
Fusion Algebras and Verlinde-Formula
in Logarithmic Conformal Field Theories

Fusionalgebren und Verlindeformel
in Logarithmisch Konformen Feldtheorien

Diploma Thesis in Physics
Diplomarbeit in Physik

Holger Knuth

angefertig im

Physikalischen Institut
der Rheinischen Friedrich-Wilhelms-Universität Bonn

und im

Institut für Theoretische Physik
der Gottfried Wilhelm Leibniz Universität Hannover

vorgelegt der

Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Dezember 2006



Referent: Priv. Doz. Dr. Michael Flohr
Koreferent: Prof. Dr. Sergio Albeverio
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Zusammenfassung

Die erweiterten minimalen Modelle der c(p,1)-Serie sind Beispiele für kon-
forme Feldtheorien mit Korrelationsfunktionen, die logarithmische Divergen-
zen zeigen. Als eigentlich grundlegende Eigenschaft dieser und anderer log-
arithmischer CFTs enthalten sie eine Reihe unzerlegbare, aber reduzibele,
Darstellungen der Virasoro-Algebra mit zentraler Ladung c = c(p,1) und Ihrer
maximal erweiterten Symmetrie-Algebra, der Triplet W-Algebra. Mit ihnen
erhält man einen Satz von Darstellungen, der allen Anzeichen zufolge unter
Fusion schließt.
Ein komplexer Algorithmus von Gaberdiel und Kausch zur Berechnung
dieser Fusionsprodukte wurde von ihnen aufgrund des stark steigenden
Rechenaufwands komplett nur für c = −2 und c = −7 explizit durchgeführt.
Praktisch gleichzeitig schlug Flohr eine Methode zur einfacheren Berechnung
mit der Verlinde-Formel und einer Wahl für die S-Matrix vor, die auch seine
damalige Arbeit an modulinvarianten Partitionsfunktionen nutzte. Seit 3
Jahren gibt es noch einen weiteren Verlinde-ähnlichen Ansatz für die Fusion
der irreduziblen Darstellungen in c(p,1) Modellen von Fuchs et al., die allgemein
nicht-halbeinfache Fusionsalgebren untersucht haben.
Nach einer Einführung in konforme Feldtheorien im Allgemeinen und die c(p,1)

Modelle im Speziellen stelle ich die letzten zwei Ansätze vor. Deren Ergebnisse
stimmen mit den vorhandenen Resultaten des Algorithmus überein. Ich zeige
den direkten Zusammenhang zwischen beiden Verfahren, der bislang eher im
Dunkeln gelegen haben, auf, indem ich die Flohrsche S-Matrix erstmals in
geschlossener Form angebe und die Bedeutung einiger Größen des Fuchsschen
Ansatzes im Bezug auf die konformen Feldtheorien verdeutliche. Dabei werden
diverse Aspekte der beiden Methoden im Detail betrachtet.
In dieser Arbeit wird ausfuehrlich der Weg zu einer Erweitung des Fuchss-
chen Zugangs auf die unzerlegbaren Darstellungen, die wir gefunden haben,
beschrieben und bewiesen, dass deren Ergebnisse auch mit denen der
Flohrschen Methode übereinstimmen. Es wird diskutiert, welche Vor- und
Nachteile verschiedene Verlinde-ähnliche Formeln für nicht-halbeinfache Fu-
sionsalgebren haben und insbesondere auch der Vergleich zu halbeinfachen
Fusionsalgebren gezogen.





Abstract

The extended minimal models of the c(p,1)-series are examples for conformal
field theories with correlation functions exhibiting logarithmic divergences. As
their - and other logarithmic CFTs’ - basic feature one finds a number of inde-
composable, but reducible, representations of their chiral symmetry algebra,
the tripletW-algebra, which is the maximal extended symmetry algebra of the
Virasoro algebra at central charge c = c(p,1). These representations together
with the irreducible ones form a set, which shows strong evidence of closing
under fusion.
An algorithm of Gaberdiel and Kausch to calculate the fusion products has
only been completely carried out by them for the cases c(2,1) = −2 und
c(3,1) = −7, because of the strongly increasing complexity towards higher
p, also proving the closure under fusion for these two cases.
Virtually at the same time Flohr proposed a simpler method of calculation
using the Verlinde formula and a specific choice of the S-matrix, which also
took advantage of his work on modular invariant partition sums at that time.
Three years ago Fuchs et al., who studied non-semisimple fusion algebras in
general, presented another Verlinde-like proposal for the fusion of only the
irreducible representations in c(p,1) models.
After an general introduction to conformal field theories and a one specifi-
cally to c(p,1) models I present the last two approaches. Their findings are in
correspondence to the known results of the algorithm. I point out the direct
connection between both methods, which has been rather befogged until now,
as I give for the first time Flohr’s S-matrix in closed form and clarify the
meaning of some objects in Fuchs’ ansatz with respect to the conformal field
theories. In the process I examine diverse aspects of both methods in detail.
This thesis will describe at length the path to an extension of Fuchs’ approach,
which we have found, including the indecomposable representations. It is
shown, that the results of this extension are the same as the ones found with
Flohr’s method. The advantages and disadvantages of the different Verlinde-
like formulas for non-semisimple fusion algebras are discussed, in particular
also in comparison to semisimple fusion algebras.
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Introduction

Quantum Field Theory and Relationship Problems

The deep relationship between physics and mathematics stems from the unique interaction
of these two sciences. On the one hand, mathematics provides fabulous possibilities for the
theoretical side of physics to construct theories and proof statements without doubt within the
framework of this theory. On the other hand, results from experiments show unprecedented
kinds of behaviour between measurable entities, which trigger development in mathematics
(like e.g. differential calculus). This has been true for virtually all fields of both sciences.
For centuries of the modern times the needed mathematics could be developed simultaneously
with new discoveries in natural sciences and often both was done by the same persons. Only
after quantum mechanics, which still used the well-known linear algebra and calculus, had led
to a unprecedented change in our picture of nature and its constituents, physics took a direc-
tion, in which among other things the language in current research of physics and mathematics
diverged far apart form each other.
Nature was not any more thought to be composed out of point-like particles with fixed ve-
locity and momentum. A life or death struggle between wave and particle picture of light –
the particle picture seemed already dead as a dodo, until the photo-effect was discovered –
made place for peaceful coexistence. Now the world was described with a fuzzy structure of
quantum states, which were not localised precisely. A second quantisation added to the states
fields, which got the fundamental entities creating also the states. This step to quantum field
theory put particles and interaction on equal footing. In the front row quantum electrody-
namics appeared with a description of electromagnetism of almost unbelievable accuracy (e.g.
[HBH+00]).
Two big drawbacks, connected to each other, exist in quantum field theory. Firstly, one is
restricted in the vast majority of interesting cases to perturbation theory. The second one
is the general lack of mathematical understanding. For example, there is no graph theory in
mathematics, that could deal with Feynman graphs describing the perturbation theory expan-
sion.
Most physicists take little interest in the problems of definitions dealing with distributions,
formal series and divergences, which they recipe-like cure with a medicine called regularisation
– and subsequent renormalisation. They are ecstatic about the agreement with experiment in
theories, where the series seem to converge rather fast, and try to deal with the other cases for
the time being by simpler approaches than long investigation of the mathematical structure
behind quantum field theories, but also with questionable success.
For decades few mathematician have been able to find a connection to the quantum field the-
ories used by physicist apart from toy models. Simultaneously successes were celebrated on
other fields – also new ones –, which have not found the interest of physicists immidiately. As
in the last century the size of these sciences literally exploded, communities were fragmented
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4 Introduction

and communication between them got more difficult.

Conformal Field Theory: Part of a New Common Basis

The communication has drastically improved during the 25 years again. Topics like string the-
ory, operator algebra, non-commutative geometry, knot theory, quantum groups, topological
field theory, Hopf algebras in renormalisation and stochastic systems have develeped to a new
basis, on which the communities have met again.
Still quantum field theory is hardly understood from the mathematical perspective, but there
are exceptions. One of the first reasons for this change has been the invention of conformal field
theories (CFT) living on a two dimensional space by Belavin, Polyakov and Zamolodchikov
[BPZ84]. They turned out to be a non-trivial quantum field theories – i.e. not equivalent to a
free quantum field theories –, which can be treated non-perturbatively and give exact results
for measurable quantities. In physics they climbed fast in popularity together with string the-
ory on the search for a theory unifying gravity with the standard model of particle physics.
CFTs are an intrinsic part of string theory. Moreover a lot of applications in statistical and
condensed matter physics were found (cf. [ISZ88, Aff95, Ber95, Car01]) and thus also a con-
nection to current and near future experiments. Conformal field theories describe systems in
these fields of research at so-called critical points, at which the systems have – as one property
– no intrinsic length scale.
The algebra governing the symmetry of CFTs, the Virasoro algebra, which is a Lie algebra with
central extension, had already found its place in mathematics, before the BPZ paper has ap-
peared. Feigin and Fuks published some work about the representation theory of this algebra in
the beginning of the 80ies, which was essential in the development of CFTs [FF82, FF83, FF].
The infinite dimension of the Virasoro algebra is the actual key to the success of conformal
field theories. More than restricting the theories so much, that non-perturbative calculations
are possible, it also made the development of several mathematically more rigorous approaches
possible opposed to other quantum field theories.
R. Longo and K.-H. Rehren found conformal field theories as a prime example for their studies
on Haag-Kastler nets of von Neumann algebras, which then contain local observables of the
theory [LR95]. This led to an operator algebraic classification of chiral conformal field theories
[Kaw03], each of which is the decoupled half of a full conformal field theory without boundary
conditions. It has to be seen in the context of axiomatic quantum field theory. A set of axioms,
the Wightman axioms, is imposed, among which are e.g. a locality condition and covariance
under the Pioncaré group. The study intensively makes use of the Doplicher-Haag-Roberts
superselection.
As conformal field theories were put into relation to entities from the study of topological
invariants, called topological field theories, a new categorical perspective opened up and many
insights have been retrieved for conformal field theory, especially, when they are subject to
boundary conditions. In this line of research an exhausting formulation of so-called rational
conformal field theories – they are defined by a finiteness condition on the category of irre-
ducible representations of the Virasoro algebra – was developed, in which the full theories are
constructed from the chiral halves [FRS02, FRS04a, FRS04b, FRS05, FFRS05].
However, in these two approaches we do not touch the kind of conformal field theories, which
this thesis deals with. A promising path was opened in the context of the theory of vertex
operator algebras [Hua92, Hua98, Hua00, HK06, HLZ06]. It was crowned by the geometric
vertex operator algebras introduced by Yi-Zhi Huang, who found the conformal vertex (oper-
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ator) algebras on partial operads over the moduli space of genus-zero Riemann surfaces with
analytically parametrised boundaries [Hua91]. This is now also applicable to the theories, we
encounter here, which has already made it possible to prove interesting statements about them
(e.g. [CF06]).
At last we want to mention the connection of conformal field theories to quantum groups,
which is given by a conjecture of Kazdhan and Lusztig. The Kazhdan-Lusztig correspondence
proposes the equivalence of integral parts of a CFT on the one side and a corresponding quan-
tum groups on the other side (recent work: [FGST05, FGST06c, FGST06a, FGST06b]).
So we see, how deep the branches of this tree of different research programmes, connected to
conformal field theories, reach into the garden of mathematics. Though the physicists and
mathematicians speak in different languages about these connected branches, there are some
translators at the branching points.

The Verlinde Formula: A Twinkling Diamond Ring

This thesis is certainly in the language of a physicist and awaits translation. Its topic stems
from the possibly most remarkable single input, which was translated from the physicists’ lan-
guage for the rest of the tree, and certainly a big step in the development of conformal field
theories.
In 1988 Eric Verlinde published a paper on ”Fusion Rules and Modular Transformations in
2-D Conformal Field Theory”[Ver88]. He suggested a formula, thereafter associated with his
name, which would simplify the calculation of the fusion rules enormously. These rules state,
in which representations of the Virasoro algebra the fields are found, that are correlated to a
product of two fields of our choice, i.e. one has non-zero (three-point) correlation functions
of the former field and the product. It has to be understood on the level of representations
of the Virasoro algebra, which contain the fields, and is similar to a tensor product of two
representations and its decomposition into irreducible representations for simple Lie algebras.
The Verlinde formula uses the fact that the characters of the irreducible representations of the
Virasoro algebra – and also the partition function of CFTs – are modular forms, which on its
own already leads to great interest among mathematician, as it is hard to find modular forms.
The so-called S-transformation, τ → −1/τ , is one of the generators of modular transforma-
tions. The associated S-matrix1 describing the transformation properties of said characters
under this S-transformation is all one needs in the Verlinde-formula.
This has been very unexpected. The modular transformation properties of the characters alone
give a fusion algebra, which the fusion rules form. The calculation of the fusion algebra is an
important step in the understanding of any CFT. Its condition of closure ensures that we know
the whole field content of the theory.
The Verlinde formula has soon been recognised to be very interesting for algebraic geometry.
The version, known in this field of mathematics as Verlinde formula, calculates the dimension
of the space of holomorphic sections of certain line bundles over given moduli spaces. This is
connected to the physicists’ version for CFTs in a very nice way by Huang’s geometric vertex
operator algebras.
Over the years many people worked on different proofs for the Verlinde formula in algebraic
geometry. A general proof for this formulation has been given by G. Faltings [Fal94]. The

1We call any matrix giving the transformation properties for a set of characters under the S-transformation
an S-matrix, as a fixed term.
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conclusive step that has guarantied the validity for rational conformal field theories, was only
made in 2004 by Huang.
We will introduce conformal field theories, the property of rationality and especially the min-
imal models, a series of rational conformal field theories, in chapter 1. This chapter focusses
on all we need for the discussion of fusion for minimal models and the introduction of the
Verlinde formula, which in that form is also valid for all rational conformal field theories, in
its last section .
In the beginning of the nineties Saleur has argued that conformal field theories with particular
scaling properties seem to describe two dimensional systems of polymers or percolation partic-
ularly well [Sal92]. The central extension in the Virasoro algebra is zero for these CFT. They
allow for logarithmic divergences of the correlation functions. In the following year interesting
examples for such logarithmic conformal field theories also with non-vanishing central exten-
sion were found. Among these are the models of the c(p,1), with integer p ≥ 2, series, which
are closely related with the minimal models mentioned above. For these models the fusion
algebra is non-semisimple. So the Verlinde formula, about which is written above, is not valid
for this case. It is our goal here to study conjectures for a different Verlinde formula, which
can provide also this non-semisimple fusion algebra without much calculation expense.
But before we get there, the second chapter gives some insights into the c(p,1) models. We see,
that these theories are governed by a symmetry algebra, the W-triplet algebra, which is the
maximal local extension of the Virasoro algebra here. The definition of fusion can be already
given with respect to the Virasoro algebra itself, which then also leads to the fusion rules with
respect to the triplet algebra. At the end of chapter 2 the preliminaries for our studies of an
adapted Verlinde formula for the c(p,1) series are explained. On the one hand, we discuss the
problems, which arise from the different setting in comparison to the case semisimple fusion
algebras. On the other hand, we argue for our expectation, that such a formula exists, as we
point out the similarities of the c(p,1) models to rational conformal field theories.
In chapter 3 we will learn about two different methods, which have been proposed, to calculate
the fusion rules of the c(p,1) models with different adaptations of the Verlinde formula. The
first method (cf. [Flo97]) is motivated rather from a physicist’s view and uses the characters,
as they are given by the relevant representations just counting the elements. We will also
present our result for a closed form of the S-matrix used in this approach in section 3.1.
The second approach (cf. [FHST04])has a more mathematical point of view. For the sake of
defining a representation of the modular transformations on a certain set of characters, one
effectively goes over to a set of linear combinations of these characters, as we show in section
3.2. This new insight improves our understanding of the meaning of the matrices appearing in
this approach within the conformal field theory. Also only a smaller fusion algebra is calculated
leaving out some relevant representations. However, it is very well founded: The fundamental
algebraic statement, that the non-semisimple fusion algebra is the direct sum of its radical and
a semisimple algebra, is providing the ansatz for this method.
The task of this thesis has been to connect these two roads to the fusion rules, which have
been relatively unconnected, yet. It is intended to lead to better understanding of a Verlinde
forumla for c(p,1) models and continue its development. In this respect we have been able to
extend the latter approach to incorporate all relevant representations. We describe in section
3.3 in detail, how the two simplest model of the series, c(2,1) = −2 and c(3,1) = −7, – but
mainly the first one – guide the way to this extension. Moreover we see, how it projects back
to its smaller archetype.
The last section of the third chapter is devoted to the proof of the equivalence of our extension
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and the method in section 3.1. As the starting point of the two methods is the same set of
(generalised) characters and the purpose of both is the calculation of the fusion rules, we need
to show, that the results coincide for all integer p ≥ 2. Furthermore we see, how the different
matrices appearing in both approaches relate to each other.
Finally, in the conclusion we want to draw attention to some work concerning a Kazhdan-
Lusztig-like correspondence for c(p,1) models (among other things). Also the development of
the theory of conformal vertex algebra and geometric vertex operator algebra has to be fol-
lowed. These two subjects are the most promising ones to give a stronger foundation for the
generalised Verlinde formula for non-semisimple fusion algebras and the latter might eventually
be the connection to a proof for this formula.





Chapter 1

Preliminaries about Conformal
Field Theories

In this chapter we introduce conformal field theories starting from the required conformal
symmetry. We sketch the derivation of their symmetry algebra, the Virasoro algebra, and give
a few details about its representations. We then turn turn to the minimal models and end up
with the discussion of fusion in these models. We mainly follow fragments of the book of Di
Franscesco [FMS99] and lecture notes of Flohr [Flo03] and Gaberdiel [Gab00].

1.1 Conformal Symmetry and the Virasoro Algebra

Conformal field theories are quantum field theories, which are symmetric under the special
conformal group acting on the manifolds, on which the theories live. This group consists of
translations, rotations, scaling and so-called special conformal transformations. Talking about
CFTs it is often already implied that one only considers the case of two dimensional field
theories, because much more work was done and much more results were retrieved for this
case. The reason is the larger symmetry these theories have in two dimensions, while they are
already nontrivial. The two dimensional space, which is R2 for now, is complexified, so that
we look at the variables z = x + iy and z̄ = x − iy as independent variables. The special
conformal group in two dimensions SL(2,C) is parametrised by four complex parameters a, b,
c and d ∈ C:

A :=
(
a b
c d

)
: C → C : z → az + b

cz + d
(1.1)

and detA = ad− bc = 1 .

The parameters are grouped in a 2 × 2 matrix because the composition of two elements of
SL(2,C) is just the same as the one given by the product of the two matrices, which contain
the parameters of these elements. The group is generated by the transformations we already
mentioned: (

e
1
2
a 0

0 e−
1
2
a

)
: dilation and rotation , (1.2)(

1 b
0 1

)
: translation ,

(1.3)
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10 Chapter 1. Preliminaries about Conformal Field Theories

(
1 0
c 1

)
: special conformal transformation.

The local transformations belonging to the group SL(2,C) are the holomorphic infinitesimal
transformations defined by

tε : z → z + ε(z) ε(z) =
+∞∑

n=−∞
εnz

n+1 . (1.4)

The Laurent expansion of the holomorphic function ε makes it obvious, that this group is
infinitely generated because of its infinitely many independent degrees of freedom εn.
We are interested in the change of the expression of a spinless and dimensionless field φ(z, z̄),
when the coordinates z and z̄ are locally conformally transformed, while the actual field, of
course, stays the same.

φ′(z′, z̄′) = φ(z, z̄) = φ(z′, z̄′)−ε(z′)∂φ(z′, z̄′)
∂z′

− ε̄(z̄′)
∂φ(z′, z̄′)
∂z̄′︸ ︷︷ ︸

δφ

. (1.5)

We can insert the Laurent expansions for ε(z′) and ε̄(z̄′) here and introduce ln = −zn+1 ∂
∂z and

l̄n = −z̄n+1 ∂
∂z̄ , so that we have:

δφ =
∞∑

n=−∞

[
εnlnφ(z, z̄) + ε̄n l̄nφ(z, z̄)

]
. (1.6)

ln and l̄nthen are derivational operators acting on the fields of our theory, which fulfil the
commutation relation of the conformal algebra. Their commutators are

[ln, lm] = (n−m)ln+m , (1.7)[
l̄n, l̄m

]
= (n−m)ln+m ,[

ln, l̄m
]

= 0 .

The fact, that we get here a direct sum of twice the same algebra acting on the holomorphic
and antiholomorphic part of the expressions, makes it possible that we will be able to drop the
antiholomorphic part in our notation and only write the holomorphic part, always knowing
that the other is also there and looks the same.
Fields of a particularly important kind, called primary fields, have special transformation
properties under local conformal transformation. They change only by a given factor depending
on the transformation. If we look at an arbitrary local conformal transformation, z → w(z)
and z̄ → w̄(z̄), a primary field φ(z, z) transforms as

φ′(w(z), w̄(z̄)) =
(
dw(z)
dz

)−h(dw̄(z̄)
dz̄

)−h̄

φ(z, z) . (1.8)

The negative exponents h and h̄ are called the conformal dimensions of the primary field.
In quantum field theory the observable entities are either currents or correlators. So the aim is
always to calculate these. The symmetry of the primary fields gives us directly the following
relation for correlation functions of n primary fields,

〈φ1(w1, w̄1) . . . φn(wn, w̄n)〉 =
n∏

i=1

(
dw

dz

)−hi

w=wi

(
dw̄

dz̄

)−h̄i

w̄=w̄i

〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉 . (1.9)
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This is a strong statement, which enables one to directly calculate the two- and three-point
correlation functions up to a constant. In rational conformal field theories it is closely related
to the fusion product of two primary fields, whether any three-point function containing those
two is different from zero - so on the constant that is left open. We will come back to this in
section 1.2.2.
We have no time coordinate, which would give us a natural ordering, when we quantise the
theory, in contrast to theories on normal space-time. There one has a time ordering of the
fields and relates it via the Wick theorem to normal ordered products, of which the correlators
vanish. The quantisation is realised at the point, where one imposes the commutation relations
on the modes of the fields and so lays down the form of the Wick theorem implicitly.
Here we need to use another natural ordering. This is best motivated by the string theory
picture. While a closed string propagates through time, it sweeps out a tube isomorphic to a
cylinder. Some time axis would go along the cylinder, while a line of constant time would be
a circle on the cylinder surface. This can be conformally mapped to the complex plane, where
the infinite past would be the origin and the time axis of the world sheet picture would point
radially to the future.
So time ordering on the cylinder is radial ordering on the complex plane. The latter is defined
for spinless fields as:

R (φ1(z)φ2(w)) =

{
φ1(z)φ2(w)if |z| > |w|
φ2(z)φ1(w)if |z| < |w| .

(1.10)

In a correlation function all fields must be radially ordered, i.e, the fields have to act on the
vacuum in the sequence from the origin outwards, in other words from the ”past” to the
”future”. Whenever we want to insert a product of two fields into a correlation function, it is
only well-defined in radial ordering. This leads to a commutator [·, ·], which is defined as∮

w
dza(z)b(w) =

∮
C1

dza(z)b(w)−
∮

C2

dzb(w)a(z) =: [A, b(w)] , (1.11)

A :=
∮
dza(z) ,

with C1 and C2 encircling the origin at distances larger and smaller than |w|, respectively, if
there are no other fields inserted within the space between these contours in the correlation
function. In the general case we can only define the commutator with infinitesimal distance
between the two contours. Therefore one looks at the short distance properties of a product of
two fields, which are expressed in an operator product expansion (OPE). It shows the singular
part of the product of two fields φ(z) and φ(w) , as their insertion points approach each other
expanded in powers of 1/(z − w). The OPE of twice the stress energy tensor, for example, is

T (z)T (w) ∼ c/2
(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)
(z − w)

(1.12)

with a constant c.
Equipped with the commutator (eq. (1.11)), we define the conformal charge

Qε =
1

2πi

∮
dzε(z)T (z) (1.13)

with the holomorphic part of the stress energy tensor T (z) and can express the conformal
Ward identity as

δεΦ(w) = − [Qε,Φ(w)] . (1.14)
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This identity describes the variation of a field Φ under a local conformal transformation. Thus
the charges Qε generate the conformal transformations.
We expand the holomorphic stress energy tensor,

T (z) =
∑
n∈Z

z−n−2Ln . (1.15)

The commutation relations of the modes Ln are found to be

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 . (1.16)

This is the Virasoro algebra. It is a infinitely generated Lie algebra with central extension.
The central charge c is coming from the OPE of twice the stress energy tensor (eq. (1.12)).
An antiholomorphic pendant belongs to each of the equations (1.13)-(1.16). The modes L̄n of
the antiholomorphic part of the stress energy tensor T̄ (z̄) also generate the Virasoro algebra
and commute with their holomorphic counterparts. So the symmetry algebra of our theory
splits into the direct sum of twice the Virasoro algebra for each chiral half. Hence the Virasoro
algebra is its chiral symmetry algebra. We now always only deal with the chiral theory, i.e. we
look at one chiral half of it.
The Virasoro algebra contains a subalgebra with the modes L−1, L0 and L1, which generate
the global conformal transformations.
The representation theory of this algebra was greatly brought forward by Feigin and Fuks.
The globally conformally invariant vacuum state is defined as

Ln|0〉 = 0 ∀n ≥ −1 . (1.17)

Other so-called highest weight states |h〉 are defined by the action of a primary field φ(z) with
conformal dimension h on the vacuum.

|h〉 = φ(0)|0〉 (1.18)

This gives us a one-to-one correspondence between highest weight states and primary fields.
Concerning the action of the Virasoro algebra, one can either look at commutators of the
Virasoro generators with primary fields or their action on highest weight states. The highest
weight states are eigenstates of the zero mode L0. The eigenvalue, its weight, is the conformal
dimension of the corresponding field. The negative modes, as descendent operators, increase
the weight, while the positive modes, as ascendent operators, annihilate the highest weight
states. This is the parlance, although the highest weight states have actually the lowest weight
in the module generated by the action of the Virsoro algebra on one of them. This module is
called Verma module and is given by the following gathered conditions:

highest weight state |h〉: L0|h〉 = h|h〉 , (1.19)
Ln|h〉 = 0 ∀n > 0 , (1.20)

Verma module consists of the states: (1.21)
span({L−k1L−k2 . . . L−kn |h〉 | 0 < k1 ≤ k2 ≤ . . . ≤ kn; n ∈ N}) . (1.22)

The states L−k1L−k2 . . . L−kn |h〉 spanning this module are also eigenstates of L0 to the eigen-
value h+k1+k2+. . .+kn =: h+N and N is called the level of the state. These Verma modules
define representations of the Virasoro algebra and are the ”building blocks” of all physically
relevant representations in CFTs. Their actual properties depend on the central charge.



