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Abstract

The model of d symplectic fermions constructed by Abe [1] gives an example of a C2-

cofinite vertex operator algebra admitting logarithmic modules. While the case d = 1

is a rigorous formulation of the well known triplet algebra, the case d > 1 has not yet

been analyzed from the perspective of W-algebras. It is shown that in the latter case

the W(2, 22d2−d−1, 32d2+d)-algebra is realized. With respect to its zero mode algebra, it

is proven that the zero modes corresponding to the vectors of weight 3 form the 2d-

dimensional symplectic Lie algebra. Furthermore, the zero modes corresponding to the

vectors of weight 2 form an irreducible representation of this Lie algebra. The use of the

zero mode algebra for the classification of irreducible representations of theW-algebra is

compared to the approach using Zhu’s algebra. The isomorphism between Zhu’s algebra

and the zero mode algebra as Lie algebras, which is expected from general considerations,

is confirmed by explicit calculations.
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Chapter 1

Introduction

Conformal field theories are perhaps the most important example for mathematically rig-

orously formulated yet nontrivial quantum field theories. Despite many efforts in this

direction, the mathematical description of quantum field theory remains unsatisfactory

even today. However, in two dimensions and equipped with conformal symmetry as ex-

tension of Poincaré symmetry, quantum field theory exhibits a beautiful mathematical

structure. This beauty comes along with a great predictive power which originates from

the structure of the conformal symmetry algebra. Conformal symmetry may be studied

on higher dimensional spaces, but on two dimensional Minkowski space the symmetry al-

gebra has the special feature that it is infinite dimensional. This leads to strong constraints

on important quantities. For example, much of the structure of a conformal field theory

can be deduced from a special class of fields, which are called primary fields. Comput-

ing correlation functions of primary fields can be reduced to solving ordinary differential

equations.

Algebraically, the mathematical language of conformal field theory on Riemannian

surfaces of genus zero is the theory of vertex operator algebras. While the definition of

a vertex operator algebra seems to be very technical at first, all ingredients can be di-

rectly interpreted in physical terms, so that the fog of mathematical terminology becomes

transparent with the help of physical intuition. From the physical point of view, vertex

operator algebras describe the vacuum sector of a conformal field theory. As in general

quantum field theory, one is also interested in representations of the field algebra which

are inequivalent to the vacuum sector. Mathematically, this means that one would like to

classify the representations or modules of the vertex operator algebra.

Irreducible modules are especially important since they serve as building blocks struc-

turing the theory. But it is not always possible to restrict the discussion to irreducible

modules. The study of theories where the correlation functions have logarithmic diver-

gencies showed that certain generalized modules which are reducible but indecomposable

should also be allowed. Theories admitting such modules have been termed logarithmic

and may seem pathological at first. But they actually describe such diverse phenomena as

the fractional quantum Hall effect, polymers, abelian sandpiles and disorder. For an in-

troduction to logarithmic conformal field theory the reader is referred to the lecture notes

[16], which also contain many references describing the above applications.

Physicists and mathematicians have independently developed tools for the classifica-

tion of representations of a field algebra. One of the main questions treated in the present
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2 CHAPTER 1. INTRODUCTION

work is how these two approaches are connected. In particular, this work contrasts the

different perspectives on the symplectic fermion model first formulated by Kausch in [25].

This model realizes the so called triplet algebra at c = −2, which has interesting properties

with regard to its representations. While having only finitely many irreducible representa-

tions, it also admits logarithmic modules. The classification of the representations of the

triplet algebra was carried out by Kausch and Gaberdiel in [21] by showing that its zero

mode algebra is su(2).

In 2005, Abe extended the theory of a pair of symplectic fermions to a model of d pairs

in [1] as well as put it within the rigorous framework of vertex operator algebras. Abe also

classified the inequivalent modules of the symplectic fermionic vertex operator algebra

with help of Zhu’s algebra A(V). The usefulness of A(V) stems from Zhu’s theorem,

which states that there is a one-to-one correspondence of the inequivalent representations

of Zhu’s algebra to the modules of a vertex operator algebra. As Brungs and Nahm have

shown in [7], Zhu’s algebra and the zero mode algebra are isomorphic as Lie algebras

under mild conditions.

With respect to the work of Gaberdiel and Kausch on one side and Abe’s work on

the other, some questions naturally arise. Which Lie algebra takes the place of su(2) in

the case d > 1? Is there more structure in terms of Lie algebras or their representations

in the zero mode algebra in this case? Can the isomorphism between Zhu’s algebra and

the zero mode algebra that was described above be shown explicitly? These are the main

questions addressed in this work.

Very roughly, the answer to these questions is as follows: The symplectic fermionic

vertex operator algebra forms aW-algebra generated by 2d2 + d vectors of weight 2 and

2d2 − d − 1 vectors of weight 3. The zero modes corresponding to the vectors of weight 3

form the 2d-dimensional symplectic Lie algebra. The zero modes of the vectors of weight

2 furnish a representation for this symplectic Lie algebra. Furthermore, it will be shown

by explicit calculation of commutators that the zero mode algebra and Zhu’s algebra are

isomorphic as Lie algebras, answering the last of the three questions above.

This work is organized as follows. Chapter 2 begins with a motivation of the defi-

nition of vertex operator algebras, showing how conformal field theory fits into general

quantum field theory, which is taken to be characterized by the Wightman axioms. As

a prerequisite for the discussion of vertex operator algebras, a short treatment of formal

series, focusing on the concept of locality, is given. This is followed by basic definitions

from the theory of vertex operator algebras and some of its results, tailored to the needs

of Abe’s construction. This includes in particular a reconstruction theorem and the notion

of twisted modules.

Chapter 3 treats algebras associated to vertex operator algebras which serve as tools

for the classification of modules. Concepts emerging from both mathematics and physics

are discussed here, among them Zhu’s algebra, the zero mode algebra and W-algebras.

The analysis of the triplet algebra at c = −2 serves as an example of the classification of

irreducible representations with the help of the zero mode algebra.

In Chapter 4, Abe’s model of d symplectic fermions is presented after a short summary

of some aspects of Kausch’s original work on symplectic fermions. While the construc-

tion is studied preserving mathematical rigor, contact is also made with more physical

notions, such asW-algebras. In order to introduce the reader to explicit calculations in

the framework of this model, a general commutator formula is derived. This formula is
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not needed in the following but provides a good example of the calculational reasoning

applied in the last section.

The main results are found in Chapter 5, where the sp(2d) Lie algebra structure of the

zero mode algebra is explored. Additionally, an explicit ismorphism between Zhu’s alge-

bra and the zero mode algebra as Lie algebras is exhibited. A brief summary concludes

the exposition.
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Chapter 2

Vertex Operator Algebras and CFT

This chapter is an introduction to the mathematical description of conformal field theory

through vertex operator algebras. It serves both as a motivation for the mathematical

formulation and as a basis for the construction of the symplectic fermion theory and the

subsequent investigation into its structure in Chapters 4 and 5.

Conformal field theory is a special quantum field theory which has an extension of the

Poincaré group as symmetry group. The connection between both theories can be made

precise by deriving the axioms of a chiral algebra describing conformal field theory from

the Wightman axioms describing a general quantum field theory. This will be done in the

first section, but since this serves as a motivation for the axiomatic theory, the treatment

proceeds with less rigor than the rest of this work. Especially questions relating to the

functional analysis of operators on Hilbert spaces will be ignored.

In order to formulate the axioms of a vertex operator algebra, a minimal introduction

to formal series is necessary. Apart from the most basic facts, the section devoted to

formal series contains a discussion of the implications of the notion of locality. This is

followed by an introduction to vertex operator algebras, containing also the definition

of twisted modules, which are needed in the construction of modules for the symplectic

fermionic vertex operator algebra.

2.1 From QFT to CFT

The canonical axiom system of quantum field theory was formulated in the 1950s by

Gårding and Wightman. This set of axioms, now commonly known as the Wightman ax-

ioms, has not been the only attempt at giving quantum field theory a rigorous foundation.

A very elegant axiomatic approach that focuses on the algebra of observables, not on the

fields, was proposed by Haag and Kastler in the 1960s. Both sets of axioms suffer from

the problem that only the most simple theories have been constructed in terms of them.

However, it is possible to derive the axioms of a vertex operator algebra, which en-

codes the structure of the vacuum sector of a chiral algebra, directly from the Wightman

axioms. It is more convenient in this case to start with the Wightman axioms since ver-

tex operators behave very much like quantum fields. Before the Wightman axioms are

discussed, a (very short) digression on the symmetry groups of ordinary quantum field

theory and conformal field theory will be given. The treatment in this section will follow

the book [24] by Kac. A general reference for a mathematical treatment of quantum field

5



6 CHAPTER 2. VERTEX OPERATOR ALGEBRAS AND CFT

theory is the work [3] by Araki, which contains a nice discussion of both the Wightman

axioms and the theory of local observables. For a very broad overview of the topics quan-

tum field theory, conformal field theory and vertex operator algebras, see the book [23]

by Gannon.

The fundamental symmetry group of quantum field theory is the Poincaré group,

the group of isometries of Minkowski space time. Minkowski space time M is a d-

dimensional real vector space with the metric η(·, ·) given by a symmetric non-degenerate

bilinear form of signature (−,+, . . . ,+). Writing |a − b|2 for η(a, b) with a, b ∈ M, two

subsets A and B of M are called space-like separated if for any a ∈ A and b ∈ B one has

|a− b|2 < 0. The forward cone is defined to be the set {x ∈ M||x|2 ≥ 0, x0 ≥ 0}. The causal

order on M is given by a ≥ b if and only if a − b lies in the forward cone.

The Poincaré group is the semi-direct product of the group of translations and the

Lorentz group. When generating the Lorentz group from its Lie algebra, one stays in

the connected component of the identity transformation, which is given by the so called

proper orthochronous Lorentz group L
↑
+ . Its semi-direct product with the group of trans-

lations is denoted P
↑
+. The Lorentz group is generated by ordinary spatial rotations and

Lorentz boosts. It is well known that Lorentz boosts can be written as a hyperbolic rota-

tion of the coordinates in Minkowski space by a parameter φ called rapidity.

Throughout the rest of this section, let x denote a vector in Minkowski space M and

µ an index which runs from 0 to d − 1, where d is the dimension of M. In conformal

field theory, one considers a larger symmetry group containing the Poincaré group which

only preserves angles, not lengths. The two most simple conformal transformations are

the dilations

xµ 7→ λxµ,

with λ , 0 a real number, and the inversion

xµ 7→
xµ

|x|2
.

The latter transformation is of course only defined for x such that |x|2 , 0. As opposed to

the Euclidean case, the solutions to |x|2 = 0 form a cone in Minkowski space. By compos-

ing an inversion with a translation and a further inversion, one obtains the transformation

xµ 7→
xµ

|x|2
7→

xµ

|x|2
+ aµ ≡

xµ + |x|2aµ

|x|2
7→

xµ + |x|2aµ

1 + 2(x · a) + |x|2|a|2
,

where a ∈ �4 and the fact was used that
(

xµ + |x|2aµ

|x|2

)2

=
1

|x|4

(

|x|2 + 2|x|2(x · a) + |x|4|a|2
)

=
1

|x|2

(

1 + 2(x · a) + |x|2|a|2
)

.

Since the composition of conformal mappings is conformal, the so called special confor-

mal transformation

xµ 7→
xµ + |x|2aµ

1 + 2(x · a) + |x|2|a|2

is a conformal mapping. Like the inversion, it is not defined globally since the denomina-

tor may vanish. In two dimensions, which is the case we are interested in, one introduces

the light cone coordinates

t = x0 − x1, t̄ = x0 + x1.
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In terms of these coordinates, the translations, Lorentz transformations and dilations be-

come

[T] t 7→ t + a [T̄] t̄ 7→ t̄ + ā

[L] t 7→ eαt [L̄] t̄ 7→ e−α t̄

[D] t 7→ λt [D̄] t̄ 7→ λt̄,

where a ∈ �2, α ∈ �≥0 and λ ∈ � nonzero. Keep in mind that there are no spatial

rotations in one time and one space dimensions, so Lorentz transformations are given by

boosts only. An important feature of the light cone coordinates lies in the decoupling of

the special conformal transformations which take the form

[S] t 7→
t + att̄

1 + at̄ + āt + aātt̄
=

t

1 + āt
, (2.1)

[S̄] t̄ 7→
t̄ + ātt̄

1 + at̄ + āt + aātt̄
=

t̄

1 + at̄
. (2.2)

From the above equations for conformal transformations in light cone coordinates one

can infer the general form

γ(t, t̄) =

(

at + b

ct + d
,

āt̄ + b̄

c̄t̄ + d̄

)

,

for all conformal transformations ([T], [L], [D] and [S] and their equivalents for t̄), where

a, b, c, d ∈ �. Since the transformations should be locally invertible, we get the constraint

ad − bc , 0. In the unity component of the conformal group one has ad − bc > 0.

Normalizing to ad−bc = 1 does not change the transformation so that each transformation

is described by a matrix
(

a b

c d

)

∈ SL(2,�).

These matrices form the group of unimodular 2 × 2-matrices.

