
Shapovalov form.

There is, however, one further way of looking at the situation. Let us regard the
fusion equation of the irreducible representation of weight h = 1/3 and the rank 2
representation R(2)(1, 5)

V(1/3) ⊗f R(2)(1, 5) = R(3)(0, 1, 2, 5) .

But, as described before, we can also view R(2)(1, 5) as a combination of four towers
of states which resemble its irreducible counterparts in terms of numbers of states and
singular vectors but which are indecomposably connected to form R(2)(1, 5). In this
case, we can think of R(2)(1, 5) as being constructed by indecomposably connecting
V(1), twice V(5) as well as V(12). But the fusion of its single constituents should be
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consistent with the fusion of R(2)(1, 5) itself. Therefore, inspecting the fusion rules (the
first two calculated, see appendix B.1, the third inferred from the fusion rules of section
4.6)

V(1/3) ⊗f V(1) = R(2)(0, 1)7

V(1/3) ⊗f V(5) = R(2)(2, 5)

V(1/3) ⊗f V(12) = R(2)(7, 12)

we are again lead to the conjecture that we can build R(3)(0, 1, 2, 5) by indecomposably
connecting R(2)(0, 1)7, twice R(2)(2, 5) and R(2)(7, 12).

Like the previous two rank 3 representations R(3)(0, 1, 2, 5) can also be composed
of rank 2 representations in a second way. Indeed, an inspection of the fusion equation

V(5/8) ⊗f R(2)(5/8, 21/8) = R(3)(0, 1, 2, 5)

leads to the conjecture that we can also construct R(3)(0, 1, 2, 5) by indecomposably
connectingR(2)(0, 2)7, twiceR(2)(1, 5) andR(2)(7, 15). This is also in perfect agreement
with the total count of states up to the accessible level 5. To see the defining parameter
of the lowest rank 2 representation R(2)(0, 2)7 we have to keep in mind that as in the
R(3)(0, 0, 2, 2) case the absence of nullvectors can change the singular vectors. And
indeed, as L−1 does not annihilate n0 due to the indecomposable structure the level 2
singular descendant on n0 is shifted to

n′23 = n23 −
3

2
n4 .

Taking into account the non-trivial action of the positive Virasoro modes on the new
state n24 at level 2 (after removal of some residual freedom)

L1 n24 = 3n5

L2 n24 = −17

12
n0 (4.11)

we find a suitable logarithmic partner of n′
23 as

n′24 = n24 +
9

8
n4 −

3

2
n5 .

This actually exhibits the desired properties

L1 n
′
24 = 0

L2 n
′
24 =

5

6
n0 ,

especially the correct defining parameter β = 5/6 for R(2)(0, 2)7.

R(3)(0,1,2,7): Although the rank 3 representation R(3)(0, 1, 2, 7) is not accessible to
our computational power we can nevertheless tackle its decomposition in the same way
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as the fusion decomposition method in the preceding case. For this argument we take
the appearances of R(3)(0, 1, 2, 7) for granted as conjectured in appendix B.1. Then
looking at the fusion equation

V(5/8) ⊗f R(2)(1/8, 33/8) = R(3)(0, 1, 2, 7)

we conjecture that R(3)(0, 1, 2, 7) can be constructed by indecomposably connecting
the four rank 2 representations R(2)(0, 1)5, twice R(2)(2, 7) and R(2)(5, 12). Similarly,
looking at

V(1/3) ⊗f R(2)(1/3, 10/3) = R(3)(0, 1, 2, 7) ⊕R(2)(1/3, 10/3)

we can think of R(3)(0, 1, 2, 7) to be composed of R(2)(0, 2)5, twice R(2)(1, 7) and
R(2)(5, 15).

4.4.2 Explicit calculation of the fusion products

We have calculated the fusion product of a large variety of representations in the aug-
mented c2,3 = 0 model. To do this we have used the Nahm algorithm described in
section 4.3 to determine the fusion product of irreducible and rank 1 representations
with themselves as well as with the lowest lying and first excited rank 2 representations.
In order to show that the fusion algebra indeed closes we have used the symmetry and
associativity of the fusion product to calculate the fusion of higher rank representations.
We have also used these conditions in order to perform consistency checks as described
in the next subsection. The results itself are listed in appendix B.1.

In section 4.6 we want to propose a generalisation of the BPZ and cp,1 fusion rules
which is applicable to all augmented cp,q models and, hence, also describes in a unifying
way the fusion of this model. But as these general rules look quite complex it is also
possible to find simplified versions for the augmented c2,3 = 0 model, e.g.

V(5/8) ⊗fW(1/3|i) = W(−1/24|i) ,

where W(h|i) signifies the ith element in the weight chain starting with h.

4.4.3 Consistency of fusion products

A consistent fusion product has to obey two main properties, symmetry and associati-
vity. We have used both these properties for consistency checks for the chosen spectrum
and the performed calculation as well as for the determination of the fusion product of
higher rank representations.

The main implication of this consistency, however, is the absence of an irreducible
representation of weight h = 0 in the spectrum, call it V(0). The representation V(0)
would be endowed with nullvectors on level 1 and 2 and would, hence, only consist of
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the one groundstate. Performing the Nahm algorithm of section 4.3 we get the following
fusion products

V(0) ⊗f V(0) = V(0) (4.12)

V(0) ⊗f V(h) = 0 ∀h ∈
{

5

8
,
1

3
,
1

8
,
−1

24
,
33

8
,
10

3
,
21

8
, 2, 1, 7, 5

}
. (4.13)

On the other hand, using just the equations (4.13) and the fusion rules of appendix B.1
we arrive at

(V(0)⊗f (V(2) ⊗f V(2))) = (V(0) ⊗f V(0)) ⊕ (V(0) ⊗f V(2))

= V(0) ⊗f V(0)

as well as by associativity at

((V(0)⊗f V(2)) ⊗f V(2)) = 0⊗f V(2)

= 0 .

(Similar equations can be obtained involving the other V(h) with h from (4.13).) This
argument thus implies

V(0)⊗f V(0) = 0 .

But this is in clear contradiction to (4.12). Fortunately, however, V(0) completely
decouples from the rest of the fusion (as one can see in appendix B.1). Hence, the
contradiction is easily solved by simply excluding V(0) from the spectrum.

On the other hand the representations R(2)(0, 1)5 and R(2)(0, 1)7 contain a state
with weight 0 which generates a subrepresentation R(1)(0)1. This subrepresentation
is indecomposable but neither is it irreducible nor does it exhibit any higher rank
behaviour. It only exists as a subrepresentation as it needs the embedding into the rank
2 representation in order not to have nullvectors at both levels 1 and 2. But nevertheless,
being a subrepresentation of a representation in the spectrum it has to be included into
the spectrum, too. Similarly, the representations R(2)(0, 2)5 and R(2)(0, 2)7 contain
a rank 1 subrepresentation R(1)(0)2. However, looking at the fusion rules which we
calculate for these two rank 1 representations (see appendix B.1), especially

R(1)(0)2 ⊗f V(h) = V(h) ∀h ∈
{

5

8
,
1

3
,
1

8
,
−1

24
,
33

8
,
10

3
,
21

8
, 2, 1, 7, 5

}
,

we see that the situation is after all not really too bad: R(1)(0)2 behaves much more
like the true vacuum representation as the expected V(0) (only regard the behaviour
in (4.13)).

We now want to present one nice example how to use the symmetry and associativity
of the fusion product in order to determine the higher rank fusion. Let us assume that
we already know the fusion of irreducible representations with themselves as well as
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with rank 2 representations, i.e. the results we actually calculated using the Nahm
algorithm (see appendix B.1). Then we start off with

((
V(1/8) ⊗f V(1/3)

)
⊗f R(2)(1/3, 1/3)

)
= R(2)(1/8, 1/8) ⊗f R(2)(1/3, 1/3) .

Using associativity we can also calculate

(
V(1/8) ⊗f

(
(V(1/3) ⊗f R(2)(1/3, 1/3)

))

=
(
V(1/8) ⊗f

(
R(3)(0, 0, 2, 2) ⊕R(2)(1/3, 1/3)

))

= 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8) ⊕
(
V(1/8) ⊗f R(3)(0, 0, 2, 2)

)
.

On the other hand we can use the symmetry as well as the associativity once more to
get

(
V(1/3) ⊗f

(
V(1/8) ⊗f R(2)(1/3, 1/3)

))

=
(
V(1/3) ⊗f

(
2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8)

))

= 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24) .

By comparison we thus arrive at already two new higher rank fusion products

R(2)(1/8, 1/8) ⊗f R(2)(1/3, 1/3)

= 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

V(1/8) ⊗f R(3)(0, 0, 2, 2)

= 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24) .

The complete list of the higher rank fusion products which we calculated is given in
appendix B.1.

4.4.4 An unexpected connection to quantum spin chains

Inspecting the field content of the augmented c2,3 = 0 model as calculated in this sec-
tion, we actually find that the numerical results of [41], table 1, which are supposed to
give the low level state content of CFT representations at c = 0 for an XXZ quantum
spin chain, perfectly match our representations R(1)(0)2, R(1)(0)1 and V(1/3), respec-
tively. Although the numerical results give only relatively few levels we conjecture that
they are correctly described by the above mentioned c2,3 = 0 representations.

Regarding the fusion product of these representations (as given in appendix B.1),
it is interesting to see that the two representations R(1)(0)2 and R(1)(0)1 already in-
duce the existence of the irreducible V(1/3). Furthermore, these three representations
belong to a subalgebra of the fusion algebra of the augmented c2,3 = 0 model. Besides
these three representations this subalgebra comprises the two rank 2 representations
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R(2)(0, 2)5 and R(2)(0, 1)7, of which R(1)(0)2 and R(1)(0)1 are subrepresentations, as
well as excited irreducible representations with weights in the weight chain of h = 1/3
and half of the excited rank 2 representations associated to the bulk weight chain of
h = 0. We obtain this subalgebra by restricting spectrum and fusion to the left column
of the Kac table in table 4.1, i.e. s = 1. This yields a simplified spectrum of conformal
weights of

hr,1 =
r2 − 3r + 2

6
. (4.14)

Thus, the subalgebra is given by the following Hilbert space

H′ =

∞⊕

ρ=1

V(h3ρ,1) ⊕
∞⊕

ρ=1

(
R(2)(h3ρ−2,1, h3ρ+2,1)⊕R(2)(h3ρ−1,1, h3ρ+1,1)

)

where the ρ = 1 terms of the rank 2 representations are given byR(2)(0, 2)5 respectively
R(2)(0, 1)7 (for the correct indices). Certainly, this Hilbert space H′ also contains
all (ir)reducible subrepresentations of its rank 2 representations. The spectrum of
irreducible as well as reducible rank 1 (sub)representations within this subalgebra is
compatible with the spectrum of equation (5.1) in [41]; our variable r in (4.14) has
to be identified with 2s + 1 of [41]. Indeed, the characters given in equation (5.2)
of [41] agree with the state content of representations in H′, i.e. with the irreducible
representations for the weights h3ρ,1 = 1

3 ,
10
3 ,

28
3 , . . . and with the rank 1 reducible but

indecomposable subrepresentations of the rank 2 representations for integer weights h =
0, 1, 2, 5, 7, . . .. Hence, this subalgebra is compatible with the spectrum, the characters,
and the available numerical results presented in [41].

This is an unexpected and very exciting connection of logarithmic CFT and, in
particular, the augmented c2,3 = 0 model to quantum spin chains.

4.5 Fusion analysis of the augmented Yang–Lee model

Unfortunately, a complete exploration of the low lying spectrum of the next easiest
general augmented model, the augmented Yang–Lee model at c2,5 = −22/5, is not yet
possible due to limitations on the computational power. Nevertheless, we were able to
compute most of the crucial features which we observed in the fusion of the augmented
c2,3 = 0 model, including the lowest rank 2 and rank 3 representations as well as the
absence of irreducible representations corresponding to the original minimal model.
We also give various examples of fusion products which confirm the general fusion rules
conjectured in section 4.6. The explicit results are listed in appendix B.2.

The Kac table of c2,5 = −22/5 is depicted in table 4.7. We encounter two bulk
weight chains

W bulk, YL
(1,1) := {{0}, {1, 4}, {7, 13}, . . .}

W bulk, YL
(2,1) :=

{{
−1

5

}
,

{
9

5
,
14

5

}
,

{
44

5
,
54

5

}
, . . .

}
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Table 4.7: Kac table for c2,5 = −22/5

s

1 2 3 4 5

1 0 11
8 4 63

8 13

2 −1
5

27
40

14
5

247
40

54
5

3 −1
5

7
40

9
5

187
40

44
5

4 0 −1
8 1 27

8 7

5 2
5 − 9

40
2
5

91
40

27
5

6 1 −1
8 0 11

8 4

r 7 9
5

7
40 −1

5
27
40

14
5

8 14
5

27
40 −1

5
7
40

9
5

9 4 11
8 0 −1

8 1

10 27
5

91
40

2
5 − 9

40
2
5

11 7 27
8 1 -1

8 0

12 44
5

187
40

9
5

7
40 −1

5

13 54
5

247
40

14
5

27
40 −1

5

14 13 63
8 4 11

8 0

Table 4.8: Specific properties of rank 2 representations in c2,5 = −22/5

β1 β2 level of level of first level of first type

log. partner nullvector log. nullvector

R(2)(11/8, 11/8) – – 0 2 18 A

R(2)(27/40, 27/40) – – 0 4 16 A

R(2)(2/5, 2/5) – – 0 5 15 A

R(2)(7/40, 7/40) – – 0 6 14 A

R(2)(−1/8,−1/8) – – 0 8 12 A

R(2)(0, 1)7 3/5 – 1 4 13 G

R(2)(0, 1)13 −3/2 – 1 4 7 H

R(2)(0, 4)7 0 231/50 4 1 13 I

R(2)(0, 4)13 0 231/25 4 1 7 K

R(2)(−1/5, 9/5)9 −42/125 – 2 3 11 G

R(2)(−1/5, 9/5)11 21/50 – 2 3 9 H

R(2)(−1/5, 14/5)9 21/125 21/50 3 2 11 I

R(2)(−1/5, 14/5)11 −126/625 −63/125 3 2 9 K
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as well as five border weight chains

W border, YL
(1,2) :=

{
11

8
,
27

8
,
155

8
, . . .

}

W border, YL
(2,2) :=

{
27

40
,
187

40
,
667

40
, . . .

}

W border, YL
(3,2) :=

{
7

40
,
247

40
,
567

40
, . . .

}

W border, YL
(4,2) :=

{
−1

8
,
63

8
,
95

8
, . . .

}

W border, YL
(5,1)

:=

{
2

5
,
27

5
,
77

5
, . . .

}

and a chain {−9/40, 91/40, 391/40, . . .} of weights on the corners. In table 4.8 we
present all rank 2 representations which we found in our sample calculations (see ap-
pendix B.2) as well as their defining parameters. This is indeed the complete spectrum
of lowest rank 2 representations to be expected according to the general considerations
of section 4.6.

As in the c2,3 = 0 model case the lowest border rank 2 representations, given in
the first block of table 4.8, do not need a further parameter for characterisation. Their
structure is again represented by figure 4.1 A.

The structure of the lowest bulk rank 2 representations, given in the second block
of table 4.8, is depicted in figure 4.3; their respective special type is given in the last
column. The representations of type G and H exhibit their Jordan cell on the level of
the first possible nullvector of the groundstate and can thus be described by just one
parameter β = β1

(L1)
l |h+ l; 1〉 = β |h〉 ;

l denotes the level of the Jordan cell. Besides this, we have Lp |h + l; 1〉 = 0 for all
p ≥ 2 and, hence, all other Virasoro monomials of length l vanish applied to |h+ l; 1〉.