1.2 Minimal Models 13

1.2 Minimal Models

We want to look at a prominent series of models, the minimal models, both as an example and
because these models constitute the starting point for the discussion of the c(p,1) series in the
next chapter. They are deeply connected with the search for unitary conformal field theories,
which contain no states with negative norm, and with the name of V. Kač. One takes the
matrix of the inner product of all basis states in a particular level N of a Verma module

Mij = 〈i|j〉 , ∀|i〉, |j〉: basis states of level N . (1.23)

Its determinant, the Kač determinant, provides restrictions, for which central charges CFTs
can be unitary, for values 0 < c < 1 and h > 0.
This whole parameter strip is virtually excluded this way. Only a discrete series remains. It is
parametrised by an integer m ≥ 2:

c = 1− 6
m(m+ 1)

(1.24)

h(r,s)(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
∀1 ≤ r < m, 1 ≤ s ≤ r . (1.25)

This series is part of the bigger one of minimal models. They are constructed in a minimal
way looking at the possible conformal dimensions for a given central charge. The defining
observation leading to this series is, that for certain values of the central charge the possible
conformal weights of primary fields do not form a dense set.
These theories belong to rational conformal field theories (RCFT), which we mentioned already
in the introduction. They may be defined as theories, in which the Hilbert space of all fields
is a finite direct sum of irreducible highest weight representations of the chiral symmetry
algebra. If the latter is the direct sum of two copies of the Virasoro algebra, these irreducible
highest weight representations are tensor products of two highest weight representations of the
two corresponding highest weight states for the holomorphic and antiholomorphic half of the
theory. Then the condition follows that there may only be finitely many primary fields. This
is only possible with rational central charge. All conformal weights are also rational.
The central charges of the whole series of minimal models are parametrised by a pair of coprime
integer numbers, p > q > 2:

c(p,q) = 1− 6
(p− q)2

pq
. (1.26)

For p− q = 1 the central charge of the unitary minimal models (eq. (1.24)) is recovered, when
we set m = p − 1 = q. With another pair of integers, r, s > 0, we get the possible highest
weights,

h(r,s) =
(pr − qs)2 − (p− q)2

4pq
(1.27)

This equation has the subsequent symmetry

h(r,s) = h(q−r,p−s) . (1.28)

Certain highest weights differ only by integers:

h(r,s) + rs = h(q+r,p−s) (1.29)
h(r,s) + (q − r)(p− s) = h(r,2p−s) . (1.30)
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Figure 1.1: The Kac table of the smallest minimal model c(4,3), the two dimensional critical Ising
model. The dots mark the pairs (r, s), which label the conformal dimensions h(r,s) of primary fields
in this model. These are the scaling fields, which are quoted next to the dots. Each one appears
twice in the Kac table.

The Verma modules V(r,s) for minimal models with highest weights h(r,s) are reducible. They
contain so-called singular – or null – states, each of which is orthogonal to all states in the
module except its descendent. The descendents consequently are also orthogonal to the rest of
the module. One finds that these singular states are the highest weight states of other Verma
modules. For the levels containing a singular state the Kač determinant vanishes.

1.2.1 Irreducible Highest Weight Representations of Minimal Models

The highest weight representations are constructed starting with a particular set of Verma
modules, which belong to the highest weights h(r,s) with 0 < r < q and 0 < s < p. This set
of highest weights is called the Kač table. As an example the Kač table of the c(4,3) model,
which is the two dimensional critical Ising model, is given in figure 1.1. The Verma modules
with a highest weight in the Kač table have two singular vectors at levels rs and (q− r)(p− s).
They are the ones suggested by equation (1.29), because the weight of a descendent differs by
its integer level from the highest weight, and, indeed, the Kač determinant vanishes at these
levels.
However, if we now factor out the union of the two Verma modules V(q+r,r−s) and V(r,2p−s),
generated from the singular states of the Verma module in the Kač table, we throw away too
much. These Verma modules contain again each two singular states. Fortunately it turns out
that these two singular states coincides for both modules and we find a structure as in figure
1.2. Every arrow points from a Verma module with the given pair (r, s) to a Verma module,
whose highest weight state is a singular state in the former module. The irreducible represen-
tations are given by the Verma modules V(r,s) in the Kač table, from which Verma submodules
corresponding to the singular states (q + r, p − s) and (r, 2p − s) have been subtracted, from
which in turn the Verma submodules on their singular states (2q + r, s) and (r, 2p + s) have
been subtracted, from which. . .. This way we arrive at the following succession of subtractions
and additions for an irreducible representation M(r,s).

M(r,s) = V(r,s) − (V(q+r,r−s) ∪ V(r,2p−s)) + (V(2q+r,s) ∪ V(r,2p+s))− . . . (1.31)

with 0 < r < q and 0 < s < p. We can label also the irreducible representations by their place
(r, s) in the Kač table.
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Figure 1.2: The structure of Verma modules and their singular vectors is symbolically shown.
The pairs (·, ·) represent the highest weights h(·,·) of Verma modules. The arrows point from one
Verma module to its submodules generated from its singular vectors. If (r, s) is in the Kač table,
also the sequence of Verma modules is visualised, which need be substracted and added from the one
corresponding to (r, s) in order to get an irreducible representation.

1.2.2 Fusion in Minimal Models

In this section we will introduce the fusion product for minimal models. One wants to associate
a representation of the symmetry algebra to a product of two field. This is similar to the case
of the tensor product representation of simple Lie algebras, like e.g. the spin algebra su(2), but
due to the central extension of the Virasoro algebra can not be the solution here. The tensor
product of two Virasoro representations would be a representation of the Virasoro algebra with
a different central charge, which is the sum of the two central charges corresponding to the
first two the representations.
The problem can be generally solved by the insertion of the stress energy tensor in an arbitrary
correlation function with the two fields in our product, which then provides a suitable repre-
sentation. We look at this in the next chapter. For minimal models it can be shown that the
structure constants of the fusion algebra, which is given by the decomposition of the product
representation into irreducible representations, follow from the values of three point functions
of primary fields.

The Fusion Algebra

If we look at three primary fields φi, φj and φk, the three point correlation functions with
these fields have the general form

〈φk(zk)φi(zi)φj(zj)〉 =
Cijk

(zij)hi+hj−hk(zik)hi+hk−hj (zjk)hj+hk−hi
, (1.32)

It can be illustrated by the graph in figure 1.3. This amplitude can only be different from
zero, if the representation conjugate to φk is contained in the product representation of φi and
φj , which we want to decompose into a direct sum of irreducible representations. For minimal
models also the opposite direction of this conclusion is true. In the general case one also has
to consider the multiplicity, with which one representation appears in the other, but here all
these multiplicities are one.
We define the fusion algebra with the structure constants being the fusion coefficients (NRCFT )ij

k

telling us, which representations are in the decomposition of the fusion product:

φi × φj =
∑

k

(NRCFT )ij
kφk , (1.33)



16 Chapter 1. Preliminaries about Conformal Field Theories

•�
�

�
�

�

Q
Q

Q
Q

Q

φk

φi

φj

Figure 1.3: The tree graph corresponding to the three point correlation function.

where the sum goes over all irreducible representations – or equivalently primary fields. The
fusion product closes for the irreducible representations of RCFTs. The fusion coefficients
relate to the three point function by

(NRCFT )ij
k = 1 ⇔ Cijk 6= 0 (1.34)

The fusion algebra is associative, commutative and semisimple. The semisimplicity is not
generic for fusion algebras, but is required for the Verlinde formula, which we learn about in
the next subsection. The unit element of the fusion algebra is the vacuum representation.
If one defines the matrices NRCFT,I with matrix elements

(NRCFT,I)j
k = (NRCFT )Ij

k , (1.35)

these are a representation of the same algebra:

NRCFT,INRCFT,J =
∑
K

(NRCFT )IJ
KNRCFT,K . (1.36)

For the vacuum representation one naturally gets the unit matrix.
The decomposition of the fusion products in the case of the minimal models can be written in
closed form as the subsequent sum:

φ(r,s) × φ(r′,s′) =
min(r+r′−1,2q−1−r−r′)∑

k=1+|r−r′|
k+r+r′=1 mod 2

min(s+s′−1,2p−1−s−s′)∑
l=1+|s−s′|

k+s+s′=1 mod 2

φ(k,l) (1.37)

Characters and the Verlinde-Formula

Especially, when different multiplicities become relevant or the direct correspondence between
three point functions and fusion coefficients breaks down, the calculation of the fusion rules
from the fields is something one rather wants to avoid. Almost twenty years ago a formula has
been proposed by E. Verlinde, which leads to the fusion coefficients via the properties of the
characters of the irreducible representations.
The characters of highest weight representations are given by the weighted sum of the number
dim(h + n) of linearly independent states at level n over all levels from zero to infinity. This
is just equal to the following trace over the Hilbert space of the representation:

χ(c,h)(τ) = trH(c,h)
qL0−c/24 (1.38)

=
∞∑

n=0

dim(n+ h)qn+h−c/24
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with q = e2πiτ .
One particularly interesting thing about conformal field theories is that the characters and
partition functions are modular forms. We find that the characters of the irreducible represen-
tations transform into linear combinations of themselves under the modular group SL(2,Z).
One can write the characters as the components of a vector χχχ(τ)and then describe the linear
combinations, which are equal to the transformed characters – the ones evaluated at the point
γτ with γ ∈ SL(2,Z)–, by a matrix G(γ):

χχχ(γτ) = G(γ)χχχ(τ) . (1.39)

The matrices G(γ) form a representation of SL(2,Z). It is generated by the two elements for
the transformations T : τ → τ + 1 and S : τ → −1/τ .
The latter is particularly important in CFTs because the matrix SRCFT = G(S) – the S-matrix
– is the only thing we need for the mentioned Verlinde formula, which directly yields the fusion
coefficients:

Nk
ij =

∑
r

(SRCFT )j
r(SRCFT )i

r(SRCFT
−1)r

k

(SRCFT )Ω,r
. (1.40)

The inverse is actually superfluous because the square of the S-matrix is the unit matrix,
SRCFT

2 = 1l. Furthermore the S-matrix is symmetric. The index Ω refers to the row (or
column) of the S-matrix corresponding to the vacuum representation.
The actual statement of the Verlinde formula is, that the S-matrix simultaneously diagonalises
the fusion coefficient matrices. The diagonal matrix belonging to NRCFT,I is

Mdiag,I = diag

(
(SRCFT )I

1

(SRCFT )Ω
1 ,

(SRCFT )I
2

(SRCFT )Ω
2 , . . . ,

(SRCFT )I
n

(SRCFT )Ω
n

)
(1.41)

We have already mentioned in the introduction that the Verlinde formula has been proven in
different versions for semisimple fusion algebras ending with the work of Huang, who connected
the pieces. But this is not the end of the road. The assumption needed for the Verlinde formula,
as we have discussed it here, can be weakened, without loosing all properties that lead to a
similar kind of formula, which we conveniently also call Verlinde formula to induce the right
associations. In the next chapters we are going to investigate cases, in which the fusion algebra
is not any more semisimple.





Chapter 2

The c(p,1) Series

In the last chapter we have described conformal field theories in a way, which points directly
to such RCFTs, for which the maximal chiral symmetry algebra is the Virasoro algebra. We
also have looked at the most prominent example, the minimal models. This might have led to
the impression, that, for example, there are only highest weight states associated to ordinary
primary fields and all their descendents in every CFT, or that each highest weight state is
an eigenstate of the zero mode of the Virasoro algebra. The latter condition says, that L0

diagonalises on the highest weight states. In this section we take a look at examples for CFTs,
the c(p,1) models, where this is not the case. For the case of p = 2 we explain, how one is led
to highest weight states, which are not eigenstates of L0, through a logarithmic factor found
in the four point correlation function of a primary field in these models. These states form
each a Jordan cell in L0 together with a highest weight eigenstate of L0. These pairs belong
to indecomposable representations of the Virasoro algebra with central charge c = c(p,1). The
occurrence of such representations is the actual reason for the Jordan cells and the logarithmic
factors. Thus the name ”logarithmic conformal field theory”, to which the c(p,1) models also
belong, does not focus on its basic feature.
The c(p,1) models are border cases in double respect. Firstly, this series is closely related to
minimal models. They originate from the idea of an extension of the concept of the minimal
models seen in the last chapter. Secondly, we see later on, that they exhibit some kind of
rationality reminding of RCFTs or – depending on the exact definition, which we also discuss
in the last section of this chapter – even being RCFTs.

2.1 Extension of Minimal Models

To recall, minimal models have been defined basically by their symmetry algebra, the Virasoro
algebra, taken at the rational central charge c(p,q) defined in equation (1.26) for p and q coprime
and larger than one.
One can now ask – and has asked – the question, if there is a way to define a consistent theory
having the Virasoro algebra at c = c(p,1) calculated with the same equation. It is certainly not
the kind of minimal model we have already seen because the Kac table in this case is empty.
But one can extend this Kac table by its border, which represents (p−1) Verma-modules with
highest weight h(1,s)(p, 1) for 0 < s < p.
From this point these models were developed gradually. On the way many problems were
encountered. Among these it was found that this series consists just of the LCFTs sketched in
the first lines of this chapter.

19
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Figure 2.1: The graph corresponding to the four point correlation function of four times the
primary field φ(1,2) is shown. A logarithmic partner ω of the vacuum Ω has been found asking the
question for the internal fields, which are contributing to this amplitude.

In the beginning Victor Gurarie investigated among others what he called the most simple
example of possible four point functions with logarithmic behaviour, which appear in the first
model of the series with central charge c(2,1) = −2 [Gur93]. In detail he looked at the primary
field φ(1,2) with conformal dimension h(1,2) = −1

8 and at the scattering of this field with itself
visualised in figure 2.1. It has the form

〈φ(1,2)(z1)φ(1,2)(z2)φ(1,2)(z3)φ(1,2)(z4)〉 = (z1 − z3)
1
4 (z2 − z4)

1
4 [x(1− x)]

1
4 F (x) (2.1)

with the anharmonic ratio x = (z1−z2)(z3−z4)
(z1−z3)(z2−z4) . The structure follows from the fact that φ(1,2)

is a primary field and so the correlation functions have to obey eq. (1.9). This also implies a
differential equation for F (x).

x(1− x)
d2F (x)
dx2

+ (1− 2x)
dF (x)
dx

− 1
4
F (x) = 0 . (2.2)

If a power series ansatz of not yet fixed lowest power s, with which x appears, is inserted
here and the monomials of power s− 1 are extracted, we get an equation for the power s (cf.
[Gab03]).

s2 = 0 . (2.3)

As the roots of this equation coincide, the second independent solution F2(x) for F (x) is not
a power series, but results from the first solution F1(x), which is regular at x = 0, as

F2(x) = F1(x) log(x) +H(x) , (2.4)

where H(x) is also regular at x = 0. To these two solutions we can associate now the operator
product expansion of the field φ(1,2) with itself.

φ(1,2)(z)φ(1,2)(w) ∼ ω(w) + log (z − w)Ω(z) . (2.5)

Here Ω is found to be the unit operator associated to the vacuum state. ω is called its
logarithmic partner. This is indeed very matching because it does not only appear here in the
same OPE together with Ω, but maps also to Ω under the Virasoro generator L0. This way
those two operators form a Jordan block in the action of L0:

L0ω = Ω , (2.6)
L0Ω = 0 . (2.7)
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These two primary fields correspond to highest weight states. All positive modes Ln, n > 0,
annihilate them. So in LCFTs L0 does not diagonalise on highest weight states. Acting on
such a pair of states the negative modes Ln, n < 0, generate so-called logarithmic highest
weight representations.

2.2 Fusion Products of Virasoro Highest Weight Representa-
tions

For a systematic analysis of the field content of these theories one needs to understand, how
products of fields decompose. It is enough to analyse these for the primary fields or generally
on the level of the representations that descend from these fields. Thus we need the fusion
products of them. But it already shapes up as a problem to define fusion for the c(p,1) series
consistently.
The definition via the three point correlation functions, which we use for the minimal models,
is not well defined here. We have already mentioned in our discussion of the minimal models
in section 1.2.2 ,that the assumptions, we have imposed there, were rather special. Here we
proceed with a widely valid definition consistent with the previous considerations.
Garberdiel and Kausch [GK96a], namely, have found a way to define a tensor-like product,
which associates a product representation to two representations of the Virasoro algebra with
central charge c(p,1). We will make the difference to the real tensor product clear by an index
f , which accompanies the product sign. The product of two primary fields ψ and χ defines a
representation with the help of the contour integral of the stress energy tensor and those two
fields inserted at points z1 and z2, respectively, with the contour going around both insertion
points. One always looks at these products in correlation function and so they are only defined
in this context. The mentioned countour integral gives us the action of the Virasoro algebra
on the product of ψ and χ.

∮
0
dwwm+1〈φ(∞)T (w)ψ(z1)χ(z2)Ω〉 (2.8)

=
∑

〈φ(∞)(∆(1)
z1,z2

(Lm)ψ)(z1)(∆(1)
z1,z2

(Lm)χ)(z2)Ω〉 (2.9)

with an arbitrary field φ and the vacuum Ω. For the action of the Virasoro algebra a comul-
tiplication formula is used, which has been developed before [MS89, Gab94a, Gab94b]. The
action of the Virasoro generators in the product representation is given by ∆(1)

z1,z2(Lm) and
∆(2)

z1,z2(Lm), which combines to the tensor product

∆z1,z2(Lm) =
∑

∆(1)
z1,z2

(Lm)⊗∆(2)
z1,z2

(Lm) , (2.10)

which in turn can be explicitly expressed for n ≥ −1 as

∆z1,z2(Ln) = ∆̃z1,z2(Ln) (2.11)

=
n∑

m=−1

(
n+ 1
m+ 1

)
z1

n−m(Lm ⊗ 1l) +
n∑

l=−1

(
n+ 1
l + 1

)
z1

n−l(1l⊗ Ll)
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and can be expanded in two different ways ∆z1,z2(Ln) and ∆̃z1,z2(Ln) for n ≤ −2:

∆z1,z2(Ln) =
∞∑

m=−1

(
n+m− 1
m+ 1

)
(−1)m+1z1

−n−m(Lm ⊗ 1l) (2.12)

+
∞∑

l=n

(
l − 2
n− 2

)
−z1l−n(1l⊗ Ll) ,

∆̃z1,z2(Ln) =
∞∑

l=n

(
l − 2
n− 2

)
−z1l−n(Ll ⊗ 1l) (2.13)

+
∞∑

m=−1

(
n+m− 1
m+ 1

)
(−1)m+1z1

−n−m(1l⊗ Lm) .

These two expansions are derived from the same equation (2.8) and must be equal in all
correlation functions. However, their action on the product space of the two Hilbert spaces H1

and H2 of two representations, of which we want to calculate the fusion product, are a priori
different. So the fusion product has to be the quotient space of this product space through all
states of the form [

∆z1,z2(Ln)− ∆̃z1,z2(Ln)
]
(ψ1 ⊗ ψ2) , m ∈ Z, ψi ∈ Hi , (2.14)

as is described in the lecture notes [Gab03] of M. Garberdiel. In these notes the algorithm
developed by him and H. Kausch to calculate specific decompositions of fusion products is
described and the structure of the contributing representations given [GK96a]. We do not
consider these calculations for the Virasoro algebra here, but immediately go on to the extended
algebra, which we consider throughout the rest of this thesis.

2.3 The Triplet W-Algebra W(2,2p− 1,2p− 1,2p− 1)

It was noticed that the number of relevant irreducible highest weight representations of the
Virasoro algebra at c = c(p,1) is infinite, but countable. Furthermore there is a countably
infinite set of indecomposable representations, which has to be considered as well, because the
fusion algebra, which has been calculated for the cases of p = 2, p = 3 and partially for higher p
(mostly p = 4) in [GK96a] using the above-mentioned algorithm, does only close together with
these representations. All these irreducible and indecomposable representations have highest
weights h(r,s) found in an infinite Kac table with some redundancy – every representation’s
highest weight appears at two values of (r, s). The indecomposable representations always
contain two irreducible subrepresentations. One of these has the same highest weight, the
other’s highest weight is higher by an integer number.
One of the primary fields with conformal dimension h(3,1) is of particular interest, because
h(3,1) = 2p−1 is an odd integer. Extensions of the Virasoro algebra with multiplets of fields of
half-integer or integer spin has been studied by Horst Kausch in [Kau91]. Especially a series
of Virasoro algebras with c = c(p,1) has been found in this work, which can be extended by a
triplet of fields W (j) with odd integer spin, which have a structure resembling SO(3), or by a
singlet, which is given by the sum of the three triplet fields.
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The mentioned triplet is given by the field φ(3,1) and the action of a screening charge Q on it:

W (j) = Qjφ(3,1) , (2.15)

Q =
∮
dzVα+(z) (2.16)

with a vertex operator Vα+(z), which can be expressed in terms of oscillators in the frame of a
free field construction, just as the whole algebra can be expressed this way (cf. [Kau91, Flo03]).
So this triplet W-algebra W(2, 2p− 1, 2p− 1, 2p− 1) is generated by the stress energy tensor
and the triplet of fields W (j). It is the maximally extended local chiral symmetry algebra of the
c(p,1) models. The commutation relations of the modes Lm and W (a)

m of the stress energy tensor
and the fields W (a), respectively, for the case p = 2, which serves us here as an sufficiently
complicated example, then result to

[Ln, Lm] = (n−m)Ln+m − 1
6
n(n2 − 1)δn+m,0 , (2.17)[

Ln,W
(a)
m

]
= (2n−m)W (a)

n+m ,[
W (a)

n ,W (b)
m

]
= δab

(
2(n−m)Λn+m +

1
20

(n−m)(2n2 + 2m2 − nm− 8)Ln+m

− 1
120

n(n2 − 1)(n2 − 4)δm+n,0

)
+iεabc

(
5
14

(2n2 + 2m2 − 3nm− 4)W (c)
n+m +

12
15
V

(c)
n+m

)
with Λm = : L2

m : − 3/10 ∂2Lm, V (a)
m = : LmW

(a)
m : − 3/14 ∂2W

(a)
m , a, b, c ∈ {1, 2, 3}, n,m ∈ Z

and expressed in an orthonormal basis. In the first line we repeated the Virasoro algebra with
c = −2 plugged into equation 1.16. We continue with this example for a while.

2.3.1 Highest Weights and su(2) Structure

The triplet algebra is only associative because of null vectors in the vacuum representation.
These lead to constraints expressed in the form that certain combinations of generators of the
algebra annihilate any highest weight state ψ. One of these constraints is:(

W
(a)
0 W

(b)
0 − δab 1

9
L0

2(8L0 + 1)− εabc 1
5
(6L0 − 1)W (c)

0

)
ψ = 0 . (2.18)

It follows that the commutator of the zero modes of the fields W (a) becomes:[
W

(a)
0 ,W

(b)
0

]
=

2
5
(6h− 1)εabcW

(c)
0 , (2.19)

which is a rescaled su(2) algebra. We can now rescale the zero modes

W
′(a)
0 =

5i
6h− 1

W
(a)
0 (2.20)

and find, that the highest weight states of the triplet algebra are eigenvectors of W ′(3)
0 and

the Casimir operator
∑

a

(
W
′(a)
0

)2
. We traditionally denote eigenvalues as m and j(j + 1),
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Figure 2.2: The extended Kač table for the c = −2 model. The indecomposable and irreducible
representations belonging to the pair (r, s) through their highest weight h(r,s) are denoted next to
each cross.

respectively.
These are the states with highest weights h(r,s) with 0 < r < 3 and 0 < s < 3p, which combine
to an extended Kač table for the c(p,1) models. After we took the field φ(3,1), which is on the
border of this extended Kac table into the chiral symmetry algebra, all other highest weight
states of the Virasoro algebra with r ≥ 3 and s ≥ 3p are now descendants of those in this
table with respect to the triplet algebra. This is again something most easy to be seen with
the constraints from the null vectors (i.a. eq. (2.18)). They lead to the following equation for
an highest weight state ψ:

L0
2(8L0 + 1)(8L0 − 3)(L0 − 1)ψ . (2.21)

The state ψ is per definition an eigenvector of L0 with the highest weight being the eigenvalue.
So this gives a simple equation for possible highest weights with solutions, which are exactly
the entries of the extended Kac table for p = 2, which figure 2.2 shows. The double root
for highest weight zero is due to the indecomposable representation of the triplet algebra
W(2, 3, 3, 3), which contains all the indecomposable Virasoro representations.
Coming back to the su(2) algebra the subsequent values, which we found for j, lead to the
classification as singlet and doublet irreducible representations.

• j = 0: the singlet representations [0] and
[
−1

8

]
,

• j = 1
2 : the doublet representations [1] and

[
3
8

]
,

where we introduced the notation [h] for the representation with highest weight h. Note that
from equation (2.18) also the relation W (a)

0 W
(a)
0 = W

(b)
0 W

(b)
0 follows. So the Casimir operator

is actually the same as 3
(
W

(3)
0

)2
and we gain m from j and vice versa by

j(j + 1) = 3m2 . (2.22)

Because m has to be an integer or half-integer number, the possibility of higher values for j is
excluded from the outset. No such quantum numbers can be associated to the indecomposable
representation because it contains both singlet and doublet subrepresentations, as we are going
to see now.