To see how conformal symmetry is implemented in quantum field theory, a formal de-

scription of quantum field theory is needed. It was mentioned above that the formulation

best suited to the purpose of making contact with the axioms of vertex operator algebras is

given by the Wightman axioms. The following is the definition of a quantum field theory

on four-dimensional space time containing only scalar fields according to Wightman and

Gårding (in the formulation of [3]).

Definition 2.1. A quantum field theory is the following data: A complex Hilbert space H

containing a distinguished vector |0〉, called the vacuum, together with a collection of so

called fields Φa, which are operator valued distributions, mapping functions defined on

the Minkowski space to linear operators densely defined on H . These data are required

to satisfy the following Wightman axioms

1. (quantum field) The operators Φa( f ) are given for each C∞-function with compact

support on the Minkowski space�4. Each Φa( f ) and its Hermitian conjugate oper-

ator Φa( f )∗ are defined at least on a common dense linear subset D of the Hilbert

space H and D satisfies

Φa( f )D ⊂ D, Φa( f )∗D ⊂ D

for any a and any f ∈ C∞0 (M).
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2. (relativistic symmetry) On H there exists a unitary representation U(q,Λ) of P
↑
+

(q ∈ �4, Λ ∈ L
↑
+ ) satisfying

U(q,Λ)D = D,

U(q,Λ)Φa( f )U(q,Λ)−1 = Φ((q,Λ) f ), (2.3)

where (q,Λ) f (x) = f (Λ−1(x − q)).

3. (locality) If the supports of f ∈ C∞(M) and h ∈ C∞(M) are space-like separated,

then for any vector ψ ∈ D

Φa( f )Φb(h)ψ = (−1)p(a)p(b)Φb(h)Φa( f )ψ,

where the parity p associates to each field index a number in �2.

4. (vacuum state) The vacuum |0〉 satisfies

(a) U(q,Λ)|0〉 = |0〉

(b) The set of all vectors obtained by acting with an arbitrary polynomial P of the

fields on |0〉 is dense in H .

(c) The spectrum of the translation group U(q, 1) on the orthogonal complement

|0〉⊥ is contained in

V̄m = {p|(p, p) ≥ m2, p0 > 0} (m > 0).

The usual approach for defining the Poincaré group representation on H is to first

determine the Poincaré Lie algebra and then choose operators on H by classical corre-

spondence considerations, such that these operators form a representation of the Poincaré

Lie algebra. This representation is then carefully (one has to go over to the universal

covering group) lifted to a representation of the whole group by exponentiation.

The canonical choice for the representation of Pµ, the generator of translations, is

−i∂µ. By the covariance law from axiom 2, this implies for the action on fields that

i[Pµ,Φa] = ∂µΦa. (2.4)

Applying this equation to the vacuum vector and using its U(q, 1)-invariance, one obtains

Φa(x + q)|0〉 = exp

















i
∑

µ

qµPµ

















Φa(x)|0〉, (2.5)

where Φa(x) is taken to be a short form for Φa( f (x)). With respect to the conformal

symmetry, one first fixes the covariance law, which then implies the commutator. A

quantum field theory is called conformal if the unitary representation of the Poincaré

group in H extends to a unitary representation of the conformal group parameterized by

(q,Λ, b) 7→ U(q,Λ, b), such that the vacuum vector |0〉 is still fixed and such that we have

the following covariance law for a scalar field under special conformal transformations

U(0, 1, b)Φa(x)U(0, 1, b)−1 = φ(b, x)−∆aΦa(xb). (2.6)
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Here, ∆a ∈ � is called the conformal weight of the field Φa and

φ(b, x) = 1 + 2xb + |x|2|b|2.

Using Poincaré covariance from Axiom 2, we can extend (2.6) to full conformal covari-

ance:

U(q,Λ, b)Φa(x)U(q,Λ, b)−1 = φ(b, x)−∆aΦa ((q,Λ, b)x) . (2.7)

One can show that this implies that the special conformal generators Qµ, µ = 0, . . . , 3 act

like

i[Qµ,Φa(x)] = (|x|2∂xµ − 2ηµxµE − 2∆aηµxµ)Φa(x), (2.8)

where E =
∑3

m=0 xm∂xm
is the Euler operator and ηµ are the coefficients of the metric

(η0 = 1, ηµ = −1 for µ ≥ 1).

From now on, the discussion will be specialized to the case d = 2. In light cone

coordinates, equation (2.7) can be written as

U(γ)Φa(t, t̄)U(γ)−1 = (ct + d)−2∆a(c̄t̄ + d̄)−2∆̄aΦa(γ(t, t̄)),

where ∆a = ∆̄a. This condition is usually dropped because of the decoupling of the

special conformal transformations according to (2.1) and (2.2). One defines the following

operators in analogy to the light cone coordinates:

P =
1

2
(P0 − P1), P̄ =

1

2
(P0 + P1),

Q =
1

2
(Q0 − Q1), Q̄ =

1

2
(Q0 + Q1).

The action of these operators on fields can be calculated from (2.4) and (2.8) and is given

by

i[P,Φa(t, t̄)] = ∂tΦa(t, t̄) (2.9a)

i[P̄,Φa(t, t̄)] = ∂t̄Φa(t, t̄) (2.9b)

i[Q,Φa(t, t̄)] =
(

t2∂t + 2∆at
)

Φa(t, t̄) (2.9c)

i[Q̄,Φa(t, t̄)] =
(

t̄2∂t̄ + 2∆̄at̄
)

Φa(t, t̄). (2.9d)

In light cone coordinates, equation (2.5) becomes

Φa(t + q, t̄ + q̄)|0〉 = ei(qP+q̄P̄)Φa(t, t̄)|0〉. (2.10)

In the following, we are interested in analytic continuations, permitting complex values

for the light cone coordinates t, t̄. Since the forward cone is given by the domain t ≥ 0,

t̄ ≥ 0 in light cone coordinates, the joint spectrum of P and P̄ lies by the vacuum axiom

in this domain. Hence, the operator exp(itP + it̄P̄) is defined onD for all values Imt ≥ 0,

Imt̄ ≥ 0.

Furthermore, by spectral decomposition, exp(i(qP + q̄P̄)) is, as function of q, the

Fourier transform of the operator valued characteristic function of the domain p ≥ 0,

p̄ ≥ 0. Thus, by formula (2.10) the D-valued distribution Φa|0〉 extends analytically to a

function in the domain

{t|Imt > 0} × {t̄|Imt̄ > 0} ⊂ �2.
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It follows, that the value Φa(t, t̄)|0〉 makes sense for Imt > 0, Imt̄ > 0. By translating with

equation (2.10), we see that this value is non-zero unless Φa vanishes.

As was noted above, conformal transformations are not defined everywhere on the

Minkowski plane. In order to remedy this, one considers the compactification of Min-

kowski space given by

z =
1 + it

1 − it
, z̄ =

1 + it̄

1 − it̄
.

This maps the domain of the above analytic continuation, Imt > 0, Imt̄ > 0, to the domain

|z| < 1, |z̄| < 1. One defines new fields in terms of these variables for |z| < 1, |z̄| < 1:

Y(a, z, z̄) =
1

(1 + z)2∆a(1 + z̄)2∆̄a

Φa(t, t̄),

where t = i 1−z
1+z

, t̄ = i 1−z̄
1+z̄

. Note that by the above definition of the coordinates z and z̄,

Y(a, z, z̄)|0〉|z=0,z̄=0 is a well defined vector inD, denoted by a. Furthermore, Y(a, z, z̄) 7→ a

is a linear injective map since by (2.10) a is zero if and only if Φa is zero. In order to

recast (2.9a)-(2.9d) in the form usually employed in conformal field theory, one defines

T =
1

2
(P + [P,Q] − Q)

H =
1

2
(P + Q)

T ∗ =
1

2
(P − [P,Q] − Q) ;

and similarly for T̄ , H̄, T̄ ∗. In terms of these new operators, equations (2.9a)-(2.9d) take

the form

[T, Y(a, z, z̄)] = ∂zY(a, z, z̄) (2.11a)

[H, Y(a, z, z̄)] = (z∂z + ∆a)Y(a, z, z̄) (2.11b)

[T ∗, Y(a, z, z̄)] = (z2∂z + 2∆az)Y(a, z, z̄); (2.11c)

and similarly for T̄ , H̄, T̄ ∗. Applying the last two equations to the vacuum vector and

setting z = z̄ = 0 yields

Ha = ∆aa, T ∗a = 0.

Since P and P̄ are positive semidefinite self-adjoint operators on H and the same can be

proven for Q and Q̄, H is also a positive semidefinite self-adjoint operator. As eigenvalue

of H, the conformal weight ∆a consequently has to be non-negative.

The locality axiom, which is central to quantum field theory, has very interesting

implications for conformal field theory in two dimensions. Consider the locality axiom in

light cone coordinates

Φa(t, t̄)Φb(t′, t̄′) = (−1)p(a)p(b)Φb(t′, t̄′)Φa(t, t̄),

if (t − t′)(t̄ − t̄′) < 0. For right chiral fields, which are fields with ∂t̄Φa = 0, there is no t̄

dependence because of (2.9b) and (2.10). Thus, locality specializes to

Φa(t)Φb(t′) = (−1)p(a)p(b)Φb(t′)Φa(t),
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if t , t′. Consequently, the support of the commutator is confined to t = t′ and one

assumes that it has the form

[Φa(t),Φb(t′)] =
∑

j≥0

∂
j

t′
δ(t − t′)Ψ j(t′),

for some fields Ψ j(t′) which are required to satisfy the Wightman axioms but not confor-

mal covariance. Hence, we may add them to the theory and write

[Y(a, z), Y(b,w)] =
∑

j≥0

∂ j
wδ(z − w)Y(c j,w). (2.12)

By calculating the conformal weight of the fields Y(c j,w), one concludes that in order

for all occurring weights to be positive, the sum on the right hand side must be finite.

Interpreted as an equality between formal series (see Theorem 2.7), equation (2.12) can

be shown to be equivalent to

(z − w)N[Y(a, z), Y(b,w)] = 0

for N ∈ � large enough. Assuming that one can expand the chiral field Y(a, z) in a series

Y(a, z) =
∑

n

a(n)z
−n−1,

the coefficients are operators on D. Denote by V the subspace of D spanned by all

polynomials in the a(n) applied to the vacuum vector |0〉. Clearly, V is invariant with

respect to all a(n) and, by (2.11a), with respect to T . Summarizing all of the above, we

arrive at the axioms of a right chiral algebra.

Definition 2.2. A right chiral algebra is a vector space V, the space of states, together

with a distinguished non-zero vector |0〉 called the vacuum, a translation operator T ∈

EndV and a collection of fields

Y(a, z) =
∑

n∈�

a(n)z
−n−1

for each a ∈ V with a(n) ∈ EndV, such that the following axioms hold:

1. (translation covariance) [T, Y(a, z)] = ∂Y(z, a);

2. (vacuum) T |0〉 = 0 and Y(a, z)|0〉|z=0 = a;

3. (completeness) polynomials in the a(n)’s with n < 0 applied to |0〉 span V.

4. (locality)

(z − w)NY(a, z)Y(b,w) = (−1)p(a)p(b)(z − w)NY(b,w)Y(a, z)

for some N ∈ N depending on a, b ∈ V.
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2.2 Formal Calculus

An important ingredient for the theory of vertex operator algebras is formal calculus.

Since we are interested in the application to conformal field theory, we would like to have

objects which in some way behave as operator valued distributions. It may be surprising

that these objects, the vertex operators, can be defined in a purely algebraic way using

formal series. While avoiding any analytical convergence questions, this approach still

captures much of the desired behavior of quantum operators. Eventually, one is interested

in going over to complex variables, especially when describing measurable objects like

correlation functions. While this is possible in a well defined way, the algebraic formu-

lation will be all that is needed for this work. Most general works on vertex operator

algebras also discuss formal calculus. For a relatively extensive and pedagogical treat-

ment see the book [26] by Lepowsky and Li. The approach presented here is influenced

by the viewpoint taken in the book [24] by Kac.

For a vector space V , the set of formal Laurent series with coefficients in V is defined

to be

V[[x±1]] =















∑

n∈�

vnxn |vn ∈ V















.

Using the standard notation, one also defines the following subspaces of V[[x±1]]:

V[x] =















∑

n∈�

vnxn
∣

∣

∣vn ∈ V, vn = 0 for n sufficiently large















V[x±1] =















∑

n∈�

vnxn
∣

∣

∣vn ∈ V, vn = 0 for all but finitely many n















V[[x]] =















∑

n∈�

vnxn |vn ∈ V















V((x)) =















∑

n∈�

vnxn
∣

∣

∣vn ∈ V, vn = 0 for n sufficiently small















.

On the space V[[x±1]], two basic operations are defined. Let f ∈ V[[x±1]] be given by

f (x) =
∑

n∈� vnzn. Then the formal derivative d
dx

and the formal residue Resx are defined

as the operations

d

dx
f (x) =

∑

n∈�

nvnzn−1,

Resx f (x) = v−1.

With respect to differentiation, the following abbreviation common to analysis will be

used:

∂(n)
x f (x) =

1

n!
∂n

x f (x).