The representations of type I and K, however, have to accommodate a first nullvec-
tor on the groundstate already below the level of the Jordan cell. The same difficulties
as in the c2,3 = 0 model apply. We again need two parameters β1 and β2 parameterising

(L1)
l |h+ l; 1〉 = β1 |h〉

P (L) |h+ l; 1〉 = β2 |h〉 ,

where we have taken P (L) = L4 for R(2)(0, 4)7 and R(2)(0, 4)13 as well as P (L) = L2 L1

for R(2)(−1/5, 14/5)9 and R(2)(−1/5, 14/5)11 . All other Virasoro monomials of length
l vanish applied to |h+ l; 1〉. This behaviour actually confirms our conjecture of section
4.4.1 that we only need two parameters for this type of representation; furthermore,
the above presented parameterisation is performed exactly in the proposed way.
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Again we checked for the appearance of the lowest logarithmic nullvector using the
algorithm of section 4.2. This could be successfully done in all cases listed in table
4.8. For this c2,5 = −22/5 model these nullvector calculations were actually a nice
and necessary check of our proposed fusion rules as this information was usually not
directly accessible in the fusion spectrum due to the computational limits on L.

As a last issue in the discussion of the augmented Yang–Lee model we want to
have a look at the irreducible representations with weights in the Kac-table of the
corresponding non-augmented minimal model. There are two possible representations
of this kind in this model, V(h = 0) with first nullvectors on levels 1 and 4 as well as
V(h = −1/5) with first nullvectors on levels 2 and 3. Explicit calculations with the
Nahm algorithm lead to

V(−1/5) ⊗f V(−1/5) = V(0) ⊕ V(−1/5) (4.15)

V(−1/5) ⊗f V(h) = 0 ∀h ∈
{

9

5
,
14

5
, 4

}
. (4.16)

But again using only the equations of (4.16) and the fusion rules of appendix B.2 we
arrive at the contradicting results

(
V(−1/5) ⊗f

(
V(14/5) ⊗f V(14/5)

))

=
(
V(−1/5) ⊗f V(0)

)
⊕
(
V(−1/5) ⊗f V(4)

)
⊕
(
V(−1/5) ⊗f V(−1/5)

)

⊕
(
V(−1/5) ⊗f V(9/5)

)

=
(
V(−1/5) ⊗f V(0)

)
⊕
(
V(−1/5) ⊗f V(−1/5)

)

as well as
((
V(−1/5) ⊗f V(14/5)

)
⊗f V(14/5)

)
= 0⊗f V(14/5)

= 0

which lead to

V(−1/5) ⊗f V(0) = 0

V(−1/5) ⊗f V(−1/5) = 0 .

A similar calculation applies to V(0). Thus, we have to discard V(0) and V(−1/5) from
the spectrum.

But with the same reasoning as in the augmented c2,3 = 0 model case we en-
counter rank 1 subrepresentations of rank 2 representations which are generated by
states with weights h = 0 and h = −1/5. We therefore have to include the four rank 1
indecomposable (but not irreducible) representations R(1)(0)1, R(1)(0)4, R(1)(−1/5)2
and R(1)(−1/5)3 into the spectrum. R(1)(0)4 actually acquires the role of the vacuum
representation.
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4.6 Representations and fusion product for general aug-

mented cp,q models

In this section we conjecture fusion rules for general augmented cp,q models; we fur-
thermore discuss their spectrum of representations which is to be consistent with the
symmetry and associativity of the fusion product. This conjecture is mainly sub-
stantiated by the thorough exploration of the full fusion algebra for the lower lying
representations of the augmented model c2,3 = 0 in section 4.4. In addition, we have
checked the proposed rules as well as the existence of the lowest rank 2 and rank 3
indecomposable representations for a considerable number of fusion products in the
augmented Yang-Lee model at c2,5 = −22/5 in section 4.5. The explicitly calculated
fusion products are listed in appendix B.

4.6.1 The spectrum of representations

For weights on the border and corners of the Kac table the situation looks much the
same as in the cp,1 augmented model case [45]. States corresponding to weights on
corners only generate irreducible representations. States with weights on the Kac-
table border, however, also form rank 2 indecomposable representations in addition
to irreducible ones. These rank 2 indecomposable representations are of the same
form as described in [45, 44]. They are either generated by two groundstates whose
weights are given by the lowest weight of one of the weight chains corresponding to
the Kac table border, see figure 4.1 A, or by two successive weights in the weight
chain, as in figure 4.1 B. For case A we actually do not need a further parameter to
describe the representation; in case B one further parameter β is sufficient—it is taken
to parameterise the equation

(L1)
l |h+ l; 1〉 = β |h〉 . (4.17)

As we can see in figure 4.1 these representations can actually be thought to consist
of several towers of states, each generated from a basic state by application of negative
Virasoro modes; these towers of states are very close to the corresponding irreducible
representations of the same weight as they exhibit the same number of nullvectors
at the levels given by the Kac table and, hence, the same number of states. They
(usually) are, however, not irreducible; but we can think of them as former irreducible
representations which have been indecomposably connected to form an indecomposable
representation. This indecomposable connection expresses itself by the indecomposable
action of L0 as well as the non-trivial action of a few of the positive Virasoro modes.
We need three such towers to build the indecomposable representation in case A, four
in case B.

The weights in the bulk of the Kac table exhibit an even richer structure as they
also form rank 3 representations of the Virasoro algebra. Let us first describe the rank
2 representations. All possibilities of choosing one weight each from two adjacent sets
in the weight chain will deliver the weights of the two generating states of a bulk rank
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2 representation which is generically unique. Only in case that this set of two weights
h(r1, s1), h(r2, s2) contains the lowest weight of this weight chain, let it be h(r1, s1),
there are still two possible representations with this set of weights. The additional index
is given by the level w of the weight in the second set of the weight chain which is not
(!) the first possible nullvector on h(r2, s2), i.e. which is not equal to h(r2, s2) + r2 s2.
The nullvector structure of these bulk rank 2 representations is a generalisation of the
one on the border. There are four different types of nullvector structure, depicted in
figure 4.1. The types G and H are very similar to the case on the border and also need
only one additional parameter β taken to parameterise equation (4.17). The novel
feature of types I and K is that they exhibit a first nullvector already below the level of
the first logarithmic partner. This makes it necessary to at least present two non-zero
parameters to describe these representations. They have to be chosen as described for
the examples in section 4.4. Conjecturally, two is also a sufficient number of parameters.
Figure 4.1 also shows that all four possible types of bulk rank 2 representations can be
split up into four towers of states in the above described spirit.

But the really new feature of the possible bulk representations are rank 3 represen-
tations. These need four generating states and are found in two different types. The
first of these two types is generated by two states of the lowest weight of this weight
chain as well as two states which are of the same weight in the second set of this weight
chain. This type is realised for the two lowest rank 3 representations for a given bulk
weight chain. The example R(3)(0, 0, 1, 1) is described in section 4.4.1 and depicted in
figure 4.4. As discussed there, one can actually build this representation by connecting
three rank 2 bulk representations roughly according to figure 4.1 A. Then, there is only
one additional parameter which is necessary to describe the representation.

The second type, which is supposedly the generic one, is generated by states of
weights from three adjacent sets in a bulk weight chain—we have to take both weights
from the middle set as well as one from each of the other two. This renders all possible
rank 3 representations. They are uniquely described by this set of four generating
weights. The example R(3)(0, 1, 2, 5), its defining parameters and its composition of
rank 2 representations have been discussed in section 4.4.1. This representation could
be composed by indecomposably connecting four bulk rank 2 representations, roughly
following figure 4.1 B. Unfortunately, this is the only example of this supposedly generic
type of rank 3 representation which is at our grasp up to the level where the rank 3
behaviour appears for the first time. Hence, these generalisations have to be taken with
the necessary caution, but nevertheless, they are motivated by similar generalisations
for the rank 2 representations. However, we expect the necessity to introduce more
defining parameters in cases where there appear more nullvectors on levels lower than
the first rank 3 Jordan cell.

Knowing how to compose the rank 3 representations of rank 2 representations we
automatically get the split-up of the whole rank 3 representation into towers of states
as discussed above for the rank 2 case.

Last but not least we still have to describe the spectrum of irreducible represen-
tations corresponding to weights in the Kac table bulk. The calculations for c2,3 = 0
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and c2,5 = −22/5 (see sections 4.4.3 and 4.5) show that it is not possible to include
irreducible representations corresponding to weights in the bulk which appear in the
Kac table of the corresponding non-augmented minimal model cp,q, i.e. weights in the
Kac table segment 1 ≤ r < q, 1 ≤ s < p. These weights exactly correspond to the
lowest weight of each bulk weight chain. As shown in the examples the inclusion of
these irreducible representations would simply violate the symmetry and associativ-
ity of the fusion product. On the other hand, the fusion of the border and corner
irreducible representations produces rank 2 representations R(2)(h(r1, s1), h(r2, s2))w
which contain the lowest weights of the corresponding bulk weight chain, let it be
h(r1, s1) in this case, as a generating state. This lowest weight state even generates an
indecomposable subrepresentation of R(2)(h(r1, s1), h(r2, s2))w which does not exhibit
higher rank behaviour. As they are subrepresentations of existing representations, these
kinds of representations have to appear in the spectrum as well and will be denoted
by R(1)(h(r1, s1))h(r2,s2)−h(r1,s1). In the fusion rules (r1, s1) appears to be that entry in
the minimal model Kac table which does not have its nullvector at h(r2, s2). Hence,
(r1, s1) seems to be sufficient to describe this rank 1 representation and we can set

R(1)
(r1,s1)

(h(r1, s1)) := R(1)(h(r1, s1))h(r2,s2)−h(r1,s1) .

This is the first example of a case where a rank 1 indecomposable representation on a
weight h appears in the spectrum although the corresponding irreducible representation
on h cannot be included consistently. The other weights in the bulk of the Kac table
induce ordinary irreducible representations which are consistent with the fusion algebra.

4.6.2 The fusion of irreducible representations

Consider first the fusion of two irreducible representations. If we describe an irreducible
representation V i

(r,s)(h) corresponding to a conformal weight h on a corner or a border

in the Kac table, we choose the index (r, s) with the smallest product rs. If there are
two pairs with the same product, we choose the one with larger r (although this last
point is mere convention and does not effect the result). Then, the fusion product for
i, j ∈ {corner, border} simply amounts to the untruncated BPZ-rules

(
Vi

(r1,s1)
(h1)⊗ Vj

(r2,s2)
(h2)

)
f

=

r1+r2−1∑

r3=|r1−r2|+1

step 2

s1+s2−1∑

s3=|s1−s2|+1

step 2

Ṽ(r3,s3)

∣∣∣
rules

. (4.18)

On the right hand side, however, we do not simply encounter a sum over irreducible
representations again. Some of the resulting Ṽ(r,s) are automatically combined into
rank 2 or rank 3 representations. The corresponding rules how to do this combination
(indicated as constraints in the equation) are given by:

1. For (r, s) on a corner Ṽ(r,s) is simply replaced by the corresponding irreducible
representation V corner

(r,s) (h(r, s)).
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2. Concerning the set of all (r, s) on the right hand side of (4.18) which correspond
to weights on the border there are two possibilities how to encounter rank 2
representations. If we find twice the same weight h(r1, s1) = h(r2, s2) which
is the lowest of a weight chain these two need to be replaced by the rank 2
representation R(2)(h(r1, s1), h(r2, s2)). Then, if we find two weights h(m1,m1),
h(m2,m2) of the same weight chain adjacent to each other in the chain, these
need to be replaced by R(2)(h(m1, n1), h(m2, n2)). All other weights in this set
simply form irreducible representations and are replaced by V border

(r,s) (h(r, s)).

3. For the set of all (r, s) on the right hand side of (4.18) which correspond to
weights in the bulk we first need to identify the rank 3 representations. Rank
3 representations need four generating states of the two possible types described
in the preceding subsection: either the two lowest weights and twice the same
weight of the second set of a bulk weight chain; or weights from three adjacent
sets of a bulk weight chain—both weights of the middle set and one from each
of the other two. The last is the generic case. If we encounter a set of four
weights in this manner we need to replace them by the rank 3 representation
R(3)(h(r1, s1), h(r2, s2), h(r3, s3), h(r4, s4)).

4. Rank 2 representations need two generating states. For bulk representations these
consist of one weight each from two adjacent sets in the weight chain. If this set of
two weights h(r1, s1), h(r2, s2) contains the lowest weight of this weight chain, let
it be h(r1, s1), there are still two possible representations with this set of weights.
The additional index is given by the level w of the weight in the third set of the
weight chain which is not (!) the first possible nullvector on h(r2, s2), i.e. which is
not equal to h(r2, s2) + r2 s2. Every two weights of this form have to be replaced
by the rank 2 representation R(2)(h(r1, s1), h(r2, s2))w.

5. After extraction of all rank 3 and rank 2 representations from the set of all (r, s)
within the bulk we find to each lowest weight h(r1, s1) of a bulk weight chain a
corresponding weight h(r2, s2) of the second tuple of this weight chain. These
form the rank 1 indecomposable representation R(1)(h(r1, s1))h(r2,s2)−h(r1,s1).

6. All (r, s) corresponding to weights in the bulk which have not been used up in
the three preceding points have to be replaced by V(r,s)(h(r, s)).

This set of rules requires the following remarks:

• Unfortunately, one cannot write down the fusion rules for general augmented the-
ories in such an elegant manner as for the augmented cp,1 models [45]. First of
all, we do not have border representations just on one side such that a restriction
to an infinite strip of the Kac-table nicely promotes the first border conformal
weights beyond that strip to corresponding rank 2 representations. Nevertheless,
the property that the second conformal weight to a border conformal weight (or-
dered by the level of their first nullvectors, resp. products rs) somehow represents
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the rank 2 representation seems to persist. Secondly, for the bulk there are sim-
ply not enough entries in the Kac table in order to uniquely label all different
irreducible, rank 2 and rank 3 representations.

• The fifth rule which describes the appearance of R(1)(h(r1, s1))h(r2,s2)−h(r1,s1) is
not needed for the fusion of border and corner representations with itself. Actu-
ally, the examples show that starting with border and corner representations the
whole fusion closes without the inclusion of any irreducible or rank 1 represen-
tation corresponding to weights in the bulk. It is only the appearance of these
irreducible or rank 1 representations as subrepresentations of rank 2 and rank 3
representations that makes us include these in the theory. We advocate that it
is only this setting they should be thought of to exist in. This point of view is
strongly stressed by the existence of the above discussed rank 1 representations
on the lowest weights of the bulk weight chains. Indeed, only their embedding
in a rank 2 representation makes the absence of one of the first two nullvectors
possible as it prevents this singular vector (which itself spans an irreducible sub-
representation of the rank 1 representation) to be a nullvector in the whole space
of states.

If we want to write down the fusion product with representations corresponding
to conformal weights in the bulk we need more information than the first nullvector.
For these we choose as index the set of the two pairs {(r1, s1), (r2, s2)} with the two
lowest products r1 s1, r2 s2. As there are exactly as many entries in the Kac table
for these bulk representations as there are nullvectors in the nullvector cascade and as
all these nullvectors in the cascade are mutually distinct, this choice is unique. Using
A(r,m) := {|r −m|+ 1, |r −m|+ 3, . . . , r +m− 1} we define the following two sets

Seb(r, s|m1, n1,m2, n2)

:= {(p, q)|p ∈ A(r,m1), q ∈ A(s, n1)} ∩ {(p, q)|p ∈ A(r,m2), q ∈ A(s, n2)}

as well as

Sbb(r1, s1, r2, s2|m1, n1,m2, n2)

:=
(
{(p, q)|p ∈ A(r1,m1), q ∈ A(s1, n1)} ∩ {(p, q)|p ∈ A(r2,m2), q ∈ A(s2, n2)}

)

∪
(
{(p, q)|p ∈ A(r2,m1), q ∈ A(s2, n1)} ∩ {(p, q)|p ∈ A(r1,m2), q ∈ A(s1, n2)}

)
.