2.3.2 Fusion Products of Triplet Representations

As the next step in the investigation of the c(p,1) series the knowledge about the fusion of
Virasoro representations has been used to calculate the fusion rules of the triplet algebra
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Figure 2.3: The structure of the indecomposable representations
[
0̃+
]

(left) and
[
0̃−
]

(right) of
the triplet algebra algebra W(2, 3, 3, 3). The arrows symbolise the non-vanishing action of zero and
ascendent modes on the non-descendent states, which are represented by the dots.

representations with the same algorithm as before and the action of the extended algebra on
the products of states. This was done for p = 2 by Garberdiel and Kausch [GK96b], but the
rising complexity and sheer amount of calculations for higher p have been too blenching up to
date.
Most interesting are the fusion products of the representations

[
−1

8

]
and

[
3
8

]
. Their analysis

shows that they are always one of two indecomposable representations
[
0̃+
]

and
[
0̃−
]
, which

until now have not and very soon again will not be distinguished because they are isomorphic
to each other. [

−1
8

]
⊗f

[
−1

8

]
=

[
0̃+
]
,[

−1
8

]
⊗f

[
3
8

]
=

[
0̃−
]
, (2.23)[

3
8

]
⊗f

[
3
8

]
=

[
0̃+
]
.

The structure of
[
0̃+
]

and
[
0̃−
]

is given in figure 2.3. The vertices • are states that are no
descendants. In both representations two are found on level zero and two on level 1, which is
also their conformal weight because the highest weight is zero. The arrows denote the action
of ascendent and zero modes of the triplet algebra, which takes us from one to the other. That
these are not annihilating the states here makes the representation indecomposable. They are
not any more a construction of quotients of Verma modules like the irreducible representations.
The representations consist of the respective four non-descendent states and all descendants
of these state. We get back to general p now.
We first have a look on the indecomposable representations and their relation to the irreducible
ones. The indecomposable representations can be associated with the positions (r, s) = (1, p+
λ) for 0 < λ < p in the extended Kac table. We denote these representations by their
highest weights in brackets

[
h̃(1,p+λ)

]
with a tilde pointing out the difference to the irreducible

representation
[
h(1,p−λ)

]
, which has the same highest weight and is a subrepresentation of[

h̃(1,p+λ)

]
. The other irreducible subrepresentation is

[
h(1,3p−λ)

]
. The relation between the

highest weights is
h(1,3p−λ) − h(1,p−λ) = p− λ . (2.24)

Two further irreducible representations
[
h(1,p)

]
and [h(1,2p)] are not subrepresentations of an in-

decomposable representation, but are like the indecomposable representations projective mod-
ules of the triplet algebra. So we have exhausted the first row of the extended Kac table, but
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there are no more irreducible or indecomposable representations to come because the second
row is redundant to the first one.

2.4 Characters of W-Algebra Representations

The essential thing, we need to know, of the triplet algebra representations for our actual work
are their characters. The characters, which need to be calculated using equation (1.38), are
those of the Virasoro highest weight representations on the highest weight states |h(2k+1,i)〉
for k ∈ Z+ and 0 < i ≤ p or 2p ≤ i < 3p. All those, which belong to the same i, are
degenerate and have weights that differ by integer numbers. They combine in the light of
the triplet algebra to one triplet algebra representation. More precisely the Hilbert space
of a triplet algebra representation is the direct sum of the Hilbert spaces of the Virasoro
representations each weighted by a multiplicity originating from the su(2) symmetry. The
characters of the triplet algebra representations are the sum of the Virasoro characters with
the mentioned multiplicities incorporated. Furthermore one can derive from the structure
of the indecomposable representations that their characters are the sum of the irreducible
subrepresentations with the multiplicity, with which the latter appear in the former.
Here the character of the vacuum representation, i = 1, shall exemplify the needed calculation.
First the Virasoro character came out of the investigations of the Virasoro algebra of Feigin
and Fuks and successors [FF83] in the early 80’s:

χV ir
2k+1,1 =

1
η(q)

(
qh(2k+1,1) − qh(2k+1,−1)

)
. (2.25)

Here the Dedekind η-function is used:

η(q) = q
1
24

∏
n∈N

(1− qn) . (2.26)

The multiplicities of the Virasoro representations in the triplet algebra representations are
2k + 1 for h(2k+1,1). Especially for h(3,1) the multiplicity is three matching the triplet. So the
Hilbert spaces of these representations relate as

HW[0] =
⊕
k∈Z+

(2k + 1)HV ir
|h(2k+1,1)〉 (2.27)

with the non-negative integer numbers Z+. For the characters it follows that

χW[0] =
∑

k∈Z+

(2k + 1)χV ir
2k+1,1 , (2.28)

which evaluates after a few steps to

χW[0] =
1
η(q)

∑
k∈Z

(2k + 1)q(2pk+(p−1))2 =
1

pη(τ)
(Θp−1,p(τ) + (∂Θ)p−1,p(τ)) . (2.29)

In the last term the character is expressed in terms of modular forms, namely the Jacobi-
Riemann Θ-functions and the affine Θ-functions, which are respectively defined as

Θλ,k(τ) =
∑
n∈Z

q
(2kn+λ)2

4k , (2.30)

(∂Θ)λ,k(τ) =
∑
n∈Z

(2kn+ λ)q
(2kn+λ)2

4k . (2.31)
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All triplet algebra characters of the irreducible and the indecomposable triplet algebra repre-
sentations can be expressed by these functions. The appearance of modular forms in CFTs has
lead to quite some interest among mathematicians working in this field. Recently a conjecture
by Werner Nahm ([Nah04]), that constructs a whole family of forms with the help of CFTs is
modular, has kindled some work to calculate examples for it [Zag06].
Always the quotient of the Θ-functions and the Dedekind η-function appears in the characters.
Θλ,k/η is a modular form of modular weight zero, while (∂Θ)λ,k/η is one of weight one. We
choose a notation, where we sort the characters into three groups. Those of irreducible singlet
representations χ+

λ,p, of irreducible doublet representations χ−λ,p and of indecomposable repre-
sentations χRλ,p belong to the highest weights h1,p−λ for 0 ≤ λ < p, h1,3p−λ for 0 ≤ λ < p and
h1,p+λ for 0 < λ < p, respectively. The characters are given by

χ+
0,p =

1
η(τ)

Θ0,p , (2.32)

χ−p,p =
1

η(τ)
Θp,p , (2.33)

χ+
λ,p =

1
pη(τ)

[(p− λ)Θλ,p + (∂Θ)λ,p] , (2.34)

χ−λ,p =
1

pη(τ)
[λΘλ,p − (∂Θ)λ,p] , (2.35)

χRλ,p =
2

η(τ)
Θλ,p . (2.36)

The vacuum character is χ+
p−1,p in this notation. We want to sort the characters of the irre-

ducible representations for later use in the vector:

χχχt
irr,p = (χ+

0,p, χ
−
p,p, χ

+
p−1,p, χ

−
p−1,p, χ

+
p−2,p, χ

−
p−2,p, . . . , χ

+
1,p, χ

−
1,p) . (2.37)

This is the same sequence as in the work of Fuchs et al. (e.g. [FHST04]).

2.4.1 No Canonical S-matrix

We see, that the characters of the representations, which are the actual projective modules of
the triplet algebra, are modular forms of modular weight zero. But we also have to stomach
the fact that the other irreducible representations do not transform so nicely under modular
transformations due to the second summand, a weight one modular form. The peculiarities of
these characters, when modular transformed, gets clear in the example of the vacuum character
of p = 2, which we take a look at under the transformation τ → −1/τ .

χ+
1,2

(
−1
τ

)
=

1
2η(−1/τ)

[
Θ1,2

(
−1
τ

)
+ (∂Θ)1,2

(
−1
τ

)]
(2.38)

=
1

2η(τ)

[
1
2
Θ0,2 (τ)− 1

2
Θ2,2 (τ)− iτ(∂Θ)1,2 (τ)

]
=

1
4
χ+

0,2 −
1
4
χ−0,2 −

i

2
τχ+

1,2 −
i

2
τχ−1,2 .

The factor of τ appearing in the last two lines poses the first big problem. We recall that the
goal of the research, which this thesis continues, is to find a Verlinde formula for the c(p,1) series
and develop its understanding. Therefore we need to find some kind of S-matrix, which should
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base on the transformation properties of characters of representations of the chiral symmetry
algebra under τ → −1/τ , as it is in the proven Verlinde formula for rational conformal field
theories. The characters of the irreducible representations, we calculated, are not transforming
very wildly here. The transformed characters are almost again a linear combination of these
characters themselves. Only the factors of τ spoil at this point the easy walk we had consid-
ering RCFTs1.
But there is another big obstacle. We have seen that some fusion products result in indecom-
posable representations. So these should be included into our considerations. The S-matrix
should have a size corresponding to the number of generators of the fusion algebra, which we
want to get at the end. In the case of p = 2 it is known because of the calculation of Garberdiel
and Kausch – and for other p there are convincing arguments, as we see, for example, in the
next section – that the generators of the fusion algebra of the highest weight representations
of the triplet W-algebra are the irreducible representations and the indecomposable represen-
tations, so 3p − 1 generators. This leads to the mentioned second complication. For these
representations, the characters are linearly dependent. The structure of the indecomposable
representations with irreducible ones as subrepresenations causes the following dependence:

2χ+
λ,p + 2χ−λ,p = χRλ,p . (2.39)

This fits nicely to the image we got of the indecomposable representation for p = 2 in figure 2.3
– two singlet and two doublet vertices –, but also lets any (3p− 1)× (3p− 1) S-matrix (for the
general p) based on the modular transformation of only the characters in eqns. (2.32)-(2.36)
be singular.
We even have not considered the question yet, how the two isomorphic versions of every
indecomposable representations should be dealt with. If we wanted to distinguish between
them the S-matrix would even have to be still bigger. But to prevent toplofty hopes, it should
be mentioned right now, that no possibility whatsoever has been seen, how to accomplish this.
Thus we will not make a difference between two isomorphic representations and in the next
chapter we are going to investigate the possibilities to find a (3p−1)×(3p−1) S-matrix, which
leads us to the fusion rules.

2.5 Quasi-Rationality

For now, we want to take a look at a few properties of the c(p,1) models showing that these
theories have much in common with rational conformal field theories and so the expectance of
some kind of Verlinde formula is well based.
The definitions of rational and quasi-rational conformal field theories differ slightly in different
parts of the literature. The Hilbert space of fields of a conformal field theories can be written
in the form ([Flo03]):

H⊗ H =
⊕
λ∈Λ

H(λ) ⊗ H̄(λ̄) (2.40)

=
⊕
λ∈Λ

⊕
ν∈Nλ

H(λ)
ν ⊗

⊕
ν∈Nλ

H(λ̄)
ν

 (2.41)

1This absolutely only refers to the method, not to the horrendous mathematics that lies in the Verlinde
formula in any of its versions.
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The Hilbert spaces H(λ) and H̄(λ̄) belong to irreducible highest weight representations of the
chiral symmetry algebra for the two chiral halves of the theory. This algebra may be larger
than the Virasoro algebra, as we have seen. These are direct sums of the Hilbert spaces H

(λ)
ν

and H
(λ̄)
ν of highest weight representations of the Virasoro algebra. If the set Λ is finite and

the fusion products decompose into finitely many representations, the theory is called rational.
If the set Λ is countably infinite and the fusion coefficients Nij

k are zero for almost all k,
the theory is called quasi-rational. In contrast to the demand that the fusion coefficients are
different from zero for only finitely many k, this leaves us with the possibility, that in certain
limits within the index set NΛ, counting the Virasoro representations, the number of summands
in the decomposition of the fusion products may go to infinity. We have introduced here and
continue to use the stronger version of rationality. One also finds definition, in which the
reference to the fusion products is dropped and only the statement about the index set Λ is
kept.
In words a rational conformal field theory is a CFT, in which the irreducible highest weight
representations of the Virasoro algebra – possibly infinitly many – are grouped in a finite
number of blocks given by an extended chiral symmetry algebra (compared to the Virasoro
algebra). With this definition and, if the fusion rules, we propose here, are correct for all p,
the c(p,1) models are all rational. For p = 2 this was proven by calculating the fusion rules in a
paper thus called ”A Rational Logarithmic Field Theory” [GK96b]. This is a definition with
respect to the extended symmetry algebra.
One often talks in the case of infinitely many irreducible Virasoro representations, though
grouped in the described way, already of a quasi-rational CFT with respect to the Virasoro
algebra. In this sense we continue here and often compare between rational conformal field
theories and quasi-rational c(p,1) models.
There are strong indications from other parts of the c(p,1) series, that build up the parallel
between other rational conformal field theories and these models. The search for a partition
function of the c(p,1) models has brought many insights [Flo96a]. It ought to be calculated
from the characters of the relevant representations and has to be modular invariant. Certain
products of characters from the two chiral halves are excluded because of vanishing couplings.
The factors of τ in the modular transformation of the characters give a further problem(e.g.
eq. (2.38)). These factors are taken care of, if one first introduces further 2(p−1) α-dependent
forms, which for α → 0 reduce to the characters of the indecomposable representations. In
fact the characters of the indecomposable representations are split into a sum:

χRλ,p = χR+
λ,p (α) + χR−λ,p (α) (2.42)

χR+
λ,p (α) =

1
η

[Θλ,p + iαλ(∇Θ)λ,p]

χR−λ,p (α) =
1
η

[Θλ,p − iα(p− λ)(∇Θ)λ,p]

where (∇Θ)λ,p is

(∇Θ)λ,p = iτ(∂Θ)λ,k =
1
2π

log(q)(∂Θ)λ,k (2.43)

With χR+
λ,p (α), χR−λ,p (α) and the characters from equations (2.32)-(2.35) one is let to the following

modular invariant partition function consistent with the model and staying modular invariant
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also for α→ 0 (cf. [Flo97]).

Zp,α =
∣∣χ+

o,p

∣∣2 +
∣∣χ−o,p

∣∣2 +
p∑

λ=1

[
χ+

λ,pχ
R+
λ,p

∗
+ χ+

λ,p
∗
χR+

λ,p + χ−λ,pχ
R−
λ,p

∗
+ χ−λ,p

∗
χR−λ,p

]
(2.44)

=
1
ηη∗

(
|Θ0,p|2 + |Θp,p|2 +

p∑
λ=1

[
2|Θλ,p|2 + iα

(
(∂Θ)λ,p(∇Θ)∗λ,p − (∂Θ)λ,p

∗(∇Θ)λ,p

)])

For α = 0 this is the partition function Z(
√
p/2) of the standard c = 1 Gaussian model.

Recently it was also proven for p = 2, that χR+
λ,p (α) and the characters of the irreducible

representations also form a basis for the chiral vacuum torus amplitudes (cf. [FG06]). Also
strong indications for this statement to generalise to arbitrary p were presented there. In
the case of rational conformal field theory the canonical basis for the chiral vacuum torus
amplitudes consist just out of the characters of the irreducible representations.
Here obviously we have to take the indecomposable ones into account. This space of amplitudes
is also correspondingly larger. Their characters are linearly dependent on the characters of the
irreducible representations, but with the new forms χR+

λ,p (α) we have a representative for the
indecomposable representations. This is also particularly interesting, when it now gets to the
fusion rules and some kind of Verlinde formula for the c(p,1) series. Of course, these new forms
are in no way standing out, as the characters of the irreducible representations do, which leads
to the name ”canonical basis” in RCFTs, where only they span the space. In the next chapter
we are going to see, that we actually have to go over to another form related to χR+

λ,p (α) in
order to calculate the fusion rules.



Chapter 3

Verlinde Formula for c(p,1) Models

Chapter 2 introduced us to the c(p,1) series and pointed out several properties of these models,
which are particularly important in view of the fusion product in these theories. We saw that
there are strong arguments for an analogue to the Verlinde formula because of the parallels to
rational conformal field theories, the basis of the chiral vacuum torus amplitudes, the modular
transformation properties of the characters and the modular invariant partition function. But
we also discovered some problems. We have indecomposable representations of the maximally
extended chiral symmetry algebra W(2, 2p − 1, 2p − 1, 2p − 1), which have to be considered.
Therefore there is no canonical basis of characters of irreducible representations for the vac-
uum torus amplitudes. The linear dependence of characters of indecomposable and irreducible
representations prevents to directly find ”the” S-matrix.
In this chapter we are searching for an S-matrix. We find various candidates. One of them
has been calculated by M. Flohr on the grounds of considerations on characters and partition
functions. Another one came from Fuchs and coworkers from the search of an SL(2,Z) repre-
sentation acting only on the irreducible characters.
We start with the former in section 3.1, which depends on the parameter α, which we have
introduced at the very end of the last chapter. This leads to a Verlinde formula, which gives
α-dependent (pre-)fusion rules. Thus we are going to call it in this thesis the α-Verlinde for-
mula. The actual fusion rules are recovered after the limit α → 0 is taken and some minor
steps thereafter are done, which need some discussion.
Fuchs’ S-matrix and the ”generelised” (to non-semisimple fusion algebras) Verlinde formula,
he gets, are discussed afterwards in section 3.2. In this formula the fusion coefficients are not
diagonalised by the S-matrix, but only block-diagonalised. This method is found in a more
algebraic approach, but only covers the irreducible representation.
In section 3.3 we find an extended version of the block-diagonalisation method. It reduce to
Fuchs’ approach in a canonical way and gives the same results for the irreducible representa-
tion. In the last section 3.4 we proof that the extended version also results to the same fusion
rules as the α-Verlinde formula.

3.1 The α-Verlinde Formula

A decade ago a way to adapt the Verlinde-Formula to c(p,1) models was proposed in [Flo97]. We
have already indicated that we can advance on our way to an S-matrix with the help of the forms
χR+

λ,p (α). They are linearly independent from the characters of irreducible representations.
What is more, they and the characters of the irreducible representations close under modular

31
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transformations of their argument, i.e. any of these 3p − 1 forms evaluated at γτ , with γ ∈
SL(2,Z), can be written as a linear combination of the same forms evaluated at τ . This is the
case for all linear combination of χR+

λ,p (α) and χR−λ,p (α), which are linearly independent from
the characters.
With this in hand a (3p− 1)× (3p− 1) S-matrix S(p,α) can be uniquely defined for a vector of
characters with 2p components as in eq. (2.37) and further p− 1 components being one of the
linear combinations, parametrised by x ∈ C,

χ̃λ,p(α, x) =
2
p

[
(p+ x− λ)χR+

λ,p (α) + (λ− x)χR−λ,p (α)
]
. (3.1)

The results do not depend on the choice of x. The form χ̃λ,p(α, x) surely depends on x.
However, when we insert the forms χR+

λ,p (α) and χR−λ,p (α) (eq. (2.42)) into equation (3.1), it
emerges, that it only depends on the product of x and α:

χ̃λ,p(α, x) =
1
η

[2Θλ,p + 2xiα(∇Θ)λ,p] (3.2)

We can redefine α in a convenient way to incorporate x. Because we take the limit α → 0 at
the end, this does not change the results.
For the following x = −i/2 is chosen, which corresponds to the choice made in [Flo97]:

χ̃λ,p(α) = χ̃λ,p(α,−i) =
1
η

[2Θλ,p + α(∇Θ)λ,p] (3.3)

The factor 2/p appears in equation (3.1) in contrast to [Flo97] to have a multiplicity - which a
priori may be chosen - of 2 in front of the Θλ,p/η term in χ̃λ,p(α,−i), instead of a multiplicity
of p. The result at the end will depend on choice of the multiplicity. Another multiplicity
in χ̃λ,p(α, x) leads qualitatively to the correct fusion rules, but with different multiplicities.
Our choice is the one, for which the forms χ̃λ,p(α) get the character of the indecomposable
representations for α→ 0.
The following vector of characters and forms, representing the indecomposable representations,
is used in the course of this section:

χχχt
p(α) = (χ+

0,p, χ
−
p,p, χ

+
p−1,p, χ

−
p−1,p, χ̃p−1,p(α), χ+

p−2,p, χ
−
p−2,p, χ̃p−2,p(α), . . . , (3.4)

χ+
1,p, χ

−
1,p, χ̃1,p(α)).

The S-transformation (τ → −1/τ) of the vector χχχp(α) is then given by an S-matrix depending
on α, as well:

χχχp(α)
(
−1
τ

)
= S(p,α)χχχp(α)(τ) (3.5)

In previous work this α-dependent S-matrix has always been calculated only for particular
choices of p. First we express the transformation properties of the Θ-functions under the S-
transformation in a matrix S. One takes Jacobi-Riemann Θ-functions, Θλ,p, affine Θ-functions,
(∂Θ)λ,p, and affine Θ-function multiplied with τ , (∇Θ)λ,p, all divided by the Dedekind η-
function in the sequence

1
η

(Θ0,p,Θ1,p, . . .Θp,p, (∂Θ)1,p, (∂Θ)2,p, . . . (∂Θ)p−1,p, (3.6)

−(∇Θ)1,p,−(∇Θ)2,p, . . . ,−(∇Θ)p−1,p) . (3.7)



3.1 The α-Verlinde Formula 33

The matrix S describes the transformation τ → −1/τ of this vector analogously to eq. (3.5).
It has three blocks different from zero, for which the matrix elements are

Sij =
1

1 + δj,1 + δj,p+1

√
2
p

cos
(
π(i− 1)(j − 1)

p

)
∀ 0 < i, j ≤ p+ 1 ,

S(2p+k)(p+l+1) = i

√
2
p

sin
(
πkl

p

)
∀ 0 < k, l < p ,

S(p+n+1)(2p+m) = −i
√

2
p

sin
(
πnm

p

)
∀ 0 < n,m < p .

The δ is the Kronecker symbol.
The matrix B building the characters and forms, which we need, from the Θ-functions has only
few non-zero matrix elements, as one can see in equations (2.37) and (3.3). These elements are

B1,1 = 1 , B2p = 1 , (3.8)

B(3λ)(p−λ) =
λ

p
, B(3λ)(2p−λ+1) =

1
p
,

B(3λ+1)(p−λ) =
p− λ

p
, B(3λ+1)(2p−λ+1) = −1

p
,

B(3λ+2)(p−λ) = 2 , B(3λ+2)(2p+λ) = Iα ,

(3.9)

The product BSB−1 finally is equal to S(p,α).
We have now also calculated this S-matrix for general p and get it in closed form. Its structure
has its roots in the fact, that we put the characters of the two irreducible representations, which
are not subsets of any indecomposable representations, in the first entries of the vector χχχp(α),
while all other pairs of irreducible representations are accompanied by the indecomposable
representation, which contains them.
This leads to a block structure with one 2× 2 block S(p)0,0 and each (p− 1) 2× 3 and 3× 2
blocks S(p)0,l and S(p)s,0, respectively. These blocks do not depend on α. The rest of the
matrix is filled with 3 × 3 blocks S(p, α)s,l. Many of the matrices defined throughout this
chapter will have this structure, where s and l will always run from 1 to p− 1 inclusive.
Finally, the matrix S(p,α) is given for arbitrary p as:

S(p,α) =


S(p)0,0 S(p)0,1 . . . S(p)0,p−1

S(p)1,0 S(p, α)1,1 . . . S(p, α)1,p−1
...

...
. . .

...
S(p)p−1,0 S(p, α)p−1,1 . . . S(p, α)p−1,p−1

 (3.10)

with

S(p)0,0 =
1√
2p

(
1 1
1 (−1)p

)
,

S(p)0,l =
2√
2p

(
1 1 0

(−1)p−l (−1)p−l 0

)
,



34 Chapter 3. Verlinde Formula for c(p,1) Models

S(p)s,0 =
1√
2p


s
p (−1)p+s s

p
p−s
p (−1)p+s p−s

p

2 2(−1)p+s

 ,

S(p, α)s,l =
2√
2p

(−1)p+l+s ×
s
pcsl + 2

p
1
αssl

s
pcsl + 2

p
1
αssl − 1

pαssl

p−s
p csl − 2

p
1
αssl

p−s
p csl − 2

p
1
αssl

1
pαssl

2csl − α(p− l)ssl 2csl + αlssl 0


with the abbreviations csl = cos

(
π sl

p

)
and ssl = sin

(
π sl

p

)
.