In the theory of vertex operator algebras, the formal series of interest have coefficients in

the space of endomorphisms of a vector space V . In this case, the elements of End(V)[[x±1]]

are conventionally written in the form
∑

n vnx−1−n. Such formal series are called vertex op-

erators if they have certain additional properties which will be described below.
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We will frequently need formal sums and formal products of vertex operators. While

infinite sums of operators as coefficients will be allowed, they are restricted by the follow-

ing “universal condition”: The coefficient of every monomial of a formal sum or formal

product of vertex operators has to act as a finite sum of operators when it is applied to

any fixed, but arbitrary, vector in space. For the precise prerequisites for the existence of

sums and products as well as limits, see Chapter 2 of [26].

Of course all the preceding definitions can be generalized to the case of several com-

muting variables in a straightforward way. The following is a definition of the convention

for the evaluation of binomials in formal variables, which have to be treated with a bit of

care.

Definition 2.3. The expression (x+ y)n for n ∈ � (in particular, n < 0) is defined to be the

formal series

(x + y)n =
∑

k∈�

(

n

k

)

xn−kyk,

where
(

n

k

)

=
n(n − 1) · · · (n − k + 1)

k!
.

Note that the order matters: binomial expressions are to be expanded in nonnegative

integral powers of the second variable. In particular, while (x + y)n = (y + x)n for n ≥ 0,

one cannot exchange the variables for n < 0.

Sometimes one also needs a formal exponential notation. Let S ∈ x · End(V)[[x]], so

that S has no constant term. Then the expression

eS =
∑

n∈�

1

n!
S n

is well defined by the universal condition and an element of End(V)[[x]]. Consequently,

eS acts as endomorphism of V[[x]]. Since one often wants to consider all higher deriva-

tives of a formal expression at once, one would like to know how exponentials of deriva-

tives behave. It is well known that the endomorphisms

Tp(x) = p(x)
d

dx

of �[x±1] act as a derivations of �[x±1]. By induction, this is also true for the exponential

of Tp(x). The following Taylor theorem characterizes the action of derivations of this type

on formal series.

Theorem 2.4. Let v(x) ∈ V[[x±1]]. Then

ey d
dx v(x) = v(x + y)

(and these expressions exist). Also,

eyx d
dx v(x) = v(eyx),

where the series v(ey x) is understood as an element of V[[x±1]][[y]]. Furthermore,

eyxn+1 d
dx v(x) = v

(

(x−n − nx)−
1
n
)

for n ∈ � and n , 0.
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Proof. See Proposition 8.3.1, p. 182 and Proposition 8.3.10, p. 186 in [19]. �

The most important formal series for the formulation of the theory of vertex operator

algebras is

δ(x) =
∑

m∈�

xm.

The δ-series is intimately linked to the so called expansions of zero, which are, infor-

mally speaking, the difference between two expansions of the same rational function in

opposite directions. In particular, the formal series δ(x) can be written as an expansion

of zero. This fact proves to be helpful in deriving certain identities involving δ(x) which

are relevant to the notion of locality of formal series. Indeed, the equivalence of (2.12) to

locality in the sense of Definition 2.6 below can be proven in this way.

Consider the field �(x) of rational functions in the indeterminate x over �. Define two

embeddings

ι+ : �(x) ֒→ �((x))

ι− : �(x) = �(x−1) ֒→ �((x−1))

in the following way: For f ∈ �(x), ι+ f is the expansion of f as a formal Laurent series in

x, and ι− f is its expansion as a formal Laurent series in x−1. Combining these two maps,

one defines the linear map Θ : �(x) → �[[x±1]] by

f 7→ ι+ f − ι− f .

The elements of the image ImΘ are called the expansions of zero. Again, it is possible

to generalize this notion to several variables. But only the standard identity (2.14) below

will be needed, so that the straightforward generalization will be omitted here. Consider

the one-variable example for an expansion of zero,

Θ
(

(1 − x)−1
)

= (1 − x)−1 + (x − 1)−1 = δ(x). (2.13)

It is important to keep in mind that the binomial expansion convention implies that (1 −

x)−1 and −(x − 1)−1 are not equal. The second equivalence in (2.13) is easily seen to be

true by writing out the series expansion. The first equivalence is proven by

ι+((1 − x)−1) =
∑

n≥0

xn = (1 − x)−1

and

ι−((1 − x)−1) = ι−(−x−1(1 − x−1)−1)

= −
∑

n<0

xn = −x−1(1 − x−1)−1 = (−x + 1)−1.

In exactly the same way, one can prove the generalization to the case of two variables,

x−1
2 δ

(

x1

x2

)

= Θ
(

(x1 − x2)−1
)

= (x1 − x2)−1 + (x2 − x1)−1. (2.14)
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This expansion of zero can be used to derive a fact related to the concept of locality of

vertex operators. First, it is clear that the differentiation operator d/dx commutes with Θ

because the ι mappings commute with d/dx. Therefore, one has the equality

1

n!

(

∂

∂x2

)n

x−1
2 δ

(

x1

x2

)

=
1

n!
Θ

((

∂

∂x2

)n

(x1 − x2)−1

)

=
(−1)n

n!

(

∂

∂x1

)n

x−1
2 δ

(

x1

x2

)

.

Recalling the fact that (x + y)n = (y + x)n only for n ≥ 0 from the remark in the definition

of the binomial expansion, it can be concluded that

(x1 − x2)m

(

∂

∂x2

)n

x−1
2 δ

(

x1

x2

)

= n!(x1 − x2)m
(

(x1 − x2)−n−1 − (−x2 + x1)−n−1
)

(2.15)

vanishes for m > n. All formal series which vanish after multiplication of (x1 − x2)n for

some n > 0 can be characterized in the following way.

Proposition 2.5. The null space of the operator of multiplication by (x1 − x2)N , N ≥ 1 in

V[[x±1
1 , x±1

2 ]] is
N−1
∑

j=0

∂( j)
x1
δ(x1 − x2)V[[x±1

2 ]].

Furthermore, any element a(x1, x2) in the null space is uniquely represented in the form

a(x1, x2) =

N−1
∑

j=0

c j(x2)∂( j)
x2
δ(x1 − x2),

where the c j(x2) are given by c j(x2) = Resx1
a(x1, x2)(x1 − x2) j.

Proof. See [24], Corollary 2.2 and its proof. �

2.3 Vertex Operator Algebras

It goes without saying that the present section contains only the most basic notions from

the theory of vertex operator algebras. Though vertex operator algebras are a relatively

young field, the theory made rapid progress in the last 20 years. The axiomatic description

was first given by Borcherds in [6] and has subsequently been developed by numerous au-

thors. Among the texts which may serve as general introduction are the now classic book

[19] by Frenkel, Lepowsky and Meurman which summarizes the authors’ findings on the

connection between vertex operator algebras and the largest sporadic simple group termed

the monster, the concise axiomatic exposition [26] by Lepowsky and Li and the work [17]

by Frenkel and Ben-Zvi which studies the theory from the perspective of algebraic ge-

ometry. A reference stressing the physical viewpoint is the book by Kac, [24]. For an

introduction to the theory stressing the super formalism which is introduced below, see

the book [31] by Xu.

From section 2.1, we know that fields in a general quantum field theory are taken

to be operator valued distributions. In the theory of vertex operator algebras, fields are

modeled by formal series with endomorphisms of a vector space as coefficients. In order
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to implement super commutation rules, it will be assumed that fields are formal series with

coefficients in EndV where the vector space V has a decomposition V = V0̄ ⊕ V1̄. Such a

vector space V is called a superspace. Here, 0̄ and 1̄ denote the cosets in �/2� = �2 of 0

and 1. An element is defined to have parity p(a) ∈ �2 if a ∈ Vp(a).

An associative superalgebra U = U0̄ ⊕ U1̄ is a �2-graded associative algebra, i.e.

UαUβ ⊂ Uα+β, α, β ∈ �2. The endomorphisms of a superspace V carry a natural superal-

gebra structure, given by the decomposition of EndV into the direct sum of the subspaces

(EndV)α =
{

a ∈ EndV |aVβ ⊂ Vα+β

}

.

Define a bracket on this associative superalgebra by setting

[a, b] = ab − p(a, b)ba, (2.16)

where a ∈ (EndV)α, b ∈ (EndV)β and p(a, b) = (−1)αβ. Thus, the bracket of an even ele-

ment with any other element is the ordinary commutator. In this chapter, the bracket [·, ·]

is taken to be the general commutator defined by (2.16) while in the following chapters

the ordinary commutator will be denoted by [·, ·] and the bracket of two odd elements, the

anti-commutator, will be written as {·, ·}.

In the following, a field will be assumed to be a formal series A(x) =
∑

j∈� A jx
− j−1 with

coefficients in the space of endomorphisms of a superspace V , satisfying the condition that

for any v ∈ V , A jv = 0 for j large enough. Suppose V is graded, i.e.

V =
⊕

n∈ 1
2�

Vn.

Then one defines the weight of a homogeneous vector v ∈ Vn by wtvn = n. Further-

more, a linear operator φ : V → V satisfying φ(Vn) ⊂ Vn+m for all n ∈ 1
2
� is said to be

homogeneous of weight m.

The locality axiom discussed in section 2.1 is central to quantum field theory. It can

also be chosen as the axiom carrying most of the structure of a vertex operator algebra,

though it turns out that there exist several equivalent formulations of the locality axiom.

As an alternative to locality, one can adopt the Jacobi identity which is preferred in most

of the mathematical literature. In this work, however, an effort is made to formulate the

axioms of a vertex operator algebra in a way closely related to the physical language of

chiral algebras by adopting locality as an axiom.

Definition 2.6. Two fields A(x1) and B(x2) are called mutually local if there exists an

N ∈ �>0 such that

(x1 − x2)N[A(x1), B(x2)] = 0. (2.17)

Since the bracket depends on the parity of the coefficients A j and B j of A(x1) and

B(x2), it will be assumed that all coefficients have the same parity, denoted by p(A) and

p(B), respectively. Thus, we have p(A, B) = (−1)p(A)p(B) for the parity function in equation

(2.16).

When considering products of fields, one notices that for a field A(x), the product

A(x)A(x) does in general not exist as a product of formal series because the coefficients vi-

olate the universal condition discussed above. This problem is cured by a standard proce-

dure in quantum field theory called normal ordering. Given a field A(x) =
∑

n∈� A(n)x
−n−1,
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one defines

A(x)− =
∑

n≥0

A(n)x
−n−1 and A(x)+ =

∑

n<0

A(n)x
−n−1.

This splitting of A(x) into a positive and a negative part is the only one satisfying

(

∂A(x)
)

±
= ∂

(

A(x)±
)

. (2.18)

For two fields A(x1) and B(x2), the normal ordered product : A(x1)B(x2) : is defined by

: A(x1)B(x2) := A(x1)+B(x2) + p(A, B)B(x2)A(x1)−. (2.19)

Note that one is allowed to set x1 = x2 in (2.19). When applied to a vector, the first term

is a product of two lower-truncated formal Laurent series and the second is a product of

an unrestricted formal Laurent series and a Laurent polynomial. Thus, none of the terms

violates the universal condition on the coefficients. The following theorem relates the

normal ordered product to the expansion of a product of two mutually local fields.

Theorem 2.7. The following properties are equivalent:

1. The fields A(x1) and B(x2) are mutually local.

2. There exist fields C j(x2) ∈ End(V)[[x±1
2 ]], j ∈ {0, . . . ,N − 1}, such that

[A(x1), B(x2)] =

N−1
∑

j=0

∂( j)
x2
δ(x1 − x2)C j(x2).

3. There exist fields C j(x2) ∈ End(V)[[x±1
2 ]], j ∈ {0, . . . ,N − 1}, such that

A(x1)B(x2) =

N−1
∑

j=0

(

ι1,2
1

(x1 − x2) j+1

)

C j(x2)+ : A(x1)B(x2) :, (2.20)

where ι1,2( f (x1, x2)) is the formal Laurent series expansion of f (x1, x2) involving

only finitely many negative powers of x2.

4. There exist fields C j(x2) ∈ End(V)[[x±1
2 ]], j ∈ {0, . . . ,N − 1}, such that

[A(m), B(n)] =

N−1
∑

j=0

(

m

j

)

C
j

(m+n− j), (2.21)

where m, n ∈ �.

Proof. See [24], Theorem 2.3, p.25. �

In the physical literature, one encounters equation (2.20) usually in the form

A(x1)B(x2) =

N−1
∑

j=0

C j(x2)

(x1 − x2) j+1
+ : A(x1)B(x2) :, (2.22)
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or, writing out only the singular part

A(x1)B(x2) ∼

N−1
∑

j=0

C j(x2)

(x1 − x2) j+1
. (2.23)

The two equations (2.22) and (2.23) are usually referred to as the operator product expan-

sion, abbreviated OPE. It’s a remarkable fact that by (2.21), the singular part of the OPE

determines all the brackets between the modes of two mutually local fields, making it an

important calculational tool.