These define the parameter ranges in the following fusion rules with bulk representa-
tions, i ∈ {corner, border},

(
Vi

(r,s)(h1)⊗ Vbulk

{(m1,n1),(m2 ,n2)}(h2)
)
f

=
∑

(s,t)∈Seb(r,s|m1,n1,m2,n2)

Ṽ(s,t)

∣∣∣
rules

(
Vbulk

{(r1,s1),(r2,s2)}(h1)⊗ Vbulk

{(m1,n1),(m2 ,n2)}(h2)
)
f

=
∑

(s,t)∈Sbb(r1,s1,r2,s2|m1,n1,m2,n2)

Ṽ(s,t)

∣∣∣
rules

.
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The fusion rules for the rank 1 indecomposable representations actually look much
the same as for border and corner representations, i ∈ {corner, border},

(
R(1)

(r1,s1)
(h1)⊗ V i

(r2,s2)
(h2)

)
f

=

r1+r2−1∑

r3=|r1−r2|+1

step 2

s1+s2−1∑

s3=|s1−s2|+1

step 2

Ṽ(r3,s3)

∣∣∣
rules’

(
R(1)

(r1,s1)
(h1)⊗R(1)

(r2,s2)
(h2)

)
f

=

r1+r2−1∑

r3=|r1−r2|+1

step 2

s1+s2−1∑

s3=|s1−s2|+1

step 2

Ṽ(r3,s3)

∣∣∣
rules’

(
R(1)

(r,s)(h1)⊗ Vbulk

{(m1 ,n1),(m2,n2)}(h2)
)
f

=
∑

(s,t)∈Seb(r,s|m1,n1,m2,n2)

Ṽ(s,t)

∣∣∣
rules’

.

It is only the rule (5) we have to modify slightly in this case:

5’. After extraction of all rank 3 and rank 2 representations from the set of all (r, s)
each lowest weight h(r1, s1) of a bulk weight chain corresponds to the rank 1

indecomposable representation R(1)
(r1,s1)

(h(r1, s1)).

The reason is that treating the rank 1 indecomposable representations as generated
from one state we will also get only one generating state for each rank 1 indecomposable
representation in the fusion process.

4.6.3 The fusion with higher rank representations

Now, we can give the fusion rules with higher rank representations based on the above
calculated fusion rules. These higher rank fusion rules make use of the above elabo-
rated fact that all higher rank representations can be constructed by indecomposably
connecting a number of representations of one rank lower. Certainly, these constituents
are usually no true subrepresentations. But nevertheless they exhibit in sum the same
number of states as the composed higher representation and even their nullvector struc-
ture survives in a certain way as “special” vectors of the new larger representation. E.g.
generically one needs four V(r,s) representations to compose a rank 2 representation.

The following general rules for fusion with higher rank representations apply suc-
cessively with rising rank:

1. First split one higher rank representation into its constituents of one rank lower.

2. Calculate the fusion rules with these constituents as known before (or iterate this
process until you reach a level where the fusion rules are already known).

3. If you now find the right constituents for a higher rank representation within the
result (e.g. all four Ṽ for a generic rank 2 representation) you have to combine
them to this higher rank representation. All other parts of the total result remain
as they are. This re-introduces the indecomposable structure which has been
broken up in step one where possible.
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4. The one exception to the last step applies to the indecomposable rank 1 repre-
sentations R(1)(h(r1, s1))h(r2,s2)−h(r1,s1) on the lowest weight h(r1, s1) of a weight

chain. Whenever we find that instead of R(1)(h(r1, s1))h(r2,s2)−h(r1,s1) the corre-
sponding subrepresentation V(h(r2, s2)) can be used as a building block of a rank
2 representation we need to replace R(1)(h(r1, s1))h(r2 ,s2)−h(r1,s1) by V(h(r2, s2)).
We then proceed as described in the preceding step.

This last case is only encountered if we fuse irreducible bulk representations with higher
rank bulk representations. Its artificiality stems from the fact that the irreducible bulk
representations only exist as subrepresentations of the rank 2 representations—it is
these rank 2 representations we actually have to look at when considering fusion rules.
Let us give two examples of the c2,3 = 0 fusion to show how these rules work

V(5/8) ⊗f R(2)(5/8, 5/8)
split-up−→ V(5/8) ⊗f

(
2V(5/8) ⊕ V(21/8)

)

= 2R(2)(0, 2)7 ⊕R(2)(1, 5)
re-combination−→ R(3)(0, 0, 2, 2)

V(5/8) ⊗f R(2)(1/3, 1/3)
split-up−→ V(5/8) ⊗f

(
2V(1/3) ⊕ V(10/3)

)

= 2V(−1/24) ⊕ V(35/24)
re-combination−→ 2V(−1/24) ⊕ V(35/24) .

These fusion rules for higher rank representations, finally, complete the set of fusion
rules for general augmented cp,q models.
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Conclusion

But it was a neat theory, and he was in love with it. The only
consolation he drew from the present chaos was that his theory
managed to explain it.
Thomas Pynchon: V.

In summary, this thesis contains work in two different areas which seek to extend
the success story of conformal field theory: the extension of the symmetry algebra
by inclusion of supersymmetry as well as the relaxation of conformal field theory to
logarithmic conformal field theory.

In the first part of this thesis, we have examined the moduli space of N = (4, 4)
superconformal field theories with central charge c = 6 which corresponds to the moduli
space of sigma models on compact four-dimensional manifolds obeying the Calabi-Yau
conditions. In particular, we have discussed the K3 component of this moduli space.
We have shown that the two subvarieties of Z2 and Z4 orbifolds intersect in one point
within the K3 moduli space by giving an explicit isomorphism of the respective lattices
and four-planes which describe the corresponding theories on the two subvarieties. We
have also given an isomorphism of the corresponding CFT models at the intersection
point. Up to now, this identification had only been known by indirect arguments using
the orbifold procedure. Furthermore, we have argued that both subvarieties are indeed
orthogonal to each other at the point of intersection. We have then used the geometric
data of the identification in order to relate the coordinates of the two subvarieties
and, finally, to determine a geometric geodesic between these two subvarieties. This is
already an important step towards the exploration of generic points in K3 moduli space
which can be reached via such a geodesic originating in a known model. To complete
this project we need the corresponding geodesic of conformal field theory which has
to be found by methods of conformal deformation theory. Although an integration
of a conformal deformation along such a geodesic has not yet been achieved we have
commented on advances in this most difficult point of the above exploration. The main
difficulty arises from the fact that we have not yet found a suitable regularisation in
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this strictly two-dimensional setting which is at the same time unique for the whole
model, meaningful as well as calculable.

In the second part of the thesis we have elaborated higher rank indecomposable
structures in the context of logarithmic conformal field theories. We have, in particular,
inspected a special series of logarithmic CFT models, the augmented cp,q models, which
are a generalisation of the well known augmented cp,1 models. For both types of models
we have constructed logarithmic nullvectors, i.e. nullvectors which include descendants
of higher Jordan level. But most importantly, we have calculated the lower Virasoro
representation content as well as the fusion algebra for two examples of these augmented
cp,q models, the augmented c2,3 = 0 model as well as the augmented Yang-Lee model at
c2,5 = −22/5. In order to perform these calculations we have implemented the Nahm
algorithm for the determination of the fusion product on the computer. These models
exhibit a much richer structure than the augmented cp,1 models with several new rank
2 and, for the first time, rank 3 representations. We have elaborated these new rank 3
representations in great detail.

The results of these calculations seem to be sufficiently generic so that we have
conjectured the field content and the fusion algebra for general augmented cp,q models.
These conjectured fusion rules still inherit much of the BPZ fusion structure. The main
generalisation lies in the fact that we do not interpret the BPZ fusion rules “minimally”
for these models. This “minimal” refers to the BPZ fusion rules for the non-augmented
minimal models where one takes a section over all ways of applying the untruncated
BPZ rules. The augmented fusion rules allow for definitely more representation content.
This is, however, in perfect accordance with and directly reduces to the already known
rules for the special case of augmented cp,1 models in [45].

There are two particularly astonishing features about these results. First of all, we
have shown that the fusion rules are not associative in general. This lack of associativity
has very good physical reasons, though. Let us denote the irreducible representations
of weights in the Kac table domain of the proper minimal model by V(hi) and the
additional irreducible representations which we want to add in the augmented models
by V ′(h′j). Then, it is impossible to combine these two sets of representations V(hi)
and V ′(h′j) into one consistent conformal field theory; within the augmented theory
the weights in the Kac table domain of the corresponding proper minimal model only
appear for generating states in reducible but indecomposable representations. This is
due to mathematical arguments which we have developed for the augmented c2,3 = 0
and the augmented Yang-Lee model explicitly and which generalise to all augmented
cp,q models. In particular, we do not have an irreducible vacuum representation, which
would be located in this domain, either. However, in both examples there is a very
sound vacuum representation which is a rank 1 indecomposable but not irreducible
subrepresentation of a rank 2 representation.

The second astonishing feature consists in the observation that the rank 3 represen-
tations seem to be composed of rank 2 representations in exactly the same way as the
rank 2 representations are composed of irreducible ones. This is a very nice structural
property of these logarithmic CFT models.
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Our explicit construction of the representations in the augmented c2,3 = 0 theory
settles the long standing puzzle of how a consistent non-trivial c = 0 theory with
logarithmic behaviour might look like. This has a direct impact on models with central
charge c = 0 for several interesting physical phenomena as e.g. percolation [140, 141,
142, 61], quenched disorder models [143, 144], or the dilute case in polymer physics
[36]. In particular, the construction of a consistent vacuum representation and character
remained an open question within the above mentioned models up to now. As the h = 0
representation exhibits a singular vector on level 2, it was especially not clear how to
define a sensible energy momentum tensor; all suggestions of how to solve this problem
were either inconsistent or incomplete (see [61] for a more extensive discussion of this
problem). In this thesis we have constructed such a consistent vacuum representation
R(1)(0)2 which also includes the energy momentum tensor in a natural way.

Finally, we have seen that three of the augmented c2,3 = 0 representations perfectly
fit the numerically calculated state content of representations in a c = 0 model in
[41] which describes an XXZ quantum spin chain. This opens a new connection of
logarithmic CFT to quantum spin chains which will hopefully lead to a fruitful exchange
between these two fields of research. In particular, it is a very interesting question
whether the augmented Yang-Lee model as well as the other augmented cp,q models
are also linked to quantum spin chains in a similar fashion. Besides the great interest
in spin chains within the string theory community, these models are also important
for a variety of other physical models as stochastic processes, especially certain growth
models, or the integer quantum Hall effect (see e.g. [41, 145]).

There are certainly numerous ways to continue from the results of this thesis. Con-
cerning the K3 moduli space the main problem of how to consistently regularise the
deformation integrals such that we can integrate a deformation along a geodesic still
remains open. As already mentioned, a free field construction of a Gepner model or a
torus orbifold model in K3 moduli space would greatly amend this problem. Indeed,
the continuation of a model given in a free field construction by continuation of its
central charge should provide a regularisation scheme which is at the same time unique
for the whole model, meaningful in that respect that it actually locates the singularities
and calculable. The orthogonality of the two subvarieties proven in this thesis might
also be of some help. At the point of intersection it allows us to describe some of the
nontrivial twistfield deformations of one type of orbifold by the well known torus type
deformations of the other. This might enable us to test and to understand more about
these nontrivial twistfield deformations which also describe deformations towards the
unknown regions of moduli space from a generic orbifold theory and which are usually
much harder to compute. A further unsolved problem that might be analysed this way
is the curious symmetry which we observed in the dependence of the deformation of
a vertex operator in an orbifold model on the conformal dimension about the point
h = 1/8 [103]. The deformation integrals discussed in this thesis are aimed at de-
scribing the deformation of the conformal weights of CFT models along the geodesic,
i.e. the deformation of their spectra. This information would already provide crucial
new insights. However, in order to completely control the new CFT models along that
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geodesic one still needs to calculate the deformation of the three point functions and,
hence, of the structure constants as well. The methods should stay pretty much the
same, the integrals to be calculated, though, will become even more complicated.

Concerning the logarithmic CFT side of this thesis one can certainly use the ex-
plicitely constructed higher rank nullvectors to calculate corresponding correlation func-
tions and, hence, analyse the physical dynamics of these theories. This would have to
proceed along the lines indicated in [58].

However, the main open question for the augmented cp,q models is to find the
complete symmetry algebra of the theory. As the augmented cp,1 models are known to
include an enhanced triplet W-algebra W(2, 2p− 1, 2p− 1, 2p− 1) the natural question
arises whether the general augmented cp,q models exhibit a similar enhanced symmetry
algebra. Indeed, one finds a set of modular functions which can be associated to a
cp,q model and which seem to allow the incorporation of higher rank representations
similarly to the cp,1 model case (as in [49]). And even the mere fact that the Virasoro
fusion rules so nicely generalise from the cp,1 model case with the known triplet W-
algebra is a further good hint for a larger symmetry algebra. This may be exemplified
by the existence of a representation like V(7) in the c2,3 = 0 model whose fusion rules
behave in just the same way as the ones of the “spin representation” V1,p in the cp,1

models. Indeed, in the cp,1 models this spin representation behaves roughly like a square
root of the W-representation.

The representation of the modular group given by the above mentioned set of mod-
ular functions is already very restrictive; e.g. in case of the c2,3 = 0 model it suffices
to know the field content up to level 7 in order to precisely pinpoint the full W-
representation. We believe that this restrictiveness together with our new knowledge
of the precise structure of the Virasoro representations should lead to a consistent
set of modular functions which represent the right W-characters. Following the lines
of [50] the S matrix of these characters should, then, lead to an adapted version of
celebrated Verlinde formula and should, thus, yield reasonable fusion rules for the W-
representations. This is subject to ongoing research [135].

On the other hand, it does not seem too far out of reach to construct generic W-
nullvectors along the lines set out in this work. The knowledge of such nullvectors would
enable us to prove rationality, or at least C2-cofiniteness, for augmented cp,q models
using the approach of [52]. One might also think about whether the Kazhdan-Lusztig
correspondence of [146, 147] could be generalised to augmented cp,q models and, hence,
reveals a deep relation between these models and quantum groups.

Furthermore, it could be interesting to examine tensor products of these models in
order to obtain conformal field theories with higher central charge. Certainly, these
are not unitary theories as in the Gepner model case. But inspired by the Gepner
construction one could think about whether such tensor products, restricted in a suit-
able manner, describe string theory on non-trivial non-compact spaces or even multiple
Schramm-Loewner evolution.

In the end, it is astonishing to see that the two seemingly quite different approaches
to extend conformal field theory as presented in this work, supersymmetry and loga-
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rithmic CFT, might be connected by some deeper relation. On the one hand, N = 2
supersymmetric models in the context of polymers and percolation seem to exhibit in-
decomposable behaviour [35, 36], and a WZW model on the supergroup GL(1|1) also
implies logarithmic CFT [148]. On the other hand, fields of particular higher rank re-
presentations can be consistently combined in a superfield formulism [59, 60]. However,
it seems too early to ascertain whether the considerations in both of these directions
within this work will contribute to a deeper understanding of this relation.
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Appendix A

Explicit Jordan diagonalisation of

L0 for rank 3 representations

In this appendix we want to present a basis of states for the lowest levels of several
rank 3 representations which we regard in this thesis. These bases are chosen in such
a way that the L0 matrix appears in a Jordan diagonal form. The vectors of the bases
are denoted by ni with a running index as assigned by the computer programme. (The
indices are chosen anew for each representation!) Vectors which are not shown to be
equal to descendants of some other vectors are understood to be generating states. On
the right hand side of each table we have denoted only the Jordan block in L0 for the
respective states. Different Jordan blocks are seperated by lines. All other L0 entries
are zero.