This matrix fulfils S(p,α)
2 = 1l, but is not symmetric. For α → 0 the forms χ̃λ,p(α) pass into

the characters of the indecomposable representations. So they are linearly dependent with the
characters of the irreducible representations in this limit. Consequently some of the entries of
S(p,α) diverge in this case.
For completeness the matrix T(p,α) for the transformation τ → τ +1 is given here. It is defined
as

χχχp(α)(τ + 1) = T(p,α)χχχp(α)(τ) (3.11)

and is calculated to be

T (p)0,0 =

(
e−i π

12 0

0 e−iπ( p
2
− 1

12)

)
, (3.12)

T (p, α)s,s =

 ts 0 0
0 ts 0

iα (p− s) ts −iα s ts ts


with

ts = e
−iπ

(
(p−s)2

2p
− 1

12

)
(3.13)

with all other elements of T(p,α) being zero.
The matrices S(p,α) and T(p,α) describe the action of the generators S and T of the modular
group SL(2,Z) on χχχp(α)(τ). So with equations (3.5) and (3.11) any element γ ∈ SL(2,Z) can
be represented as a matrix G(p,α)(γ), which is a product only containing copies of S(p,α) and
T(p,α), such that

χχχp(α) (γτ) = G(p,α)(γ)χχχp(α)(τ) (3.14)

As the action of SL(2,Z) on functions on C is linear1, we directly have for two elements
γ, γ′ ∈ SL(2,Z), that

G(p,α)(γγ
′) = G(p,α)(γ)G(p,α)(γ

′) (3.15)

It follows that S(p,α) and T(p,α) generate a representation of SL(2,Z), namely G(p,α)(γ), for a
fixed α 6= 0. We can also immediately see, that like the generators of SL(2,Z) also S(p,α) and
T(p,α) have to fulfil the conditions S(p,α)

2 = 1l and (S(p,α)T(p,α))
3 = 1l.2

The matrix S(p,α) is now plugged into the Verlinde formula as known for rational conformal
field theories. This, of course, leads to an object Nij

k(α), which depends on α. But here the

1The action of SL(2, Z) on a function f : C → C shall be defined as the composition f ◦ γ with γ ∈ SL(2, Z).
2As an easy check one can calculate these products for any p, which we did for up to p = 6.
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limit of α → 0 exists. We define the coefficients Nij
k to be exactly this limit and get the

α-Verlinde formula:

Nij
k = lim

α→0
Nij

k(α) = lim
α→0

( 3p∑
r=1

(S(p,α))jr(S(p,α))ir(S(p,α))r
k

(S(p,α))3,r

)
(3.16)

Note, that the third component of the vector χχχp(α)(τ) is the character of the vacuum repre-
sentation. In contrast to the semisimple case of RCFTs with symmetric S-matrix, the indices
of S(p,α) in the Verlinde formula have to be kept as in this formula. Especially the third line
of S(p,α) – rather than the column – has to be taken for the denominator of the α-Verlinde
formula. This is due to a convention of left-multiplication of S(p,α) with χχχp(α)(τ), which we
chose quite naturally.
At this point we want to note, that the limit in the α-Verlinde formula has to be taken the way,
it is here. One can think of different parameters α in the different copies of the S-matrix S(p,α),
which are not simultaneously put to zero. However, we have found, that only the simultaneous
limit results in correct fusion rules. Otherwise one has no unit element, for example. In view of
the equivalence of this formula to the block-diagonalisation method – which we show in section
3.4 – this is also, what one would expect. We have detailed our studies on this in appendix
A.1.1.
On first sight the results for Nij

k for p = 2 and p = 3, which are given in the appendices B.1
and C.1, differ quite much from the fusion coefficients Nij

k calculated in [GK96b] and [GK96a].
However, we have to note that any fusion rules we get using eq. (3.16) by itself, can only be
taken as true on the level of characters, not representations, because the calculation is based
only on the modular transformation properties of the characters. Here we have the problem,
that, as soon as we take the limit α → 0, the functions χ̃λ,(α) degenerate again to a linear
combination of characters of irreducible representations given in eq. (2.39). So the method
presented here can not distinguish the indecomposable representation from linear combination
of irreducible representations in the decomposition of the fusion product.
Indeed, for many fusion products Nij

k has components corresponding to the these linear combi-
nations, while in [GK96b] and [GK96a] the corresponding indecomposable representation was
the correct result.
There is another problem that occurs in fusion products of indecomposable representations
with some other representation: For one and the same fusion product Nij

k encodes the linear
combinations mentioned above together with the corresponding indecomposable representa-
tions, which then have a negative integer coefficients. These problems shall be illustrated in
the case of p = 3.

Example: The matrix S(3, α) reads

1
2 r̂

1
2 r̂ r̂ r̂ 0 r̂ r̂ 0

1
2 r̂ −1

2 r̂ r̂ r̂ 0 −r̂ −r̂ 0
1
6 r̂

1
6 r̂ −1

6 r̂ − ŝ −1
6 r̂ − ŝ 1

2 ŝ −1
6 r̂ + ŝ −1

6 r̂ + ŝ −1
2 ŝ

1
3 r̂

1
3 r̂ −1

3 r̂ + ŝ −1
3 r̂ + ŝ −1

2 ŝ −1
3 r̂ − ŝ −1

3 r̂ − ŝ 1
2 ŝ

r̂ r̂ −r̂ + t̂ −r̂ − 1
2 t̂ 0 −r̂ − 1

2 t̂ −r̂ + t̂ 0
1
3 r̂ −1

3 r̂ −1
3 r̂ + ŝ −1

3 r̂ + ŝ −1
2 ŝ

1
3 r̂ + ŝ 1

3 r̂ + ŝ −1
2 ŝ

1
6 r̂ −1

6 r̂ −1
6 r̂ − ŝ −1

6 r̂ − ŝ 1
2 ŝ

1
6 r̂ − ŝ 1

6 r̂ − ŝ 1
2 ŝ

r̂ −r̂ −r̂ − t̂ −r̂ + 1
2 t̂ 0 r̂ − 1

2 t̂ r̂ + t̂ 0


(3.17)
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with r̂ =
√

6/3, ŝ =
√

2/(3α) and t̂ = α
√

2. Eq. (3.16) then gives ”pre-fusion-rules”
listed in appendix C.1.
It is worth going through some particular fusion products from eq. (C.1) to see the
problems arising through the ambiguities in the limit α → 0. In this example there are
two indecomposable representations and two corresponding identities of their characters:

2χ+
i,3 + 2χ−i,3 = χRi,3 i = 1, 2 .

These ”translate” to identities of representations, which shall symbolise their indistin-
guishabileness in this calculation:

2
[
−1

4

]
+ 2

[
7
4

]
=

[
−̃1

4

]
,

2 [0] + 2 [1] =
[
0̃
]
. (3.18)

Quite typical is the following product:[
−1

4

]
⊗f

[
−1

3

]
= 2

[
−1

4

]
+ 2

[
7
4

]
. (3.19)

Here the first identity in eq. (3.18) is used to get the desired result
[
−̃1

4

]
. Substitutions

of this kind are still quite comprehensable. But there are several results for other fusion
products like [

0̃
]
⊗f [1] = 4 [0]−

[
0̃
]
+ 2

[
−1

3

]
+ 4 [1] , (3.20)

which catch one’s eye because of a disturbing minus sign. But it also contains the latter
of the linear combinations in eq. (3.18) in a sufficiently high multiplicity, so that we
can mend this problem by a calculation on the level of characters. Equation (3.20) then
yields

2
[
0̃
]
−
[
0̃
]
+ 2

[
−1

3

]
=
[
0̃
]
+ 2

[
−1

3

]
. (3.21)

This kind of calculation must be done in several fusion products given in eq. (C.1). For
those products one gets finally the fusion rules for W-algebra representations, which are
listed in eq. (C.3) and are consistent with the fusion rules calculated for the Virasoro
modules in [GK96a].

Without clear rules for these substitutions the value of the results would be lost. Fortu-
nately we know, that fusion products of irreducible representations can only decompose into
irreducible representations, which have the correct su(2) quantum number j, and any indecom-
posable representations, because they have no unique su(2) quantum numbers. The quantum
number j is additive within the fusion rules. So the fusion product of two singlets gives apart
from indecomposable representations only singlets, two doublets also only singlets and one of
each gives doublets. As there are no other values for j, these are the only possibilities.
This rules out all the combinations of both singlets and doublets in the decomposition. Now
two irreducible representations having the characters on the left hand side of equation (2.39),
which gives our ”translation” to the correct fusion rules, are exactly a singlet and a doublet
and thus forbidden. This justifies the permanent substitution in all fusion product of two
irreducible representations, in which the mentioned combinations appear.
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The products with the indecomposable representations are a bigger problem because the ar-
gument of su(2) quantum numbers can not be applied, when the representation does not have
unique quantum numbers. Here a practical argument is given by the negative coefficients.
These should be mended, which seems to be possible for all p as well. There are quite a few
still left out, in which a substitution should be made, but where we have no argument except
the result. For example, for p = 3 there are 7 fusion products of this kind left (cf. appendix
C.1). But there is also no argument, why now exactly these should be exceptions.
All in all we can surely say, that the following rules are well-founded. There are no indications
of deviations whatsoever:

• Replace the left hand side of the following equation by the indecomposable representation
on the right hand side, whenever it appears:

2 [h1,p−λ(p, 1)] + 2 [h1,3p−λ(p, 1)] =
[
h̃1,p+λ(p, 1)

]
λ = 1 . . . p− 1 . (3.22)

• If two coefficients appear now for the same indecomposable representation in one fusion
rule, add them.

If there is a negative coefficient of an indecomposable representation in the decomposition of
the fusion product, it has to be compensated by a higher positive multiplicity from the first
rule to make sense. We checked this up to p = 6.
Finally – with only one α in the α-Verlinde formula – the following conjecture summarises this
method.

Conjecture: The structure constants Nij
k of the fusion algebra of the c(p,1) series are calcu-

lated by equation (3.16) for all i = 1 . . . (3p− 1) and

• for all (j, k) ∈ {1, 2}×{1, . . . , 3p−1} and all (j, k) ∈ {3, . . . , 3p−1}×{1, 2} as Nij
k = Nij

k

• for all (j, k) ∈ {3, 3p− 1} × {k ∈ {3, . . . , 3p− 1}|k mod 3 = 0} and κ = k, (k + 1) as

Nij
κ =

{
0 if Nij

k = Nij
(k+1)

Nij
κ else

, (3.23)

Nij
(k+2) =

{
Nij

(k+2) + Nij
k/2 if Nij

k = Nij
(k+1)

Nij
(k+2) else

. (3.24)

Here we have stated the proposed connection between the fusion coefficients Nij
k and the

”pre-fusion” coefficients Nij
k, which enables us to compute the former for any p with little

expenses. However, the limit in this procedure makes it hard to understand the cause, why
this leads to the correct result. The situation looks surely a bit better after the work in [FG06]
gave us the new perspective on the functions χ̃λ,p(α) as chiral vacuum torus amplitudes. But
still one advantage of a different method, which we will discuss in the next section, is the
absence of such a limit.
As mentioned above the ambiguities about the indecomposable representations are generic for
methods based on the modular transformation properties of characters. So there is virtually
no hope to find a method using some kind of Verlinde formula, which does not exhibit them.
But this is something we gladly cope with, as the α-Verlinde formula reduces the amount of
needed calculation to get the fusion rules for any particular p enormously.
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3.2 Block-Diagonalisation of the Fusion Rules

This section introduces the approach of Fuchs et al., published first in [FHST04]. First we
want to mention a few key features already in the beginning. The work of Fuchs et al. yields
only the fusion rules of irreducible representations among themselves. A limit like in the last
section does not appear. This method is motivated by the theorem that any non-semisimple,
finitely generated, associative and commutative algebra, like the fusion algebra we look for
here, is the direct sum of its radical and some semisimple algebra. As the key consequence a
matrix Pirr,p is found, which simultaneously block-diagonalises the matrices Nirr,p,I of fusion
coefficients for the irreducible representations,3 in contrast to the case of RCFTs, where the
fusion algebra of the Virasoro irreducible modules is semisimple and the S-matrix diagonalises
the fusion coefficient matrices NI simultaneously.
But what are the coefficients Nirr,p,I going to be, that are the structure constants of a closed
algebra, which is called the ”small” fusion algebra in the following? We have seen that the
fusion algebras calculated by Gaberdiel and Kausch do not close with just the irreducible repre-
sentations. But in the last section we have also seen, that on the level of characters we have got
(pre-)fusion coefficients Nij

k, which for the fusion products of two irreducible representations
are only different from zero, if they correspond again to irreducible representations. Here the
substitution of some of these summands of irreducible representations in the decomposition
of the fusion product by the corresponding indecomposable representations is not made. This
leads to the closed algebra we have asked for. Now we just have to understand the fusion
products in a different way. Namely, we see the irreducible representations in the problematic
cases just as sets. The decomposition of the products, which we get with the ”small” fusion
algebra does not tell us any more the structure of the fusion product, as it was defined for
c(p,1) models, e.g. that certain product are the indecomposable representation. They only
state, which states belonging to an irreducible representation or a subrepresentation of an in-
decomposable representation are expected in the decomposition of the product of two fields.
We first find out, how the simultaneous block-diagonalisation comes about and see, that the
matrix Pirr,p is a matrix consisting of simultaneous eigenvectors of the matrices Nirr,p,I . Af-
terwards we find an S-matrix Sirr,p by construction of an SL(2,Z) representation acting on
the characters of the irreducible representation, for which a so-called automorphy factor is
needed, and put this S-matrix in relation to Pirr,p. Towards the end of this section we will
find a replacement of the automorphy factor, which will also be useful, when it comes to the
extension of this method in section 3.3.

3.2.1 Simultaneous Eigen Decomposition of the Fusion Coefficient Matrices
for Irreducible Representations

We proceed now with the definition of the matrix Pirr,p mentioned above and work out its
properties and the simultaneous block-diagonalisation. While the subsequent considerations
were presented in [FHST04] in a general setting for non-semisimple fusion algebras, we will
restrict ourselves here to the case of the c(p,1) models using the same notation.
In the basis of irreducible representations X we have define our fusion coefficient together with

3All the 2p × 2p matrices here carry the index irr to distinguish them from the larger matrices in the
section 3.3, where this method is extended beyond the 2p irreducible representations to also incorporate the
indecomposable representations.



3.2 Block-Diagonalisation of the Fusion Rules 39

the so-called ”small” fusion algebra:

XIXJ =
2p∑

K=1

(Nirr,p)IJ
KXK . (3.25)

One chooses a basis now different from the this one. In view of the direct sum of a semisimple
algebra and a radical, which is equal to the ”small” fusion algebra, it consists of the union of
a set of primitive idempotents, eA with A = 1 . . . p+ 1, in the semisimple algebra and a basis
of the radical, wA with A = 3 . . . p+ 1 . All the primitive idempotents eA form a partition of
the unit element of the semisimple algebra (and also the whole ”small” fusion algebra):

p+1∑
A=1

eA = 1l , (3.26)

Each wA corresponds to an eA with an image of dimension 2. There are two further primitive
idempotents in the new basis with a one dimensional image (A = 1, 2). The new basis, called
Y , is taken in the following order:

Y = (e1, e2, e3, w3, e4, w4, . . . , ep+1, wp+1) . (3.27)

Its elements relate to each other by

eAeB = δA,BeB , (3.28)
eAwC = δA,CwC , (3.29)
wCwD = 0 (3.30)

with 0 < A,B ≤ p+ 1, 3 ≤ C,D ≤ p+ 1 and δ being the Kronecker delta.
Because we want to get the fusion coefficient at the end again in the basis X, we want to find
the change of basis to the basis Y , by which the fusion coefficients matrices, defined in the
usual way (cf. eq. 1.35), are simultaneously block-diagonalised and not only the block-diagonal
coefficients in the basis Y . This block structure becomes clear by a few steps of calculation.
The change of basis is given by Pirr,p:

XL =
2p∑

J=1

(Pirr,p)L
JYJ . (3.31)

XI is the vector of irreducible representations in the sequence of the characters in eq. (2.37).
This defines Pirr,p.

Proposition: Pirr,p block-daigonalises the matrices Nirr,p,I simultaneously, i.e.

Nirr,p,I = Pirr,pMirr,p,IPirr,p
−1 , (3.32)

where the matrices Mirr,p,I , 0 < I ≤ 2p, are block-diagonal and the I-th row of Pirr,p, πI , is
related to the row corresponding to the vacuum representation, πΩ, by

πI = πΩMirr,p,I (3.33)

for all 0 < I ≤ 2p.
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Remark: We will proof these statements, as we calculate now an explicit expression for Mirr,p,I

in terms of matrix elements of Pirr,p.

Proof: We multiply equation (3.25) with (Pirr,p
−1)L

J and sum over J :

XIYL =
2p∑

K,J,R,S=1

(Pirr,p
−1)L

J(Nirr,p)IJ
K(Pirr,p)K

S(Pirr,p
−1)S

R
XR

=
2p∑

K,J,S=1

(Pirr,p
−1)L

J(Nirr,p)IJ
K(Pirr,p)K

S︸ ︷︷ ︸
=:(Mirr,p,I)L

S

YS . (3.34)

Hence the matrices Mirr,p,I give the decompositions of the products of XI and YL into linear
combinations of YS for I, L = 1 . . . 2p. With the relations between the elements of the basis Y ,
(eqs. (3.28)-(3.30)) and eq. (3.31), one can calculate the product on the left hand side

XIYL =


(Pirr,p)ILYL for L =1, 2

(Pirr,p)ILYL + (Pirr,p)I(L+1)YL+1 for L =3, 5, 7, . . .

(Pirr,p)I(L−1)YL for L =4, 6, 8, . . . .

(3.35)

So the matrices Mirr,p,I are block-diagonal with 2× 2 blocks and upper-triangular.

Mirr,p,I = (3.36)

(Pirr,p)I1 0 0 0 . . . 0 0
0 (Pirr,p)I2 0 0 . . . 0 0
0 0 (Pirr,p)I3 (Pirr,p)I4 . . . 0 0

0 0 0 (Pirr,p)I3
. . . 0 0

...
...

...
. . . . . . . . .

...

0 0 0 0
. . . (Pirr,p)I(2p−1) (Pirr,p)I(2p)

0 0 0 0 . . . 0 (Pirr,p)I(2p−1)


.

Now we still need to show the second half of our proposition. The row πΩ of the matrix Pirr,p is
determined by the fact that the vacuum representation is the unit element of the fusion algebra.
Thus eq. (3.26) tells us, that the sum of all idempotents eA is just the vacuum representation.
Eq. (3.31) for the case of the vacuum, L = Ω, reads

XΩ =
2p∑

K=1

(πΩ)KYK . (3.37)

A comparison to eq. (3.26), with the order of the basis Y kept in mind, yields

πΩ = (1, 1, 1, 0, 1, 0, . . . , 1, 0) . (3.38)

One can plug this into (3.25) with XJ being the vacuum representation:

XI = XΩXI =
2p∑

K=1

(πΩ)KYKXI . (3.39)
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Because of the commutativity of the algebra we can plug eq. (3.34) into eq. (3.39):

XI =
2p∑

K,L=1

(πΩ)K(Mirr,p,I)K
L︸ ︷︷ ︸

=(πI)L

YL . (3.40)

Comparing with the definition of Pirr,p (eq. (3.31)) equation (3.33) has been shown.

Pirr,p: The Simultaneous Eigen Matrix of the Fusion Coefficient Matrices Nirr,I

We have seen now, that the matrices Mirr,p,I are the block-diagonalisation of the matrices
Nirr,I we were looking for. The fusion coefficients are now given by equation (3.32) in terms
of the matrix elements of Pirr,p only.
Furthermore the columns of the matrix Pirr,p are generalised eigenvectors of Nirr,p,I for all
I, which follows from a small calculation after multiplying eq. (3.32) from the right with a
column pJ of Pirr,p, where eJ is the J-th vector of the canonical orthonormal basis:

Pirr,pMirr,p,IPirr,p
−1pJ = Pirr,pMirr,p,IeJ (3.41)

=

{
Pirr,p((Pirr,p)IJeJ−1 + (Pirr,p)I(J−1)eJ) for J =4, 6, 8, . . .

Pirr,p(Pirr,p)IJeJ else

=

{
((Pirr,p)IJpJ−1 + (Pirr,p)I(J−1)pJ) for J =4, 6, 8, . . .

(Pirr,p)IJpJ else.

The matrix elements of Pirr,p coming from Mirr,p,I are just scalars and the multiplication of
eJ on Pirr,p produces again the columns of Pirr,p. Thus the columns pJ corresponding to
the idempotents are eigenvectors to the eigenvalues (Pirr,p)IJ just as in the semisimple case.
Those pJ corresponding to the basis of the radical are generalised eigenvector to the eigenvalue
λJ−1 := (Pirr,p)I(J−1) – using this abbreviation also for all other J = 2 . . . n+1 – spanning the
2× 2 blocks each with its partner idempotent:

(Nirr,p,I − λJ−11l)2pJ J = 4, 6, 8, . . . (3.42)
= Nirr,p,I(λJpJ−1 + λJ−1pJ)− 2λJ−1(λJpJ−1 + λJ−1pJ) + (λJ−1)2pJ .

The eigenvector pJ−1 belongs to the same eigenvalue λJ−1, so this is equal to

λJλJ−1pJ−1 + λJ−1(λJpJ−1 + λJ−1pJ)
−2λJ−1λJpJ−1 − 2(λJ−1)2pJ + (λJ−1)2pJ = 0 . (3.43)

To summarise, the matrices Nirr,p,I for all I have for each pair of an idempotent eA and
corresponding basis element of the radical wA an eigenspace or subspace of an eigenspace,
which is spanned by the same two generalised eigenvectors. This puts the structure of the
matrix Mirr,p,I and the meaning of the matrix Pirr,p into the context of eigen decomposition.
In comparison to the semisimple case, which is detailed in appendix A.1.2, we have here two
dimensional eigenspaces instead of one dimensional ones. In the semisimple case one finds
a matrix of simultaneous eigenvactors PRCFT , which is related to the S-matrix SRCFT of
S-transformation of the characters of irreducible representations by the multiplication of a
diagonal matrix KRCFT (cf. eqns. A.9, A.8). Analogously one would expects, that for the
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non-semisimple case a matrix Kirr,p should exist, which connects a suitable S-matrix Sirr,p

with the matrix Pirr,p:
Pirr,p = Sirr,pKirr,p . (3.44)

In this case the radical of the fusion algebra entails that the matrix Kirr,p need not be diag-
onal any more, but a 2× 2 dimensional taking the two-dimensional eigenspaces into account.
Then the S-matrix Sirr,p would also block-diagonalise all the fusion coefficient matrices Nirr,p,I ,
because one stays in the same eigenspace, in full analogy to the semisimple case, where the
S-matrix SRCFT diagonalises them.
However, because the characters of irreducible representations do not close any more under
the transformation τ → −1/τ , it is not directly obvious, what this S-matrix Sirr,p has to be.
This will be the first point, we have to clarify, before we can afterwards look for the matrix
Kirr,p, which then also fixes Pirr,p.

3.2.2 An S-Matrix for the Characters of Irreducible Representations

One can also deal in a different way with the fact, that the characters of the irreducible
representations do not close under modular transformations of their argument, compared to
section 3.1. As we have mentioned in section 2.4.1, there are only some factors of τ , which
cause this problem, like e.g. in eq. (2.38). Thus one can define a matrix with entries depending
on τ as:

χχχ(irr,p)

(
−1
τ

)
= Sp(τ)χχχ(irr,p)(τ) (3.45)

with the vector of characters of irreducible representations χχχ(irr,p) from equation (2.37).
This was the actual starting point in the paper Fuchs et al. [FHST04], which led to this method
to calculate fusion rules of the c(p,1)-series.
The matrix Sp(τ) can be written down in 2× 2 blocks As,j as follows:

Sp(τ) =


A(p)0,0 A(p)0,1 . . . A(p)0,p−1

A(p)1,0 A(p)1,1 . . . A(p)1,p−1
...

...
. . .

...
A(p)p−1,0 A(p)p−1,1 . . . A(p)p−1,p−1

 (3.46)

with

A(p)0,0 = S(p)0,0

A(p)0,j =
2√
2p

(
1 1

(−1)p−l (−1)p−l

)
A(p)s,0 = S(p)s,0

A(p)s,j =
2√
2p

(−1)p+j+s ×(
s
p cos (π sj

p )− iτ p−j
p sin (π sj

p ) s
p cos (π sj

p ) + iτ j
p sin (π sj

p )
p−s
p cos (π sj

p ) + iτ p−j
p sin (π sj

p ) p−s
p cos (π sj

p )− iτ j
p sin (π sj

p )

)
0 < s, j < p

and with the blocks S(p)s,j with s = 0 and 0 ≤ j < p from equation (3.10).
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Construction of an SL(2,Z) Representation

An analogous definition to (3.45) for the T -Transformation τ → τ + 1 gives a 2p× 2p matrix
Tp, which does not depend on τ because under this transformation the irreducible characters
transform into multiples of themselves, i.e. Tp is diagonal. All other matrices Jp(γ, τ), which
give the transformation of the irreducible characters under a given γ ∈ SL(2,Z), are products
of the matrices Sp(·) evaluated at different functions of τ and Tp.
The objective now is to find a map jp(γ, τ) from SL(2,Z) (3 γ) into the 2p× 2p matrices with
matrix elements depending on τ –, a so-called automorphy factor – which leads to generators
Sirr,p and Tirr,p of an SL(2,Z) representation of constant matrices by multiplication from the
left on Sp(τ) and Tp, respectively. With the definitions above this gives us a representation ρp

of SL(2,Z):
ρp(γ) := jp(γ, τ)Jp(γ, τ) . (3.47)

This is described in detail in [FHST04]. Obviously jp(γ, τ) must depend on the element of
SL(2,Z) because it has to cancel the τ dependence of Sp(τ) and at the same time leave Tp

τ -independent. Furthermore it has to fulfil a cocycle condition in consideration of a similar
condition for Jp(γ, τ). It has to preserve the unit element and it commutes ”strongly” with ρ:

ρp(γ)jp(γ′, τ) = jp(γ′, τ)ρp(γ) ∀ γ, γ′ ∈ SL(2,Z) . (3.48)

Moreover jp(γ, τ) is defined to be block-diagonal:

jp(γ, τ) = 1l2×2 ⊕
p−1⊕
s=1

Bs(γ, τ) . (3.49)

With all this information one is first led to the matrix jp(S, τ) and then through the cocycle
condition to jp(T , τ) and so gets the generators of the desired representation of SL(2,Z). For
our work we only need the former one, which has the blocks

Bs(S, τ) =

(
s
p + ip−s

τp
s
p − i s

τp
p−s
p − ip−s

τp
p−s
p + i s

τp

)
s = 1, . . . , p− 1 . (3.50)

Plugged into equation (3.47) for γ = S one gets the S-matrix, which we search for and are
going to relate to Pirr,p:

Sirr,p := ρp(S) = jp(S, τ)Jp(S, τ) = jp(S, τ)Sp(τ) . (3.51)

For the 2×2 blocks of this matrix one finds for s = 0 or j = 0 the same blocks as in eq. (3.46),
S(irr, p)s,j = A(p)s,j , and otherwise

S(irr, p)s,j =
2√
2p

(−1)p+j+s × (3.52)(
s
p cos (π sj

p ) + p−j
p sin (π sj

p ) s
p cos (π sj

p )− j
p sin (π sj

p )
p−s
p cos (π sj

p )− p−j
p sin (π sj

p ) p−s
p cos (π sj

p ) + j
p sin (π sj

p )

)
,

0 < s, j < p .