With the necessary tools of formal calculus at hand, the definition of a vertex operator

algebra can now be given. However, in most of the mathematical literature, vertex opera-

tor algebras are defined as vertex algebras with additional properties. As some theorems

formulated in terms of vertex algebras will be needed in the construction described in

Chapter 4, this approach will be adopted here, too.

Definition 2.8 (vertex superalgebra). Let V = V0̄ ⊕ V1̄ be a superspace . Suppose we

have a linear map v 7→ Y(v, z) =
∑

n∈� vnz−n−1 which associates to each v ∈ V a field

Y(v, z) and we have a distinguished vector 1 ∈ V in V0̄. These data are subject to the

following properties ∀v ∈ V:

(VA1) (vacuum) The vertex operator Y(1, x) is the identity (i.e. 1nv = δn,−1v).

(VA2) (state-field correspondence) The vector Y(v, x)|x=0 1 exists and equals v.

(VA3) (locality) All fields Y(v, x) are mutually local.

(VA4) (translation covariance) There exists a linear operator T : V → V of even

parity, such that for any v ∈ V

[T, Y(v, x)] = ∂xY(v, x)

and T 1 = 0.

A vertex superalgebra is called 1
2
�-graded if V is a 1

2
�-graded vector space, 1 is a vector

of weight 0 and T is a linear operator of weight 1. A vertex algebra is a vertex superal-

gebra V satisfying V 1̄ = 0. Additionally, if there is a grading given on V then Vn = 0 for

n ∈ 1
2
+ �≥0 for a vertex algebra.

In the following, the word “super” will often be left away when assertions apply to

vertex superalgebras as well as vertex algebras. Often, a vertex superalgebra V is denoted

by the triple (V, Y, 1) in an obvious notation.

As mentioned above, in a large part of the mathematical literature another set of ax-

ioms relying on the so called Jacobi identity is preferred. The Jacobi identity has the

disadvantage that it has no immediate interpretation in physical terms. However, it allows

for a more concise formulation of the axioms, concentrating a large amount of structure

in a single identity. In the above axioms of a vertex superalgebra, the locality axiom and

the translation covariance axiom may be replaced by the Jacobi identity

x−1
0 δ

(

x1 − x2

x0

)

Y(u, x1)Y(v, x2) − (−1)p(u)p(v) x−1
0 δ

(

x2 − x1

−x0

)

Y(v, x2)Y(u, x1)

=x−1
2 δ

(

x1 − x0

x2

)

Y(Y(u, x0)v, x2),

(2.24)
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where u, v ∈ V arbitrary. Here, the parity p(v) of a vector v ∈ V is defined by the

parity of the modes v(n). Equation (2.24) has several interesting implications. One of

them is the commutator formula which, restricting the discussion to vertex algebras where

p(u) = p(v) = 0, reads

[Y(u, x1), Y(v, x2)] = Resx0
x−1

2 δ

(

x1 − x0

x2

)

Y(Y(u, x0)v, x2). (2.25)

It is derived from (2.24) by taking Resx0
. Note that this describes the failure of two

vertex operators to commute. Equation (2.17) characterizing locality (also called weak

commutativity in the mathematical literature) can be obtained from (2.25) by multiplying

with the polynomial (x1 − x2)k where k large enough. This may be thought of as clearing

of a formal pole.

Similarly to the derivation of the commutator formula (2.25), by equating the coeffi-

cients of x−1
0 x−m−1

1 x−n−1
2 in the Jacobi identity, one obtains

[um, vn] =
∑

i≥0

(

m

i

)

(uiv)m+n−i, (2.26)

where m, n ∈ �. By the regularity condition of vertex algebras, (uiv)m+n−i vanishes for i

large enough. Thus, the sum on the right hand side of (2.26) is finite and the equation

states that the modes form a Lie algebra with the commutator as bracket.

Conformal symmetry. From a physical point of view, vertex (super)algebras are still

lacking an important ingredient of two-dimensional conformal field theory, the Virasoro

algebra. The Virasoro algebra Vir is the one dimensional central extension of the Witt

algebra, which is the conformal symmetry algebra of classical theories in two dimensions.

The rigorous description of conformal symmetry in two-dimensional quantum theories

has some subtle points which are often ignored in the physical literature. For a discussion

of these points and proofs of the following assertions, the reader is referred to the lecture

on conformal field theory by Schottenloher, [30].

Roughly, one arrives at the Virasoro algebra as follows. First, one considers the con-

formal group on the Minkowski plane �1,1. As mentioned in the discussion of conformal

transformations in section 2.1, one compactifies the Minkowski plane in order for the

transformations to be defined everywhere. The compactification of the Minkowski plane

is�1,1 → �1×�1. One can show that the conformal group of this compactification is then

given by

Conf(�1,1) � Diff+(�
1) × Diff+(�

1),

where Diff+(�
1) is the group of all orientation preserving diffeomorphisms of the circle.

The Lie algebra of Diff+(�
1) is the space of smooth vector fields of the circle, Vect(�1).

Its complexification Vect(�1) × � has a dense subalgebra called the Witt algebraW. The

Witt algebra is the symmetry algebra of a classical theory with conformal symmetry.

After quantization, a symmetry is required to be a unitary representation of the sym-

metry group on the projective Hilbert space of states. One then tries to lift these repre-

sentations on the projective Hilbert space to unitary representations on the Hilbert space

itself. To achieve this, one has to go over to central extensions of the universal covering
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of the classical symmetry group. On the level of Lie algebras in the case of conformal

symmetry one has to study the central extensions of the Witt algebra. Its unique central

extension is given by the Virasoro algebraVir = W⊕�C, which is defined by the bracket

relations

[Lm, Ln] = (m − n)Lm+n + δn,−m

m(m2 − 1)

12
C, (2.27)

[Lm,C] = 0. (2.28)

The Virasoro algebra is the symmetry algebra of a quantized theory with conformal sym-

metry in the above sense. The following definition explains how this symmetry is incor-

porated into the axioms of a vertex algebra in order to obtain a vertex operator algebra

describing the vacuum sector of a conformal field theory.

Definition 2.9. A vertex operator superalgebra is a 1
2
�-graded vertex super algebra

(V, Y, 1) where

V =
⊕

n∈ 1
2�≥0

Vn

such that each Vn is finite dimensional, equipped with a distinguished homogeneous

weight 2 vector ω called the conformal vector, satisfying the conditions

(VOA1) (conformal symmetry) The modes Ln = ωn+1 form aVirmodule, whose central

term C acts as cid for some c ∈ �;

(VOA2) (conformal weight) The mode L0 acts as L0v = nv whenever v ∈ Vn;

(VOA3) (translation generator) The operator T from the definition of a vertex super-

algebra is equal to L−1.

In the context of vertex operator superalgebras, the translation axiom is often termed

L−1 derivative property. As in the case of vertex algebras, one often denotes vertex oper-

ator algebras by the quadruple (V, Y, 1, ω). A vertex operator algebra V obeying

V0 = �1 and V =

∞
⊕

n=0

Vn

is said to be of CFT type.

The following proposition yields a quick way of checking the Virasoro algebra in

explicit constructions. It also implies that the Virasoro algebra is satisfied on modules

(Proposition 2.15).

Proposition 2.10. Let (V, Y, 1, ω) be a vertex operator (super)algebra. Then the Virasoro

algebra relations (2.27) are equivalent to the set of equations

ω(0)ω = L(−1)ω (2.29a)

ω(1)ω = 2ω (2.29b)

ω(2)ω = 0 (2.29c)

ω(3)ω =
c

2
1 (2.29d)

ω(n)ω = 0 for n ≥ 4 (2.29e)
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Proof. Recall the Lie algebra of modes, (2.26) for u, v ∈ V and m, n ∈ �:

[um, vn] =
∑

i≥0

(

m

i

)

(uiv)m+n−i.

Setting u = v = ω and using equations (2.29a)-(2.29e), one obtains

[ωm+1, ωn+1] = (L−1ω)m+n+2 + 2(m + 1)ωm+n+1 +
1

2

(m + 1)m(m − 1)

6
(cv 1)m+n−1

= −(m + n + 2)ωm+n+1 + 2(m + 1)ωm+n+1 +
1

12

(

m3 − m
)

δm+n,0c id

= (m − n)Lm+n +
1

12

(

m3 − m
)

δm+n,0c id.

In the second step, the L−1 derivative property as well as the vacuum property Y(1, x) = id

was used. �

Weight formula. It has been stated above that the Jacobi identity implies the locality

and the translation axiom. In the case of a vertex operator algebra (V, Y, 1, ω), (2.25) yields

useful commutator formulas involving Virasoro modes and arbitrary vertex operators.

Setting u = ω and applying Resx1
and Resx1

x1 respectively, one obtains

[L−1, Y(v, x)] = Y(L−1v, x) (2.30)

and

[L0, Y(v, x)] = xY(L−1v, x) + Y(L0v, x). (2.31)

Assume that v is homogeneous, i.e. L0v = wtv v. Using the L−1 derivative property,

equation (2.31) then implies the weight formula for modes,

wtvn = wtv − n − 1. (2.32)

Equations (2.30) and (2.31) can be generalized to

[Lm, Y(v, x)] =
∑

n∈�

(

m + 1

n

)

xm+1−nY(Ln−1v, x) (2.33)

by applying the operation Resx1
xm+1

1 to the commutator formula (2.25).

Reconstruction theorem. Verifying all the axioms in explicit constructions of vertex

operator algebras is simplified by a general reconstruction theorem that has been obtained

by Frenkel, Kac, Radul and Wang in [18] and independently by Meurman and Primc in

[28]. It is given here in the slightly less general formulation of [17]. The theorem relies on

the existence of a Poincaré-Birkhoff-Witt-like basis of the form a
α1

− j1
. . . a

αm

− jm
1. This basis

makes it possible to extend the vertex algebra axioms from the generating set of vectors

{aα}α∈S to arbitrary vectors by induction. The reconstruction theorem will be used in the

construction of the symplectic fermionic vertex operator algebra, where one is exactly in

the situation described above.
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Theorem 2.11. Let V be a �≥0-graded vector space, 1 ∈ V0 a non-zero vector, and T a

degree one endomorphism of V. Let S be a countable ordered set and {aα}α∈S a collection

of homogeneous vectors in V. Suppose we are also given fields

aα(x) =
∑

n∈�

aα(n)x
−n−1

such that the following conditions hold:

(R1) For all α, aα(x) 1|x=0 = aα.

(R2) The operator T acts according to T 1 = 0 and [T, aα(x)] = ∂xa
α(x) for all α.

(R3) All fields aα are mutually local.

(R4) The vector space V has a basis of vectors

a
α1

− j1
. . . a

αm

− jm
1, (2.34)

where j1 ≥ j2 ≥ . . . ≥ jm > 0, and if ji = ji+1, then αi ≥ αi+1 with respect to the

given order on the set S .

Under these assumptions, the assignment

Y(aα1

j1
. . . a

αm

jm
1, x) =: ∂( j1−1)aα1(x) . . . ∂( jm−1)aαm(x) :

defines a vertex superalgebra structure on V.

For the proof of locality of arbitrary fields, the following Lemma serves as a basis for

a proof by induction.

Lemma 2.12 (Dong’s Lemma). If A(x), B(x), C(x) are three mutually local fields, then

the fields : A(x)B(x) : and C(x) are also mutually local.

Proof. See Lemma 2.3.4 in [17], p.35. �

Proof. (Reconstruction Theorem) The creation property (VA2)

lim
x→0

Y(v, x) 1 = v (2.35)

is satisfied for Y(aα, x) by assumption. This implies that all nonnegative modes of the aα

have to annihilate the vacuum. Thus, one also has ∂n
xY(aα, x) 1 = aα

−n+1
1. The creation

property for a general vector a
α1

− j1
. . . a

αr

− jr
follows by induction over r in the following way.

Assume that (2.35) holds for Y(A, x) =
∑

n A(n)x
−n−1. It has to be shown that it then also

holds for

Y(aα0

−k
A, x) =

1

(k − 1)!
: ∂k−1

x aα0(x)Y(A, x) :,
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where k > 0 and i ∈ S . By definition (2.19) of the normally ordered product this is equal

to

1

(k − 1)!

∑

m∈�

∑

n≤−k

(−n − 1) · · · (−n − k + 1)aα0

(n)
A(m)x

−n−m−k−1

+
1

(k − 1)!

∑

m∈�

∑

n>−k

(−n − 1) · · · (−n − k + 1)A(m)a
α0

(n)
x−n−m−k−1.

Noting that all terms in the second sum with n < 0 have vanishing coefficients and rewrit-

ing the sum so that the coefficient of every monomial in x can be read off, the normal

ordered product takes the following form:

1

(k − 1)!

∑

m∈�















∑

n≤−k

(−n − 1) · · · (−n − k + 1)aα0

(n)
A(m−n)

∑

n≥0

(−n − 1) · · · (−n − k + 1)A(m−n)a
α0

(n)















x−k−m−1.

The second sum annihilates the vacuum since the creation property is satisfied for the aα.

By the inductive assumption, the positive modes of A also annihilate the vacuum so that

in the limit x→ 0 the only remaining term is

b(−k)A(−1) 1 = b(−k)A.