A.1 R(3)(0,0,1,1)

The generating states for R(3)(0, 0, 1, 1) are denoted by n2, n3, n5 and n6 at levels 0,
0, 1, 1 respectively. We give the explicit states up to level 5.

states L0 matrix

n2 0 1

n3 0 0

n4 = L−1 n2 1 1 0

n5 0 1 1

n6 0 0 1

n19 = L−1 n3 − n5 1

n7 = L2
−1 n2 2 1 0

n8 = L−1 n5 0 2 1

n9 = L−1 n6 0 0 2

n20 = (L−2 − 3
2
L2
−1)n3 2

n32 = L2
−1 n3 − L−1 n5 = L−1 n19 2
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states L0 matrix

n10 = L−2L−1 n2 3 1 0

n11 = L−2 n5 0 3 1

n12 = L−2 n6 0 0 3

n23 = L3
−1 n2 3 1 0

n24 = L2
−1 n5 0 3 1

n25 = L2
−1 n6 0 0 3

n33 = (L−3 + L−2L−1 − 3
2
L3
−1)n3 = L−1 n20 3

n42 = L−2L−1 n3 − L−2 n5 = L−2 n19 3

n49 = L3
−1 n3 − L2

−1 n5 = L2
−1 n19 3

n13 = L−3L−1 n2 4 1 0

n14 = L−3 n5 0 4 1

n15 = L−3 n6 0 0 4

n26 = L−2L2
−1 n2 4 1 0

n27 = L−2L−1 n5 0 4 1

n28 = L−2L−1 n6 0 0 4

n36 = L4
−1 n2 4 1 0

n37 = L3
−1 n5 0 4 1

n38 = L3
−1 n6 0 0 4

n43 = (2L−4 + 2L−3L−1 + L−2L2
−1 − 3

2
L4
−1)n3 = L2

−1 n20 4

n50 = L−3L−1 n3 − L−3 n5 = L−3 n19 4

n55 = (L2
−2 − 3

2
L−2L2

−1)n3 = L−2 n20 4

n59 = L−2L2
−1 n3 − L−2L−1 n5 = L−2L−1 n19 4

n62 = L4
−1 n3 − L3

−1 n5 = L3
−1 n19 4

n16 = L−4L−1 n2 5 1 0

n17 = L−4 n5 0 5 1

n18 = L−4 n6 0 0 5

n29 = L−3L2
−1 n2 5 1 0

n30 = L−3L−1 n5 0 5 1

n31 = L−3L−1 n6 0 0 5

n39 = L2
−2L−1 n2 5 1 0

n40 = L2
−2 n5 0 5 1

n41 = L2
−2 n6 0 0 5

n46 = L−2L3
−1 n2 5 1 0

n47 = L−2L2
−1 n5 0 5 1

n48 = L−2L2
−1 n6 0 0 5

n51 = (L4
−1 − 4L−4 − 20

3
L−2L2

−1 + 4L−3L−1 + 4L2
−2)n5 5 1

n52 = (L4
−1 − 4L−4 − 20

3
L−2L2

−1 + 4L−3L−1 + 4L2
−2)n6 0 5

n56 = (L−5 + L−3L−2 + L2
−2L−1 − 3

2
L−2L3

−1)n3 = L−2L−1 n20 5

n60 = L−4L−1 n3 − L−4 n5 = L−4 n19 5

n63 = (L−3L−2 − 3
2
L−3L2

−1)n3 = L−3 n20 5

n64 = L−3L2
−1 n3 − L−3L−1 n5 = L−3L−1 n19 5

n65 = L2
−2L−1 n3 − L2

−2 n5 = L2
−2 n19 5

n66 = L−2L3
−1 n3 − L−2L2

−1 n5 = L−2L2
−1 n19 5

A.2 R(3)(0,0,2,2)

For R(3)(0, 0, 2, 2) we have the four generating states n15, n16, n18 and n19 at levels 0,
0, 2, 2 respectively. We give the explicit states up to level 4. The fact that rank 3 cell
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descendants seem to have states with different descendant moding is an effect of normal
ordering. Let us take the rank 3 cell at level 3. Then L−1 n17 = L−1L−2 n15 equates to
L−3 n15 by normal ordering and usage of the nullvector condition L−1 n15 = 0. Hence,
this whole rank 3 cell is the usual level 1 descendant of the rank 3 cell at level 2.

states L0 matrix

n15 0 1

n16 0 0

n0 = L−1 n16 1

n17 = L−2 n15 2 1 0

n18 0 2 1

n19 0 0 2

n26 = L−2 n16 − n18 2

n41 = L2
−1 n16 2

n20 = L−3 n15 = L−1 n17 3 1 0

n21 = L−1 n18 0 3 1

n22 = L−1 n19 0 0 3

n27 = (L−3 + L−2L−1)n16 − L−1 n18 = L−1 n26 3

n42 = L−2L−1 n16 3

n50 = L3
−1 n16 3

n23 = L2
−2 n15 = L−2 n17 4 1 0

n24 = L−2 n18 0 4 1

n25 = L−2 n19 0 0 4

n38 = L−4 n15 = 1
2

L2
−1 n17 4 1 0

n39 = 1
2

L2
−1 n18 0 4 1

n40 = 1
2

L2
−1 n19 0 0 4

n43 = (2 L−4 + 2 L−3L−1 + L−2L2
−1)n16 − L2

−1 n18 = L2
−1 n26 4

n51 = L−3L−1 n16 4

n56 = L2
−2n16 − L−2 n18 = L−2 n26 4

n59 = L−2L2
−1 n16 4

n60 = L4
−1 n16 4

A.3 R(3)(0,1,2,5)

The generating states for this representation are n0, n5, n24 and n18 at levels 0, 1, 2, 5
respectively. We give the explicit states up to level 5, the first appearance of the full
rank 3 structure.

states L0 matrix

n0 0

n4 = L−1 n0 1 1

n5 0 1

n6 = L2
−1 n0 = L−1 n4 2 1

n7 = L−1 n5 0 2

n23 = L−2 n0 2 1

n24 0 2
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states L0 matrix

n8 = L−2L−1 n0 = L−2 n4 3 1

n9 = L−2 n5 0 3

n25 = L3
−1 n0 = L2

−1 n4 3 1

n26 = L2
−1 n5 0 3

n38 = (L−3 + L−2L−1)n0 = L−1 n23 3 1

n39 = L−1 n24 0 3

n10 = L−3L−1 n0 = L−3 n4 4 1

n11 = L−3 n5 0 4

n27 = L−2L2
−1 n0 = L−2L−1 n4 4 1

n28 = L−2L−1 n5 0 4

n40 = L2
−2 n0 = L−2 n23 4 1

n41 = L−2 n24 0 4

n48 = L4
−1 n0 = L3

−1 n4 4 1

n49 = L3
−1 n5 0 4

n56 = (2L−4 + 2L−3L−1 + L−2L2
−1)n0 = L2

−1 n23 4 1

n57 = L2
−1 n24 0 4

n16 = 4655
31758

(L−4L−1 − L−3L2
−1 + 5

3
L−2L3

−1 − L2
−2L−1 − 1

4
L5
−1)n0 5 1 0

n17 = 4655

63516

0

@(L−4 − 5

2
L−3L−1 − L2

−2
+ 19

6
L−2L2

−1
− 1

2
L4

−1
)n5 + (L−3 − L−2L−1 + 1

6
L3

−1
)n24

1

A 0 5 1

n18 0 0 5

n29 = L−3L2
−1 n0 = L−3L−1 n4 5 1

n30 = L−3L−1 n5 0 5

n42 = L−3L−2 n0 = L−3 n23 5 1

n43 = L−3 n24 0 5

n50 = L2
−2L−1 n0 = L2

−2 n4 5 1

n51 = L2
−2 n5 0 5

n58 = L−2L3
−1 n0 = L−2L2

−1 n4 5 1

n59 = L−2L2
−1 n5 0 5

n63 = L5
−1 n0 = L4

−1 n4 5 1

n64 = L4
−1 n5 0 5

n68 = (6L−5 + 6L−4L−1 + 3L−3L2
−1 + L−2L3

−1)n0 = L3
−1 n23 5 1

n69 = L3
−1 n24 0 5

n70 = (L−4 + 1
2
L−3L−1 − L2

−2 + 1
6
L−2L2

−1)n5 − (L−3 − L−2L−1 + 1
6
L3
−1)n24 5



Appendix B

Explicit fusion rules for two

augmented models

In this appendix we give the explicit results of the fusion product calculation for two
augmented minimal models with central charges c2,3 = 0 and c2,3 = −22/5. There
are two different types of calculations which we used to obtain these fusion products
and which are described in more detail in the main part of this dissertation. The
first method uses the computer implementation of the Nahm algorithm and is used for
the fusion of irreducible and rank 1 representations with themselves as well as with
rank 2 representations. Besides the result the corresponding tables contain the level
L at which we calculated the new representation as well as the maximal level L̃ up to
which we took the corresponding constraints into account. The second method uses
the consistency conditions of symmetry and associativity of the fusion product and is
used to infer the fusion of higher rank representations from the already known fusion
of the lower rank and irreducible representations.

When applying the first method the computational power restricts the level L at
which the fused representations are calculated. These restrictions are unfortunately
quite severe for the fusion with higher representations. Hence, it was sometimes not
possible to reach a high enough L to actually see the indecomposable structure of all
component representations of the result. We, nevertheless, denoted the result as we
would expect it according to the proposed fusion rules—to discern this guessed higher
representations from the explicit results we indicated them by a question mark. But
certainly our results are always in agreement with these possible higher rank represen-
tations up to the level L given in the table.

B.1 Fusion rules for c2,3 = 0

The following table contains the results of our explicit calculations of the fusion product
of irreducible and rank 1 representations with each other in the augmented c2,3 = 0
model. The first column gives the representations to be fused. Then the level L at
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which we calculated the new representation as well as the maximal level L̃ up to which
we took the corresponding constraints into account are given. The last column contains
the result.

L L̃max Fusion product

V(5/8) ⊗f V(5/8) 6 11 R(2)(0, 2)7

⊗f V(1/3) 6 11 V(−1/24)

⊗f V(1/8) 7 8 R(2)(0, 1)5

⊗f V(−1/24) 6 9 R(2)(1/3, 1/3)

⊗f V(33/8) 6 11 R(2)(2, 7)

⊗f V(10/3) 6 7 V(35/24)

⊗f V(21/8) 6 11 R(2)(1, 5)

⊗f V(35/24) 5 7 R(2)(1/3, 10/3)

⊗f V(2) 6 9 V(5/8)

⊗f V(1) 6 9 V(1/8)

⊗f V(7) 6 9 V(33/8)

⊗f V(5) 6 9 V(21/8)

V(1/3) ⊗f V(1/3) 6 11 R(2)(0, 2)5 ⊕V(1/3)

⊗f V(1/8) 6 9 R(2)(1/8, 1/8)

⊗f V(−1/24) 6 9 R(2)(5/8, 5/8) ⊕V(−1/24)

⊗f V(33/8) 6 9 V(35/24)

⊗f V(10/3) 6 9 R(2)(1, 7) ⊕ V(10/3)

⊗f V(21/8) 6 9 R(2)(5/8, 21/8)

⊗f V(35/24) 5 7 R(2)(1/8, 33/8) ⊕ V(35/24)

⊗f V(2) 6 9 V(1/3)

⊗f V(1) 6 9 R(2)(0, 1)7

⊗f V(7) 6 9 V(10/3)

⊗f V(5) 6 9 R(2)(2, 5)

V(1/8) ⊗f V(1/8) 6 8 R(2)(1/3, 1/3) ⊕R(2)(0, 2)7

⊗f V(−1/24) 6 7 R(3)(0, 0, 1, 1)

⊗f V(33/8) 6 9 R(2)(1, 5)

⊗f V(10/3) 6 8 R(2)(5/8, 21/8)

⊗f V(21/8) 5 7 R(2)(1/3, 10/3) ⊕R(2)(2, 7)

⊗f V(35/24) 5 7 R(3)(0, 1, 2, 5)

⊗f V(2) 6 9 V(1/8)

⊗f V(1) 5 7 V(5/8) ⊕ V(−1/24)

⊗f V(7) 6 8 V(21/8)

⊗f V(5) 6 7 V(33/8) ⊕ V(35/24)

V(−1/24) ⊗f V(−1/24) 5 7 R(3)(0, 0, 2, 2) ⊕R(2)(1/3, 1/3)

⊗f V(21/8) 5 7 R(3)(0, 1, 2, 5)

⊗f V(35/24) 4 6 R(3)(0, 1, 2, 7)? ⊕R(2)(1/3, 10/3)

⊗f V(5) 5 7 R(2)(5/8, 21/8)

⊗f V(143/24) 0 6 R(3)(1, 5, 7, 15)? ⊕R(2)(10/3, 28/3)?
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L L̃max Fusion product

V(33/8) ⊗f V(33/8) 6 8 R(2)(0, 2)7 ⊕R(2)(7, 15)?

⊗f V(10/3) 5 7 V(−1/24) ⊕V(143/24)

⊗f V(−1/24) 5 7 R(2)(1/3, 10/3)

⊗f V(21/8) 5 7 R(2)(0, 1)5 ⊕R(2)(5, 12)?

⊗f V(35/24) 6 7 R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)

⊗f V(1) 6 9 V(21/8)

⊗f V(7) 5 7 V(5/8) ⊕ V(85/8)

⊗f V(5) 6 8 V(1/8) ⊕ V(65/8)

V(10/3) ⊗f V(10/3) 5 7 R(2)(0, 2)5 ⊕R(2)(5, 15)? ⊕ V(1/3) ⊕ V(28/3)

⊗f V(−1/24) 5 7 R(2)(1/8, 33/8) ⊕V(35/24)

⊗f V(21/8) 5 7 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)

⊗f V(35/24) 4 6 R(2)(5/8, 5/8) ⊕R(2)(21/8, 85/8)? ⊕ V(−1/24)

⊕V(143/24)

⊗f V(5) 3 9 R(2)(0, 1)7 ⊕R(2)(7, 12)?

V(21/8) ⊗f V(21/8) 4 6 R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)? ⊕R(2)(0, 2)7

⊕R(2)(7, 15)?

⊗f V(35/24) 4 6 R(3)(0, 0, 1, 1) ⊕R(3)(2, 5, 7, 12)?

V(35/24) ⊗f V(35/24) 3 5 R(3)(0, 0, 2, 2) ⊕R(3)(1, 5, 7, 15)? ⊕R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)?

V(2) ⊗f V(−1/24) 6 9 V(−1/24)

⊗f V(33/8) 6 8 V(33/8)

⊗f V(10/3) 6 7 V(10/3)

⊗f V(21/8) 6 9 V(21/8)

⊗f V(35/24) 5 7 V(35/24)

⊗f V(2) 6 9 R(1)(0)2

⊗f V(1) 6 9 R(1)(0)1

⊗f V(7) 6 9 V(7)

⊗f V(5) 6 9 V(5)

⊗f R(1)(0)2 6 9 V(2)

⊗f R(1)(0)1 6 9 V(1)

V(1) ⊗f V(−1/24) 5 7 R(2)(1/8, 1/8)

⊗f V(10/3) 5 7 R(2)(2, 5)

⊗f V(21/8) 5 7 V(33/8) ⊕ V(35/24)

⊗f V(35/24) 5 7 R(2)(5/8, 21/8)

⊗f V(1) 6 8 R(1)(0)2 ⊕V(1/3)

⊗f V(7) 5 7 V(5)

⊗f V(5) 5 7 V(7) ⊕V(10/3)
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L L̃max Fusion product

V(7) ⊗f V(−1/24) 5 7 V(35/24)

⊗f V(10/3) 5 7 V(1/3) ⊕ V(28/3)

⊗f V(21/8) 5 7 V(1/8) ⊕ V(65/8)

⊗f V(35/24) 4 6 V(−1/24) ⊕ V(143/24)

⊗f V(7) 5 7 R(1)(0)2 ⊕ V(15)

⊗f V(5) 5 7 R(1)(0)1 ⊕ V(12)

V(5) ⊗f V(21/8) 3 6 V(5/8) ⊕ V(−1/24) ⊕ V(85/8) ⊕ V(143/24)

⊗f V(35/24) 4 6 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)

⊗f V(5) 5 7 R(1)(0)2 ⊕ V(15) ⊕ V(1/3) ⊕ V(28/3)

R(1)(0)2 ⊗f V(5/8) 6 9 V(5/8)

⊗f V(1/3) 6 9 V(1/3)

⊗f V(1/8) 6 9 V(1/8)

⊗f V(−1/24) 6 9 V(−1/24)

⊗f V(33/8) 6 9 V(33/8)

⊗f V(10/3) 6 9 V(10/3)

⊗f V(21/8) 6 9 V(21/8)

⊗f V(35/24) 6 9 V(35/24)

⊗f V(2) 6 9 V(2)

⊗f V(1) 6 9 V(1)

⊗f V(7) 6 9 V(7)

⊗f V(5) 6 9 V(5)

⊗f R(1)(0)2 6 9 R(1)(0)2

⊗f R(1)(0)1 6 9 R(1)(0)1

R(1)(0)1 ⊗f V(5/8) 6 9 V(1/8)

⊗f V(1/3) 6 9 R(2)(0, 1)7

⊗f V(1/8) 6 9 V(5/8) ⊕ V(−1/24)

⊗f V(−1/24) 6 9 R(2)(1/8, 1/8)

⊗f V(33/8) 6 9 V(21/8)

⊗f V(10/3) 6 9 R(2)(2, 5)

⊗f V(21/8) 6 9 V(33/8) ⊕ V(35/24)

⊗f V(35/24) 6 9 R(2)(5/8, 21/8)

⊗f V(2) 6 9 V(1)

⊗f V(1) 6 9 V(2) ⊕ V(1/3)

⊗f V(7) 6 9 V(5)

⊗f V(5) 6 9 V(7) ⊕ V(10/3)

⊗f R(1)(0)2 6 9 R(1)(0)1

⊗f R(1)(0)1 6 9 R(1)(0)2 ⊕ V(1/3)
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The next table lists our results for the fusion of irreducible and rank 1 representa-
tions with rank 2 representations.