Of course, Sirr,p
2 = 1l. Furthermore it is equal to the τ -dependent S-matrix evaluated at τ = i,

Sp(i). In an analogous way we get to the matrix Tirr,p. The relation (Tirr,pSirr,p)3 = 1l holds
and the two matrices generate the SL(2,Z) representation ρ.
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The Connection between Sirr,p and Pirr,p

To complete the overview of Fuchs’ approach, we only need to state, what the matrix Kirr,p

is, as defined in equation (3.44). There we already mentioned, that one can have 2× 2 blocks
around the diagonal in Kirr,p with further off-diagonal elements being zero, when one requires
Sirr,p to block-diagonalise all the matrices Nirr,p,I . Because we expect the latter in generalisa-
tion of the semisimple case (cf. A.1.2), we take Kirr,p now to have this block structure.
Because we know the vacuum row of Pirr,p, πΩ, we have some grip on Kirr,p through its relation
to the vacuum row of Sirr,p, σΩ. Like in eq. (A.10), we have also here

πΩ = σΩKirr,p , (3.53)

But to determine it completely the choice of two conditions, that are imposed on each 2 × 2
block, has to be made. First the elements of the first column of each block must add to zero.
Second the determinant of each block is put to one. The following matrix is thus taken for
Kirr,p:

Kirr,p = (Kirr,p)0 ⊕
p−1⊕
s=1

(Kirr,p)s , (3.54)

(Kirr,p)0 :=

 1
(Sirr,p)Ω

1 0

0 1
(Sirr,p)Ω

2

 ,

(Kirr,p)s :=

 1
(Sirr,p)Ω

2s+1−(Sirr,p)Ω
2s+2 −(Sirr,p)Ω

2s+2

−1
(Sirr,p)Ω

2s+1−(Sirr,p)Ω
2s+2

1
(Sirr,p)Ω

2s+1

 .

Said a bit more compactly, it is the unique block-diagonal matrix with the first block being
diagonal and the other blocks of the form

(Kirr,p)s

(
ki •
−ki •

)
,

det((Kirr,p)s) = 1 , (3.55)

which relates the vacuum rows as in equation A.10.
Now we can write the ”generalised” Verlinde formula, with which this method provides us, in
terms of matrix elements of Sirr,p:

Nirr,p,I = Sirr,pKirr,pMirr,p,I(Kirr,p)−1Sirr,p . (3.56)

We give the example of p = 3 in appendix C.2. There we explicitly state each step of calculation
within this method from the τ -dependent S-matrix Sirr,3,1 till one of the fusion coefficient
matrices Nirr,p,I and present all matrices, which are written down in this section only for
general p. Fuchs et al. have calculated a closed expression for the fusion rules for irreducible
representations also for general p using the trick, that also the matrices Mirr,p,I constitute a
representation of the ”small” fusion algebra (cf. [FHST04]).

3.2.3 A Replacement for the Automorphy Factor

Until now we can only say, that the matrix Sirr,p is the one corresponding to the transforma-
tion τ → − 1

τ that results from the construction of a closed modular group action on the space
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generated by the characters of the irreducible representations. To accomplish this an auto-
morphy factor is needed. But an additional interpretation giving a more direct connection to
physically relevant quantities or properties would be favourable. This has been the motivation
to find a matrix Cirr,p(τ), which almost conjugates4 – we need a small alteration due to the
τ dependence of Cirr,p(τ) – the two matrices Sp(τ) and Sirr,p and replaces the automorphy
factor. In this way we see Sirr,p as the matrix giving the S-transformation of τ -dependent
linear combinations χ′(irr,p)(τ) of characters χ(irr,p)(τ) of irreducible representations given by
Cirr,p(τ):

χ′(irr,p)(τ) = Cirr,p(τ)χ(irr,p)(τ) . (3.57)

With equation (3.45) one gets the S-transformation of χ′(irr,p)(τ):

χ′(irr,p)

(
−1
τ

)
= Cirr,p

(
−1
τ

)
χ(irr,p)

(
−1
τ

)
(3.58)

= Cirr,p

(
−1
τ

)
Sp(τ)Cirr,p

−1(τ)Cirr,p(τ)χ(irr,p)(τ) (3.59)

= Cirr,p

(
−1
τ

)
Sp(τ)Cirr,p

−1(τ)︸ ︷︷ ︸
=:S′

p(τ)

χ′(irr,p)(τ) . (3.60)

S′p(τ) is now set to be equal to Sirr,p. So the matrix Cirr,p(τ) we are looking for should relate
Sirr,p and Sp(τ) through

Sirr,p = Cirr,p

(
−1
τ

)
Sp(τ)Cirr,p

−1(τ) . (3.61)

The τ -dependence makes the problem to find Cirr,p(τ) a bit more intricate. One cannot just
solve the set of equations, which eq. (3.61) represents, for the τ -dependent matrix elements of
Cirr,p(τ), as these have to be evaluated once at τ = − 1

τ instead of τ .
We could calculate Cirr,2, as we looked at the expansion of equation (3.61) around τ = i.
Furthermore we used an argument, which we could derive, for the Laurent coefficients of the
determinant of Cirr,2. These calculations are detailed in appendix A.1.3 and yield the result

Cirr,2(τ) =


1 0 0 0
0 1 0 0
0 0 3

4 −
1
4 iτ

1
4 + 1

4 iτ

0 0 1
4 + 1

4 iτ
3
4 −

1
4 iτ .

 (3.62)

This provides us with some kind of picture, how a block (Cirr,p)s(τ) of Cirr,p(τ) looks like,
where we define

Cirr,p(τ) = 1l2×2 ⊕
p−1⊕
s=1

(Cirr,p)s(τ) . (3.63)

4Conjugation is always meant in a group theoretical sense – not complex conjugate or suchlike. We say, a
matrix M conjugates two (similar) matrices N1 and N2, if N1 = MN2M

−1.
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To calculate these blocks, we looked at eq. (3.61) block by block

S(irr, p)s,0 = A(p)s,0 = (Cirr,p)s(−
1
τ
)A(p)s,0 , (3.64)

S(irr, p)0,j = A(p)0,j = A(p)0,j(Cirr,p)j
−1(τ) , (3.65)

S(irr, p)s,j = (Cirr,p)s(−
1
τ
)A(p)s,j(Cirr,p)j

−1(τ) , (3.66)

0 < s, j < p . (3.67)

Our ansatz has been (
c111 + c112τ c121 + c122τ
c211 + c212τ c221 + c222τ

)
(3.68)

with cijk ∈ C for ijk ∈ {1, 2}. We then use the blocks given in (3.46) and (3.52) for different
values of s and j, but p left open. To determine one particular block (Cirr,p)σ(τ) it is enough
to choose a sufficient subset among the three matrix equations above for s = j = σ and the
condition, that for τ = i it is the unit matrix. For σ being one or two we have calculated the
blocks by solving this system of equations.

(Cirr,p)2(τ) =

(1+p
2p + i1−p

2p τ
1
2p + i 1

2pτ
p−1
2p + ip−1

2p τ
2p−1
2p + i−1

2p τ

)
, (3.69)

(Cirr,p)3(τ) =

(2+p
2p + i2−p

2p τ
2
2p + i 2

2pτ
p−2
2p + ip−2

2p τ
2p−2
2p + i−2

2p τ

)
. (3.70)

From these two cases it is not too hard to guess the following matrix, which gives the blocks
(Cirr,p)s(τ) for arbitrary s:

(Cirr,p)s(τ) =

( s+p
2p − ip−s

2p τ
s
2p + i s

2pτ
p−s
2p + ip−s

2p τ
2p−s
2p − i s

2pτ

)
. (3.71)

We have verified it by calculating Sirr,p block by block using these blocks for Cirr,p(τ) in eq.
(3.61).
This matrix only replaces the factor jp(γ, τ) for the case of γ = S. Because jp(γ, τ) depends on
γ, the matrix replacing it for other γ 6= S is different from Cirr,p(τ). Hence other elements of
the representation ρ(γ) are not given by the transformation γ of the same linear combination
of characters as given by Cirr,p(τ). The interpretation, it yields for Sirr,p, does not hold for the
whole representation ρ(γ). Consequently the matrix Cirr,p(τ) is of little importance for the
original method of Fuchs, which we have discussed in this section.
However, for the extension this method to indecomposable representations this matrix is very
helpful, as we will see now, to find the matrix Cp connecting the larger S-matrix, taking the
place of Sirr,p, with the α dependent S-matrix S(p, α) from the section 3.1. We have seen
in section 3.1, that S(p, α) belongs to an SL(2,Z) representation G(p,α)(γ) (eq. 3.15). This
representation gives the modular transformation properties of a set of forms χχχp(α)(τ) without
any automorphy factor (eq. 3.14). So we get with the product CpG(p,α)(γ)Cp

−1 another rep-
resentation of the modular group, which also needs no automorphy factor – or said in another
way, its automorphy factor is the unit matrix. Thus we can interpret this new representation
there as the one, which gives directly the modular transformation properties of the set of linear
combinations of the original forms χχχp(α)(τ) given by Cpχχχp(α)(τ).
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3.2.4 Substitution of τ-Dependent Linear Combinations

We now start to compare the two methods described in this section and section 3.1. Some
character identities will help to transfer the τ -dependent matrices Sp(τ) and Cirr,p(τ) into α-
dependent matrices. This will reveal the connection between Sp(τ) and S(p,α). As a side-effect,
we continue our preparations for the next section, because we will use there the α-dependent
pendant of Cirr,p(τ), which we call C ′p(α), to find Cp.

Lemma: The characters given in eq. (2.34) and (2.35) and the forms from eq. (3.3) fulfil
the equation

i(s− p)τχ+
p−s,p + isτχ−p−s,p = − 1

α
χ̃p−s,p(α) +

2
α
χ+

p−s,p +
2
α
χ−p−s,p . (3.72)

Remark: The matrices Sp(τ) (eq. (3.46)) and Cirr,p(τ) (eq. (3.71)) are multiplied by the vector
of irreducible representations χχχirr,p (eq. (2.37)) in eqns. (3.45) and (3.57). The summands in
their matrix elements containing τ always turn up in pairs in a row of one of their blocks. The
first of these terms in the pair is multiplied with the character of a singlet representation χ+

p−s,p.
The second one is multiplied with the character of the corresponding doublet representation
χ−p−s,p. The only difference in these two terms is a factor of (s − p) in the first and s in the
second term. So for 0 < s < p the constellation given on the left hand side of equation (3.72)
appears in the τ -dependent linear combination of characters all the time. We want to replace
this by the right hand side using 2p × (3p − 1) matrices, which are multiplied now with the
vector χχχp(α) (eq. (3.4)) instead of χχχirr,p, but give the same result.

Proof: We plug in the characters from equations (2.34) and (2.35) and find that the factors
match in precisely the way to let the dependence on Θp−s,p and on s drop out.

i(s− p)τ
(

1
pη

[sΘp−s,p + (∂Θ)p−s,p]
)

+ isτ

(
1
pη

[(p− s)Θp−s,p − (∂Θ)p−s,p]
)

(3.73)

= −iτ 1
η
(∂Θ)p−s,p = −1

η
(∇Θ)p−s,p . (3.74)

Equation (3.3) guides the way to insert a zero (one of two we need to insert here):

− α

αη
(∇Θ)p−s,p −

1
αη

2Θp−s,p +
1
αη

2Θλ,p (3.75)

= − 1
α
χ̃p−s,p(α) +

2
α

1
pη

sΘλ,p +
2
α

1
pη

(∂Θ)p−s,p +
2
α

1
pη

(p− s)Θλ,p −
2
α

1
pη

(∂Θ)p−s,p

= − 1
α
χ̃p−s,p(α) +

2
α
χ+

p−s,p +
2
α
χ−p−s,p .

We start with the matrix Sp(τ) and write down its partner 2p× (3p−1) matrix . A column
must be inserted for each form χ̃s,p(α) after the columns multiplied with χ+

s,p and χ−s,p for
0 < s < p. In the elements in the latter two columns the respective factors i(s − p)τ and
isτ are both replaced by 2/α. The added column has to contain −1/α. This way we do the
following changes for the blocks of Sp(τ):(

s
pcsl − iτ p−j

p ssl
s
pcsl + iτ j

pssl

p−s
p csl + iτ p−j

p ssl
p−s
p csl − iτ j

pssl

)
→

(
s
pcsl + 2

p
1
αssl

s
pcsl + 2

p
1
αssl − 1

pαssl

p−s
p csl − 2

p
1
αssl

p−s
p csl − 2

p
1
αssl

1
pαssl .

)
(3.76)
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The first two rows of the added columns are zero because these rows do not depend on τ . We
see, that the matrix we get is just a composition of the α dependent S-matrix S(p,α) and a
subsequent projection onto the components of χχχp(α) belonging to irreducible representations,
as it is expected to be. This is no big deal because we had both matrices already.
The interesting piece is the application of this to the matrix Cirr,p(τ). The diagonal blocks get
replaced by 2 × 3 blocks arranged in a diagonal way, i.e. the whole matrix, called C ′p, is the
direct sum of a 2× 2 unit matrix and these blocks.( s+p

2p − ip−s
2p τ

s
2p + i s

2pτ
p−s
2p + ip−s

2p τ
2p−s
2p − i s

2pτ

)
→

( s+p
2p + 1

2pα
s
2p + 1

2pα − 1
2pα

p−s
2p − 1

2pα
2p−s
2p − 1

2pα
1

2pα

)
︸ ︷︷ ︸

(C′
p)s(α)

, (3.77)

C ′p(α) = 1l2×2 ⊕
p−1⊕
s=1

(C ′p)s(α) .

Now the matrix C ′p(α) encodes the linear combinations of characters, for which Sp gives their
transformation under τ → −1/τ , as τ -independent linear combinations of these characters and
the forms χ̃s,p(α).

For example we get for p = 2 and p = 3

C ′2(α) =


1 0
0 1 0

0
3α+2
4α

α+2
4α − 1

4α
α−2
4α

3α−2
4α

1
4α

 (3.78)

and

C ′3(α) =



1 0
0 1

0 0

0
2α+1
3α

α+2
6α − 1

6α
α−1
3α

5α−2
6α

1
6α

0

0 0
5α+2
6α

α+1
3α − 1

3α
α−2
6α

2α−1
3α

1
3α


. (3.79)

3.3 Extension of the Block-Diagonalisation Ansatz

In this section we will work on an extension for the block-diagonalisation method, which was
introduced in the last one. It is absolutely parallel to the version for irreducible representations
and the latter will be seen in each step of calculation as a projection of the larger (3p − 1) ×
(3p− 1) matrices, we encounter here, onto a 2p dimensional space.
We will start with considerations analogous to the beginning of the last section and derive the
form, in which a matrix Pp block-diagonalises the fusion coefficient matrices Np,I . It will be
very similar to the calculation, we have already seen in section 3.2.1.
Then we need to find the S-matrix Sp,which is connected to Pp by the multiplication of a
block-diagonal matrix Kp in complete analogy to (3.44). We have already mentioned at the
end of section 3.2.3, that the large block-diagonalising S-matrix, Sp, will be connected to the
matrix S(p, α) by conjugation with the matrix Cp(α). We have also discussed, that Sp is
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the representative of the transformation τ → −1/τ in a representation of SL(2,Z) without
automorphy factor – given by Cp(α)G(p,α)(γ)Cp

−1(α) – acting on a set of linear combination
of generalised characters, Cp(α)χχχp(α)(τ). The S-matrix Sp encodes the decompositions of the
transformation τ → −1/τ of the linear combinations of generalised characters, given by Cp(α),
exactly like in eq. (3.5). But here the linear combination is chosen in such a way, that the
S-matrix does not depend on α anymore.
We give a detailed description of the freedom of choice we have in different steps and of the
causes for our partially heuristically made descisions. Sometimes the arguments for a particular
choice are solely its influence on the actual outcome for p = 2. This is, of course, an invalid
argument for the cause, why this should be the right scheme. But it is exactly following
the intention of our work. In section (3.3), namely, we show the total equality of the results
of the extended methods with the approach by Flohr in section 3.1 rather than looking at
particular examples. We have described how this latter approach, which uses the α-Verlinde
formula, develops from considerations about the partition function and the chiral vacuum torus
amplitudes in an unambiguous way. Together with the ubiquitous possibility of projection onto
the calculations of the last section we lead the two methods together and state the equivalence
of the extended block-diagonalisation method and the α-Verlinde formula.
What we show in the end, is, that it is also possible to get to the proposed true fusion rules in the
conjecture in section 3.1 via block-diagonalisation and the subsequent well-defined substitutions
of indecomposable representations in the decomposition of the fusion product, which have been
described there.

3.3.1 Simultaneous Eigen Decomposition of the Fusion Coefficient Matrices
including Indecomposable Representations

We now want to block-diagonalise the matrices of (pre-)fusion coefficients for the full (pre-)fusion
algebra including indecomposable representations simultaneously. This fusion algebra is de-
fined in the familiar way:

XIXJ =
2p∑

K=1

(Np)IJ
KXK . (3.80)

The basis X is now larger and also contains the indecomposable representations. Its sequence
is the same as the one of the vector χχχp(α) (eq. (3.4)). There is actually only one difference to
the last section.
For the change of basis to the one, in which the matrices block-diagonalise, we have to note, that
now the radical of the fusion algebra has the double dimension. We call the extra basis elements
of the radical, which take care of the indecomposable representations, w′A with A = 3 . . . p+1.
And Y (eq. (3.27)) is then replaced by

Y ′ = (e1, e2, e3, w3, w
′
3, e4, w4, w

′
4, . . . , ep+1, wp+1, w

′
p+1) . (3.81)

The idempotents of the semisimple algebra and the basis of the larger radical relate to each
other just as before and we get in addition to the equations (3.28)-(3.30):

eAw
′
C = δA,Cw

′
C , (3.82)

w′CwD = 0 , (3.83)
w′Cw

′
D = 0 (3.84)

with 0 < A ≤ p+ 1 and 3 ≤ C,D ≤ p+ 1. With this basis, Y ′, instead of Y we can define Pp

analogous to eq. (3.31). The proposition in section 3.2.1 translates directly:
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Proposition: Pp block-diagonalises the matrices Np,I simultaneously.

Np,I = PpMp,IPp
−1 (3.85)

with the block-diagonal matrices Mp,I , 0 < I ≤ 2p. For the rows of Pp, πI ,

πI = πΩMp,I (3.86)

holds for all 0 < I ≤ 2p.

Proof : The proof is also analogous to the one in section 3.2.1. On the one hand, we get
equation (3.34) with Y replaced by Y ′ without the indices irr from equation (3.80):

XIY
′
L =

2p∑
S=1

(Mp,I)L
SY ′S . (3.87)

On the other hand this can be calculated from eqns. (3.28)-(3.30) and (3.82)-(3.84):

XIYA =


(Pp)IAYA for A =1, 2

(Pp)IAYA + (Pp)I(A+1)YA+1 + (Pp)I(A+2)YA+2 for A =3, 6, 9, . . .

(Pp)I(A−1)YA for A =4, 7, 10, . . .

(Pp)I(A−2)YA for A =5, 8, 11, . . . .

(3.88)

Mp,I is an upper-triangular block-diagonal matrix with all but one 3× 3 blocks and reads

Mp,I = Mp,I,0 ⊕
p−1⊕
n=1

Mp,I,n , (3.89)

Mp,I,0 =

(
(Pp)I1 0

0 (Pp)I2

)
, (3.90)

Mp,I,n =

(Pp)I(3n) (Pp)I(3n+1) (Pp)I(3n+2)

0 (Pp)I(3n) 0
0 0 (Pp)I(3n)

 . (3.91)

Because the idempotents are still a partition of the unit element and per definition the vacuum
row of Pp gives the unit element of the fusion algebra from the basis Y ′, it has to be

πΩ = (1, 1, 1, 0, 0, 1, 0, 0, . . . , 1, 0, 0) . (3.92)

The exact same steps, which we already had beneath eq. (3.38), show that Mp,I relates the
I-th row of Pp to its vacuum row.

The cause, why Mp,I and Pp look like this, is again just linear algebra. We have done a
simultaneous eigen decomposition for a set of Np,I , which was possible, because they happened
to be the structure constants of the algebra in equation (3.80) and so are related to each other
by the properties of the algebra like commutativity. This has enteredour proof, as we plugged
in (3.80) at one point and interchange elements of X.
The eigen decomposition has been nicely encoded in eqns. (3.28)-(3.30) and (3.82)-(3.84) and
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we see again, that this way the matrix Pp is a matrix consisting of simultaneous generalised
eigenvectors. We can calculate for a column pJ of Pp as in equation (3.41), that

Np,IpJ =


(
(Pp)IJpJ−1 + (Pp)I(J−1)pJ

)
for J =4, 7, 10, . . .(

(Pp)IJpJ−2 + (Pp)I(J−2)pJ

)
for J =5, 8, 11, . . .

(Pp)IJpJ else

(3.93)

and find also (see eq. (3.42))

(Np,I − λJ−11l)2pJ = 0 for J = 4, 7, 10, . . . , (3.94)
(Np,I − λJ−21l)2pJ = 0 for J = 5, 8, 11, . . . . (3.95)

Pp consists of generalised eigenvectors, but here the eigenspaces are three dimensional apart
from two one-dimensional ones.

3.3.2 Determination of the Matrix S2

Again the question for the S-matrix Sp and the matrix Kp arises, which give us Pp,

Pp = SpKp . (3.96)

In order to find Sp we ask the question, if find a matrix Cp(α) can be found, which conjugates
the α-dependent S-matrix S(p,α) to a yet unknown α-independent S-matrix, which produces
the fusion rules calculated with the α-Verlinde formula without a limit α → 0 to be taken in
the way, which we have learned about in the last section.
We have seen in section 3.2.4, that we have already 2p forms given by the multiplication of
C ′p(α) (eq. (3.78)) with the vector χχχp(α). It seems, that this is the best point to start by keeping
these forms and adding p− 1 additional ones again. They should also be linear combinations
of the elements of χχχp(α). This means that the rows of the new S-matrix Sp corresponding to
irreducible representations are the rows of Sirr,p with zeros in the additional columns.
We start with the simplest case, p = 2, and search the matrix C2(α), for which we will have

S2 = C2(α)S(2,α)C2
−1(α) . (3.97)

The matrix Sirr,2 appears as a block in S2. We need to know what the fifth line of S2 is. The
picture we have until now of S2 is

S2 =

 Sirr,2

0
0
0
0

s1 s2 s2 s4 s5

 (3.98)

with s5 6= 0. This is strongly related with the question how we are going to find C2(α),
because the existence of this matrix is certainly giving restrictions on what the fifth line might
be. However, S2 – even if known completely – does not give many restrictions on C2(α). We
will see, that many different matrices can take the place of C2(α) in equation (3.97) fulfilling all
needed conditions, we can think of. For p = 2 there will be no difference between them. This is,
what we meant with the need of heuristic arguments in the beginning of this section. We will
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only be able to single out a specific C2(α), when we ask, for which we can find a generalisation
to arbitrary p. When we have C2(α), we will also have S2. We can get possible C2(α) by
looking at the eigenvalues of the matrices S2 and S(2,α). The eigenvalues and eigenvectors the
different S-matrices for p = 2 are listed in table D. S2 and S(2,α) are both diagonalisable. The
former one has a three dimensional eigenspace for the eigenvalue 1, a two one dimensional
eigenspace for the eigenvalue −1 and for the eigenvalue s5. For the latter one it is not so
different. It has eigenvalues 1 and −1 belonging to eigenspaces with dimensions three and two,
respectively.
If now S2 is chosen, so that the fifth eigenvalue – and matrix element – s5 is also −1, the
matrices S2 and S(2,α) are diagonalised to the same matrix

DS =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 −1

 . (3.99)

We shortly ignored a small problem with the diagonalisability of S2. When we set its fifth
eigenvalue to −1, the matrix may not be diagonalisable depending on the other matrix elements
in the fifth line. We encounter this problem in the list of eigenvectors of S2 for s5 6= −1 (cf.
D), in which the one belonging to the eigenvalue −1 is in general not defined for s5 = −1,
because its fifth component is

−2s2 − s3 − s4 + 2s1
s5 + 1

(3.100)

Only when the numerator of this fraction is zero, we get a diagonalisable matrix, i.e in the case
of s1 = s2 + s3/2+ s4/2. With this condition and s5 = −1 the eigenvectors have the same first
four components as the eigenvectors of the smaller matrix Sirr,2 (see eigenvectors of Sirr,2 and
of S2 for s5 = −1 in appendix D) and their fifth component depends on the fifth row of S2.
The next question, we can ask, is now, how S2 has to look like, so that the matrices Mp,I

are those given in equation (3.89). For this we take the result, which have been calculated
following section 3.1, from the appendix given in equation (B.3). First we argue that S2 should
block-diagonalise the fusion rules. The stated product has the following form

S2Np,1S2 =


• 0 0 0 0
0 • 0 0 0
0
0
0

0
0
0

 . (3.101)

Two elements of this matrix provide restrictions for S2:

(S2Np,1S2)51 = −2 + 2s2 + s3 + s4 = 0
(S2Np,1S2)52 = −2− 2s2 = 0

}
⇒

{
s3 = 4− s4

s2 = −1
. (3.102)

The matrix element s4 is left undetermined by this argument, because with these two conditions
also all other matrices Np,I take the form as in eq. (3.101), when they are multiplied with S2
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from both sides. At this point our S-matrix looks like
1
2

1
2 1 1 0

1
2

1
2 −1 −1 0

1
4 −1

4
1
2 −1

2 0
1
4 −1

4 −1
2

1
2 0

1 −1 4− s4 s4 −1

 . (3.103)

As a consequence the first two columns of the matrices S2 and S(p,α) are the same. The first
two rows were anyway the same from the beginning. This very much militates in favour of a
block-diagonal C2(α) apart from the good reasons there are anyway because its smaller brother
Cirr,2 is also block-diagonal.
We now look again at equation (3.96) and turn towards Kp. We expect Kp to have the corre-
sponding block-diagonal structure because Sp should block-diagonalises the fusion coefficient
matrices. We may impose the same conditions as for Kirr,p on it, but the larger blocks, of
course, leave us with much more freedom in the choice of Kp.
In the section 3.2.1 we have seen that the matrix elements of the matrix Kirr,p are chosen that
way because of the two known vacuum rows of Sirr,p and Pirr,p, which Kirr,p has to connect.
Here we also have both vacuum rows. The one of Sp we know from our argument at the very
beginning of section 3.3.2.They are the same as before in section 3.2 apart from some zeros
in additional columns. Thus any element of the third row of a block of Kp is multiplied with
zero and does not contribute. So the same argument applies for the rest and fixes us four
matrix elements per block up to normalisation, if we once again demand two of them to be the
negative of each other (see eq. (3.55)). As we have done before, we set the additional third
column in the first two rows of each block to zero. This gives us the right result for the vacuum
row of Pp and also is compatible with our goal to be able to reduce the whole extended method
back to the one of the last section by projecting on the 2p components of our basis, which
represent the irreducible representations. This provides us also with a reason to use the same
normalisation for the four matrix elements per block from the last section and to copy them
from there. But we also ask the 3 × 3 blocks to have determinant one, which fixes the third
diagonal element of each block to be one. We are left with two undetermined matrix elements
per block ks1 and ks2.