The translation axiom (VA4) holds for the aα by assumption. By differentiation, this

implies also [T, ∂n
xa

α(x)] = ∂n+1
x aα(x). It can be proven by explicit calculation that the

Leibniz rule holds for the normally ordered product, i.e.

∂x : A(x)B(x) := :
(

∂xA(x)
)

B(x) : + : A(x)
(

∂xB(x)
)

: .

Using this fact, it can be shown that the translation axiom holds for the normal ordered

product of two fields if it holds for the fields themselves. The splitting of a field into

its positive and negative part commutes with differentiation according to equation (2.18).

This implies

[T, A(x)±] = [T, A(x)]±.

With the help of this identity the following normal ordered products can be computed:

: [T, A(x)]B(x) :=[T, A(x)]+B(x) + B(x)[T, A(x)]−

T A(x)+B(x) − A(x)+T B(x) + B(x)T A(x)− − B(x)A(x)−T,

: A(x)[T, B(x)] :=A(x)+[T, B(x)] + [T, B(x)]A(x)−

A(x)+T B(x) − A(x)+B(x)T + T B(x)A(x)− − B(x)T A(x)−.

Adding these two equations, one obtains

∂x : A(x)B(x) := : ∂xA(x)B(x) : + : A(x)∂xB(x) :

= : [T, A(x)]B(x) : + : A(x)[T, B(x)] :

=T (A(x)+B(x) + B(x)A(x)−) − (A(x)+B(x) + B(x)A(x)−)T

=T : A(x)B(x) : − : A(x)B(x) : T

=[T, : A(x)B(x) :].
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By induction, the translation axiom can then be extended to all vertex operators.

Locality for arbitrary fields is similarly proven by induction, using the mutual locality

of all fields of the form ∂n
xa

α(x) and Dong’s Lemma. The locality of derivatives of the

aα(x) can be seen as follows. For any two mutually local fields A(x1) and B(x2), one has

by definition

(x1 − x2)N [A(x1), B(x2)] = 0

for some N ∈ �. Differentiating this equation with respect to x1, one obtains

(x1 − x2)N−1 [A(x1), B(x2)] + (x1 − x2)N [

∂x1
A(x1), B(x2)

]

= 0.

After multiplication with (x1 − x2), the first term vanishes due to mutual locality of A(x1)

and B(x2). The remaining equation proves mutual locality of ∂x1
A(x1) and B(x2). By

induction, the locality property can be extended to arbitrary derivatives and then with

Dong’s Lemma to arbitrary normally ordered products, proving (VA3) and completing

the proof. �

Subsets of vertex operator algebras which generate the whole vertex operator algebra

according to equation (2.34) are important enough to introduce the following definition.

Definition 2.13. Let (V, Y, 1) be a vertex algebra and S a subset of V consisting of homo-

geneous vectors. If V is spanned by vectors of the form

ψ1
−n1
ψ2
−n2
· · ·ψr

−nr
1

for ψi ∈ S , ni ∈ � and r ∈ �, then S is called a generating set of vectors of V. If the

above holds for all ni < 0, then V is called strongly generated by S .

2.4 Modules for VOAs

A vertex operator algebra formalizes the properties of the vacuum sector of a conformal

field theory. But as in general quantum field theory, one would also like to study repre-

sentations of the field algebra which are inequivalent to the vacuum sector. Classifying

all inequivalent irreducible representations is an important task and yields a lot of phys-

ical information. The mathematical tools for this classification are discussed in Chapter

3. The following is the definition of an ordinary module for a vertex operator algebra V .

Generalized modules which are related to the action of automorphisms of V are discussed

below.

Definition 2.14. Let (V, Y, 1, ω) be a vertex operator superalgebra. A V-module (W, YW)

is a superspace W with the grading

W =
⊕

h∈�

Wh

equipped with a linear map YW : V → End(W)[[x±1]], v 7→ YW(v, x) =
∑

m∈� vmx−m−1

such that for u, v ∈ V and w ∈ W, the endomorphisms un of W satisfy the condition
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(M1) (regularity) unw = 0 for n sufficiently large;

(M2) (vacuum) YW(1, x) = idW;

(M3) (Jacobi identity) For Z2-homogeneous u, v ∈ V, the following Jacobi identity

holds:

x−1
0 δ

(

x1 − x2

x0

)

YW(u, x1)YW(v, x2) − (−1)p(u)p(v) x−1
0 δ

(

x2 − x1

−x0

)

YW(v, x2)YW(u, x1)

=x−1
2 δ

(

x1 − x0

x2

)

YW(Y(u, x0)v, x2);

(M4) (grading restriction) The subspaces Wh are finite dimensional for all h ∈ �,

Wh = 0 for all h whose real part is sufficiently negative and the grading is given by

L0 eigenvalues according to

Wh = {w ∈ W |L0w = hw}.

Inspecting the above definition, the reader might ask why the Jacobi identity was used

instead of a locality axiom. The answer is that in the case of modules, the Jacobi identity is

equivalent to weak commutativity only in conjunction with another property called weak

associativity (c.f. Proposition 4.4.1 in [26], p. 127). Thus, the definition of a module

would get unnecessarily complicated if one wants do to without the Jacobi identity.

One might also wonder why the Virasoro algebra is not mentioned in the axioms. The

following proposition gives the answer by stating that it can be derived from the other

module properties.

Proposition 2.15. Let V be a vertex operator algebra and let (W, YW) be a module for V.

Then the following relations hold on W:

[L−1, YW(v, x)] = YW(L−1v, x) =
d

dx
YW(v, x) for v ∈ V,

[Lm, Ln] = (m − n)Lm+n +
1

12
(m3 − m)δm+nc,

for m, n ∈ �.

Proof. Both identities follow from the Jacobi identity exactly as in the case of vertex

operator algebras. See the reasoning leading to equation (2.30) for the L−1 commutator

formula and the proof of Proposition 2.10 for the derivation of the Virasoro algebra. �

Categorical notions. Studying vertex operator algebras, it is natural to define mappings

between them. This leads to the definition of homomorphisms, isomorphisms and so on,

which will be given in the following paragraph. These categorical notions for vertex

operator algebras and their modules will be needed for the definition of twisted modules.
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Given vertex operator algebras V1,V2 of the same central charge c, a homomorphism is

defined as a grading preserving linear map f : V1 → V2 such that

f (Y(u, z)v) = Y( f (u), z) f (v) for u, v ∈ V1, (2.36)

and such that f (1) = 1 and f (ω) = ω. An isomorphism is a bijective homomorphism,

an endomorphism is a homomorphism with V1 = V2 and an automorphism is a bijective

endomorphism.

In complete analogy, one defines the respective notions for modules. Given two mod-

ules W1,W2 of the vertex operator algebra V , a homomorphism is defined as a grading

preserving linear map f : W1 → W2 such that

f (Y(v, z)w) = Y(v, z) f (w) for v ∈ V,w ∈ W1.

All the above notions can also be canonically defined for modules.

An important notion with respect to modules is irreducibility. Irreducible or simple

modules are modules with no nontrivial submodules. A vertex operator algebra is called

simple if it is irreducible as a module for itself. Irreducible modules have a particularly

simple grading structure which will be described in the following.

Note that equation (2.31) remains true in the case of modules so that the weight for-

mula for modes, equation (2.32), also holds for the action on modules. Thus, a homo-

geneous vector v ∈ V maps Wh to W(h+wtv−n−1). Since the action of modes of arbitrary

homegenous vectors can only shift the degree by an integer, W decomposes into sub-

modules corresponding to congruence classes modulo �. If we define for α ∈ �/� the

space

W[α] =
⊕

h+�=α

W(h),

then

W =
⊕

α∈�/�

W[α].

As an irreducible module, M may have no nontrivial submodules. Consequently,

W = W[α] (2.37)

for some α. Because of the grading restriction (M4), there is a lowest weight h0 such that

W[α] =

∞
⊕

h=h0

W(h), (2.38)

The space Wh0
is called the lowest weight space or top level of the module W. Since W is

irreducible, all vectors in W can be obtained by acting with modes of vectors from V on

the lowest weight module Wh0
such that

W = span{v1
−n1
· · · vr

−nr
w|vi ∈ V,w ∈ Wh0

, ni ∈ �>0}.

Closely related to the top level Wh0
is the space of singular vectors Ω(W), defined by

Ω(W) = span {w |vnw = 0 for all v ∈ Vk where n > k − 1 } .
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Twisted modules. We will now turn to the definition of twisted modules. These are

modules associated to automorphisms of a vertex operator algebra. Vertex operator su-

peralgebras come with a natural automorphism that can be described as follows.

Let V = V 0̄ ⊕ V 1̄ be a vertex operator superalgebra and let θ : V → V be defined by

θ(a + b) = a − b

for a ∈ V 0̄ and b ∈ V 1̄. Since for a ∈ V k̄, b ∈ V l̄ with k, l ∈ {0, 1} the vector a(n)b is in V k̄+l̄,

we have θ(anb) = θ(a)(n)θ(b). Comparing the last equality with (2.36), we see that θ is an

automorphism of V .

More generally, let σ be an automorphism of V of order S . Then V is decomposed

into a direct sum of eigenspaces Vk of σ

V = V0 ⊕ V1 ⊕ · · · ⊕ VS−1 (2.39)

where Vk is the eigenspace of V for σ with eigenvalue exp
(

2kπi
S

)

. Since the vacuum and

the conformal vector have to be invariant under an automorphism, V0 is a vertex operator

subsuperalgebra of V . Furthermore, all Vk for k = 1, . . . , S − 1 are V0-modules because

the homomorphism condition for σ implies that for v ∈ V0, Y(v, z) maps vectors from Vk

to itself.

Definition 2.16 ([27]). Let (V, Y, 1) be a vertex superalgebra with an automorphism σ of

order S . A σ-twisted V-module is a triple (M, d, YM) consisting of a superspace M, a

�2-endomorphism d of M and a linear map YM(·, z) from V to (EndV)[[z±
1
S ]] satisfying

the following conditions:

(T1) For any a ∈ V, u ∈ M, anu = 0 for n ∈ 1
S
� sufficiently large;

(T2) YM(1, z) = idM;

(T3) [d, YM(a, z)] = YM(D(a), z) = d
dz

YM(a, z) for any a ∈ V, where D is the translation

operator of V;

(T4) For any �2-homogeneous a, b ∈ V, the following θ-twisted Jacobi identity holds:

z−1
0 δ

(

z1 − z2

z0

)

YM(a, z1)YM(b, z2) − (−1)p(a)p(b)z−1
0 δ

(

z2 − z1

−z0

)

YM(b, z2)YM(a, z1)

=z−1
2

S−1
∑

j=0

1

S
δ

















(

z1 − z0

z2

)
1
S

















YM(Y(σ ja, z0)b, z2).

If V is a vertex operator superalgebra, a σ-twisted V-module for V as a vertex super-

algebra is called a σ-twisted weak module for V as a vertex operator superalgebra. A

σ-twisted weak V-module M is said to be 1
2S
�-graded if M =

⊕

n∈ 1
2S
�

Mn such that

(T5) anMr ⊆ Mr+m−n−1 for a ∈ Vm, m ∈ �, n ∈ 1
S
�,r ∈ 1

2S
�.

A σ-twisted module M for V as a vertex superalgebra is called a σ-twisted module for V

as a vertex operator superalgebra if M =
⊕

α∈�
Mα such that
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(T6) L0u = αu for α ∈ �, u ∈ Mα;

(T7) For any fixed α, Mα+n = 0 for n ∈ 1
2S
� sufficiently small;

(T8) dimMα < ∞ for any α ∈ �.

For the rest of this section, V will be a vertex operator superalgebra and M will be a

σ-twisted V-module. Recall that we then have the decomposition given in (2.39). In the

case a ∈ Vk even or odd, the σ-twisted Jacobi identity specializes to

z−1
0 δ

(

z1 − z2

z0

)

YM(a, z1)YM(b, z2) − (−1)p(a)p(b)z−1
0 δ

(

z2 − z1

−z0

)

YM(b, z2)YM(a, z1)

=z−1
2 δ

(

z1 − z0

z2

) (

z1 − z0

z2

)− k
S

YM(Y(a, z0)b, z2).

Setting b = 1, the terms on the left hand side may be combined:

z−1
2 δ

(

z1 − z0

z2

)

YM(a, z1) = z−1
2 δ

(

z1 − z0

z2

) (

z1 − z0

z2

)− k
S

YM(Y(a, z0) 1, z2).

Taking Resz0
z−1

0 , we obtain

z−1
2 δ

(

z1

z2

)

YM(a, z1) = z−1
2 δ

(

z1

z2

) (

z1

z2

)− k
S

YM(a, z2).