L L̃max Fusion product

V(5/8) ⊗f R(2)(5/8, 5/8) 5 7 R(3)(0, 0, 2, 2)

⊗f R(2)(1/3, 1/3) 5 7 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(1/8, 1/8) 5 7 R(3)(0, 0, 1, 1)

⊗f R
(2)(5/8, 21/8) 5 8 R(3)(0, 1, 2, 5)

⊗f R
(2)(1/3, 10/3) 4 6 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

⊗f R
(2)(1/8, 33/8) 4 6 R(0, 1, 2, 7)?

⊗f R(2)(0, 1)5 4 6 2V(1/8) ⊕ V(21/8)

⊗f R(2)(0, 1)7 4 6 R(2)(1/8, 1/8)

⊗f R(2)(0, 2)5 4 6 R(2)(5/8, 5/8)

⊗f R(2)(0, 2)7 4 7 2V(5/8) ⊕ V(33/8)

⊗f R(2)(1, 5) 4 6 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

⊗f R(2)(2, 5) 4 6 R(2)(5/8, 21/8) ⊕ V(65/8)

⊗f R(2)(1, 7) 4 8 R(2)(1/8, 33/8)

⊗f R(2)(2, 7) 4 7 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8)

V(1/3) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 21/8) ⊕ 2V(−1/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 2, 2) ⊕R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 4 7 2R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R
(2)(5/8, 21/8) 3 10 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R
(2)(1/3, 10/3) 3 6 R(3)(0, 1, 2, 7)? ⊕R(2)(1/3, 10/3)

⊗f R
(2)(1/8, 33/8) 4 7 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8) ⊕ 2V(35/24)

⊗f R(2)(0, 1)5 4 6 R(3)(0, 0, 1, 1)

⊗f R(2)(0, 1)7 4 6 2R(2)(0, 1)7 ⊕ V(10/3)

⊗f R(2)(0, 2)5 4 7 R(2)(2, 5) ⊕ 2V(1/3)

⊗f R(2)(0, 2)7 4 6 R(2)(1/3, 1/3)

⊗f R(2)(1, 5) 5 9 R(3)(0, 1, 2, 5)

⊗f R(2)(2, 5) 4 6 2R(2)(2, 5) ⊕ V(1/3) ⊕V(28/3)

⊗f R(2)(1, 7) 4 8 R(2)(0, 1)7 ⊕R(2)(7, 12)? ⊕ 2V(10/3)

⊗f R(2)(2, 7) 4 7 R(2)(1/3, 10/3)

V(1/8) ⊗f R(2)(5/8, 5/8) 5 7 R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f R(2)(1/3, 1/3) 5 7 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8)

⊗f R(2)(1/8, 1/8) 5 7 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R
(2)(5/8, 21/8) 3 6 R(3)(0, 1, 2, 7)? ⊕ 2R(2)(1/3, 10/3)

⊗f R
(2)(1/3, 10/3) 3 6 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(33/8, 65/8)?

⊗f R
(2)(1/8, 33/8) 3 6 R(3)(0, 1, 2, 5)? ⊕R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)?

⊗f R(2)(0, 1)5 4 6 2V(5/8) ⊕ V(33/8) ⊕ 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(0, 1)7 4 6 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R(2)(0, 2)5 4 6 R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(0, 2)7 4 7 2V(1/8) ⊕ V(21/8)
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L L̃max Fusion product

V(1/8) ⊗f R(2)(1, 5) 3 6 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8) ⊕ V(−1/24)

⊕2V(−35/24) ⊕ V(143/24)

⊗f R(2)(2, 5) 4 6 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(1, 7) 3 8 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕V(143/24)

⊗f R(2)(2, 7) 4 7 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

V(−1/24) ⊗f R(2)(5/8, 5/8) 4 6 R(3)(0, 1, 2, 5)? ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(1/3, 1/3) 4 6 2R(2)(5/8, 5/8) ⊕R(2)(1/8, 33/8) ⊕ 2V(−1/24)

⊕V(35/24)

⊗f R(2)(1/8, 1/8) 4 6 2R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f R
(2)(5/8, 21/8) 2 5 2R(3)(0, 1, 2, 5)? ⊕R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)?

⊗f R
(2)(1/3, 10/3) 2 5 R(2)(5/8, 5/8)⊕ 2R(2)(1/8, 33/8)? ⊕R(2)(21/8, 85/8)?

⊕V(−1/24) ⊕ 2V(35/24) ⊕V(143/24)

⊗f R
(2)(1/8, 33/8) 3 6 R(0, 0, 1, 1) ⊕R(2, 5, 7, 12)? ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 1)5 4 6 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8)

⊗f R(2)(0, 1)7 4 6 2R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(0, 2)5 4 7 R(2)(5/8, 21/8) ⊕ 2V(−1/24)

⊗f R(2)(0, 2)7 4 7 2V(−1/24) ⊕ V(35/24)

⊗f R(2)(1, 5) 2 8 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(33/8, 65/8)?

⊗f R(2)(2, 5) 3 6 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(1, 7) 2 8 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊗f R(2)(2, 7) 3 6 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

V(33/8) ⊗f R(2)(5/8, 5/8) 3 9 R(3)(0, 1, 2, 7)?

⊗f R(2)(1/3, 1/3) 3 9 V(−1/24) ⊕ 2V(35/24) ⊕ V(143/24)

⊗f R(2)(1/8, 1/8) 3 7 R(3)(0, 1, 2, 5)?

⊗f R
(2)(5/8, 21/8) 2 8 R(3)(0, 0, 1, 1) ⊕R(3)(2, 5, 7, 12)?

⊗f R
(2)(1/3, 10/3) 1 9 2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24)

⊕V(323/24)

⊗f R
(2)(1/8, 33/8) 2 10 R(0, 0, 2, 2) ⊕R(3)(1, 5, 7, 15)?

⊗f R(2)(0, 1)5 3 9 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

⊗f R(2)(0, 1)7 3 7 R(2)(5/8, 21/8)

⊗f R(2)(0, 2)5 3 9 R(2)(1/8, 33/8)?

⊗f R(2)(0, 2)7 3 9 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8)

⊗f R(2)(1, 5) 2 9 2V(1/8) ⊕ 2V(21/8) ⊕ 2V(65/8) ⊕ V(133/8)

⊗f R(2)(2, 5) 2 9 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)?

⊗f R(2)(1, 7) 2 8 R(2)(5/8, 5/8) ⊕R(2)(21/8, 85/8)?

⊗f R(2)(2, 7) 2 9 2V(5/8) ⊕ 2V(33/8) ⊕ 2V(85/8) ⊕ V(161/8)

V(10/3) ⊗f R(2)(5/8, 5/8) 2 8 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊗f R(2)(1/3, 1/3) 2 8 R(3)(0, 1, 2, 7)? ⊕R(2)(1/3, 10/3)?

⊗f R(2)(1/8, 1/8) 2 8 2R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 2 8 R(3)(0, 1, 2, 5)?

⊗f R(2)(0, 1)7 2 8 2R(2)(2, 5)? ⊕V(1/3) ⊕V(28/3)

⊗f R(2)(0, 2)5 2 8 R(2)(0, 1)7 ⊕R(2)(7, 12)? ⊕ 2V(10/3)

⊗f R(2)(0, 2)7 2 8 R(2)(1/3, 10/3)?
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L L̃max Fusion product

V(21/8) ⊗f R(2)(5/8, 5/8) 2 8 R(3)(0, 1, 2, 5)? ⊕R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)?

⊗f R(2)(1/3, 1/3) 2 8 R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(33/8, 65/8)?

⊗f R(2)(1/8, 1/8) 2 8 R(3)(0, 1, 2, 7)? ⊕ 2R(2)(1/3, 10/3)?

⊗f R(2)(0, 1)5 2 8 V(5/8) ⊕ 2V(33/8) ⊕ V(85/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f R(2)(0, 1)7 2 8 R(2)(1/8, 33/8)? ⊕ 2V(35/24)

⊗f R(2)(0, 2)5 2 8 R(2)(5/8, 21/8) ⊕V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 2)7 2 8 V(1/8) ⊕ 2V(21/8) ⊕ V(65/8)

V(2) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 5/8)

⊗f R(2)(1/3, 1/3) 5 7 R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(1/8, 1/8)

⊗f R
(2)(5/8, 21/8) 4 7 R(2)(5/8, 21/8)

⊗f R
(2)(1/3, 10/3) 4 7 R(2)(1/3, 10/3)

⊗f R
(2)(1/8, 33/8) 4 7 R(2)(1/8, 33/8)

⊗f R(2)(0, 1)5 4 6 R(2)(0, 1)5

⊗f R(2)(0, 1)7 4 6 R(2)(0, 1)7

⊗f R(2)(0, 2)5 4 6 R(2)(0, 2)5

⊗f R(2)(0, 2)7 4 6 R(2)(0, 2)7

⊗f R(2)(1, 5) 4 6 R(2)(1, 5)

⊗f R(2)(2, 5) 4 6 R(2)(2, 5)

⊗f R(2)(1, 7) 6 8 R(2)(1, 7)

⊗f R(2)(2, 7) 6 8 R(2)(2, 7)

V(1) ⊗f R(2)(5/8, 5/8) 5 7 R(2)(1/8, 1/8) ⊕ V(35/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 1, 1)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R
(2)(5/8, 21/8) 4 7 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R
(2)(1/3, 10/3) 3 6 R(3)(0, 1, 2, 5)?

⊗f R
(2)(1/8, 33/8) 4 5 R(2)(5/8, 21/8) ⊕V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 4 6 R(2)(0, 2)7 ⊕R(2)(1/3, 1/3)

⊗f R(2)(0, 1)7 4 6 R(2)(0, 2)5 ⊕ 2V(1/3)

⊗f R(2)(0, 2)5 4 7 R(2)(0, 1)7 ⊕ V(10/3)

⊗f R(2)(0, 2)7 4 7 R(2)(0, 1)5

⊗f R(2)(1, 5) 4 6 R(2)(2, 7)? ⊕R(2)(1/3, 10/3)

⊗f R(2)(2, 5) 4 6 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(1, 7) 4 8 R(2)(2, 5) ⊕V(1/3) ⊕ V(28/3)

⊗f R(2)(2, 7) 4 7 R(2)(1, 5)

V(7) ⊗f R(2)(5/8, 5/8) 4 8 R(2)(1/8, 33/8)

⊗f R(2)(1/3, 1/3) 4 8 R(2)(1/3, 10/3)

⊗f R(2)(1/8, 1/8) 4 9 R(2)(5/8, 21/8)

⊗f R
(2)(5/8, 21/8) 3 7 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)?

⊗f R
(2)(1/3, 10/3) 3 6 R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)?

⊗f R
(2)(1/8, 33/8) 3 7 R(2)(5/8, 5/8) ⊕R(2)(21/8, 85/8)?
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L L̃max Fusion product

V(7) ⊗f R(2)(0, 1)5 4 6 R(2)(1, 5)

⊗f R(2)(0, 1)7 4 6 R(2)(2, 5)

⊗f R(2)(0, 2)5 6 7 R(2)(1, 7)

⊗f R(2)(0, 2)7 5 7 R(2)(2, 7)

⊗f R(2)(1, 5) 4 6 R(2)(0, 1)5 ⊕R(2)(5, 12)?

⊗f R(2)(2, 5) 4 6 R(2)(0, 1)7 ⊕R(2)(7, 12)?

⊗f R(2)(1, 7) 3 6 R(2)(0, 2)5 ⊕R(2)(5, 15)?

⊗f R(2)(2, 7) 4 7 R(2)(0, 2)7 ⊕R(2)(7, 15)?

V(5) ⊗f R(2)(5/8, 5/8) 3 7 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(1/3, 1/3) 3 7 R(3)(0, 1, 2, 5)?

⊗f R(2)(1/8, 1/8) 3 7 R(2)(1/8, 33/8)? ⊕ 2V(35/24)

⊗f R
(2)(5/8, 21/8) 2 8 R(2)(5/8, 5/8) ⊕R(2)(21/8, 85/8)? ⊕ 2V(−1/24)

⊕2V(143/24)

⊗f R
(2)(1/3, 10/3) 2 8 R(3)(0, 0, 1, 1) ⊕R(3)(2, 5, 7, 12)?

⊗f R
(2)(1/8, 33/8) 2 8 R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)? ⊕ 2V(35/24)

⊕V(323/24)

⊗f R(2)(0, 1)5 3 8 R(2)(2, 7)? ⊕R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 3 9 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(0, 2)5 3 8 R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(0, 2)7 3 8 R(2)(1, 5)?

⊗f R(2)(1, 5) 2 8 R(2)(0, 2)7 ⊕R(2)(7, 15)? ⊕R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)?

⊗f R(2)(2, 5) 2 8 R(2)(0, 2)5 ⊕R(2)(5, 15)? ⊕ 2V(1/3) ⊕ 2V(28/3)

⊗f R(2)(1, 7) 2 8 R(2)(0, 1)7 ⊕R(2)(7, 12)? ⊕ 2V(10/3) ⊕ V(55/3)

⊗f R(2)(2, 7) 2 8 R(2)(0, 1)5 ⊕R(2)(5, 12)?

R(1)(0)2 ⊗f R(2)(5/8, 5/8) 5 7 R(2)(5/8, 5/8)

⊗f R(2)(1/3, 1/3) 5 7 R(2)(1/3, 1/3)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(1/8, 1/8)

⊗f R
(2)(5/8, 21/8) 4 7 R(2)(5/8, 21/8)

⊗f R
(2)(1/3, 10/3) 4 7 R(2)(1/3, 10/3)

⊗f R
(2)(1/8, 33/8) 4 7 R(2)(1/8, 33/8)

⊗f R(2)(0, 1)5 5 7 R(2)(0, 1)5

⊗f R(2)(0, 1)7 5 7 R(2)(0, 1)7

⊗f R(2)(0, 2)5 5 7 R(2)(0, 2)5

⊗f R(2)(0, 2)7 5 7 R(2)(0, 2)7

⊗f R(2)(1, 5) 4 7 R(2)(1, 5)

⊗f R(2)(2, 5) 4 7 R(2)(2, 5)

⊗f R(2)(1, 7) 6 7 R(2)(1, 7)

⊗f R(2)(2, 7) 6 7 R(2)(2, 7)
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L L̃max Fusion product

R(1)(0)1 ⊗f R(2)(5/8, 5/8) 5 7 R(2)(1/8, 1/8) ⊕V(35/24)

⊗f R(2)(1/3, 1/3) 5 7 R(3)(0, 0, 1, 1)

⊗f R(2)(1/8, 1/8) 5 7 R(2)(5/8, 5/8) ⊕ 2V(−1/24)

⊗f R
(2)(5/8, 21/8) 4 7 R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R
(2)(1/3, 10/3) 4 7 R(3)(0, 1, 2, 5)?