Kp = (Kp)0 ⊕
p−1⊕
s=1

(Kp)s (3.104)

(Kp)0 :=

 1
(Sp)Ω

1 0

0 1
(Sp)Ω

2



(Kirr,p)s :=


1

(Sp)Ω
2s+1−(Sp)Ω

2s+2 −(Sp)Ω
2s+2 0

−1
(Sp)Ω

2s+1−(Sp)Ω
2s+2

1
(Sp)Ω

2s+1 0

ks1 ks2 1


We come back to the case p = 2 and have

K2 =


4 0 0 0 0
0 −4 0 0 0
0 0 1 1

2 0
0 0 −1 1

2 0
0 0 k1 k2 1

 . (3.105)
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With the S-matrix in equation (3.103) and this matrix K2 we can go through the calculations,
which are needed to get to the coefficient matrices. The equations (3.96), (3.89) and (3.85)
lead us via the matrices P2 and M2,I to the matrices N2,I . Here we are left with the argument
that the result should agree to the result of M. Flohr, which in turn after some substitutions
agree with the result of M. Gaberdiel and H. Kausch.
We compare the following results for Np,1 from the calculations just described and from equa-
tion (B.3): 

0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0

4− s4 − 1
2k1 d+ 1

2k1 0 0 0

 =


0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0
2 2 0 0 0

 . (3.106)

This leads only to a single condition, which then fixes all five matrices Np,I .

k1 = 4− 2s4 . (3.107)

For p = 2 we have found now the conditions, which allow the correct results.
Two matrix elements are left open: k2 and s4. Here the good old philosophically deeply
discussed5 argument of simplicity will be the guide. We set the two not yet fixed matrix
elements of K2 to zero:

K2 =


4 0 0 0 0
0 −4 0 0 0
0 0 1 1

2 0
0 0 −1 1

2 0
0 0 0 0 1

 . (3.108)

It follows, that s4 = 2. This also gives some more ”symmetry” to the S-matrix. The elements of
the third and fourth column are now the same modulo minus signs. We make the corresponding
choice for all blocks of Kp (eq. 3.104), so that the third row of each block is (0, 0, 1). Now we
have all matrices, which we need for the extended blockdiagonalisation method for p = 2. But
C2(α) is still missing, which should tell us, how the matrix we have found now is related to
the matrix S(2,α). Furthermore we also long for a generalisation to arbitrary p.

3.3.3 Observations about Similar S-Matrices and the Matrix Cp(ααα)

Because our original intention was to find a matrix Cp(α), which relates them to S(p,α) to a
matrix Sp, which contains Sirr,p, our way to the S-matrix Sp for arbitrary p will go this way
and we will first find Cp(α). More precisely we will take a few pages to find C2(α) and then
have a comparably easy task to guess the general Cp(α).
We find a possible matrix C2 fulfilling (3.97) from the matrices, which diagonalise S2 and S(2,α),
to the same diagonal matrix DS (see eq. 3.99) If these two diagonalising matrices are U1 and
U2(α), respectively, we have

U−1
1 S2U1 = DS = U2(α)−1S(2,α)U2(α) . (3.109)

This directly gives us a lot of possible matrices C2(α) by rearrangement of equation (3.97).

C2(α) = U1U2
−1(α) , (3.110)

5What is simple?
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As the eigenspaces, we are looking at, are two or three dimensional, there are quite a lot of
matrices U1 and U2(α) that meet our needs. Every possible basis of eigenvectors spanning
a particular eigenspace may be taken as the columns of these matrices. In other words the
columns may be any linear combination of the eigenvectors of one eigenspace listed in appendix
D for S(2,α) and S2 (with the matrix elements inserted, which we have found now), as long as
they are linearly independent.
First we just state the one possible C2(α) here, which computes plainly using the eigenvectors
in appendix appendix D as columns of U1 and U2(α):

C2,1(α) =



9
8

7
8 −3

2 + 1
2α

1
2α − 1

4α

−1
8

1
8

3
2 −

1
2α − 1

2α
1
4α

0 0 1
2 −

1
α

1
2 −

1
α

1
2α

1
8

7
8 − 1

2α −1
2 −

1
2α

1
4α

5
8

11
8 −1 + 1

2α
1
2 −

1
2α

1
4α

 (3.111)

This does not fit our expectations. This matrix does not have the block structure, which our
thoughts about the triples of irreducible and indecomposable representations would suggest.
We also recall, that we would like to have a matrix with the first four rows equal to the matrix
from equation (3.78). Fortunately this is not the matrix, we will deal with. We only need it
to find other ones.
But how much choice do we actually have for C2(α)? Or even better, what is the most general
C2(α), which we get from equation (3.110), and are there others – not in the form of eq.
(3.110) –, that fulfil equation (3.97)? The answers are given by the following linear algebraic
statement and during its proof.

Lemma: Let S, S̃ ∈ Mn×n(C) be two diagonalisable matrices, which are diagonalised to the
same matrix. Then they are similar to each other and all matrices C ∈Mn×n(C) fulfilling the
equation

CSC−1 = S̃ , (3.112)

are given by the product of a particular C = C1 times a matrix A ∈Mn×n(C), which commutes
with S or S̃, and conversely any such product fulfils equation (3.112).

Remark: Equation (3.112) can also be defined with the matrices S and S̃ interchanged. But
this does not make a difference, when we go over from C = C1A to C−1 = A−1C1

−1. Note
that the inverse of A commutes with the same matrices as A itself.
It is not needed here, but it is one line to see, that any two matrices S and S̃, which are
conjugate through a matrix C are diagonalised to the same diagonal matrix. If S is diagonalised
by P ,

PDP−1 = S = CS̃C−1 . (3.113)

S̃ is diagonalised by C−1P to the same diagonal matrix D.

Proof : We have already shown the existence, because a particular solution for C can be
retrieved via the eigenvectors of S and S̃ from equation (3.110), as described above.
Let C and C ′ be two matrices, which conjugate S and S̃ as in equation (3.112), so that we
have

C S = S̃ C , (3.114)
C ′ S = S̃ C ′ . (3.115)
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A is defined by A = C−1C ′ and C ′ = CA is plugged into the last equation:

C AS = S̃ C A . (3.116)

Now use equation (3.114) on the right hand side to get

C AS = C S A . (3.117)

Multiplying the inverse of C shows, that A commutes with S. A commutes also with S̃ because
its inverse does. This is directly seen, when one goes through the analogous steps starting with
C = C ′A−1 plugged into (3.114) and uses eq. (3.115).
For the backwards direction we need only to multiply equation (3.114) by an arbitrary matrix
A, which commutes with S, from the right side. We can interchange those two matrices on
the left hand side and find that CA conjugates S with S̃.

We now need to find all matrices, which commute with S(2,α). We continue to call them A
and multiply the commutation relation of those two matrices with the matrix U2(α) and its
inverse from opposite sides. We get

U2
−1(α)AU2(α)U2

−1(α) S(2,α) U2(α) = U2
−1(α)S(2,α) U2(α)U2

−1(α)AU2(α) . (3.118)

We simplify this with the help of equation (3.109).

U2
−1(α)AU2(α)DS = DS U2

−1(α)AU2(α) . (3.119)

Hence we see, that A′ := U2
−1(α)AU2(α) has to commute with the diagonal matrix DS .

Which matrices commute with a diagonal matrix? Any matrix element (A′)ij is multiplied on
the right hand side of the last equation with (DS)ii, while on the left hand side there is the
product (A′)ij(DS)jj . This is only the same on the diagonal and for off-diagonal elements, for
which (DS)ii = (DS)jj . So the other off-diagonal elements (A′)ij have to be zero. This tells us
that all matrices A′, which commute with DS (eq. (3.99)), are given by

A′ =


(A′)11 (A′)12 (A′)13 0 0
(A′)21 (A′)22 (A′)23 0 0
(A′)31 (A′)32 (A′)33 0 0

0 0 0 (A′)44 (A′)45
0 0 0 (A′)54 (A′)55

 (3.120)

with arbitrary (A′)ij for 1 ≤ i, j ≤ 3 or 4 ≤ i, j ≤ 5, so that the matrix has full rank.
Now we take this together with the definition of A′ beneath equation (3.119) and the lemma
to get via A all possible C2,gen(α) (eq. (3.110)) from the one particular C2,1(α) (eq. (3.111)):

C2,gen(α) = C2,1(α)A = C2,1(α)U2(α)A′ U2
−1(α) . (3.121)

Of course, with so many unknowns the matrix C2,gen(α) gets very lengthy. Now we simply
require that the first four rows of this matrix are equal to the matrix C ′2(α) from equation
(3.78). We recall, that this was justified by the correspondence of τ -dependent and α-dependent
matrices. We want to get an extension of Fuchs’ approach, which goes over to the latter one,
when one projects to the irreducible representations. In this case the matrix C2(α) should
project to C ′2(α), which corresponds to Cirr,2(τ), because the projection of S(2,α) corresponds
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to Sirr,2.
The fifth row then is the transpose of the following vector.

1
2 −

1
8(A′)54 − 1

8(A′)55
−1

2 + 1
8(A′)54 + 1

8(A′)55
1 +

(
1
2 −

1
2α

)
(A′)54 + 1

2α(A′)55
1− 1

2α(A′)54 +
(

1
2 + 1

2α

)
(A′)55

1
4α(A′)54 − 1

4α(A′)55

 . (3.122)

In analogy to Cirr,p this matrix should be block-diagonal This gives twice the same condition,
which solves to

(A′)54 = 4− (A′)55 . (3.123)

3.3.4 Generalisation to Arbitrary Values of p

At last (A′)55 has been preliminary set to three because of more esthetic reasons. This way
the matrix C2(α) simplifies to

C2(α) =


1 0
0 1 0

0

3α+2
4α

α+2
4α − 1

4α
α−2
4α

3α−2
4α

1
4α

3α+2
2α

5α+2
2α − 1

2α

 . (3.124)

It seems natural to have (C2)55 = 1/(2α). Firstly, it fits to the grouping of terms, we have seen
in section 3.2.4. The factors of the 1/α-terms in the last row are twice as large than in the first
and second row. This is expected because of the double multiplicities in the indecomposable
representation. Also the inverse of this matrix is quite simple

C−1
2 (α) =


1 0
0 1 0

0
2 1 −1

2
−1 0 1

2

α+ 2 3α+ 2 −α

 . (3.125)

This is very much in our favour, because we can now guess the inverse of C3(α) with not much
effort. The last row in every block is fixed looking at the result for C3(α), which it would lead
to. We require once more, that the first two rows of both blocks are the blocks of the matrix
C ′3(α). We get

C−1
3 (α) =



1 0
0 1 0 0

0
2 1 −1

2
−1 0 1

2

α+ 2 4α+ 2 −3
2α

0

0 0
2 1 −1

2
−1 0 1

2

2α+ 2 5α+ 2 −3
2α


. (3.126)



58 Chapter 3. Verlinde Formula for c(p,1) Models

Its inverse is

C3(α) =



1 0
0 1 0 0

0

2
3 + 1

3α
1
6 + 1

3α − 1
6α

1
3 −

1
3α

5
6 −

1
3α

1
6α

4
3 + 2

3α
7
3 + 2

3α − 1
3α

0

0 0

5
6 + 1

3α
1
3 + 1

3α − 1
6α

1
6 −

1
3α

2
3 −

1
3α

1
6α

5
3 + 2

3α
8
3 + 2

3α − 1
3α


. (3.127)

This result, C3(α), also determines the matrix S3. This matrix S3 gives the correct fusion rules
through our extended block-diagonalisation method. The caculations are given in appendix
C.3.
Another choice of (A′)55, which we considered, is (A′)55 = 1. This gives a very similar inverse
of C2(α) and we can also guess the inverse of a potential C3(α), but this though similar has
not the required same elements as C ′3(α). Actually the rows equal to C ′3(α) are interchanged
and in these rows the first two columns are exchanged in each block, while in the additional
rows there are also differences of one or the other minus sign. Remarkably, this version gives
an S-matrix and fusion rules that are qualitatively correct. Only the multiplicities are wrong
and turn out to be fractional.
Here we can directly do the step to arbitrary p. Once more we find the inverse of Cp(α) first
and thus have also Cp(α) itself:

Cp
−1(α) = 1l2×2 ⊕

p−1⊕
s=1

Cp,s
−1(α) , (3.128)

Cp,s
−1(α) =

 2 1 −1
2

−1 0 1
2

sα+ 2 (p+ s)α+ 2 −p
2α

 ,

Cp(α) = 1l2×2 ⊕
p−1⊕
s=1

Cp,s(α) , (3.129)

Cp,s(α) =


p+s
2p + 1

pα
s
2p + 1

pα − 1
2pα

p−s
2p − 1

pα
2p−s
2p − 1

pα
1

2pα
p+s
p + 2

pα
2p+s

p + 2
pα − 1

pα

 .

A block-wise calculation shows that this is exactly the matrix we looked for. With the blocks
of S(p,α) (eq. (3.10)) we have to calculate the following expressions:

S(p)0,lCp,l
−1(α) (3.130)

Cp,s(α)S(p)s,0 (3.131)
Cp,s(α)S(p)s,lCp,l

−1(α) (3.132)
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The block S(p)0,0 is not touched at all. S(p)0,l and S(p)s,0, for 0 < s, l < p, are also not
changed by the multiplication. And the last product gives

S(p)s,j =
2√
2p

(−1)p+j+s × (3.133)
s
p cos (π sj

p ) + p−j
p sin (π sj

p ) s
p cos (π sj

p )− j
p sin (π sj

p ) 0
p−s
p cos (π sj

p )− p−j
p sin (π sj

p ) p−s
p cos (π sj

p ) + j
p sin (π sj

p ) 0

2 cos (π sj
p ) + 2 sin (π sj

p ) 2 cos (π sj
p ) + 2 sin (π sj

p ) − sin (π sj
p )

 .

This is now the last S-matrix Sp of this thesis. The (pre-)fusion coefficients are given in terms
of its matrix elements by the ”generalised” Verlinde formula again (cf. (3.56)):

Np,I = SpKpMp,I(Kp)−1Sp . (3.134)

3.3.5 Projection of the Extended Block-Diagonalisation Method on Irre-
ducible Representations

We have now all ingredients to carry through calculations for any value of p in our extension of
the method of Fuchs et. al.. Pp is also in the general case invertible because with the invertible
S(p,α) also Sp has to be invertible and Kp was constructed as a full rank matrix.
There are two open tasks for the rest of this chapter. Firstly, we show in this section, that the
calculations in the extended block-diagonalisation method, presented in this section, lead to the
same results for the irreducible representations as the original version for all p ≥ 2. Secondly,
the next section deals with the proof, that the extended block-diagonalisation method moreover
gives the same fusion coefficients for all irreducible and indecomposable representations as the
method of M. Flohr in section 3.1.
For the former task we change the sequence of the representations from the groups of three –
two irreducible and one indecomposable representations – to the following one:

[h1,p] , [h1,2p] , [h1,1] , [h1,2p+1] , [h1,2] , [h1,2p+2] , . . . , [h1,p−1] , [h1,3p−1] , (3.135)[
h̃1,p+1

]
,
[
h̃1,p+2

]
, . . . ,

[
h̃1,2p−1

]
with the indecomposable representations all put to the end. This leads to the permutation of
both, rows and columns, in the matrices Sp, Kp, Pp, Mp,I and finally Np,I . Also the sequence of
the latter two groups of matrices is changed, as the index I is affected by the same permutation.
The reason is the form all these matrices take after the permutation. All the zeros, which we
inserted in some matrices and consequently appeared in other matrices are grouped together
with the indecomposable representations in the last columns.
We introduce the following notation, which tells us that a matrix has some form without
specifying all matrix elements or the size of the matrix. The matrix Sp has now the form (cf.
eq. (3.133)):

Sp ,


Sirr,p 0

 . (3.136)
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This states that the box on the upper left contains exactly the matrix Sirr,p (eq. (3.52)), the
box at the bottom contains the other a priori non-zero elements of Sp and on the upper right
all matrix elements are zero. With this notation we give the statement, which we want to
proof.

Proposition: The fusion coefficients matrices Np,I each contain the coefficients of the ”small”
fusion algebra Nirr,p,I for 0 < I ≤ 2p in the subsequent form:

Np,I ,


Nirr,p,I 0

 . (3.137)

Proof: The only coefficients of the matrix Kp, which are different from zero and do not come
from the matrix Kirr,p, are the additional diagonal matrix elements. The permutation of rows
and columns leaves them on the diagonal and assembles them in a block, which is equal to the
unit matrix in p− 1 dimensions (cf. eq. (3.104)):

Kp ,


Kirr,p 0

0 1l


. (3.138)

The matrix P consequently looks like

Pp = SpKp ,


Pirr,p 0

 . (3.139)

We also note that the (p− 1)× (p− 1) elements in the very lower right corner are unchanged
by Kp and so equal to those elements of Sp.
We construct the matrices Mp,I for 0 < I ≤ 2p in the new sequence. Each block defined in
equation (3.89) has (in the sequence of representations we used there) the element (Mp,I,n)13 =
(Pp)3n+2

I . These elements are of interest because the permutation to the new sequence of
representations bring them from the 5th, 8th, 11th etc. column, where they are not on the
diagonal to a new position in the last p − 1 columns and the first 2p rows, which need to be
zero, as we will see next. Fortunately all of them are equal to elements of Pp, for which exactly
the same argument tells us, that they actually are zero: In the old sequence they are the 5th,
8th, 11th etc. column and off-diagonal. So after permutation they lie in the part of Pp marked
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in equation (3.139) to have only zero elements. Hence Mp,I appears in the form

Mp,I ,


Mirr,p,I 0

0

 . (3.140)

We also need to know the form of the inverse of Pp. We look at the definition of the inverse
on the level of matrix elements:

3p−1∑
k=1

(Pp)ik(Pp)−1
kj = δij . (3.141)

For 0 < i ≤ 2p we can split the sum into two parts:

δij =
2p∑

k=1

(Pp)ik(Pp)−1
kj +

3p−1∑
k=2p+1

(Pp)ik(Pp)−1
kj

=
2p∑

k=1

(Pirr,p)ik(Pp)−1
kj + 0 , (3.142)

where we used eq. (3.139) in the last line: The first 2p rows of Pp are the same as those of Pirr,p

filled up with zeros. From these equations for 0 < j ≤ 2p it follows, that (Pp)−1
mn = (Pirr,p)−1

mn

for 0 < m,n ≤ 2p because of the uniqueness of the inverse, which eq. (3.142) defines – or in
other words because the system of equations, which is given there, with 2p unknowns and 2p
equations is determined due to the full rank of Pirr,p. So (Pp)−1 has the form

(Pp)−1 ,


(Pirr,p)−1 0

 (3.143)

and we end up with the product (see eqns. (3.139) and (3.140)) for 0 < I ≤ 2p

Np,I = PpMp,I(Pp)−1 (3.144)

,


Pirr,p 0




Mirr,p,I 0

0




(Pirr,p)−1 0

 ,

which has the form eq. (3.137).
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We also see, that a projection to the first four components in the sequence of representa-
tions, we have temporarily used just now, is the one we already mentioned in the introduction
and also afterwards. Indeed, it transfers all these matrices Sp, Kp, Pp, Mp,I and Np,I , which
appear in the extended block-diagonalisation method, to the matrices of its archetype for ir-
reducible representations, Sirr,p, Kirr,p, Pirr,p, Mirr,p,I and Nirr,p,I . We can now again forget
about the sequence of eq. (3.135) and go back to the sequence of the vector χχχp(α) (eq. (3.4)),
which is more convenient for the other calculations, because the matrices fragment into 3× 3
blocks. Furthermore there we actually have got the name-giving block-diagonalisation.

3.4 Equivalence of both Approaches

The α-Verlinde formula, which we have learned about in section 3.1, expresses the possibility
to simultaneously diagonalise the set of matrices Np,I(α). Unfortunately these are not the
matrices of fusion coefficients as in the case of rational conformal field theories. They rather
only become matrices of fusion coefficients after the limit α→ 0 has been taken – to be precise
we can map these coefficients then to the proposed true fusion coefficients in an unambiguous
way. But still it gives us the possibility to write the equation for the matrix elements of Np,I(α)
(3.16) as

Np,I(α) = S(p,α)Mdiag,α,IS(p,α)
−1 , (3.145)

with Mdiag,α,I given by

Mdiag,α,I = diag

(
S(p,α)

1
I

S(p,α)
1
3

,
S(p,α)

2
I

S(p,α)
2
3

, . . . ,
S(p,α)

3p−1
I

S(p,α)
3p−1
3

)
, (3.146)

One can also introduce the matrix Kdiag,α defined as the diagonal matrix with the vacuum row
of S(p,α) on the diagonal,

Kdiag,α = diag

(
1

S(p,α)
1
3

,
1

S(p,α)
2
3

, . . . ,
1

S(p,α)
3p−1
3

)
, (3.147)

which of course commutes in equation (3.145) with the matrices Mdiag,α,I , because these are
also diagonal. In this way we are able to see it parallel to our earlier notation. Mdiag,α,I is
given by the I-th line of the product S(p,α)Kdiag,α and

Np,I(α) = S(p,α)Kdiag,αMdiag,α,IKdiag,α
−1S(p,α)

−1 . (3.148)

But this is only to give a more rounded picture. We now get to the second central proposition
in this thesis.

Proposition: The fusion coefficients calculated with the α-Verlinde formula are the same as
the ones calculated with the extended block-diagonalisation method:

lim
α→0

Nij
k(α) = (Np,I)k

j . (3.149)
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Proof: We plug equations (3.145)and (3.134) into eq. (3.149) and have

⇔ lim
α→0

(
S(p,α)Mdiag,α,IS(p,α)

)
= SpKpMp,I(Kp)−1Sp . (3.150)

We insert two unit matrices into the left hand side of this equation:

S(p,α)Mdiag,α,IS(p,α) = S(p,α)Ep,αEp,α
−1Mdiag,α,IEp,αEp,α

−1S(p,α)

with Ep,α defined as
Ep,α := S(p,α)

−1Sp = S(p,α)Sp , (3.151)

in order to have
S(p,α)Mdiag,α,IS(p,α) == SpEp,α

−1Mdiag,α,IEp,αSp , (3.152)

With a blockdiagonal ansatz Ep,α, one can directly calculate the blocks as in the equation
(3.151):

Ep,α = 1l2×2 ⊕
p−1⊕
s=1

(Ep,α)s (3.153)

(Ep,α)s = S(p, α)s,lS(p)s,j =

 s
p −

2
pα

s
p −

2
pα

1
pα

p−s
p + 2

pα
p−s
p + 2

pα − 1
pα

2− (p− s)α 2 + sα 0

 . (3.154)

where we used the blocks from eqns. (3.10) and (3.133).
We are going to show that the product Ep,α

−1Mdiag,α,IEp,α has a well defined limit for α→ 0.
This is not clear. For the whole term at the end of equation (3.152) this limit is well defined.
They are the fusion coefficients Nij

k(α). But still singular terms in the mentioned product
could drop out through the multiplication of Sp from both sides.
We simply calculate first the matrices Mdiag,α,I . We need to consider the following cases. For
I = 1, 2 the matrices Mdiag,α,I differ by two minus signs. There are three more groups to be
distinguished, which belong each to one row of the blocks of S(p,α). We use again the same
abbreviations as for S(p,α) in eq. (3.10).

Mdiag,α,I = (Mdiag,α,I)0 ⊕
p−1⊕
l=1

(Mdiag,α,I)l (3.155)

I = 1, 2 : (Mdiag,α,I)0 =
(
p 0
0 (−1)Ipp

)

(Mdiag,α,I)l = (−1)I(p−l)

 −pα
αc1l+2s1l

0 0
0 −pα

αc1l+2s1l
0

0 0 0


I = 3, 6, . . . : (Mdiag,α,I)0 =

(
I 0
0 (−1)II

)

(Mdiag,α,I)l =

(−1)I+1 IαcIl+2sIl
αc1l+2s1l

0 0
0 (−1)I+1 IαcIl+2sIl

αc1l+2s1l
0

0 0 (−1)I+1 sIl
s1l
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I = 4, 7, . . . : (Mdiag,α,I)0 =
(
p− I 0

0 (−1)I(p− I)

)

(Mdiag,α,I)l =

(−1)I+1 (p−I)αcIl−2sIl

αc1l+2s1l
0 0

0 (−1)I+1 (p−I)αcIl−2sIl

αc1l+2s1l
0

0 0 (−1)I sIl
s1l


I = 5, 8, . . . : (Mdiag,α,I)0 =

(
2p 0
0 (−1)I2p

)

(Mdiag,α,I)l =

(−1)Ipα (p−l)αsIl−2cIl

αc1l+2s1l
0 0

0 (−1)I+1pα lαssl+2cIl
αc1l+2s1l

0
0 0 0

 .