Therefore, z
k
S YM(a, z) is an element of End(M)[[z±1]] for any a ∈ Vk, where k ∈ {1, . . . , S −

1}. It follows, that for any homogeneous a in Vk the weight of the operator an equals

wta − n − 1 with n ∈ k
S
+ �. In particular, an has weight in � for a ∈ V0. Consequently,

for λ ∈ �

M0(λ) =
⊕

n∈�

Mλ+n

is a V0 submodule of M and M0(λ) = M0(µ) if and only if µ − λ ∈ �. On the other hand,

considering the whole vertex operator algebra V ,

M(λ) =
⊕

n∈ 1
S
�

Mλ+n

is a σ-twisted V-submodule of M and M(λ) = M(µ) if and only if λ − µ ∈ 1
S
�. It then

follows from the first decomposition, that

M(λ) =

S−1
⊕

k=0

M0

(

λ +
k

S

)

(2.40)

is a decomposition of M(λ) into V0-modules. If M is a simple module, M(λ) = M since

we would have a nontrivial submodule of M otherwise. In this case the decomposition

will be written in the form

M = M0 ⊕ M1 ⊕ · · · ⊕ MS−1. (2.41)
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This section will be concluded by two theorems that make assertions about the irre-

ducibility of the elements in the decompositions (2.39) and (2.41). The first theorem has

been proven by Dong and Mason in [12]. It is given here in the formulation of [11], sec-

tion 5.1. The second theorem is due to Dong and Lin, c.f. [11]. In their orignal form, both

theorems apply only to vertex operator algebras, not superalgebras. But all the arguments

carry over to the super case so that we have the following theorems.

Theorem 2.17. Let V be a simple vertex operator superalgebra and σ an automorphism

of V of finite order S . Then the V0 modules Vk in the decomposition

V =

S−1
⊕

k=0

Vk

are all irreducible as V0 modules. In particular, V0 is a simple vertex operator superal-

gebra.

Theorem 2.18. In the setting of Theorem 2.17, let M be a simple σ-twisted V-module.

Then the Mk, k = 1, . . . , S − 1 in the decomposition

M =

S−1
⊕

k=1

Mk

are nonzero and non-isomorphic simple V0 modules.

2.5 A Characterization of Primary Fields

This chapter began with a derivation of the definition of a vertex algebra from a set of

physically motivated axioms. This paragraph illustrates the reverse procedure by deriving

the transformation behavior of primary fields from the vertex operator algebra structure.

Primary vectors are defined by the property Lmv = 0 for all m > 0 and L0v = hv for some

h ∈ �. For a primary vector v, equation (2.33) reads

[Ln, Y(v, x)] =

(

xn+1 d

dx
+ h(n + 1)xn

)

Y(v, x). (2.42)

This can be rewritten in the form

[Ln, Y(v, x)] = x−h(n+1) xn+1 d

dx

(

xh(n+1)Y(v, x)
)

.

Multiplying with x0 and xh(n+1), one obtains

[x0Ln, xh(n+1)Y(v, x)] = x0xn+1xn+1 d

dx

(

xh(n+1)Y(v, x)
)

.

By an argument common in the theory of formal series, this expression may be exponen-

tiated. First, reinterpret the commutator by rewriting the last equation in the form

(Lx0Ln
− Rx0Ln

)xh(n+1)Y(v, x) = x0xn+1 d

dx

(

xh(n+1)Y(v, x)
)

. (2.43)
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Here, LX and RX are taken to be the operators of left and right multiplication with the

operator X, respectively. Now, taking the n-th iterate of (2.43), multiplying by 1/n! and

summing over n yields the exponential form

ex0Ln xh(n+1)Y(v, x)e−x0 Ln = ex0 xn+1 d
dx

(

xh(n+1)Y(v, x)
)

.

By the formal Taylor theorem, Theorem 2.4, the right hand side equals

x
h(n+1)

1 Y(v, x1),

where

x1 =















ex0 x if n = 0

(x−n − nx0)−
1
n if n , 0.

Thus, we arrive at the equation

ex0LnY(v, x)e−x0 Ln =

(

x1

x

)h(n+1)

Y(v, x1) =

(

∂x1

∂x

)h

Y(v, x1),

which is usually taken as a definition of a primary conformal field by physicists.



Chapter 3

Algebras for the Analysis of CFTs

Given a vertex operator algebra V , the most important task often is to classify its modules.

In conformal field theory this amounts to finding inequivalent representations of the field

algebra. There exist two common approaches to this classification problem. In certain

cases, one can infer the commutation relations of the zero mode algebra on the top level

of any module. If the zero mode algebra forms a well-known Lie algebra, the representa-

tions of the whole field algebra may be found by studying the representations of this Lie

algebra.

The second approach is to study the representations of a certain associative algebra

first defined by Zhu in [32]. The importance of Zhu’s algebra A(V) stems from Zhu’s

theorem, which states that there is a one to one correspondence between A(V)-modules

and V-modules. As, for example, Zhu’s algebra is finite dimensional in the case of weakly

rational vertex operator algebras, this can make the classification of modules significantly

easier.

In the following, the definition of Zhu’s algebra is given and Zhu’s theorem is stated.

The classification of vertex operator algebra modules with the help of the Lie algebra of

the zero modes is illustrated in the case of the triplet algebra at c = −2. This analysis

follows the one by Kausch and Gaberdiel in [21].

3.1 Definition of Zhu’s Algebra and Zhu’s Theorem

Let V be a vertex operator algebra and u, v ∈ V with u a homogeneous element. Define a

product

u ⋆ v = Res

(

Y(u, z)v
(z + 1)wtu

z

)

,

which, in terms of modes, reads

(u ⋆ v)n =
∑

m≥wtu

u−1−mvm+n +
∑

m<wtu

vm+nu−1−m.

Extend the product ⋆ linearly to all u ∈ V . The space spanned by elements of the form

(L−1 + L0)u ⋆ v

with u, v ∈ V can be shown to be a two-sided ideal for ⋆ and is called O(V). Define

Zhu’s algebra as the quotient A(V) = V/O(V). It turns out that (A(V), ⋆) is an associative
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algebra with the equivalence class of the vacuum [1] being the unit and the conformal

vector [ω] being the center. The important relationship between representations of A(V)

and V-modules stems from two facts. First, one can calculate that restricted to the top

level Mh0
of any irreducible V-module M,

o(u ⋆ v) = o(u)o(v),

where o is the linear map mapping a homogeneous vector v ∈ Vk to its zero mode v(k−1).

Thus, o defines a homomorphism of algebras, o : A(V) → Z(V)|Mh0
, where Z(V) ⊂

End(V) is the algebra generated by all elements o(a), a ∈ V . The second fact is the

identity

o(L−1u + L0u) = 0

for all u ∈ V . From the above two equations, we can infer that o(u) = 0 on each top level

space Mh0
for any u ∈ O(V). Thus we can assign to each class u in A(V) a zero mode o(u)

in a well defined way. Using this mapping, Zhu was able to show the following result.

Theorem 3.1. Let V be a vertex operator algebra and M a V-module. Then the following

holds

• The top level Mh0
of M is a representation of the associative algebra A(V).

• Conversely, if π : A(V) → End(W) is a representation of A(V), then there exists a

V-Module M such that Mh0
= W.

• The isomorphism classes of the irreducible V-modules and the isomorphism classes

of irreducible representations of A(V) are in one-to-one correspondence.

Zhu’s algebra can be endowed in a canonical way with a Lie algebra structure using

the commutator. Brungs and Nahm showed in [7] that the mapping o gives rise to a Lie

algebra isomorphism between Zhu’s algebra and the zero mode algebra.

Certain finiteness conditions for vertex operator algebras are closely related to Zhu’s

algebra. To formulate these conditions, one introduces the notion of a weak V-module,

which is a vector space satisfying all V-module axioms except for the ones related to

the grading. A weak V-module W admitting an �-grading W =
⊕

n∈�
Wn such that

vmWn ⊂ Wwtv+n−m−1 is called admissible.

Following Dong, Li and Mason (c.f. [10]), a vertex operator algebra is called weakly

rational if every admissible V-modules can be decomposed into a direct sum of irreducible

V-modules. A vertex operator algebra is called rational if every admissible module is a

direct sum of irreducible admissible modules. An even stronger statement is regularity,

which is satisfied if every weak V-module is a direct sum of irreducible V-modules.

To decide if any of the above conditions are met by a vertex operator algebra, the

notion of C2-cofiniteness has proven useful. A vertex operator algebra V is called C2-

cofinite if the subspace

C2(V) = span
{

v(−n)w |v,w ∈ V
}

is of finite codimension in V , i.e. dim(V/C2(V)) < ∞. If the vertex operator algebra V

is C2-cofinite it can be proven that Zhu’s algebra A(V) is finite. As a finite algebra A(V)

then only has finitely many irreducible modules. Thus, by Zhu’s theorem, a C2-cofinite

vertex operator algebra V only has finitely many inequivalent irreducible V-modules.

The following result has been proven by Abe, Buhl and Dong in [2].
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Theorem 3.2. A vertex operator algebra V of CFT type is regular if and only if V is

C2-cofinite and rational.

There existed an important conjecture in the literature, stating that rationality in the

above sense and C2-cofiniteness are equivalent. However, the triplet algebra which will

be discussed in the next section serves as a counterexample to this conjecture.

3.2 W-Algebras and the Triplet Algebra

W-algebras are special vertex operator algebras, whose field algebra is an extension of

the Virasoro algebra by additional fields. In this sense, W-algebras are also sometimes

termed maximally extended symmetry algebras since they form the maximal field algebra

which is compatible with the Virasoro algebra for a fixed central charge.

Definition 3.3. AW-algebra of typeW(2, h1, . . . , hm) is a vertex operator algebra which

has a minimal generating set in the sense of Definition 2.13 consisting of the vacuum 1,

the conformal vector ω of weight two and m additional primary vectors W i of weight hi,

where i ∈ 1, ..,m.

W-algebras have aroused considerable interest due to their connection with the clas-

sification of all rational conformal field theories. For a general introduction and some

classification results, see [15] and [5]. Throughout this section, the physical mode con-

vention as opposed to the mathematical mode convention will be used. This means that

the field corresponding to a homogeneous vector v ∈ Vh is expanded in the form

Y(v, x) =
∑

n∈�

v(n)x
−n−h.

From a calculational point of view,W-algebras are characterized by the commutation

relations of the modes of their generating vectors or, equivalently, by the OPE of the gen-

erating fields. In general, the commutation relations of the modes of the generating fields

of aW-algebra cannot be expressed as a Lie algebra in the modes of these fields. How-

ever, it was shown by Nahm in [29] that it is always possible to express the commutators

in terms of modes of fields which are special normal ordered products of the generating

fields.

For the description ofW-algebras the notion of a quasi-primary field is needed. This

is a vertex operator which satisfies (2.42) only for n = ±1 and n = 0. Denote the family

of quasi-primary fields of a givenW-algebra by {φi}i∈I and their conformal weights by hi.

Then the quasi-primary normal ordered product is defined by

N
(

φ j, ∂nφi
)

=

n
∑

r=0

(−1)r

(

n

r

)(

h(i jk) + σ(i jk) + 2n − 1

r

)−1(
2h(i) + n − 1

r

)

∂rN
(

φ j, ∂n−rφi)

− (−1)n
∑

{k|h(ik j)≥1}

C
i j

k

(

h(i jk) + n − 1

n

)(

h(i jk) + σ(i jk) + 2n − 1

n

)−1

×

(

2h(i) + n − 1

h(i jk) + n

)(

σ(i jk) − 1

h(i jk) − 1

)−1
∂h(i jk)+nφk

(

σ(i jk) + n
)(

h(i jk) − 1
)

!
,

(3.1)
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where h(i jk) = hi + h j − hk and σ(i jk) = hi + h j + hk − 1. Furthermore, the structure

constants C
i j

k
are defined such that

∑l C
i j

l
dlk = Ci jk, where Ci jk and di j are given by the

correlation functions

Ci jk =
〈

1, φk
(hk)φ

i
(−hk+h j)

φ
j

(−h j)
1
〉

and di j =
〈

1, φi
(hi)
φ

j

(−h j)
1
〉

.

An especially well-studied family ofW-algebras are the triplet algebras
{

W(2, (2p − 1)3)
}

p∈�≥2

.

The triplet algebra at c = −2 is the extension of the Virasoro theory by a triplet of fields

with h = 3, which are commonly denoted by W i, where the index i takes values from the

set {+,−, 0}.

The triplet algebra has interesting properties related to the finiteness notions intro-

duced in the previous section. While it only has finitely many inequivalent irreducible

modules it also admits logarithmic modules. Additionally it serves as a counterexample

for the conjecture that C2-cofiniteness equals rationality in the sense defined in section

3.1. The result that the triplet algebra is C2-cofinite has independently been obtained by

Abe in [1] and Carqueville and Flohr in [9]. It had been known before by Gaberdiel and

Neitzke who stated the fact in [22]. In Abe’s model, the triplet algebraW(2, 3, 3, 3) is a

special case of a more generalW-algebra which will be discussed in Chapter 4, while the

result obtained in [9] applies to all triplet algebras
{

W(2, (2p − 1)3)
}

p≥2
.

The triplet algebra W(2, 3, 3, 3) is characterized by the commutation relations

[Lm, Ln] =(m − n)Lm+n −
1

6
m(m2 − 1)δm+n, (3.2a)

[Lm,W
a
n ] =(2m − n)Wa

m+n, (3.2b)

[Wa
m,W

b
n ] =gab

(

2(m − n)Λm+n +
1

20
(m − n)(2m2 + 2n2 − mn − 8)Lm+n

−
1

120
m(m2 − 1)(m2 − 4)δm+n

)

(3.2c)

+ f ab
c

(

5

14
(2m2 + 2n2 − 3mn − 4)Wc

m+n +
12

5
Vc

m+n

)

,

where Λ and Va are normal ordered fields in the sense of equation (3.1), given by

Λ =: L2 : −
3

10
∂2L

and

Va =: LWa : −
3

14
∂2Wa.