⊗f R
(2)(1/8, 33/8) 4 7 R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 1)5 5 7 R(2)(0, 2)7 ⊕R(2)(1/3, 1/3)

⊗f R(2)(0, 1)7 5 7 R(2)(0, 2)5 ⊕ 2V(1/3)

⊗f R(2)(0, 2)5 5 7 R(2)(0, 1)7 ⊕V(10/3)

⊗f R(2)(0, 2)7 5 7 R(2)(0, 1)5

⊗f R(2)(1, 5) 4 7 R(2)(2, 7)? ⊕R(2)(1/3, 10/3)

⊗f R(2)(2, 5) 4 7 R(2)(1, 7)? ⊕ 2V(10/3)

⊗f R(2)(1, 7) 4 7 R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(2, 7) 4 7 R(2)(1, 5)

In order to extract the fusion of higher rank representations we used the symmetry
and associativity properties of the fusion product along the lines described in section
4.4.3. For these calculations we applied our explicit results of the Nahm algorithm in
the form stated in the tables above. The results are listed below.

Fusion product

R(2)(5/8, 5/8) ⊗f R(2)(5/8, 5/8) 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3)

⊕R(2)(10/3, 28/3)

⊗f R(2)(1/3, 1/3) R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(33/8, 65/8)

⊕4V(−1/24) ⊕ 2V(35/24)

⊗f R(2)(1/8, 1/8) 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R
(2)(5/8, 21/8) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(1, 5, 7, 15)

⊕2R(2)(1/3, 1/3) ⊕ 2R(2)(10/3, 28/3)

⊗f R
(2)(1/3, 10/3) 2R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕R(2)(85/8, 133/8) ⊕ 2V(−1/24) ⊕ 4V(35/24)

⊕2V(143/24)

⊗f R
(2)(1/8, 33/8) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕R(3)(2, 5, 7, 12)

⊕2R(2)(1/3, 10/3) ⊕R(2)(28/3, 55/3)

⊗f R(2)(0, 1)5 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ 2V(35/24)

⊕V(143/24)

⊗f R(2)(0, 1)7 2R(2)(1/8, 1/8) ⊕R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(0, 2)5 2R(2)(5/8, 5/8) ⊕R(2)(5/8, 21/8) ⊕ V(−1/24) ⊕ V(143/24)

⊗f R(2)(0, 2)7 2R(2)(5/8, 5/8) ⊕R(2)(1/8, 33/8)
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Fusion product

R(2)(1/3, 1/3) ⊗f R(2)(1/3, 1/3) 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕R(2)(1/3, 10/3)

⊗f R(2)(1/8, 1/8) 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f R
(2)(5/8, 21/8) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R
(2)(1/3, 10/3) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 7) ⊕R(3)(1, 5, 7, 12)

⊕R(2)(1/3, 1/3) ⊕ 2R(2)(1/3, 10/3) ⊕R(2)(10/3, 28/3)

⊗f R
(2)(1/8, 33/8) 2R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕R(2)(85/8, 133/8) ⊕ 2V(−1/24) ⊕ 4V(35/24)

⊕2V(143/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 5)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f R(2)(0, 2)5 R(3)(0, 1, 2, 5) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(0, 2)7 2R(2)(1/3, 1/3) ⊕R(2)(1/3, 10/3)

R(2)(1/8, 1/8) ⊗f R(2)(1/8, 1/8) 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 5) ⊕ 4R(2)(1/3, 1/3)

⊗f R
(2)(5/8, 21/8) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕R(3)(2, 5, 7, 12)

⊕4R(2)(1/3, 10/3)

⊗f R
(2)(1/3, 10/3) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R
(2)(1/8, 33/8) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(1, 5, 7, 15)

⊕2R(2)(1/3, 1/3) ⊕ 2R(2)(10/3, 28/3)

⊗f R(2)(0, 1)5 2R(2)(5/8, 5/8) ⊕R(2)(1/8, 33/8) ⊕ 4V(−1/24)

⊕2V(35/24)

⊗f R(2)(0, 1)7 2R(2)(5/8, 5/8) ⊕R(2)(5/8, 21/8) ⊕ 4V(−1/24)

⊗f R(2)(0, 2)5 2R(2)(1/8, 1/8) ⊕R(2)(1/8, 33/8) ⊕ 2V(35/24)

⊗f R(2)(0, 2)7 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8)

R(2)(0, 1)5 ⊗f R(2)(0, 1)5 2R(2)(0, 2)7 ⊕R(2)(2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R(2)(0, 2)5 R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 2R(2)(0, 1)5 ⊕R(2)(1, 5)

R(2)(0, 1)7 ⊗f R(2)(0, 1)7 2R(2)(0, 2)5 ⊕R(2)(2, 5) ⊕ 4V(1/3)

⊗f R(2)(0, 2)5 2R(2)(0, 1)7 ⊕R(2)(1, 7) ⊕ 2V(10/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 1, 1)

R(2)(0, 2)5 ⊗f R(2)(0, 2)5 2R(2)(0, 2)5 ⊕R(2)(2, 5) ⊕ V(1/3) ⊕ V(28/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 2, 2)

R(2)(0, 2)7 ⊗f R(2)(0, 2)7 2R(2)(0, 2)7 ⊕R(2)(2, 7)
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Fusion product

R(3)(0, 0, 1, 1) ⊗f V(5/8) 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8)

⊗f V(1/3) 2R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f V(1/8) 2R(2)(5/8, 5/8) ⊕R(2)(1/8, 33/8) ⊕ 4V(−1/24) ⊕ 2V(35/24)

⊗f V(−1/24) 4R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f V(2) R(3)(0, 0, 1, 1)

⊗f V(1) R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f V(7) R(3)(0, 1, 2, 5)

⊗f V(5) R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(1)(0)2 R(3)(0, 0, 1, 1)

⊗f R(1)(0)1 R(3)(0, 0, 2, 2) ⊕ 2R(2)(1/3, 1/3)

⊗f R
(2)(5/8, 5/8) R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(21/8, 85/8)

⊕4R(2)(1/8, 1/8) ⊕ 2R(2)(1/8, 33/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f R
(2)(1/3, 1/3) 4R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕R(2)(10/3, 28/3)

⊗f R
(2)(1/8, 1/8) 4R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(1/8, 1/8)

⊕2R(2)(1/8, 33/8) ⊕R(2)(33/8, 65/8)

⊕8V(−1/24) ⊕ 4V(35/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 7) ⊕ 4R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 5) ⊕ 4R(2)(1/3, 1/3)

⊗f R(2)(0, 2)5 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 5)

⊗f R
(3)(0, 0, 1, 1) 4R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(0, 0, 1, 1)

⊕2R(3)(0, 1, 2, 7) ⊕R(3)(2, 5, 7, 12)

⊕8R(2)(1/3, 1/3) ⊕ 4R(2)(1/3, 10/3)

⊗f R
(3)(0, 0, 2, 2) R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(1, 5, 7, 15)

⊕4R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 1/3)

⊕4R(2)(1/3, 10/3) ⊕ 2R(2)(10/3, 28/3)

R(3)(0, 0, 2, 2) ⊗f V(5/8) 2R(2)(5/8, 5/8) ⊕R(2)(1/8, 33/8)

⊗f V(1/3) R(3)(0, 1, 2, 5) ⊕ 2R(2)(1/3, 1/3)

⊗f V(1/8) 2R(2)(1/8, 1/8) ⊕R(2)(5/8, 21/8) ⊕ V(−1/24)

⊕2V(35/24) ⊕ V(143/24)

⊗f V(−1/24) R(2)(1/8, 1/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(33/8, 65/8)

⊕4V(−1/24) ⊕ 2V(35/24)

⊗f V(2) R(3)(0, 0, 2, 2)

⊗f V(1) R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)

⊗f V(7) R(3)(0, 1, 2, 7)

⊗f V(5) R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)

⊗f R(1)(0)2 R(3)(0, 0, 2, 2)

⊗f R(1)(0)1 R(3)(0, 0, 1, 1) ⊕R(2)(1/3, 10/3)
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Fusion product

R(3)(0, 0, 2, 2) ⊗f R
(2)(5/8, 5/8) 4R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(1/8, 1/8)

⊕2R(2)(1/8, 33/8) ⊕R(2)(33/8, 65/8) ⊕ 2V(−1/24)

⊕2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f R
(2)(1/3, 1/3) R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(2, 5, 7, 12)

⊕4R(2)(1/3, 1/3) ⊕ 2R(2)(1/3, 10/3)

⊗f R
(2)(1/8, 1/8) R(2)(5/8, 5/8) ⊕ 2R(2)(5/8, 21/8) ⊕R(2)(21/8, 85/8)

⊕4R(2)(1/8, 1/8) ⊕ 2R(2)(1/8, 33/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f R(2)(0, 1)5 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕R(2)(10/3, 28/3)

⊗f R(2)(0, 1)7 2R(3)(0, 0, 1, 1) ⊕R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)5 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3)⊕

R(2)(10/3, 28/3)

⊗f R(2)(0, 2)7 2R(3)(0, 0, 2, 2) ⊕R(3)(0, 1, 2, 7)

⊗f R
(3)(0, 0, 2, 2) 4R(3)(0, 0, 2, 2) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(0, 0, 1, 1)

⊕2R(3)(0, 1, 2, 7) ⊕R(3)(2, 5, 7, 12) ⊕ 2R(2)(1/3, 1/3)

⊕2R(2)(1/3, 10/3) ⊕ 2R(2)(10/3, 28/3) ⊕R(2)(28/3, 55/3)

R(3)(0, 1, 2, 5) ⊗f V(5/8) 2R(2)(5/8, 21/8) ⊕R(2)(1/8, 1/8) ⊕R(2)(33/8, 65/8)

⊗f V(1/3) 2R(3)(0, 1, 2, 5) ⊕R(2)(1/3, 1/3) ⊕R(2)(10/3, 28/3)

⊗f V(1/8) R(2)(5/8, 5/8) ⊕ 2R(2)(1/8, 33/8) ⊕R(2)(21/8, 85/8)

⊕2V(−1/24) ⊕ 4V(35/24) ⊕ 2V(143/24)

⊗f V(−1/24) 2R(2)(1/8, 1/8) ⊕ 4R(2)(5/8, 21/8) ⊕ 2R(2)(33/8, 65/8)

⊕2V(−1/24) ⊕ 2V(35/24) ⊕ 2V(143/24) ⊕ V(323/24)

⊗f V(2) R(3)(0, 1, 2, 5)

⊗f V(1) R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(1)(0)2 R(3)(0, 1, 2, 5)

⊗f R(1)(0)1 R(3)(0, 1, 2, 7) ⊕ 2R(2)(1/3, 10/3)

⊗f R(2)(0, 2)7 R(3)(0, 0, 1, 1) ⊕ 2R(3)(0, 1, 2, 5) ⊕R(3)(2, 5, 7, 12)
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B.2 Fusion rules for c2,5 = −22/5

In the following table we have collected the results of our explicit calculations of the fu-
sion product of irreducible representations in the augmented c2,5 = −22/5 model. These
results are certainly not complete, but mainly serve to compute the lowest higher rank
representations as well as to check the proposed fusion rules on a variety of examples.

L L̃max Fusion product

V(11/8) ⊗f V(11/8) 5 7 R(2)(0, 4)13

⊗f V(27/40) 5 7 R(2)(−1/5, 14/5)11

⊗f V(2/5) 5 7 V(−9/40)

⊗f V(7/40) 5 7 R(2)(−1/5, 9/5)9

⊗f V(−1/8) 7 8 R(2)(0, 1)7

⊗f V(−9/40) 4 6 R(2)(2/5, 2/5)

V(27/40) ⊗f V(27/40) 5 7 R(2)(0, 4)13 ⊕R(2)(−1/5, 9/5)9

⊗f V(2/5) 5 7 R(2)(−1/8,−1/8)

⊗f V(7/40) 5 7 R(2)(0, 1)7 ⊕R(2)(−1/5, 14/5)11

⊗f V(−1/8) 5 7 R(2)(−1/5, 9/5)9 ⊕R(2)(2/5, 2/5)

⊗f V(−9/40) 4 6 R(3)(0, 0, 1, 1)

V(2/5) ⊗f V(11/8) 5 7 V(−9/40)

⊗f V(27/40) 5 7 R(2)(−1/8,−1/8)

⊗f V(2/5) 5 7 R(2)(0, 4)7 ⊕R(2)(−1/5, 9/5)11 ⊕ V(2/5)

⊗f V(7/40) 4 6 R(2)(7/40, 7/40) ⊕ V(−9/40)

⊗f V(−1/8) 4 6 R(2)(−1/8,−1/8) ⊕R(2)(27/40, 27/40)

⊗f V(−9/40) 3 5 R(2)(7/40, 7/40) ⊕R(2)(11/8, 11/8) ⊕V(−9/40)

⊗f R(1)(0)1 5 7 R(2)(0, 1)13 ⊕R(2)(−1/5, 14/5)9

⊗f V(1) 3 9 R(2)(0, 1)13 ⊕R(2)(−1/5, 14/5)9

V(7/40) ⊗f V(7/40) 4 6 R(2)(0, 4)13 ⊕R(2)(−1/5, 9/5)9 ⊕R(2)(2/5, 2/5)

⊗f V(−1/8) 4 6 R(3)(0, 0, 1, 1) ⊕R(2)(−1/5, 14/5)11

⊗f V(−9/40) 4 6 R(3)(−1/5,−1/5, 9/5, 9/5) ⊕R(2)(2/5, 2/5)

V(−1/8) ⊗f V(−1/8) 3 5 R(3)(−1/5,−1/5, 9/5, 9/5) ⊕R(2)(0, 4)13

⊕R(2)(2/5, 2/5)

⊗f V(−9/40) 4 6 R(3)(0, 0, 1, 1) ⊕R(3)(−1/5,−1/5, 14/5, 14/5)

V(−9/40) ⊗f V(−9/40) 4 5 R(3)(0, 0, 4, 4) ⊕R(3)(−1/5,−1/5, 9/5, 9/5)

⊕R(2)(2/5, 2/5)

V(14/5) ⊗f V(14/5) 2 8 R(1)(0)4 ⊕R(1)(−1/5)2

⊗f R
(1)(−1/5)2 2 8 V(1) ⊕V(14/5)

⊗f R
(1)(−1/5)3 2 8 V(4) ⊕V(9/5)

V(4) ⊗f V(4) 2 9 R(1)(0)4

⊗f R(1)(0)1 2 9 V(1)

⊗f R(1)(0)4 2 9 V(4)





Appendix C

Examples of logarithmic

nullvectors for augmented

minimal models

C.1 An explicit nullvector for c3,1 = −7

As a further example for a type B rank 2 logarithmic nullvector (see figure 4.1) we
give the respective nullvector with lowest lying vector at h = −1/4 and Jordan cell at
h = 7/4 in the augmented model of c3,1 = −7 which appears at level 10. For the sake
of reasonable brevity we have set the overall normalisation to 1 and also eliminated any
freedom due to the existence of lower nullvectors in the irreducible subrepresentation
by setting any further free parameter to 0; the parameter β certainly still remains as
it is a parameter of the representation as introduced in section 4.1:
(
(7168

27 − 512β)L−3L
2
−2L

3
−1+ (−1280

81 + 256
9 β)L−5L−2L

3
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3
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81 + 256
9 β)L−4L
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+668L−3L
2
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C.2 Explicit nullvectors on the border of c2,3 = 0

In the following we give the explicit form of the nullvector of type A for the triplet T1,
which has a Jordan cell at lowest weight h = 1/8 and appears at level 8. We have set
the overall normalisation to 1 in this expression; any further free parameters, however,
appear as calculated (noted as mi). We also note again that β is not a free parame-
ter of the logarithmic nullvector calculation but a parameter of the representation as
introduced in section 4.1:
(
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We also give the type B logarithmic nullvector for the triplet T2, which has a Jordan
cell at h = 21/8, a lowest weight at h = 5/8 and appears at level 16. As this expression
is very lengthy we have again set the overall normalisation to 1 and also eliminated any
further freedom by setting any further free parameter to 0:
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243
− 1223108068