For these four cases we can now calculate the product

M̃I,α = Ep,α
−1Mdiag,α,IEp,α = (M̃I,α)0 ⊕

p−1⊕
l=1

[
(−1)I(M̃I,α)l

]
(3.156)

(M̃I,α)0 = (Mdiag,α,I)0
I = 1, 2 :

(M̃I,α)l = (−1)(p+l)

−
l1

αc1l+2s1l
− l1

αc1l+2s1l
0

l2
αc1l+2s1l

l1
αc1l+2s1l

0
0 0 − αp

αc1l+2s1l


I = 3, 6, 9, . . . :

(M̃I,α)l =

−
(Il1cIl+2psIl)s1l−l2c1lsIl

ps1l(αc1l+2s1l)
− l1(Is1lcIl−c1lsIl)

ps1l(αc1l+2s1l)
0

l1(Is1lcIl−c1lsIl)
ps1l(αc1l+2s1l)

(Il2cIl−2psIl)s1l−l1c1lsIl

ps1l(αc1l+2s1l)
0

0 0 − IαcIl+2sIl
αc1l+2s1l


I = 4, 7, 10, . . . :

(M̃I,α)l =


− ((p−I)l1cIl−2psIl)s1l+l2c1lsIl

ps1l(αc1l+2s1l)
− l1((p−I)s1lcIl+c1lsIl)

ps1l(αc1l+2s1l)
0

l1((p−I)s1lcIl+c1lsIl)
ps1l(αc1l+2s1l)

((p−I)l2cIl+2psIl)s1l+l1c1lsIl

ps1l(αc1l+2s1l)
0

0 0 − (p−I)αcIl−2sIl

αc1l+2s1l


I = 5, 8, 11, . . . :

(M̃I,α)l =

−
2l1(cIl+sIl)
αc1l+2s1l

−2l1(cIl+sIl)
αc1l+2s1l

l1sIl
αc1l+2s1l

2l2(cIl+sIl)
αc1l+2s1l

2l2(cIl+sIl)
αc1l+2s1l

− l2sIl
αc1l+2s1l

l3(2−l)αpsIl

αc1l+2s1l

l3(2−l)αpsIl

αc1l+2s1l
−pα(2cIl−(l3−αl)sIl)

αc1l+2s1l


with l1 = 2 + lα, l2 = 2− (p− l)α and l3 = 2 + (p− l)α. Hence these matrices are well-defined
in the limit of α → 0 and we can take the limit of M̃I rather than of the whole product in
equation (3.152):

(Np,I)j
k = Sp lim

α→0

(
Ep,α

−1Mdiag,α,IEp,α

)
Sp . (3.157)

We now continue with the right hand side of equation (3.150) and see that we need to show
that

KpMp,I(Kp)−1 = lim
α→0

(
Ep,α

−1Mdiag,α,IEp,α

)
. (3.158)
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First we need to calculate the matrix Kp and Pp in order to get the matrices afterwards with
eqns. (3.104) (we have set ks1 = ks2 = 0) and (3.96), respectively:

Kp = Kp,I ⊕
p−1⊕
l=1

Kp,l (3.159)

Kp,0 =

(√
2p3 0

0 (−1)p+1
√

2p3

)

Kp,l =


(−1)p+l+1

√
p
2 s1l (−1)p+l

√
2
p3 (c1l − ls1l) 0

(−1)p+l
√

p
2 s1l (−1)p+l+1

√
2
p3 (c1l + (p− l)s1l) 0

0 0 1



Pp =


P (p)0,0 P (p)0,1 . . . P (p)0,p−1

P (p)1,0 P (p)1,1 . . . P (p)1,p−1
...

...
. . .

...
P (p)p−1,0 P (p)p−1,1 . . . P (p)p−1,p−1

 (3.160)

P (p)0,0 =
1√
2p

(
p (−1)p+1p
p −p

)
P (p)0,l =

2√
2p

(
0 (−1)p+l+1 2

ps1l 0
0 −2

ps1l 0

)

P (p)s,0 =
1√
2p

 s (−1)s+1s

p− s (−1)s+1(p− s)
2p 2(−1)s+1p



P (p, α)s,l = ×
(−1)s+1 ssl

s1l
(−1)s+1 2

p2 (scsls1l − sslc1l) 0

(−1)s ssl
s1l

(−1)s+1 2
p2 ((p− s)csls1l + sslc1l) 0

0 (−1)s+1 4
p (csl + ssl) s1l (−1)p+s+l+1

√
2
pssl

 .

One can simply read off the matrices Mp,I from the rows of this matrix (see eq. (3.89)). We
plug these matrices into the left hand side of equation (3.158):

M̃I = KpMp,I(Kp)−1 = (M̃I)0 ⊕
p−1⊕
l=1

(M̃I)l (3.161)

(M̃I)0 = (Mdiag,α,I)0
I = 1, 2 :

(M̃I,α)l = (−1)I(p+l)

− 1
s1l

− 1
s1l

0
1

s1l

1
s1l

0
0 0 0
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I = 3, 6, 9, . . . :

(M̃I)l = (−1)I

−
(IcIl+psIl)s1l−c1lsIl

ps1l
2 − Is1lcIl−c1lsIl

ps1l
2 0

Is1lcIl−c1lsIl
ps1l

2
(IcIl−psIl)s1l−c1lsIl

ps1l
2 0

0 0 − sIl
s1l


I = 4, 7, 10, . . . :

(M̃I)l = (−1)I

−
((p−I)cIl−psIl)s1l+c1lsIl

ps1ls1l
− (p−I)s1lcIl+c1lsIl

ps1l
2 0

(p−I)s1lcIl+c1lsIl

ps1ls1l

((p−I)cIl+psIl)s1l+c1lsIl

ps1l
2 0

0 0 − sIl
s1l


I = 5, 8, 11, . . . :

(M̃I)l = (−1)I

−
2(cIl+sIl)

s1l
−2(cIl+sIl)

s1l

sIl
s1l

2(cIl+sIl)
s1l

2(cIl+sIl)
s1l

− sIl
s1l

0 0 0

 .

Finally we compare the matrices M̃I with the respective matrices M̃I,α, which constitute the
right hand side of said equation (3.158), and notice that the limit of the latter matrices for
α→ 0 yields the former ones.

We have promised already in the introduction, that we are going to see for any matrix in one
of the presented methods the corresponding matrices in the other ones during this thesis and
the direct connection between them. For the latter, the direct connection between Mdiag,α,I

and Mp,I and between Kdiag,α and Kp can be clarified a bit more. With a small step we can
do this. We take in eq. (3.158) the matrix Kp and its inverse to the other side. As they do
not depend on α, we can take them into the limit.

Mp,I = lim
α→0

(
(Kp)−1Ep,α

−1Mdiag,α,IEp,αKp

)
. (3.162)

This gives us already the relation between Mdiag,α,I and Mp,I , but we want to have the other
one simultaneously, as we look at the Verlinde formula.
Kdiag,α,I commutes with Mdiag,α,I . So if we insert once the unit matrix, we get

Mp,I = lim
α→0

(
(Kp)−1Ep,α

−1Kdiag,α,IMdiag,α,IK
−1
diag,α,IEp,αKp

)
. (3.163)

We then define the matrix
Fp,α := K−1

diag,α,IEp,αKp . (3.164)

This can be easily calculated with equations (3.147), (3.151) and (3.104):

Fp,α = 1l2×2 ⊕
p−1⊕
j=1

(Fp,α)j (3.165)

(Fp,α)j =
1

p3α2

0 2(jα− 2)s1j (c1jα+ 2s1j) (−1)j+p+1
√

2p (c1jα+ 2s1j)
0 2((p− j)α+ 2)s1j (c1jα+ 2s1j) (−1)j+p

√
2p (c1jα+ 2s1j)

1 −2pαs1j (c1jα+ 2s1j) 0

 .

With these matrices we have the following, derived from the α-Verlinde formula ((3.145)):

Np,I(α) = (3.166)
S(p,α)Ep,α︸ ︷︷ ︸

=Sp

Ep,α
−1Kdiag,α,IFp,α︸ ︷︷ ︸

=Kp

Fp,α
−1Mdiag,α,IFp,α Fp,α

−1Kdiag,α,I
−1Ep,α︸ ︷︷ ︸

Kp
−1

Ep,α
−1S(p,α)

−1︸ ︷︷ ︸
=Sp

.
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One find that the three matrices in the middle have a regular limit

lim
α→0

(
Fp,α

−1Mdiag,α,IFp,α

)
= Mp,I (3.167)

and has the ”generalised” Verlinde formula for the extended block-diagonalisation method.
We have shown in this section, that both approaches including the indecomposable representa-
tions,which we learned about in the sections 3.1 and 3.3, give the same fusion rules. Moreover it
becomes also clear at this point, that Fuchs et al. found in their recent work a way to calculate
the fusion rules for irreducible representations in a perhaps mathematically more appealing
and certainly algebraicly better motivated way, which are the same as the ones given by the
α-Verlinde formula. On the other hand the connection to the work of M. Flohr provides its
CFT-side motivation, needs less many different matrices and is also easier to calculate. More-
over the limit in the α-Verlinde formula has now found its justification through its equality to
the ”generalised” Verlinde formula in our extension of Fuchs’ approach.





Conclusions

In this thesis we have given a detailed description of two different possibilities to calculate the
fusion rules of the c(p,1) models.
One of them has been until now only based on the modular transformation properties of the
characters of irreducible representations of the W triplet algebra and consequently only has
given the fusion rules of these representations. For this a ”generalised” Verlinde formula has
been suggested by Fuchs et. al., in which the fusion coefficient matrices are simulaneously
block-diagonalised in contrast to the diagonalisation in the case of semisimple fusion algebras.
We have shown, that the automorphy factor needed in the definition of the SL(2,Z) repre-
sentation, from which the S-matrix for this ”generalised” Verlinde formula has been taken, is
effectively giving the modular transformations for a linear combination of characters of the
irreducible representations. This way we have found a meaning of this matrix in the actual
conformal field theory, which supplements the one as one of the generators of the SL(2,Z)
representation. The latter meaning determines, of course, through the construction of this
representation the specific linear combinations of characters, which need to be taken.
However, for the physical picture it is important to take the indecomposable representations,
which exist in c(p,1) models, into account, as they are the key feature of these models. They
lead to the appearance of logarithmic divergences of correlation functions. The latter in turn
has caused the interest for these models to describe, for example, two dimensional polymers
or turbulent systems. We have been able now to extend the block-diagonalisation method to
also incorporate the indecomposable representations and so give the complete fusion algebra.
For the extension a set of forms, which originate from the study of the partition function of
the c(p,1) models and reappeared in the basis of the chiral vacuum torus amplitudes, has been
used as representatives of the indecomposable representations. The modular transformation
properties of linear combination of this set and the characters of irreducible representations
provides the S-matrix Sp, which, as the final one, is supposed to give the simultaneous eigen
matrix Pp of all fusion coefficient matrices of the whole fusion algebra of irreducible and in-
decomposable representations, which also has been calculated by Gaberdiel and Kausch for
p = 2.
For both the original and the extended blockdiagonalisation method one can also argue in the
opposite direction compared to the sequence, with which we have passed through the calcu-
lations in sections 3.2 and 3.3. We name here the matrices of the extended method, but the
same is true for the other one. The theory gives us Sp from some modular transformation
properties and, with the definition of a blockdiagonal Kp, we get a matrix Pp. With Pp one
can construct, via the block-diagonal matrices Mp,I , which consist of Pp’s matrix elements,
other matrices Np,I . Then these naturally have all the conditions in relation to Pp, which we
have found (simultaneous block-diagonalisation, matrix of generalised eigenvectors, etc.). And
these matrices define – as structure constants – some algebra. Then the actual statement is,
that this algebra is the fusion algebra of the c(p,1) models modulo some substitutions. It forms
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a well-founded proposition, how the fusion rules are calculated, justified by many indications,
and gives the – seemingly for higher p – right result. A proof keeps owing and the question,
why Sp block-diagonalises the matrices of fusion coefficients Np,I simultaneously in this way,
stands central in it.
However the additional forms, used in our extension, were first successfully used for the cal-
culation of fusion rules by the second one of the two method we mentioned in the first line
of this conclusions. We have detailed the path leading to this method and the exact calcula-
tions needed. We have given a closed form of the parameter-dependent S-matrix Sα,p, which
has been used for the fitting adaption of the Verlinde formula there, which we call α-Verlinde
formula. Although Sα,p does not diagonalise the fusion coefficient matrices, it simultaniously
diagonalises a set of matrices depending on α as well, which in the limit α → 0 are in accord
with the known fusion rules with respect to both the triplet algebra and the Virasoro algebra.
We have seen, that the fusion rules, we get from any Verlinde formula for c(p,1) models, can not
distinguish between indecomposable representations and certain combinations of irreducible
representations. As we discussed at first appearance of this indistinguishability in this thesis,
in context of the results of the α-Verlinde formula, this is intrinsic to the whole calculation
on grounds of modular transformations of characters. At that point it was particularly clear,
because the limit α → 0 made the used forms linearly dependent. But also for our extended
block-diagonalisation method it is expected, when one goes over to linear combinations of the
same forms, which though linearly independent are taken in just the way to make the resulting
S-matrix α-independent. Obviously this is achieved only, if terms drop out, that come from
the α-dependent summand of the forms χ̃λ,p(α), which distinguish them from the characters
of the indecomposable representations linearly dependent on those of the irreducible ones.
We have shown, that both approaches, which take the indecomposable representations into
account, provide the same results. Moreover for any matrix in any of all three methods –
the α-Verlinde formula, the original and the extended block-diagonalisation method – the cor-
responding matrices in the other two approach were given. Especially for the two ”large”
versions this is helpful for further investigations, as one has a better understanding with re-
spect to standard entities on the conformal field theory side like characters, vacuum amplitudes
and the partition sum, while the other’s home is the algebraic side around the fusion algebra
corresponding to the Virasoro algebra at central charge c = c(p,1).
Also other work connected both sides. The best support for Fuchs’ approach until now came
from work of Feigin et al. on a Kazhdan-Lusztig-like correspondence. They found, that the
closed from for the ”small” fusion algebra of c(p,1)-models, found by Fuchs et al., is the same
as the Grothendieck ring in the quantum groups, which are conjectured to correspond to this
series, namely, a reduced quantum group Ūqsl(2) at root of unity q = e

iπ
p . This is exactly one

statement of the Kazhdan-Lusztig correspondence. One other claim is, that a modular group
representation associated with the conformal blocks on a torus is equivalent to a modular group
representation on the center of the quantum group. It has been shown in [FGST06c], that an
SL(2,Z) representation of the (3p − 1)-dimensional space of conformal blocks on a torus is
equivalent to one given on the center of the quantum group. Also there the automorphy fac-
tor and the S-matrix of Fuchs are found as a projection on a part of this space up to simple
multipliers. This now triggers the question, if perhaps the large S-matrix and other matrices
of our extension can be found in connection to the SL(2,Z) representation found by Feigin et
al. on the conformal blocks. Is it perhaps equivalent to this representation and consequently
also to the one on the quantum group center? Is there a ring in this quantum group, which
coincides with the entire fusion algebra of the c(p,1) models? The last question seems only
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to make sense, if one asks for the fusion algebra before the ominous substitutions are made,
because the Grothendieck ring already found in the quantum group corresponds to the ”small”
fusion algebra, which is a part of that algebra. So this apparently has to be seen on the level
of characters. If these questions can be answered positive, this would certainly speak for our
extension.
In the end the actual proof of the extended ”generalised” Verlinde formula is perhaps again a
question of translation to algebraic geometry and a subsequent proof there. The corresponding
version of the formula should be connected to or should even give the dimension of the space of
holomorphic section of line bundles on the moduli space of principal G-bundles over a Riemann
surface, now for a non-semisimple algebraic group G. It could well also be, that this time the
entire proof comes first from the theory of vertex operator algebras, where work is progressing
steadily. Recently the first part of a extensive review of conformal vertex algebra applying to
LCFT was published ([HLZ06]). The geometric interpretation would then give the mentioned
algebraic geometric side.
But with all the indications for our results, like the parallels to the case of rational conformal
field theory or the comparison to the results of Gaberdiel and Kausch, one can be virtually
sure, that we have here the correct fusion rules for all c(p,1) models in hand.
And the advantage of the Verlinde formula in any of its version is enormous. With this one
need not give up at the thought of calculating the fusion rules for interesting models discussed
in the literature in the context of e.g. two dimensional magnetohydrodynamics (c(6,1); [ST98]
or two dimensional turbulence (c(8,1); [RTR96]). One just calculates it.
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Appendix A

Some Calculations in even more
Detail

A.1.1 Different limits in the α-Verlinde formula

The matrix S(p,α) appears in equation (3.16) four times. One could now think of plugging in
this matrix with four different parameters αi. Then one can take the limit differently fast for
each of the four αi, instead of taking the simultaneous limit, i.e. we have imposed different
power-law behaviour, with which the αi = xai is sent to zero:

Nij
k(x) =

3p∑
r=1

(S(p,xa3 ))jr(S(p,xa2 ))ir(S(p,xa4 ))r
k

(S(p,xa1 ))3,r
(A.1)

Our aim has been to get the correct fusion rules for p = 2 in the cases, where no indecomposable
representations at all are appearing and no substitution would be needed, when we then take the
limit x→ 0. This is, for example, the case for fusion product with the vacuum representation.
For example, one can take the subsequent three fusion products, which are given by (A.1):

[1]⊗f [0] =
1
2

[1] +
1
2

[1]xa1+a4−a2−a3 +
1
2

[0]− 1
2

[0]xa1+a4−a2−a3 (A.2)[
−1

8

]
⊗f [0] =

1
2

[
−1

8

]
+

1
2

[
−1

8

]
xa1−a3 +

1
2

[0]− 1
2

[0]xa1−a3 (A.3)[
−1

8

]
⊗f [1] =

1
2

[
−1

8

]
− 1

2

[
−1

8

]
xa1−a2 +

1
2

[
3
8

]
+

1
2

[
3
8

]
xa1−a2 . (A.4)

In comparison with section B.1 all the exponents of x appearing in these decompositions have
to be zero. The fusion products must be independent of x already, before the limit is taken, so
that the vacuum representation is the unit element of the fusion algebra and the representation
[1] (for p = 2) just ”switches” between the corresponding singlet and doublet representations,
i.e.

a1 + a4 = a2 + a3 a1 = a3 a1 = a2 (A.5)

So all four must be the same. We also looked at the option of taking the limits of the different
αi manually one after the other, but only the parameter of the S-matrix in the denominator of
the equation can be taken first to zero – meaning that the others would cause divergence. If
one does so, the other parameters drop out immediately and one is left with no unit element
and other problems.
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So in summary it turns out that the simultaneous limit is the only one leading to the correct
fusion rules. Of course, there are good reasons, why these parameters should be the same
anyway. One can, for example, only talk of diagonalisation of the fusion coefficient matrices,
if the same S-matrix is multiplied from both sides. But still it is a piece of information worth
mentioning that the rather implausible possibilities to take this limit consequently also do not
give the correct result.

A.1.2 Simultaneous Eigen Decomposition of the Semisimple-Fusion Coeffi-
cient Matrices

We have seen in section 1.2.2 that the S-matrix SRCFT diagonalises the matrices of fusion
coefficients. But it is not the counterpart of the matrix Pirr,p for this case – and Pirr,p is not
Sirr,p – , as the diagonalised matricesMdiag,I (eq. (1.41)) have not matrix elements coming from
the I-th line of the S-matrix. But such a counterpart PRCFT does exist, because arguments
analogous to those just presented hold. The difference is now, that we already deal with
a semisimple algebra and so do not have a direct sum of such an algebra and a radical.
Consequently the basis YRCFT only contains idempotents, which again form a partition of the
unit as in equation (3.26). We are left with relation (3.28) for the idempotents. PRCFT gives
the canonical basis XRCFT of irreducible representations in terms of elements of the basis
YRCFT (cf. eq. (3.31)). Finally with equations (3.34)-(3.40) we end up with

(XRCFT )L (YRCFT )A = (PRCFT )LA (YRCFT )A (A.6)

instead of (3.35), which gives Mdiag,I .
The fusion coefficients are then given by

NRCFT,I = PRCFTMdiag,IPRCFT
−1 . (A.7)

The diagonalising matrix PRCFT consists of simultaneous eigenvectors of the matrices NRCFT,I

for all I labeling the n irreducible representations. For any specific I one has lots of other
matrices, which diagonalise NRCFT,I , by taking multiples – or in the same eigenspace even
linear combinations – of the columns of PRCFT for the columns of them. Considering the
simultaneous diagonalisation the eigenspaces are a priori different for different I and we are
left with the possibility of multiplying each column by a non-zero constant. Extraordinarily,
one of the matrices related to PRCFT in this way is just the S-matrix SRCFT :

PRCFT = SRCFTKdiag . (A.8)

The diagonal matrix Kdiag just divides each column of SRCFT through the element in this
column and the row corresponding to the vacuum representation in this column:

Kdiag = diag

(
1

(SRCFT )Ω
1 ,

1
(SRCFT )Ω

2 , . . . ,
1

(SRCFT )Ω
n

)
. (A.9)

Note that this is already fixed by the vacuum line πΩ of PRCFT . With σΩ denoting the vacuum
line of the S-matrix, Kdiag results from

πΩ = σΩKdiag , (A.10)

which fortunately holds also for all other lines. This fact incorporates the central point of the
theorem which the Verlinde formula makes up. As reviewed in [Fuc06] the actual insight of
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the Verlinde formula is, that the not uniquely defined diagonalising matrix can be chosen as a
matrix coming from the braiding of the representation category of the chiral symmetry algebra
of the RCFT (e.g. the Virasoro algebra) and – more importantly – the latter actually is the
same as our character S-matrix SRCFT .

A.1.3 Calculations leading to Cirr,2

We want to solve the following equation for Cirr,p in the case of p = 2:

Sirr,p = Cirr,p

(
−1
τ

)
Sp(τ)Cirr,p

−1(τ) . (A.11)

We start our calculations without fixing p and derive general statement for Cirr,p. Afterwards
apply to p = 2, what we have found.
First of all one can use the fact, that at τ = i the two matrices Sirr,p and Sp(τ) are the same
and so Cirr,p(i) = 1l. After multiplying eq. (A.11) from the right with Cirr,p(τ) one can expand
the matrix elements of Cirr,p(τ), Cirr,p(−1/τ) and Sp(τ) around τ = i. We write this here as
a matrix equation for simplicity. The derivatives are acting on each matrix element.

Sirr,p

(
Cirr,p(i) +

∂Cirr,p(τ)
∂τ

∣∣∣∣
τ=i

(τ − i) + O((τ − i)2)
)

(A.12)

=
(
Cirr,p

(
−1
i

)
+

∂Cirr,p

(
− 1

τ

)
∂τ

∣∣∣∣∣
τ=i

(τ − i) + O((τ − i)2)
)

(
Sp(i) +

∂Sp(τ)
∂τ

∣∣∣∣
τ=i

(τ − i) + O((τ − i)2)
)
.

The constant parts of Cirr,p and Sp are the unit matrix and Sirr,p, respectively. The chain rule
on the linear part of the right hand side just gives a minus sign from the inner derivative. We
get

Sirr,p + Sirr,p
∂Cirr,p(τ)

∂τ

∣∣∣∣
τ=i

(τ − i) + O((τ − i)2) (A.13)

= Sirr,p −
∂Cirr,p (τ)

∂τ

∣∣∣∣
τ=i

Sirr,p(τ − i) +
∂Sp(τ)
∂τ

∣∣∣∣
τ=i

(τ − i) + O((τ − i)2) .

Here we can extract the linear part, which leads to the following equation

Sirr,p
∂Cirr,p(τ)

∂τ

∣∣∣∣
τ=i

=
∂Cirr,p (τ)

∂τ

∣∣∣∣
τ=i

Sirr,p +
∂Sp(τ)
∂τ

∣∣∣∣
τ=i

. (A.14)

Now we looked at the case p = 2. If one makes the assumption that this matrix should look
similar to j2(S, τ), i.e it is block-diagonal and the first 2× 2 block is the unit matrix, one can
easily calculate the derivative of Cirr,2(τ) with the subsequent ansatz,

∂Cirr,2(τ)
∂τ

∣∣∣∣
τ=i

=


0 0 0 0
0 0 0 0
0 0 (∂c)33 (∂c)34
0 0 (∂c)43 (∂c)44

 . (A.15)
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The derivative of S2(τ) is a constant matrix looking just alike. The system of equations, which
is given by eq. (A.14), can be solved now easily. The solution reads

∂Cirr,2(τ)
∂τ

∣∣∣∣
τ=i

=


0 0 0 0
0 0 0 0
0 0 −1

4 i
1
4 i

0 0 1
4 i −1

4 i

 . (A.16)

Now there is no reason, why Cirr,2(τ) should depend particularly complicated on τ . We have
seen that S2(τ) is linear in τ . Consequently j2(S, τ) is antilinear in τ . If one takes the
determinant of equation (A.11) for this case, we get another hint,

det (Sirr,p) det (Cirr,2(τ)) = det
(
Cirr,2

(
−1
τ

))
det (S2(τ)) (A.17)

⇒ −det (Cirr,2)(τ) =
(

det (Cirr,2)
(
−1
τ

))
iτ .

Inserting the Laurent series of det (Cirr,2) leads to a relation between its modes.

+∞∑
−∞

−cn τn =
+∞∑
−∞

i cn

(
−1
τ

)n

τ (A.18)

⇒ cn = (−1)ni c−n+1 . (A.19)

So starting from the simplest possibility, we could have here only a constant and linear con-
tribution or we would have – the next to simplest case – already an antilinear and quadratic
contribution in the determinant.
If one looks at the result for the derivative at τ = i, eq. (A.16), it looks very simple. One can
make a first guess that it is not a sum of several terms with different power of τ evaluated at
that particular point, but that the derivative ∂Cirr,2(τ)

∂τ itself actually is constant and equal to
the matrix in eq. (A.16). As a consequence the following ansatz seems reasonable

Cirr,2(τ) =


1 0 0 0
0 1 0 0
0 0 c33 − 1

4 iτ c34 + 1
4 iτ

0 0 c43 + 1
4 iτ c44 − 1

4 iτ

 . (A.20)

The determinant has no term quadratic in τ , which is a first sign for this ansatz, because
otherwise it could not have been correct without a term antilinear in τ . Finally this leads us
to a system of equations determined by eq. (A.11) that can be solved for the four constant
variables in our ansatz. We find

Cirr,2(τ) =


1 0 0 0
0 1 0 0
0 0 3

4 −
1
4 iτ

1
4 + 1

4 iτ

0 0 1
4 + 1

4 iτ
3
4 −

1
4 iτ .