The non-vanishing components of gab and f ab
c are defined to be

g00 = 1, g±∓ = 2 and f 0±
± = ±1, f ±∓0 = ±2.

The above commutation relations have been obtained by Kausch, who constructed an

explicit realization ofW(2, 3, 3, 3) that will be discussed at the beginning of Chapter 4.
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The representations of W(2, 3, 3, 3) have first been analyzed by Eholzer, Honecker

and Hübel in [14] and by Gaberdiel and Kausch in [21]. In the latter work, the general-

ized highest weight representations of the triplet algebra at c = −2 have been classified

with the help of certain null vector conditions. Using these conditions, the zero mode

algebra on the top level of any highest weight representation is derived. By classifying

the representations of the zero mode algebra one then obtains a classification of the rep-

resentations of the whole field algebra. This is essentially the physicist’s version of the

classification in terms of Zhu’s algebra. In the following, a short summary of the treatment

in [21] is given.

Because the fields corresponding to null vectors have to decouple in correlation func-

tions, it has to be required that zero modes of null vectors annihilate all states in a repre-

sentation. Applying this condition to the explicitly known null vectors Nab, we obtain

(

Wa
0 Wb

0 − gab 1

9
L2

0(8L0 + 1) − f ab
c

1

5
(6L0 − 1)Wc

0

)

ψ = 0, (3.3)

where ψ is any state in the top level of a representation. From this equation, one can

deduce

L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)ψ = 0. (3.4)

We know that any irreducible representation has the structure (2.4), implying that the

eigenvalues of the L0 zero mode have to take one of the values satisfying (3.4) on the top

level of each irreducible representation. The possible eigenvalues are called the spectrum

of the theory and are given by h0 = 0,−1
8
, 3

8
and h0 = 1. Writing down (3.3) with a and

b exchanged and noting that gab is symmetric while f ab
c is antisymmetric, one obtains the

commutator

[Wa
0 ,W

b
0 ] =

2

5
(6h − 1) f ab

c Wc
0 . (3.5)

Thus the zero modes of the weight three fields, restricted to the top level of an arbitrary

representation, satisfy the commutation relations of su(2). This implies that the top level

of every representation of the triplet algebra is a su(2)-module. According to the su(2)

representation theory, irreducible representations are labeled by a non-negative half inte-

gral number j, where j( j + 1) is the eigenvalue of the Casimir operator
∑

a(Wa
0 )2. Let m

be the eigenvalue of W3
0
. We get one further constraint on j and m, since Wa

0
Wa

0
= Wb

0
Wb

0

by (3.3). Thus, j( j + 1) = 3m2 has to be satisfied, allowing only j = 0, 1
2
. By examin-

ing the concrete realization of the different modules (c.f. Chapter 4), one finds that the

one-dimensional singlet representation corresponds to the modules with lowest weight

h = 0,−1
8

and the two-dimensional doublet representation to the case h = 1, 3
8
. Compar-

ing this to the analysis with the help of Zhu’s algebra (c.f. Theorem 4.8), it is important

to note that the above classification obviously does not yield a one-to-one correspondence

between su(2)-modules and field algebra modules.

The mathematically rigorous classification of the irreducible representations of the

triplet algebra is a special case of Theorem 4.8. This result has been obtained by Abe

using Zhu’s algebra. In the special case of the symplectic fermion model, the relation

between the zero mode algebra and Zhu’s algebra will be investigated in Chapter 5.



36 CHAPTER 3. ALGEBRAS FOR THE ANALYSIS OF CFTS



Chapter 4

Symplectic Fermions

The theory of a pair of symplectic fermions was first described by Kausch in [25]. It

furnishes an explicit realization of the triplet algebraW(2, 3, 3, 3) and serves as an exam-

ple for a conformal field theory admitting reducible but indecomposable representations.

The classification of irreducible representations ofW(2, 3, 3, 3) with the help of the zero

mode algebra has been described in Chapter 3.

About ten years after the work of Kausch, Abe generalized the model to d pairs of

symplectic fermions by constructing the vertex operator superalgebra S F. Abe was able

to show that S F+, the even part of S F, provides an example of a C2-cofinite but irrational

vertex operator algebra by constructing two reducible but indecomposable S F-modules.

He also classified and constructed the four inequivalent irreducible S F+-modules. Two of

these modules are S F+ itself and the odd part S F−. The other two modules are realized

as even and odd part of the θ-twisted S F-module, where θ is the canonical involution of

S F associated to its �2 grading.

In this chapter, the construction of S F and of the θ-twisted S F-module S F(θ) will

be given following Abe. These constructions will serve as a basis for Chapter 5, where

their properties are investigated. An attempt to make this presentation as self-contained

as possible is made, proving the vertex operator and module properties except for the

extensive calculations related to identities needed in the twisted module construction. For

details concerning these calculations, the reader is referred to the classic book on vertex

operator algebras by Frenkel, Lepowsky and Meurman, [19].

Since the construction of S F is first presented with a focus on the mathematical struc-

ture, the explicit calculations related to the Virasoro algebra are deferred to 4.2.2. This

section also contains some assertions which go beyond the work of Abe, among them

the characterization of S F+ asW
(

2, 22d2−d−1, 32d2+d)
)

-algebra. After the construction of

S F(θ), this chapter is concluded by a derivation of a general commutator formula for

modes of the generating vectors of S F+.

4.1 Kausch’s Symplectic Fermions

Kausch’s construction of a pair of symplectic fermions described in [25] starts from the

mode algebra

{ψαm, ψ
β
n} = mJαβδm+n, (4.1)
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where the indices α, β are equal to + or − and the nonvanishing components of J are de-

fined to be J+− = −J−+ = 1. In more mathematical terms, this defines a Lie superalgebra

with even part �id and odd part ⊕n∈��ψ
+
n ⊕ �ψ

−
n . The mode algebra (4.1) defines an in-

finite dimensional Clifford algebra CS F. A field representation of CS F is a representation

on a vector space V such that ψ± =
∑

n∈� ψ
±
n x−n−1 is a field with odd parity.

There exists a field representation of CS F on the Fock space, which, for the moment,

will be taken to be the linear space spanned by the formal expressions

ψ±−n1
· · ·ψ±−nr

|0〉, (4.2)

where n1, . . . , nr ∈ �>0 (the whole construction will be made more precise in the discus-

sion of Abe’s vertex operator algebra S F). This can be interpreted as creation of the states

of the theory from the vacuum |0〉 by the creation operators ψ±−n1
. The operators ψ±n act on

(4.2) as an exterior product by ψ±n for n < 0 and as the contraction by ψ±n for n ≥ 0.

The representation space can be split into a fermionic (r odd in (4.2)) and a bosonic (r

even) part. Kausch shows that the bosonic part is generated by the stress energy tensor

T (z) =
1

2
Jαβ : ψα(z)ψβ(z) :

and three primary weight 3 fields

W+(z) =: ∂ψ+(z)ψ+(z) :

W0(z) =
1

2

(

: ∂ψ+(z)ψ−(z) : + : ∂ψ−(z)ψ+(z) :
)

W−(z) =: ∂ψ−(z)ψ−(z).

Consequently, the pair of symplectic fermions realizes the triplet algebra at c = −2.

Kausch has computed the operator product expansion of the generating fields to be

T (z)T (w) ∼
−1

(z − w)4
+

2T

(z − w)2
+
∂T (w)

z − w
,

T (z)Wα(w) ∼
3Wα(w)

(z − w)2
+
∂Wα(w)

z − w
,

Wα(z)Wβ(w) ∼ gαβ
(

1

(z − w)6
− 3

T (w)

(z − w)4
−

3

2

∂T (w)

(z − w)3

+
3

2

∂2T (w)

(z − w)2
− 4

T 2(w)

(z − w)2
+

1

6

∂3T (w)

z − w
− 4

∂T 2(w)

z − w

)

− 5 f αβγ

(

Wγ(w)

(z − w)3
+

1

2

∂Wγ(w)

(z − w)2
+

1

25

∂2Wγ(w)

z − w
+

1

25

(TWγ)(w)

z − w

)

,

where g+− = g−+ = 2, g00 = −1 and f
αβ
γ are the structure constants of su(2), normalized to

f +−0 = 2. These relations are equivalent to the commutators (3.2a)-(3.2c) by Theorem 2.7.

4.2 Abe’s Generalized Symplectic Fermion Model

4.2.1 Construction of SF
+

The construction of S F is a generalization of the standard construction of vertex opera-

tor algebras through Heisenberg Lie algebras as it is described in, e.g. [26], Section 6.3.
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Abe’s construction has partly been inspired by a similar treatment of the vertex operator

algebra M(1)+ by Dong and Nagatomo, [13]. Roughly, Abe’s generalization, which im-

plements super commutation rules, can be described as follows. The construction starts

from a d-dimensional vector space h to which one associates an affine Lie superalgebra,

given by the nontrivial central extension of h ⊗ �[t±1] by the one dimensional center �K.

The Fock space S F is the space generated from the highest weight vector 1 with the prop-

erty h ⊗ �[t]1 = 0 and K1 = 1. This space naturally carries the structure of a vertex

superalgebra with vacuum vector 1.

The modes of the vector
∑d

i=1(ei ⊗ t−1)( f i ⊗ t−1) 1, where {ei, f i}1≤i≤d is the canonical

basis of h, satisfy the Virasoro algebra. Thus, S F can be made into a vertex operator

superalgebra. It can be decomposed into an even and an odd part such that the vertex

operators corresponding to the vectors of the even and odd part satisfy the locality axiom

with a bosonic and a fermionic commutator, respectively. The even part S F+ is the vertex

operator algebra which generalizes theW(2, 3, 3, 3) triplet algebra at c = −2.

As indicated above, the construction of S F+ starts from a finite dimensional vector

space h with a skew-symmetric nondegenerate bilinear form 〈·, ·〉. The dimension of h has

to be even and we can pick a basis {ei, f i | 1 ≤ i ≤ d} such that

〈ei, f j〉 = −〈 f j, ei〉 = −δi j

for 1 ≤ i, j ≤ d, where d = dim h/2 and all other pairings vanish.

One proceeds to construct the Heisenberg superalgebra L̂(h) = h⊗�[t, t−1]⊕�K, such

that �K is the even part and h ⊗ �[t, t−1] is the odd part. This is done by equipping L̂(h)

with the bracket relations

[ψ ⊗ tm, ψ′ ⊗ tn]+ = m〈ψ, ψ′〉δm+nK (4.3)

and

[K, L̂(h)] = 0,

where ψ, ψ′ ∈ h, m, n ∈ �, making it into a Lie superalgebra. It should be noted that here

and in the following, δi is taken as an abbreviation for δi,0.

The vertex operator superalgebra S F is obtained by taking the universal enveloping

algebra U(L̂(h)) and dividing out certain ideals. More precisely, let A be the quotient

algebra of U(L̂(h)) by the two sided ideal generated by K − 1. Furthermore, denoting by

ψ(m) the operator of left multiplication by ψ ⊗ tm onA for ψ ∈ h and m ∈ �, we callA≥0

the ideal generated by ψ(m) 1 with ψ ∈ h, m ∈ �≥0. Finally, S F, the space which will be

given the vertex operator algebra structure, is obtained fromA by dividing outA≥0.

The �2-grading of L̂(h) induces a �2-grading on A. The even and odd parts are

called A0̄ and A1̄, respectively. Thus, S F decomposes as S F = S F 0̄ ⊕ S F 1̄, where

S F ī = Aī/(A≥0 ∩A
ī) for ī ∈ �2.

We have yet to equip S F with the structure of a vertex operator superalgebra. This

is done by first defining the modes of a vector and then defining a vertex operator corre-

sponding to this vector as a formal series with the modes as coefficients. It will be shown

that this definition is identical to the one given in the reconstruction Theorem 2.11 and

that all the assumptions of the theorem are satisfied by S F. Having established in this way
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that S F is a vertex superalgebra, the Vir-module structure and grading properties will be

verified in a second step, making S F into a vertex operator superalgebra.

The linear map from S F → End(S F), a 7→ a(n) is given by

a(n) =
∑

i j∈�
∑r

j=1=−
∑r

j=1 n j+n+1

(

−i1 − 1

n1 − 1

)

· · ·

(

−ir − 1

nr − 1

)

: ψ1(i1) · · ·ψr(ir) : (4.4)

for a = ψ1(−n1) · · ·ψr(−nr) 1 with ψi ∈ h and ni ∈ �>0, where the normal ordered product

: · : is the operation onA defined inductively by : ψ(n) := ψ(n) and

: ψ1(n1) · · ·ψr(nr)1 :=

{

ψ1(n1) : ψ2(n2) · · ·ψr(nr) 1 : if n1 < 0,

(−1)r−1 : ψ2(n2) · · ·ψr(nr) 1 : ψ1(n1) if n1 ≥ 0,
(4.5)

with r ∈ �>0, n, ni ∈ � and ψ, ψi ∈ h. We obtain the vertex operator as the linear map

Y(·, x) : S F → Hom(S F, S F((x))) by setting

Y(a, x) =
∑

n∈�

a(n)x
−n−1. (4.6)

The vector space h may be identified as a subspace of S F by the injective map ψ 7→

ψ(−1) 1 +A≥0 and we write ψ(m) for (ψ(−1) 1)(m) for ψ ∈ h and m ∈ �.