1215
β)L−5L

2
−3L

5
−1

+( 54747340
9

− 21043364
9

β)L2
−4L−3L

5
−1 + (− 3343815314

243
+ 1020421910

243
β)L−8L−3L

5
−1

+(− 4106356768
81

+ 423802096
81

β)L−7L−4L
5
−1 + ( 6087567380

243
− 1708569956

243
β)L−6L−5L

5
−1

+( 1975182488
243

− 5191641784
1215

β)L−4L
2
−3L−2L

4
−1 + (− 10951360

243
− 2190272

243
β)L6

−2L
4
−1

+( 6439826624
729

+ 4398126656
3645

β)L−4L
4
−2L

4
−1 + (− 805947068

729
+ 946244068

3645
β)L2

−3L
3
−2L

4
−1

+( 9716768158
729

+ 39829789006
3645

β)L−6L
3
−2L

4
−1 + ( 1492444673

243
− 3094966463

1215
β)L−5L−3L

2
−2L

4
−1

+(− 10110621079
243

− 300543275
243

β)L2
−4L

2
−2L

4
−1 + ( 12461262967

486
− 7049560643

810
β)L−8L

2
−2L

4
−1

+(− 23944200971
486

− 1603601245
486

β)L−11L
5
−1 + (− 11528458402

243
+ 25042759046

1215
β)L−7L−3L−2L

4
−1

+(− 19090179110
243

− 62902001258
1215

β)L−6L−4L−2L
4
−1 + ( 9182523901

1458
− 9713083541

7290
β)L2

−5L−2L
4
−1

+(− 65932612501
486

− 3429904271
486

β)L−10L−2L
4
−1 + ( 383243984

243
+ 323521072

243
β)L4

−3L
4
−1

+( 55495736
27

− 829672184
81

β)L−6L
2
−3L

4
−1 + ( 1588949072

243
+ 24002270192

1215
β)L−5L−4L−3L

4
−1

+( 957145103
243

− 23998651177
1215

β)L−9L−3L
4
−1 + (− 44315552

27
− 171541792

27
β)L3

−4L
4
−1

+( 4968093016
243

+ 5395525736
243

β)L−8L−4L
4
−1 + ( 2882901476

243
− 33207042922

1215
β)L−7L−5L

4
−1

+(− 6761458844
243

+ 3531609476
243

β)L2
−6L

4
−1 + (− 5936082307

243
− 19072395649

1215
β)L−12L

4
−1

+(− 260692160
729

+ 1981504
81

β)L−3L
5
−2L

3
−1 + ( 25860528968

2187
+ 13853999912

10935
β)L−5L

4
−2L

3
−1

+(− 115094416
9

− 397874864
81

β)L−4L−3L
3
−2L

3
−1 + (− 9183968675

243
+ 60366559

5
β)L−7L

3
−2L

3
−1

+( 22446028
9

+ 381549548
243

β)L3
−3L

2
−2L

3
−1 + (− 1857923638

243
− 26692922234

1215
β)L−6L−3L

2
−2L

3
−1

+( 18483518080
729

− 1635799888
729

β)L−5L−4L
2
−2L

3
−1 + (− 106944789343

2916
+ 123521710391

14580
β)L−9L

2
−2L

3
−1

+( 10262941796
729

+ 4345875956
3645

β)L−5L
2
−3L−2L

3
−1 + (− 2914640996

81
+ 5112097436

405
β)L2

−4L−3L−2L
3
−1

+( 41031702454
729

− 71201971634
3645

β)L−8L−3L−2L
3
−1 + ( 81698877104

243
− 40731621952

1215
β)L−7L−4L−2L

3
−1

+(− 114847983652
729

+ 184898225636
3645

β)L−6L−5L−2L
3
−1 + ( 464402212315

1458
+ 154322577601

7290
β)L−11L−2L

3
−1

+( 15314752
3

− 1668550912
405

β)L−4L
3
−3L

3
−1 + (− 5194154518

81
+ 2708172854

135
β)L−7L

2
−3L

3
−1

+( 2137814356
81

+ 221522588
81

β)L−6L−4L−3L
3
−1 + ( 1006401133

729
− 51304031429

3645
β)L2

−5L−3L
3
−1

+(− 418142455
9

+ 10153248079
405

β)L−10L−3L
3
−1 + (− 913003520

81
+ 3109906496

405
β)L−5L

2
−4L

3
−1

+( 3782161967
81

+ 14793947
135

β)L−9L−4L
3
−1 + (− 10430827276

243
+ 697278628

405
β)L−8L−5L

3
−1

+( 4093892420
81

− 5063706352
405

β)L−7L−6L
3
−1 + ( 2816698331

108
+ 14750597275

324
β)L−13L

3
−1

+(− 3876174992
243

− 71245077136
1215

β)L−5L−4L−3L−2L
2
−1 + (− 15573821056

2187
− 5099410048

10935
β)L−4L

5
−2L

2
−1

+(− 240207548
2187

− 8494313084
10935

β)L2
−3L

4
−2L

2
−1 + (− 47436984506

2187
− 39860881954

2187
β)L−6L

4
−2L

2
−1
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+( 47109428591
2187

+ 184063255247
10935

β)L−5L−3L
3
−2L

2
−1 + ( 34161020861

729
− 4963416739

3645
β)L2

−4L
3
−2L

2
−1

+(− 5763567647
1458

+ 2691154249
162

β)L−8L
3
−2L

2
−1 + (− 13695268444

729
+ 7011515372

3645
β)L−4L

2
−3L

2
−2L

2
−1

+( 21517454756
729

− 116959711288
3645

β)L−7L−3L
2
−2L

2
−1 + ( 196664238547

729
+ 542209846357

3645
β)L−6L−4L

2
−2L

2
−1

+(− 238400926535
2916

− 104126564893
2916

β)L2
−5L

2
−2L

2
−1 + ( 855093533125

2916
+ 606232113211

14580
β)L−10L

2
−2L

2
−1

+( 1639307648
729

− 5639533168
3645

β)L4
−3L−2L

2
−1 + (− 16056755168

243
+ 3324232744

243
β)L−6L

2
−3L−2L

2
−1

+( 9611840
729

+ 1922368
729

β)L7
−2L

2
−1 + (− 10283821591

1458
+ 377475370451

7290
β)L−9L−3L−2L

2
−1

+( 520593056
81

+ 54200032
3

β)L3
−4L−2L

2
−1 + (− 119998885100

729
− 62785077796

729
β)L−8L−4L−2L

2
−1

+( 8363078144
729

+ 380846363054
3645

β)L−7L−5L−2L
2
−1 + ( 82219813000

729
− 29138179912

729
β)L2

−6L−2L
2
−1

+( 31541761250
729

+ 97639549658
3645

β)L−12L−2L
2
−1 + ( 3724220342

729
+ 16033283606

3645
β)L−5L

3
−3L

2
−1

+(− 676716122
81

− 135149054
135

β)L2
−4L

2
−3L

2
−1 + ( 39555209293

729
+ 95016781

3645
β)L−8L

2
−3L

2
−1

+( 11257024304
243

+ 15187070696
1215

β)L−7L−4L−3L
2
−1 + (− 13835770486

729
− 20728972126

3645
β)L−6L−5L−3L

2
−1

+( 161403296071
1458

+ 185298212569
7290

β)L−11L−3L
2
−1 + (− 1353700318

9
− 5011610942

81
β)L−6L

2
−4L

2
−1

+( 39014405471
729

+ 81704195681
3645

β)L2
−5L−4L

2
−1 + (− 1251898711

27
− 3014837587

405
β)L−10L−4L

2
−1

+(− 54758596976
729

− 189462959732
3645

β)L−9L−5L
2
−1 + ( 26091481631

243
+ 81857918359

1215
β)L−8L−6L

2
−1

+( 41764853429
243

− 59364317437
1215

β)L−6L−5L
2
−2L−1 + ( 519772644341

729
+ 536982902849

3645
β)L−14L

2
−1

+( 16951960
243

− 9326296
81

β)L−3L
6
−2L−1 + (− 1718220067

729
+ 565209697

729
β)L−5L

5
−2L−1

+( 611230072
243

+ 3131873176
1215

β)L−4L−3L
4
−2L−1 + ( 16790069291

648
− 311417113

72
β)L−7L

4
−2L−1

+( 508133378
243

− 522868522
1215

β)L3
−3L

3
−2L−1 + (− 3350726791

243
+ 16970704619

1215
β)L−6L−3L

3
−2L−1

+(− 6183346072
243

− 12019334032
1215

β)L−5L−4L
3
−2L−1 + ( 537159191

648
− 2545333679

3240
β)L−9L

3
−2L−1

+(− 7490314333
243

− 5707344769
1215

β)L−5L
2
−3L

2
−2L−1 + ( 4251155539

81
− 2417418029

405
β)L2

−4L−3L
2
−2L−1

+(− 13774642501
486

+ 47574031139
2430

β)L−8L−3L
2
−2L−1 + (− 30597896944

81
+ 7602405812

405
β)L−7L−4L

2
−2L−1

+(− 1818452026
81

+ 2487870947
405

β)L2
−7L

2
−1 + (− 598093659731

1944
− 118832263337

9720
β)L−11L

2
−2L−1

+(− 1127428304
81

+ 2005731856
405

β)L−4L
3
−3L−2L−1 + ( 8937898306

81
− 9374211074

405
β)L−7L

2
−3L−2L−1

+(− 2175490966
81

− 7301230378
405

β)L−6L−4L−3L−2L−1 + ( 5686048555
486

+ 71774155933
2430

β)L2
−5L−3L−2L−1

+( 5640483061
162

− 25935548597
810

β)L−10L−3L−2L−1 + ( 2068510520
81

− 175247464
405

β)L−5L
2
−4L−2L−1

+( 30251263
18

− 780131773
270

β)L−9L−4L−2L−1 + ( 1652402846
81

− 13911205078
405

β)L−8L−5L−2L−1

+(− 2116132367
27

+ 3248810563
135

β)L−7L−6L−2L−1 + (− 8015375435
648

− 40699798345
648

β)L−13L−2L−1

+(− 124276184
81

− 369101384
405

β)L5
−3L−1 + ( 474109532

27
+ 439356476

45
β)L−6L

3
−3L−1

+( 813558668
81

− 5307013348
405

β)L−5L−4L
2
−3L−1 + (− 1380887179

54
+ 6613469743

270
β)L−9L

2
−3L−1

+(− 185916220
9

+ 20241916
3

β)L3
−4L−3L−1 + ( 242801510

9
− 4142537918

135
β)L−8L−4L−3L−1

+(− 2519102860
81

+ 1743712978
81

β)L−7L−5L−3L−1 + (− 48696580
81

− 10819957036
405

β)L2
−6L−3L−1

+( 3430860452
81

+ 18602113922
405

β)L−12L−3L−1 + ( 7433166527
54

− 2647655137
270

β)L−7L
2
−4L−1

+(− 4287087352
81

+ 2955645208
81

β)L−6L−5L−4L−1 + (− 887650963
54

− 8540950477
270

β)L−11L−4L−1

+( 1877772049
243

− 1317572437
243

β)L3
−5L−1 + ( 10351048265

81
+ 14282331911

405
β)L−10L−5L−1

+( 382719419
9

− 178157449
3

β)L−9L−6L−1 + (− 45624853453
324

+ 38349308507
1620

β)L−8L−7L−1

+(− 45585350849
162

− 100134503837
3240

β)L−15L−1 + ( 22715000
243

+ 4543000
243

β)L8
−2

+(− 2052937000
729

− 548807000
729

β)L−4L
6
−2 + ( 1729008875

1458
+ 700883575

1458
β)L2

−3L
5
−2

+( 31484615917
2916

+ 13690595345
2916

β)L−6L
5
−2 + (− 141033886615

5832
− 54089482475

5832
β)L−5L−3L

4
−2

+( 16209468985
648

+ 4917725989
648

β)L2
−4L

4
−2 + (− 69278656301

1296
− 5818122955

432
β)L−8L

4
−2

+( 327789298
243

− 182443906
243

β)L−4L
2
−3L

3
−2 + ( 579707603

54
+ 1499507321

162
β)L−7L−3L

3
−2

+(− 71894257961
486

− 27674494435
486

β)L−6L−4L
3
−2 + ( 529286724439

5832
+ 171551292269

5832
β)L2

−5L
3
−2
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+(− 219343338799
1944