 (A.21)
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Fusion rules for p = 2

B.1 Results of the α-Verlinde Formula

The S-matrix plugged into the eq. 3.16 is for p = 2:

S(p,α) =


1
2

1
2 1 1 0

1
2

1
2 −1 −1 0

1
4 −1

4
1
α

1
α − 1

2α
1
4 −1

4 − 1
α − 1

α
1
2α

1 −1 −α α 0

 . (B.1)

The ”pre-fusion-rules” calculated the α-Verlinde Formula then are:

[0] ⊗f [h] = [h] ∀h ∈

{
0,−1

8
,
3
8
, 1, 0̃, −̃1

4

}
, (B.2)[

−1
8

]
⊗f

[
−1

8

]
= 2 [0] + 2 [1] ,[

−1
8

]
⊗f

[
0̃
]

= 2
[
−1

8

]
+ 2

[
3
8

]
,[

−1
8

]
⊗f

[
3
8

]
= 2 [0] + 2 [1] ,[

−1
8

]
⊗f [1] =

[
3
8

]
,[

0̃
]
⊗f

[
0̃
]

= 8 [0] + 8 [1] ,[
0̃
]
⊗f

[
3
8

]
= 2

[
−1

8

]
+ 2

[
3
8

]
,[

0̃
]
⊗f [1] = 4 [0] + 4 [1]−

[
0̃
]
,[

3
8

]
⊗f

[
3
8

]
= 2 [0] + 2 [1] ,[

3
8

]
⊗f [1] =

[
−1

8

]
,

[1] ⊗f [1] = [0] .
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The fusion coefficients appearing in these fusion rules are found in the following matrices:

N2,1 =


0 0 2 2 0
0 0 2 2 0
1 0 0 0 0
0 1 0 0 0
2 2 0 0 0

 (B.3)

N2,2 =


0 0 2 2 0
0 0 2 2 0
0 1 0 0 0
1 0 0 0 0
2 2 0 0 0



N2,4 =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 4 4 −1



N2,5 =


2 2 0 0 0
2 2 0 0 0
0 0 0 0 1
0 0 4 4 −1
0 0 8 8 0


The matrix belonging to the vacuum representation, N2,3, is always the unit matrix.
After the substitutions explained towards the end of section 3.1 have been carried out in
equation (B.2), we get the following altered fusions rules are the same as in [GK96b]. We state
only the fusion rules here, in which a substitution is done:[

−1
8

]
⊗f

[
−1

8

]
=
[
0̃
]
, (B.4)[

−1
8

]
⊗f

[
3
8

]
=
[
0̃
]
,[

0̃
]
⊗f

[
0̃
]

= 4
[
0̃
]
,[

0̃
]
⊗f [1] =

[
0̃
]
,[

3
8

]
⊗f

[
3
8

]
=
[
0̃
]
.



Appendix C

Fusion rules for p = 3

C.1 Results of the α-Verlinde Formula

The S-matrix S(3, α) is given in equation (3.17). The ”pre-fusion-rules” calculated with eq.
3.16 are:

[0] ⊗f [h] = [h] ∀h ∈

{
0,−1

4
,−1

3
,

5
12
, 1,

7
4
, 0̃, −̃1

4

}
, (C.1)[

−1
4

]
⊗f

[
−1

4

]
= [0] +

[
−1

3

]
,[

−1
4

]
⊗f

[
−1

3

]
= 2

[
−1

4

]
+ 2

[
7
4

]
,[

−1
4

]
⊗f

[
−̃1

4

]
= 2

[
−1

3

]
+
[
0̃
]
,

[
−1

4

]
⊗f

[
0̃
]

=

[
−̃1

4

]
+ 2

[
5
12

]
,[

−1
4

]
⊗f

[
5
12

]
= 2 [0] + 2 [1] ,[

−1
4

]
⊗f [1] =

[
5
12

]
+
[
7
4

]
,[

−1
4

]
⊗f

[
7
4

]
= [1] ,[

−1
3

]
⊗f

[
−1

3

]
= 2 [0] +

[
−1

3

]
+ 2 [1] ,[

−1
3

]
⊗f

[
−̃1

4

]
= 4

[
−1

4

]
+ 4

[
5
12

]
+ 4

[
7
4

]
,[

−1
3

]
⊗f

[
0̃
]

= 4 [0] + 2
[
−1

3

]
+ 4 [1] ,[

−1
3

]
⊗f

[
5
12

]
= 2

[
−1

4

]
+
[

5
12

]
+ 2

[
7
4

]
,[

−1
3

]
⊗f [1] = 2 [0] + 2 [1] ,
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[
−1

3

]
⊗f

[
7
4

]
=
[

5
12

]
,[

−̃1
4

]
⊗f

[
−̃1

4

]
= 8 [0] + 4

[
−1

3

]
+ 8 [1] ,[

−̃1
4

]
⊗f

[
0̃
]

= 8
[
−1

4

]
+ 4

[
5
12

]
+ 8

[
7
4

]
,[

−̃1
4

]
⊗f

[
5
12

]
= 4 [0] + 2

[
−1

3

]
+ 4 [1] ,[

−̃1
4

]
⊗f [1] = 4

[
−1

4

]
−

[
−̃1

4

]
+ 2

[
5
12

]
+ 4

[
7
4

]
,[

−̃1
4

]
⊗f

[
7
4

]
= 4 [0]−

[
0̃
]
+ 4 [1] ,

[
0̃
]
⊗f

[
0̃
]

= 8 [0] + 4
[
−1

3

]
+ 8 [1] ,

[
0̃
]
⊗f

[
5
12

]
= 4

[
−1

4

]
+ 2

[
5
12

]
+ 4

[
7
4

]
,

[
0̃
]
⊗f [1] = 4 [0] + 2

[
−1

3

]
−
[
0̃
]
+ 4 [1] ,

[
0̃
]
⊗f

[
7
4

]
= 4

[
−1

4

]
−

[
−̃1

4

]
+ 4

[
7
4

]
,[

5
12

]
⊗f

[
5
12

]
= 2 [0] +

[
−1

3

]
+ 2 [1] ,[

5
12

]
⊗f [1] = 2

[
−1

4

]
+ 2

[
7
4

]
,[

5
12

]
⊗f

[
7
4

]
=
[
−1

3

]
,

[1] ⊗f [1] = [0] +
[
−1

3

]
,

[1] ⊗f

[
7
4

]
=
[
−1

4

]
,[

7
4

]
⊗f

[
7
4

]
= [0] .

The fusion coefficients appearing in these fusion rules are found in the following matrices:

N3,1 =



1 0 2 2 0 0 0 0
0 1 0 0 0 2 2 0
1 0 0 0 0 0 0 0
0 0 2 2 0 0 0 0
2 0 4 4 0 0 0 0
0 0 0 0 0 2 2 0
0 1 0 0 0 0 0 0
0 2 0 0 0 4 4 0


(C.2)
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N3,2 =



0 1 0 0 0 2 2 0
1 0 2 2 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 2 2 0
0 2 0 0 0 4 4 0
0 0 2 2 0 0 0 0
1 0 0 0 0 0 0 0
2 0 4 4 0 0 0 0



N3,4 =



0 0 2 2 0 0 0 0
0 0 0 0 0 2 2 0
0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
2 0 4 4 −1 0 0 0
0 1 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 2 0 0 0 4 4 0



N3,5 =



2 0 4 4 0 0 0 0
0 2 0 0 0 4 4 0
0 0 0 0 1 0 0 0
2 0 4 4 −1 0 0 0
4 0 8 8 0 0 0 0
0 2 0 0 0 0 0 1
0 0 0 0 0 4 4 −1
0 4 0 0 0 8 8 0



N3,6 =



0 0 0 0 0 2 2 0
0 0 2 2 0 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 2 0 0 0 0 0 1
1 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 8 8 0



N3,7 =



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 4 4 −1
0 0 0 1 0 0 0 0
0 0 1 0 0 4 4 −1
0 0 4 4 −1 0 0 0
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N3,8 =



0 2 0 0 0 4 4 0
0 2 4 4 0 0 0 0
0 0 0 0 0 0 0 1
0 2 0 0 0 4 4 −1
0 4 0 0 0 8 8 0
2 0 0 0 1 0 0 0
0 0 4 4 −1 0 0 0
4 0 8 8 0 0 0 0


The matrix belonging to the vacuum representation, N3,3, is always the unit matrix.
After the substitutions explained towards the end of section 3.1 have been carried out in
equation (C.1), we get the following altered fusions rules in correspondence to the results of
[GK96a]. [

−1
4

]
⊗f

[
−1

3

]
=

[
−̃1

4

]
,[

−1
4

]
⊗f

[
5
12

]
=
[
0̃
]
,[

−1
3

]
⊗f

[
−1

3

]
=
[
0̃
]
+
[
−1

3

]
,[

−1
3

]
⊗f

[
−̃1

4

]
= 2

[
−̃1

4

]
+ 4

[
5
12

]
,[

−1
3

]
⊗f

[
0̃
]

= 2
[
0̃
]
+ 2

[
0̃
]
+ 2

[
−1

3

]
,[

−1
3

]
⊗f

[
5
12

]
=

[
−̃1

4

]
+
[

5
12

]
,[

−1
3

]
⊗f [1] =

[
0̃
]
,[

−̃1
4

]
⊗f

[
−̃1

4

]
= 4

[
0̃
]
+ 4

[
−1

3

]
,[

−̃1
4

]
⊗f

[
0̃
]

= 4

[
−̃1

4

]
+ 4

[
5
12

]
,[

−̃1
4

]
⊗f

[
5
12

]
= 2

[
0̃
]
+ 2

[
−1

3

]
,[

−̃1
4

]
⊗f [1] =

[
−̃1

4

]
+ 2

[
5
12

]
,[

−̃1
4

]
⊗f

[
7
4

]
=
[
0̃
]
,

[
0̃
]
⊗f

[
0̃
]

= 4
[
0̃
]
+ 4

[
−1

3

]
,

[
0̃
]
⊗f

[
5
12

]
= 2

[
−̃1

4

]
+ 2

[
5
12

]
,
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[
0̃
]
⊗f [1] = 2

[
−1

3

]
+
[
0̃
]
,

[
0̃
]
⊗f

[
7
4

]
=

[
−̃1

4

]
,[

5
12

]
⊗f

[
5
12

]
=
[
0̃
]
+
[
−1

3

]
,[

5
12

]
⊗f [1] =

[
−̃1

4

]
. (C.3)

All other products stay the same as in eq. C.1.

C.2 Matrices in the Block-Diagonalisation Method for irre-
ducible representations

We start with the matrix S3(τ)

S3(τ) =



1
2 r̂

1
2 r̂ r̂ r̂ r̂ r̂

1
2 r̂ −1

2 r̂ r̂ r̂ −r̂ −r̂
1
6 r̂

1
6 r̂ −1

6 r̂ + τ̂ −1
6 r̂ −

1
2 τ̂ −1

6 r̂ −
1
2 τ̂ −1

6 r̂ + τ̂
1
3 r̂

1
3 r̂ −1

3 r̂ − τ̂ −1
3 r̂ + 1

2 τ̂ −1
3 r̂ + 1

2 τ̂ −1
3 r̂ − τ̂

1
3 r̂ −1

3 r̂ −1
3 r̂ − τ̂ −1

3 r̂ + 1
2 τ̂

1
3 r̂ −

1
2 τ̂

1
3 r̂ + τ̂

1
6 r̂ −1

6 r̂ −1
6 r̂ + τ̂ −1

6 r̂ −
1
2 τ̂

1
6 r̂ + 1

2 τ̂
1
6 r̂ − τ̂


(C.4)

with r̂ =
√

6/3 and τ̂ = iτ
√

2/3. The automorphy factor reads

jp(S, τ) =



1 0
0 1

0 0

0
τ+2i
3τ

τ−i
3τ

2(τ−i)
3τ

2τ+i
3τ

0

0 0
2τ+i
3τ

2(τ−i)
3τ

τ−i
3τ

τ+2i
3τ


. (C.5)

The product of the last two matrices is the S-matrix Sirr,3.

Sirr,3 =



1
2 r̂

1
2 r̂ r̂ r̂ r̂ r̂

1
2 r̂ −1

2 r̂ r̂ r̂ −r̂ −r̂
1
6 r̂

1
6 r̂ −1

6 r̂ − û −1
6 r̂ + 1

2 û −1
6 r̂ + 1

2 û −1
6 r̂ − û

1
3 r̂

1
3 r̂ −1

3 r̂ + û −1
3 r̂ −

1
2 û −1

3 r̂ −
1
2 û −1

3 r̂ + û
1
3 r̂ −1

3 r̂ −1
3 r̂ + û −1

3 r̂ −
1
2 û

1
3 r̂ + 1

2 û
1
3 r̂ − û

1
6 r̂ −1

6 r̂ −1
6 r̂ − û −1

6 r̂ + 1
2 û

1
6 r̂ −

1
2 û

1
6 r̂ + û


(C.6)
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with r̂ =
√

6/3 as defined before and û =
√

2/3. This matrix is also the result of equation
(A.11) with the matrix

Cirr,3(τ) =



1 0
0 1

0 0

0
2−iτ

3
1+iτ

6
1+iτ

3
5−iτ

6

0

0 0
5−iτ

6
1+iτ

3
1+iτ

6
2−iτ

3


. (C.7)

With the vacuum row of Sirr,3, which is for all p the third row, we get the matrix Kirr,3,

Kirr,3 =



3
√

6 0
0 3

√
6

0 0

0
−
√

2
√

6−3
√

2
18√

2 −
√

6+6
√

2
18

0

0 0

√
2

√
6+6

√
2

18

−
√

2 −
√

6−3
√

2
18


. (C.8)

The product of this matrix with Sirr,3 is the eigenmatrix Pirr,3,

Pirr,3 =



3 3 0 −1
3

√
3 0 1

3

√
3

3 −3 0 −1
3

√
3 0 −1

3

√
3

1 1 1 0 1 0
2 2 −1 1

6

√
3 −1 −1

6

√
3

2 −2 −1 1
6

√
3 1 1

3

√
3

1 −1 1 0 −1 0


. (C.9)

With this matrix we can first write down the matrices Mirr,3,I and by conjugation with Pirr,3

find the fusion coefficients. Here we just want to look at the first matrix, Mirr,3,1, corresponding
to the irreducible representation with highest weight h = −1/3,

Mirr,3,1 =



3 0
0 3

0 0

0
0 −1

3

√
3

0 0
0

0 0
0 1

3

√
3

0 0


. (C.10)

The decompositions of the fusion rules are encoded in the matrices

Nirr,3,1 =



1 0 2 2 0 0
0 1 0 0 2 2
1 0 0 0 0 0
0 0 2 2 0 0
0 0 0 0 2 2
0 1 0 0 0 0

 . (C.11)
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We see some pairs of the number two here. The 5th line is the fusion product[
−1

3

]
⊗f

[
−1

4

]
= 2

[
−1

4

]
+ 2

[
7
4

]
, (C.12)

which has been also an example in the section 3.1.

C.3 Matrices in the extended Block-Diagonalisation Method

The product of the last two matrices is the S-matrix S3.

S3 =



1
2 r̂

1
2 r̂ r̂ r̂ 0 r̂ r̂ 0

1
2 r̂ −1

2 r̂ r̂ r̂ 0 −r̂ −r̂ 0
1
6 r̂

1
6 r̂ −1

6 r̂ − û −1
6 r̂ + 1

2 û 0 −1
6 r̂ + 1

2 û −1
6 r̂ − û 0

1
3 r̂

1
3 r̂ −1

3 r̂ + û −1
3 r̂ −

1
2 û 0 −1

3 r̂ −
1
2 û −1

3 r̂ + û 0

r̂ r̂ −r̂ − 3û r̂ − 3û
√

1
2 −r̂ + 3û −r̂ + 3û −

√
1
2

1
3 r̂ −1

3 r̂ −1
3 r̂ + û −1

3 r̂ −
1
2 û 0 1

3 r̂ + 1
2 û

1
3 r̂ − û 0

1
6 r̂ −1

6 r̂ −1
6 r̂ − û −1

6 r̂ + 1
2 û 0 1

6 r̂ −
1
2 û

1
6 r̂ + û 0

r̂ r̂ −r̂ + 3û r̂ + 3û −
√

1
2 r̂ + 3û r̂ + 3û −

√
1
2


(C.13)

with r̂ =
√

6/3 as defined before and û =
√

2/3. With the vacuum row of S3, which is for all
p the third row, we get the matrix K3,

K3 =



3
√

6 0
0 3

√
6

0 0

0

−
√

2
√

6−3
√

2
18 0

√
2 −

√
6+6

√
2

18 0
0 0 1

0

0 0

√
2

√
6+6

√
2

18 0

−
√

2 −
√

6−3
√

2
18 0

0 0 1


. (C.14)

The product of this matrix with S3 is the eigenmatrix P3,

Pirr,3 =



3 3 0 −1
3

√
3 0 0 1

3

√
3 0

3 −3 0 −1
3

√
3 0 0 −1

3

√
3 0

1 1 1 0 0 1 0 0
2 2 −1 1

6

√
3 0 −1 −1

6

√
3 0

6 6 0 1
3

√
3 + 1 1

2

√
2 0 −1

3

√
3 + 1 −1

2

√
2

2 −2 −1 1
6

√
3 0 1 1

3

√
3 0

1 −1 1 0 0 −1 0 0
3 −3 0 −1

3

√
3 0 0 −1

3

√
3 0


. (C.15)
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With this matrix we can first write down the matrices M3,I and by conjugation with P3 find
the fusion coefficients. Here we just want to look at the first matrix, M3,5, corresponding to
the indecomposable representation with highest weight h = 0,

Mirr,3,1 =



6 0
0 6

0 0

0
0 1

3

√
3 + 1 1

2

√
2

0 0 0
0 0 0

0

0 0
0 −1

3

√
3 −1

2

√
2

0 0 0
0 0 0


. (C.16)

This matrix directly leads through equation (3.85) to the matrix N3,5 in eq. (C.2), where it
was calculated with the α-Verlinde formula, as it is also the case for the other matrices N3,I ,
0 < I < 9.



Appendix D

Eigenvalues and eigenvectors of
Different S-Matrices

The eigenvalues are always written in the first line of each tables, which is entitled by the
matrix they belong to. The corresponding eigenvectors are found beneath them.

Sirr,2 :
1 −1

1
1
0
0




2
0
1
0




2
0
0
1



−2
2
1
1



S(2,α) :
1 −1

2
0
1
0

2− α




2
0
0
1

2 + α




1
1
0
0
0




−1
1
1
0

2 + α




−1
1
0
1

2− α



S2 for s5 6= −1 :
1 −1 s5

2s2−s3
s1+s2

−2s1+s3
s1+s2

1
0
0




2s2−s4
s1+s2

−2s1+s3
s1+s2

0
1
0




1−s5
s1+s2
1−s5
s1+s2

0
0
1




−2
2
1
1

−2s2−s3−s4+2s1
s5+1




0
0
0
0
1
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S2 for s5 = −1 and s1 = 2s2+s3+s4
2 :

1 −1
1
1
0
0

s4
4 + s3

4 + s2




2
0
1
0

s4
2 + s3 + s2




2
0
0
1

s4 + s3
2 + s2



−2
2
1
1
0




0
0
0
0
1





List of Notation used

Symbol Description Equation
B matrix Matrix composing the characters from the Jacobi-

Riemann Θ-function and the affine Θ-function.
(3.8)

c(p,1) Central charges of the Virasoro algebra of the c(p,1) models
with p ≥ 2

via (1.26)

c(p,q) Central charges of the minimal series parametrised by co-
prime integer p, q > 1

(1.26)

χ+
λ,p Characters of irreducible singlet representations of the

triplet algebra.
(2.32),(2.34)

χ−λ,p Characters of irreducible doublet representations of the
triplet algebra.

(2.33),(2.35)

χRλ,p Characters of indecomposable representations of the triplet
algebra.

(2.36)

χχχirr,p Vector of all irreducible representations of the triplet alge-
bra.

(2.37)

χR+(α) Basis element of the basis of chiral vacuum torus amplidutes. (2.42)

χ̃λ,p(α) A specified linear combination of χR+(α) and χR+(α). (3.3)

χχχp(α) Vector of character of irreducible representations of the
triplet algebra and further forms χ̃λ,p(α).

(3.4)

Cirr,p(τ) Replacement of the automorphy factor; it gives τ -dependent
combinations of characters, for which Sirr,p describes the S-
transformation directly.

(3.57)

C ′3(α) Alternative (3p − 1) × 2p matrix for τ -dependent 2p × 2p
matrix Cirr,p(τ). Now multiplied on χχχp(α) instead of χχχirr,p,
it yields the same result.

(3.78)

Cp(α) Conjugates Sp and S(p,α); it gives an α-dependent combina-
tions of elements of the vector χχχp(α), for which Sp gives the
S-transformation directly.

(3.57)

Ep,α Matrix connecting S(p,α) and Sp. (3.151)

Fp,α A matrix giving the connection between ”generelised” Ver-
linde formula and α-Verlinde formula in a nice way

(3.164)

G(p,α) Representation of SL(2,Z) generated by S(p,α) and T(p,α) (3.14)

|h〉 Highest weight state (1.18)

h(r,s) Highest weights of the Verma-modules of the Virasoro alge-
bra with central charge c(p,q)

(1.27)
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92 List of Notation used

Symbol Description Equation
[h] Irreducible representation with highest weight h.[
h̃
]

Indecomposable representation with highest weigh h.

j,m Quantum numbers for the rescaled su(2) algebra given by
the zero modes of W (a).

Kdiag,p Diagonal matrix connecting PRCFT and SRCFT . (A.8)

Kirr,p 2× 2 Block-diagonal matrix connecting Pirr,p and Sirr,p. (3.44)

Kp 3× 3 Block-diagonal matrix connecting Pp and Sp. (3.96)

Ln Modes of the holomorphic stress energy tensor and genera-
tors of the Virasoro algebra.

(1.15),(1.16)

Mdiag,I Diagonal matrices of NRCFT,I diagonalised by SRCFT .

Mirr,p,I Simultaneous block-diagonalisation of Nirr,p,I , for all 0 <
I ≤ 2p, through Pirr,p, consisting of matrix elements of
Pirr,p.

(3.36)

Mp,I Simultaneous block-diagonalisation of Np,I , for all 0 < I ≤
3p− 1, through Pp, consisting of matrix elements of Pp.

(3.89)

(NRCFT )ij
k Fusion coefficients for a semisimple fusion algebra. (1.33)

NRCFT,I Fusion coefficient matrices for a semisimple fusion algebra. (1.35)

Nij
k Fusion rules of the c(p,1) models, which are directly calcu-

lated only directly, as Gaberdiel and Kausch did for p = 2.
Nij

k(α) α-dependent coefficients from the α-Verlinde formula. (3.16)

Nij
k (Pre-)Fusion coefficients calculated with the α-Verlinde for-

mula.
(3.16)

Nirr,p,I Fusion coefficient matrices for the ”small” fusion algebra of
irreducible representations of the triplet algebra.

(3.32)

Np,I Fusion coefficient matrices for the (pre-)fusion algebra of
irreducible and indecomposable representations of the triplet
algebra.

(3.85)

Pirr,p Matrix of simultaneous generalised eigenvectors of Nirr,p,I

for all 0 < I ≤ 2p.
(3.41)

Pp Matrix of simultaneous generalised eigenvectors of Np,I for
all 0 < I ≤ 3p− 1.

(3.93)

S Transformation τ → −1/τ ; a generator of modular transfor-
mations

SRCFT S-matrix for rational conformal field theories w.r.t. the Vi-
rasoro algebra.

(1.39)γ = S

S(p,α) S-matrix, which gives the S-transformation of the vector
χχχt

p(α) with blocks S(p)s,l(α).
(3.5)

S(p)s,l Blocks of the matrix S(p,α), 0 ≤ s, l > p. (3.10)

S Matrix, which gives the S-transformation of the Jacobi-
Riemann Θ-function and the affine Θ-function.

(3.8)
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Symbol Description Equation
Sp(τ) τ -dependent S-matrix, which gives the S-transformation of

the vector χχχirr,p with blocks A(p)s,l.
(3.45)

A(p)s,l Blocks of Sp(τ). (3.46)

ρp(γ) Representation of SL(2,Z) generated by Sirr,p and Tirr,p (3.47)

jp(γ, τ) Automorphy factor of the SL(2,Z) representation ρp(γ),
which calculates Sirr,p from Sp(τ) for γ = S.

(3.49)

Sirr,p Generator of SL(2,Z) representation ρp(γ) and S-matrix si-
multaneously block-diagonalising the fusion coefficient ma-
trices of the ”small” fusion algebra; blocks: S(irr, p)s,j .

(3.51)

Sp S-matrix simultaneously block-diagonalising the fusion coef-
ficient matrices of the (pre-)fusion algebra; blocks: S(p)s,j .

(3.133)

T Transformation τ → τ + 1; a generator of modular transfor-
mations

T(p,α) Matrix, which gives the T -transformation of the vector
χχχt

p(α).
(3.11)

T (p, α)s,s Blocks of the matrix T(p,α), 0 ≤ s > p.

T (z) Holomorphic stress energy tensor. (1.12)

Θλ,k(τ) Jacobi-Riemann Θ-function. (2.30)

(∂Θ)λ,k(τ) Affine Θ-function. (2.31)

V(r,s) Verma module with highest weight h(r,s) (1.19)
W (a) Triplet of fields for a = 1, 2, 3, which extends the Virasoro

algebra to the W triplet algebra, the maximally extended
local chiral symmetry algebra of the c(p,1) models.

Zp,α Partition function of the c(p,1) models. (2.44)
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