− 48802331837
1944

β)L−10L
3
−2 + (− 752201776

243
− 99365984

243
β)L4

−3L
2
−2

+( 3167581984
81

+ 164797772
81

β)L−6L
2
−3L

2
−2 + ( 7333242724

243
+ 5959030124

243
β)L−5L−4L−3L

2
−2

+(− 3744239456
81

− 4563477511
162

β)L−9L−3L
2
−2 + (− 4568992472

81
− 1329441208

81
β)L3

−4L
2
−2

+( 98011788952
243

+ 23350859840
243

β)L−8L−4L
2
−2 + (− 20981999923

243
− 24546873745

486
β)L−7L−5L

2
−2

+(− 12537042125
243

+ 2293822643
243

β)L2
−6L

2
−2 + ( 148867854119

972
+ 25735300993

972
β)L−12L

2
−2

+( 3397474222
243

+ 592140590
243

β)L−5L
3
−3L−2 + (− 153629552

81
− 157430272

81
β)L2

−4L
2
−3L−2

+(− 18698585200
243

− 3030629912
243

β)L−8L
2
−3L−2 + ( 332973250

81
+ 334271030

81
β)L−7L−4L−3L−2

+( 4006295476
243

+ 1534401548
243

β)L−6L−5L−3L−2 + (− 39235245287
243

− 11785966714
243

β)L−11L−3L−2

+( 3943923671
27

+ 51922221β)L−6L2
−4L−2 + (− 56023386371

486
− 17628497017

486
β)L2

−5L−4L−2

+( 18665820475
162

+ 4831631945
162

β)L−10L−4L−2 + ( 132951996853
486

+ 49107342479
486

β)L−9L−5L−2

+(− 2535966295
18

− 424001521
6

β)L−8L−6L−2 + (− 3527974355
324

− 2781374389
324

β)L2
−7L−2

+(− 256267624133
486

− 53727010357
486

β)L−14L−2 + ( 62662600
81

+ 33837512
81

β)L−4L
4
−3

+( 12081754
81

− 386061646
81

β)L−7L
3
−3 + (− 1235827894

81
+ 324696958

81
β)L−6L−4L

2
−3

+(− 734163464
81

− 27208715
81

β)L2
−5L

2
−3 + ( 1700122117

54
− 141939863

18
β)L−10L

2
−3

+(− 644584063
162

− 1563558899
162

β)L−5L
2
−4L−3 + (− 2365946831

81
+ 391994255

81
β)L−9L−4L−3

+( 41998314095
324

+ 14424238267
324

β)L−8L−5L−3 + (− 5696336410
81

− 1244830214
81

β)L−7L−6L−3

+(− 50875270591
648

− 5501974607
162

β)L−13L−3 + ( 141665042
9

+ 45794666
9

β)L4
−4

+(− 16720323782
81

− 4469878486
81

β)L−8L
2
−4 + ( 4719078932

81
+ 1981388674

81
β)L−7L−5L−4

+( 3329574508
27

+ 774237704
27

β)L2
−6L−4 + (− 24444294973

81
− 7245075107

81
β)L−12L−4

+(− 17795208008
243

− 5697658762
243

β)L−6L
2
−5 + ( 172133662723

648
+ 2558624480

27
β)L−11L−5

+(− 2482312006
81

− 359398637
81

β)L−10L−6 + (− 11445305005
324

− 11100560395
648

β)L−9L−7

+( 88700463031
486

+ 21332312435
486

β)L2
−8 + (− 273742696867

324
− 76299006809

324
β)L−16

«

|h − l 〉

+

„

L14
−1 −

511
6

L−2L
12
−1 + 273L−3L

11
−1 + 31031

12
L2

−2L
10
−1 − 3575L−4L10

−1 − 71357
6

L−3L−2L
9
−1

+ 156871
9

L−5L
9
−1 − 7702123

216
L3

−2L
8
−1 + 2429141

18
L−4L−2L

8
−1 − 29315

18
L2

−3L
8
−1

− 330200
9

L−6L
8
−1 + 3232229

18
L−3L

2
−2L

7
−1 − 14411306

27
L−5L−2L

7
−1 −

190736
3

L−4L−3L
7
−1

+ 1113553
12

L−7L
7
−1 + 299830531

1296
L4

−2L
6
−1 − 87916465

54
L−4L

2
−2L

6
−1 − 1101737

54
L2

−3L−2L
6
−1

+ 25678282
27

L−6L−2L
6
−1 + 11453869

108
L−5L−3L

6
−1 + 1494307

3
L2

−4L
6
−1 − 18846499

18
L−8L

6
−1

− 120020173
108

L−3L
3
−2L

5
−1 + 9826873

2
L−5L

2
−2L

5
−1 + 12821156

9
L−4L−3L−2L

5
−1

− 52971385
24

L−7L−2L
5
−1 + 858578

9
L3

−3L
5
−1 + 340520

9
L−6L−3L

5
−1 − 16430486

9
L−5L−4L

5
−1

+ 53355355
18

L−9L
5
−1 − 563493749

864
L5

−2L
4
−1 + 779378095

108
L−4L

3
−2L

4
−1 + 1494401

3
L2

−3L
2
−2L

4
−1

− 20491817
3

L−6L
2
−2L

4
−1 − 165034463

72
L−5L−3L−2L

4
−1 − 118077817

18
L2

−4L−2L
4
−1

+ 558714659
36

L−8L−2L
4
−1 −

5919766
9

L−4L
2
−3L

4
−1 + 173851973

72
L−7L−3L

4
−1

− 3001604
3

L−6L−4L
4
−1 + 209551

3
L2

−5L
4
−1 + 19970203

9
L−10L

4
−1 + 370750733

144
L−3L

4
−2L

3
−1

− 88749761
6

L−5L
3
−2L

3
−1 − 69331496

9
L−4L−3L

2
−2L

3
−1 + 588707659

48
L−7L

2
−2L

3
−1

− 47120023
54

L3
−3L−2L

3
−1 + 4427710

3
L−6L−3L−2L

3
−1 + 149796614

9
L−5L−4L−2L

3
−1

− 1533491879
54

L−9L−2L
3
−1 + 52642805

36
L−5L

2
−3L

3
−1 + 2193925L2

−4L−3L
3
−1

− 244608971
18

L−8L−3L
3
−1 −

68361415
12

L−7L−4L
3
−1 + 104958070

9
L−6L−5L

3
−1

− 3755911505
144

L−11L
3
−1 + 359158375

576
L6

−2L
2
−1 − 1422954571

144
L−4L

4
−2L

2
−1 − 110349109

72
L2

−3L
3
−2L

2
−1

+ 242776861
18

L−6L
3
−2L

2
−1 + 417557591

48
L−5L−3L

2
−2L

2
−1 + 215671777

12
L2

−4L
2
−2L

2
−1

− 1133758667
24

L−8L
2
−2L

2
−1 + 9402171

2
L−4L

2
−3L−2L

2
−1 − 46173362

3
L−7L−3L−2L

2
−1
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+ 8619874
3

L−6L−4L−2L
2
−1 − 346185L2

−5L−2L
2
−1 − 12764834L−10L−2L

2
−1 + 781726

9
L4

−3L
2
−1

− 6265157
3

L−6L
2
−3L

2
−1 − 17503249

4
L−5L−4L−3L

2
−1 + 851252395

72
L−9L−3L

2
−1

− 10377505
3

L3
−4L

2
−1 + 88750081

2
L−8L−4L

2
−1 − 107002967

48
L−7L−5L

2
−1 − 15108105L2

−6L2
−1

+ 421427881
12

L−12L
2
−1 − 429866875

288
L−3L

5
−2L−1 + 1485768463

144
L−5L

4
−2L−1

+ 75890573
9

L−4L−3L
3
−2L−1 − 3917780737

288
L−7L

3
−2L−1 + 47264245

36
L3

−3L
2
−2L−1

− 14009867
3

L−6L−3L
2
−2L−1 − 47369767

2
L−5L−4L

2
−2L−1 + 3093452827

72
L−9L

2
−2L−1

− 114347681
24

L−5L
2
−3L−2L−1 −

46986829
6

L2
−4L−3L−2L−1 + 171211201

4
L−8L−3L−2L−1

+ 452772625
24

L−7L−4L−2L−1 −
96873449

3
L−6L−5L−2L−1 + 2348340155

32
L−11L−2L−1

− 8346652
9

L−4L
3
−3L−1 + 36927503

12
L−7L

2
−3L−1 + 1760132L−6L−4L−3L−1 −

41087977
12

L−6L
4
−2

+ 2278813
12

L2
−5L−3L−1 + 12560898L−10L−3L−1 + 5520381L−5L2

−4L−1 + 16051875
32

L2
−3L

4
−2

− 504079789
18

L−9L−4L−1 − 114043262
3

L−8L−5L−1 + 17921683L−7L−6L−1 + 178458875
96

L−4L
5
−2

+ 3300324455
144

L−13L−1 − 11116875
128

L7
−2 − 111748133

32
L−5L−3L

3
−2 − 136597993

24
L2

−4L
3
−2

+ 262660881
16

L−8L
3
−2 − 11084647

4
L−4L

2
−3L

2
−2 + 273622811

32
L−7L−3L

2
−2 − 22330L−6L−4L

2
−2

+ 690417
4

L2
−5L

2
−2 + 69379331

12
L−10L

2
−2 − 1549555

12
L4

−3L−2 + 4463795
2

L−6L
2
−3L−2

+ 43957095
8

L−5L−4L−3L−2 − 249418197
16

L−9L−3L−2 + 60703909
18

L3
−4L−2 − 17478125

4
L−8L

2
−3

− 531624373
12

L−8L−4L−2 + 245476273
96

L−7L−5L−2 + 90955697
6

L2
−6L−2 − 844913671

24
L−12L−2

+ 8812909
24

L−5L
3
−3 + 6587483

6
L2

−4L
2
−3 −

103274297
24

L−7L−4L−3 + 2522646L−6L−5L−3

− 210841967
24

L−11L−3 + 3034556
3

L−6L
2
−4 − 525399L2

−5L−4 − 17243744L−10L−4

+ 64762145
6

L−9L−5 + 6664196L−8L−6 − 400057469
96

L2
−7 − 254131871

12
L−14

«

|h; 1 〉 .

C.3 Explicit nullvectors in the bulk of c2,3 = 0

In the following we give the explicit form of the nullvector of type E which has a
Jordan cell at h = 1, lowest weight h = 0 and appears at level 12. Again, for the sake
of brevity, we have set the overall normalisation to 1 and also eliminated any further
freedom by setting any further free parameter to 0; again, the parameter β remains as
it is a parameter of the representation as introduced in section 4.2.3:

„

− 44800
27

L−3L
4
−2L−1 + ( 358528

27
− 4000

9
β)L−5L

3
−2L−1 + ( 117920

27
+ 49600

9
β)L−4L−3L

2
−2L−1

+(− 1543136
81

− 814208
81

β)L−7L
2
−2L−1 + (− 572912

81
− 100000

27
β)L3

−3L−2L−1

+( 620576
9

− 217408
9

β)L−6L−3L−2L−1 + (− 1214624
27

+ 243424
9

β)L−5L−4L−2L−1

+( 3934496
81

− 341888
27

β)L−9L−2L−1 + ( 551312
27

+ 396352
9

β)L−5L
2
−3L−1

+(− 91424
9

− 116416
3

β)L2
−4L−3L−1 + (− 619904

27
− 1408β)L−8L−3L−1

+( 548672
9

+ 769984
9

β)L−7L−4L−1 + (− 4270240
81

− 532160
9

β)L−6L−5L−1

+( 3200
9

− 44800
27

β)L−4L
4
−2 + ( 10400

3
+ 11200

9
β)L2

−3L
3
−2 + (− 2984320

243
+ 585856

27
β)L−6L

3
−2

+(− 1611424
81

− 1122080
27

β)L−5L−3L
2
−2 + (− 63488

27
+ 36864β)L−4L2

−3L−2

+( 309376
9

+ 72832
3

β)L−11L−1 + ( 571936
81

+ 304064
9

β)L−8L
2
−2 + ( 195488

27
− 9920

3
β)L2

−4L
2
−2

+( 229504
81

− 5155328
81

β)L−7L−3L−2 + (− 1020352
81

− 1000192
9

β)L−6L−4L−2

+( 451616
27

+ 709312
9

β)L2
−5L−2 + (− 200192

9
− 279040

3
β)L−10L−2 + ( 40096

81
− 318016

27
β)L4

−3

+(− 693152
81

+ 1014976
9

β)L−6L
2
−3 + (− 1646560

81
+ 3016960

27
β)L−9L−3 + ( 1521088

81
− 762496

9
β)L2

−6

+(− 35168
9

+ 95168
3

β)L3
−4 + ( 128672

27
− 892096

9
β)L−8L−4 + (− 758240

81
+ 6217312

81
β)L−7L−5
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+( 306176
27

− 234080
3

β)L−5L−4L−3 + (− 947200
27

+ 758080
9

β)L−12

«

|h − l 〉

+

„

L11
−1 − 44L−2L

9
−1 + 88L−3L

8
−1 + 1804

3
L2

−2L
7
−1 − 836L−4L

7
−1 − 1320L−3L−2L

6
−1

+ 16456
9

L−5L
6
−1 − 85184

27
L3

−2L
5
−1 + 107536

9
L−4L−2L

5
−1 − 12232

9
L2

−3L
5
−1 + 4640

9
L−6L

5
−1

+ 52448
9

L−3L
2
−2L

4
−1 − 168112

9
L−5L−2L

4
−1 + 720L−4L−3L

4
−1 − 1360L−7L4

−1 + 53504
9

L4
−2L

3
−1

− 373888
9

L−4L
2
−2L

3
−1 + 59072

9
L2

−3L−2L
3
−1 − 13760

9
L−6L−2L

3
−1 − 56896

9
L−5L−3L

3
−1

+15520L2
−4L

3
−1 − 214816

9
L−8L

3
−1 − 22784

3
L−3L

3
−2L

2
−1 + 120320

3
L−5L

2
−2L

2
−1

− 7040
3

L−4L−3L−2L
2
−1 + 3904

3
L−7L−2L

2
−1 + 22016

9
L3

−3L
2
−1 + 3008L−6L−3L

2
−1

− 46016
3

L−5L−4L
2
−1 + 161152

9
L−9L

2
−1 − 8192

3
L5

−2L−1 + 29696L−4L3
−2L−1

−4672L2
−3L

2
−2L−1 −

2048
3

L−6L
2
−2L−1 + 27392

3
L−5L−3L−2L−1 − 94208

3
L2

−4L−2L−1

+53120L−8L−2L−1 + 1984
3

L−4L
2
−3L−1 + 24832

3
L−7L−3L−1 − 45952

3
L−6L−4L−1

− 3776
3

L2
−5L−1 + 22784L−10L−1 + 4096

3
L−3L

4
−2 − 9984L−5L

3
−2 + 128L−4L−3L

2
−2

+ 3328
3

L−7L
2
−2 − 3968

3
L3

−3L−2 − 5632
3

L−6L−3L−2 + 33536
3

L−5L−4L−2

− 39808
3

L−9L−2 + 4480
3

L−5L
2
−3 − 3200

3
L2

−4L−3 − 4480L−8L−3

− 6656
3

L−7L−4 + 8064L−6L−5 − 48256
3

L−11

«

|h; 1 〉 .

The explicit form of the nullvector of type F which has a Jordan cell at h = 2,
lowest weight h = 0 and also appears at level 12 is given below. As we need the full
beauty of this result in the argument of section 4.2.3 any free parameter appears as
calculated (noted as mi); only the overall normalisation we have set to 1:

„

m76L
12
−1 + m75L−2L

10
−1 + m74L−3L

9
−1 + m73L

2
−2L

8
−1 + m72L−4L

8
−1

+m71L−3L−2L
7
−1 + m70L−5L

7
−1 + m69L

3
−2L

6
−1 + m68L−4L−2L

6
−1 + m67L

2
−3L

6
−1

+m66L−6L
6
−1 + m65L−3L

2
−2L

5
−1 + m64L−5L−2L

5
−1 + m63L−4L−3L

5
−1

+m62L−7L
5
−1 + m61L

4
−2L

4
−1 + m60L−4L

2
−2L

4
−1 + m59L

2
−3L−2L

4
−1

+m58L−6L−2L
4
−1 + m57L−5L−3L

4
−1 + m56L

2
−4L

4
−1 + m55L−8L

4
−1

+m54L−3L
3
−2L

3
−1 + m53L−5L

2
−2L

3
−1 + m52L−4L−3L−2L

3
−1 + m51L−7L−2L

3
−1

+m50L
3
−3L

3
−1 + m49L−6L−3L

3
−1 + m48L−5L−4L

3
−1 + m47L−9L

3
−1 + m46L

5
−2L

2
−1

+m45L−4L
3
−2L

2
−1 + m44L

2
−3L

2
−2L

2
−1 + m43L−6L

2
−2L

2
−1 + m42L−5L−3L−2L

2
−1

+m41L
2
−4L−2L

2
−1 + m40L−8L−2L

2
−1 + m39L−4L

2
−3L

2
−1 + m38L−7L−3L

2
−1

+m37L−6L−4L
2
−1 + m36L

2
−5L

2
−1 + m35L−10L

2
−1 + m34L−3L

4
−2L−1

+m33L−5L
3
−2L−1 + m32L−4L−3L

2
−2L−1 + m31L−7L

2
−2L−1 + m30L

3
−3L−2L−1

+m29L−6L−3L−2L−1 + m28L−5L−4L−2L−1 + m27L−9L−2L−1 + m26L−5L
2
−3L−1

+m25L
2
−4L−3L−1 + m24L−8L−3L−1 + m23L−7L−4L−1 + m22L−6L−5L−1 +

m21L−11L−1 − 4096L−4L
4
−2 + 3072L2

−3L
3
−2 + (12800 − 8192β)L−6L

3
−2

+(−32960 + 14336β)L−5L−3L
2
−2 + (30976 + 6144β)L2

−4L2
−2 + (−25088 − 17920β)L−8L2

−2

+(−4736 − 18432β)L−4L2
−3L−2 + (18560 + 32640β)L−7L−3L−2

+(−73216 + 50176β)L−6L−4L−2 + (54464 − 36608β)L2
−5L−2 + (−496 + 5760β)L4

−3

+(−18432 + 48128β)L−10L−2 + (12096 − 54784β)L−6L2
−3 + (2432 + 40448β)L−5L−4L−3

+(−11648 − 59008β)L−9L−3 + (− 22144
3

− 17408β)L3
−4 + (27264 + 55040β)L−8L−4

+(−5120 − 39040β)L−7L−5 + (−4288 + 41472β)L2
−6 + (31552 − 35328β)L−12

«

|h − l 〉
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+

„

L10
−1 − 130

3
L−2L

8
−1 + 284

3
L−3L

7
−1 + 5152

9
L2

−2L
6
−1 − 776L−4L

6
−1 − 1488L−3L−2L

5
−1

+ 6232
3

L−5L
5
−1 − 8320

3
L3

−2L
4
−1 + 29440

3
L−4L−2L

4
−1 − 2752

3
L2

−3L
4
−1 + 640L−6L

4
−1

+ 21376
3

L−3L
2
−2L

3
−1 − 67264

3
L−5L−2L

3
−1 + 800

3
L−4L−3L

3
−1 − 800L−7L

3
−1 + 4096L4

−2L
2
−1

−23552L−4L2
−2L

2
−1 + 992L2

−3L−2L
2
−1 − 3840L−6L−2L

2
−1 + 8896L−5L−3L

2
−1

−9024L−8L
2
−1 − 10240L−3L3

−2L−1 + 48768L−5L2
−2L−1 + 4160L−4L−3L−2L−1

−4992L−7L−2L−1 + 18048L−6L−3L−1 − 23552L−5L−4L−1 + 30528L−9L−1

−8192L−4L
3
−2 + 10240L2

−3L2
−2 + 1024L−6L

2
−2 − 60800L−5L−3L−2

+47104L2
−4L−2 − 30720L−8L−2 − 6144L−4L

2
−3 + 15232L−7L−3

−39424L−6L−4 + 36992L2
−5 − 24576L−10

«

|h; 1 〉 .
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Juli 2002 (zuständig für Noten sowie Kassenführung)
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