Theorem 4.1. The above construction endows the space S F with a vertex superalgebra

structure, where the vertex operator mapping is given by

Y(aα1

j1
. . . a

αm

jm
1, x) =: ∂( j1−1)aα1(x) . . . ∂( jm−1)aαm(x) : (4.7)

Proof. We have to verify the assumptions of the reconstruction theorem. Define the vac-

uum in S F as the vector 1 = 1 + A≥0 and complement the definition of Y by setting

Y(1, x) = id. The canonical basis, ordered according to the list (e1, . . . , ed, f 1, . . . , f d) is a

finite ordered set of homogeneous vectors of S F. The corresponding fields are given by

Y(vi, x), where v = e, f .

(R1) Since ψ(i) 1 = 0 for ψ ∈ h and i ∈ �≥0, we have Y(ψ, x) 1|x=0 = ψ.

(R2) It will be shown in section 4.2.2 that the mode (
∑d

i=1 ei
(−1)

f i)−2 satisfies the properties

of the weight one operator T .

(R3) Let ψ, ψ′ ∈ h. Then we have

{ψ(x1), ψ′(x2)} =
∑

m∈�

m〈ψ, ψ′〉δm+nx−m−1
1 x−n−1

2

=
∑

m∈�

m〈ψ, ψ′〉x−m−1
1 xm−1

2

=〈ψ, ψ′〉
∂

∂x2

x−1
1 δ

(

x2

x1

)

It follows by (2.15) that

(x1 − x2)2{ψ(x1, ψ
′(x2)} = 0,

proving (super)locality.
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(R4) It follows from the Poincaré-Birkhoff-Witt theorem and the fact that ψn 1 = 0 for

ψ ∈ h and n ∈ �≥0, that S F is isomorphic as a vector space to
∧

(h ⊗ t−1�[t−1]).

This proves (R4).

�

It has yet to be shown that the definition of the vertex operator mapping Y(·, x) in the

theorem is compatible with the definition of Y(·, x) in the case of vectors of higher weight

than 1 in S F. This means, that (4.6) together with (4.4) should give the same definition

of a vertex operator as (4.7) for r > 1. This is easy to prove since

∂n1−1Y(ψ, x) =
1

(n1 − 1)!

∑

i1∈�

(−1 − i1)(−1 − i1 − 1) · · · (−1 − i1 − (n1 − 1))ψ(i1)x
−i1−n1

=
∑

i1∈�

(

−i1 − 1

n1 − 1

)

ψ(i1)x
−i1−n1 .

Plugging this into the definition (4.7) and collecting powers of x, we see that the coeffi-

cient of x−n−1 is given by the mode (4.4), proving the equivalence of the two definitions.

In the following, S F will be made into a vertex operator superalgebra. In terms of the

canonical basis of h, the conformal vector is defined by

ω =

d
∑

j=1

e
j

(−1) f j. (4.8)

Theorem 4.2. TheA-module SF becomes a simple vertex operator superalgebra of cen-

tral charge −2d with vacuum vector 1 and Virasoro vector ω. Furthermore S F is of

CFT type, i.e. the weight 0 space of S F is given by S F0 = � 1 and the grading by

S F =
⊕∞

n=0
S Fn.

Proof. The Virasoro algebra relations will be proven below in section 4.2.2. It will fur-

thermore be shown in section 4.3 that for ψ, ψ1, . . . ψr ∈ h

[Ln, ψ(m)] = − mψ(m+n), (4.9)

where m, n ∈ �. It follows that the action of L0 on an arbitrary vector of the form

ψ1
(−n1) · · ·ψ

r
(−nr) 1 with n1, . . . nr ∈ �≥0 is given by

L0ψ
1
(−n1) · · ·ψ

r
(−nr) 1 =(n1 + · · · + nr)ψ

1
(−n1) · · ·ψ

r
(−nr) 1.

One obtains this result by commuting L0 with the ψi
(−ni)

, picking up a factor ni but not

altering the modes until L0 hits the vacuum and annihilates it. Thus S F0 = �1 and the

grading S F =
⊕∞

n=0
S Fn is given by L0 eigenvalues. Because of the reconstruction the-

orem, Theorem 2.11, it only has to be proven that the L−1-derivative property is satisfied

on the fields Y(ψ, x), where ψ ∈ h. But by (4.9), we know that [L−1, ψ(m)] = −mψ(m−1) and

since

∂xY(ψ, x) =
∑

m

(−m − 1)ψ(m)x
−m−2 =

∑

m

(−m)ψ(m−1) x
−m−1,

we have [L−1, Y(ψ, x)] = ∂xY(ψ, x) for ψ ∈ h.
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It was shown in the proof of Theorem 4.1 that S F is isomorphic as a vector space to
∧

(h ⊗ t−1�[t−1]). Thus, elements of the form

ψ1
(−n1) · · ·ψ

r
(−nr) 1, (4.10)

where ψ1, . . . , ψr ∈ h and n1, . . . , nr ∈ �>0 span S F. Assume that there is a nontrivial

subspace M of S F which is a submodule of S F. Then there is a vector v in M with

minimal weight (not necessarily unique) whose weight is not zero since the vacuum is the

only vector with that property. Since v is of the form (4.10), there is a vector ψ ∈ S F such

that ψ(n)v with n > 0 is not zero. But this operation lowers the weight which contradicts

the assumption that the weight of v is minimal. Consequently, S F has to be irreducible as

its own module. �

Recall from Section 2.4 that, as a vertex operator superalgebra, S F is endowed with an

automorphism θ of order 2. Let S F+ be the 1-eigenspace and S F− the (−1)-eigenspace.

Then S F = S F+ ⊕ S F− and we have the grading

S F+ =

∞
⊕

n=0

and S F+n S F− =

∞
⊕

n=1

S F−n . (4.11)

Proposition 4.3. The space S F+ is a simple vertex operator algebra and the S F+-module

S F− is irreducible.

Proof. Since S F is a simple vertex operator superalgebra and θ is an automorphism of

order 2 of S F, we are in the situation of Theorem 2.17 and the assertion follows. �

In [1], Abe proceeds to find a set of generators of the vertex operator algebra S F+. He

proves that the set

span
{

a1
(−n1) · · · a

s
(−ns) 1|ai ∈ S F+2 ⊕ S F+3 , ni ∈ �

}

is indeed the whole space S F+. In order to perform explicit calculations, the generators

ei, j := ei
(−1)e

j f i, j := f i
(−1) f j hi, j := ei

(−1) f j

Ei, j :=
1

2

(

ei
(−2)e

j + e
j

(−2)e
i
)

F i, j :=
1

2

(

f i
(−2) f j + f

j

(−2) f i
)

Hi, j :=
1

2

(

ei
(−2) f j + f

j

(−2)e
i
)

(4.12)

for 1 ≤ i, j ≤ d are defined. In terms of these generators, S F2 and S F3 are given as

S F+2 =

d
⊕

i, j=1

�hi, j
⊕

1≤i< j≤d

(

�ei, j ⊕ � f i, j
)

S F+3 =

d
⊕

i, j=1

�Hi, j
⊕

1≤i≤ j≤d

(

�Ei, j ⊕ �F i, j
)

⊕ L−1S F+2 .

The space L−1S F+2 is needed to account for the antisymmetric combinations of weight 3,

since L1ψ(−1)φ = ψ(−2)φ−φ(−2)ψ. This formula can be verified in a straightforward manner

by using the L−1-derivative property and calculating (ψ(−1)φ(−1))(−2) 1. The above can be

summarized as follows.

Proposition 4.4. Let (ei, f i)1≤i≤d be a canonical basis. Then S F+ is strongly generated by

the vectors ei, j, hi, j, f i, j, Ei, j, Hi, j and F i, j with 1 ≤ i, j ≤ d.
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4.2.2 Virasoro Algebra Relations in SF

The goal of this section will be to establish the Virasoro algebra relations, which are not

explicitly proven in Abe’s construction of S F. Proceeding in two steps, first the action

of the Virasoro modes on arbitrary generators of S F+ will be computed and then the

Virasoro algebra will be established using Proposition 2.10. This has the advantage that

the equations derived in the first step can also be used to show that all the generators of

S F+ are primary.

Looking at the list of generators of S F+, we can conclude that the most general mode

expansion we will need is

(

a(−h)b(−1) 1
)

(2) =
∑

i1,i2∈�
i1+i2=n−h

(

−i1 − 1

h − 1

)(

−i2 − 1

0

)

: a(i1)b(i2) :

=
∑

i1<0

(

−i1 − 1

h − 1

)

a(i1)b(n−h−i1) −
∑

i1≥0

(

−i1 − 1

h − 1

)

b(n−h−i1)a(i1),

where h = 1, 2. For the Virasoro modes we obtain with a = e j, b = f j and h = 1

Ln =

d
∑

j=1















∑

i<0

e
j

(i) f
j

(−i) −
∑

i≥0

f
j

(−i)e
j

(i)















. (4.13)

Before verifying the relations given in proposition 2.10, the action of Ln on vectors of the

form xi
(−r)y

j

(−s)
1 with x and y being either e or f will be derived. With these relations, one

can quickly confirm the Virasoro algebra relations.

The calculations are straightforward with the strategy being to commute the different

modes until a nonnegative mode hits the vacuum and annihilates it. Keep in mind that the

definition of the anti-commutator specializes to

{ei
(m), f

j

(n)
} = −mδi jδm+n and {ei

(m), e
j

(n)
} = { f i

(m), f
j

(n)
} = 0.

This implies in particular that two negative or two positive modes or two modes of the

same “species” e or f can be exchanged, leading only to a change in sign. Beginning with

ei
(−r) f

j

(−s)
1, we have

Lnei
(−r) f

j

(−s) 1 =

d
∑

l=1

∑

k<0

el
(k) f l

(n−k)e
i
(−r) f

j

(−s) 1 −

d
∑

l=1

∑

k≥0

f l
(n−k)e

l
(k)e

i
(−r) f

j

(−s) 1

=

d
∑

l=1

∑

k<0

el
(k)

(

(n − k)δliδn−k−r − ei
(−r) f l

(n−k)

)

f
j

(−s) 1

+

d
∑

l=1

∑

k≥0

f l
(n−k)e

i
(−r)

(

−kδl jδk−s − f
j

(−s)
el

(k)

)

1

=

d
∑

l=1

∑

k<0

(n − k)el
(k) f

j

(−s)
δliδn−k−r 1 −

d
∑

l=1

∑

k≥0

k f l
(n−k)e

i
(−r)δ

l jδk−s 1

=rei
(n−r) f

j

(−s) 1 − s f
j

(n−s)e
i
(−r) 1,
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where n − r < 0 and s ≥ 0 have been assumed in the last step. Otherwise, the first and

second term would be zero, respectively. The action of Ln on ei
(−r)e

j

(−s) 1 is given by

Lnei
(−r)e

j

(−s)
=

d
∑

l=1

∑

k<0

el
(k) f l

(n−k)e
i
(−r)e

j

(−s)
1 −

d
∑

l=1

∑

k≥0

f l
(n−k)e

l
(k)e

i
(−r)e

j

(−s)
1

=

d
∑

l=1

∑

k<0

el
(k)

(

(n − k)δliδn−k−r − ei
(−r) f l

(n−k)

)

e
j

(−s) 1

=

d
∑

l=1

∑

k<0

(

(n − k)el
(k)e

j

(−s)δ
liδn−k−r 1 − el

(k)e
i
(−r)

(

(n − k)δl jδn−k−s − 0
)

1
)

=rei
(n−r)e

j

(−s)
1 − se

j

(n−s)
ei

(−r) 1

The second sum in the first line vanishes because el
(k)

can be commuted through. In the

last step, it was assumed that n− r < 0 and n− s < 0. The action of Ln on the missing two

vectors can be calculated in exactly the same way so that we can summarize

Lnei
(−r)e

j

(−s)
1 = rei

(n−r)e
j

(−s)
1 − se

j

(n−s)
ei

(−r) 1, (4.14a)

Ln f i
(−r) f

j

(−s)
1 = r f i

(n−r) f
j

(−s)
1 − s f

j

(n−s)
f i
(−r) 1, (4.14b)

Lnei
(−r) f

j

(−s)
1 = rei

(n−r) f
j

(−s)
1 − s f

j

(n−s)
ei

(−r) 1, (4.14c)

Ln f i
(−r)e

j

(−s) 1 = r f i
(n−r)e

j

(−s) 1 − se
j

(n−s) f i
(−r) 1. (4.14d)

The first and second term on the right hand of each of these equations vanish unless the

conditions

n − r < 0, n − s < 0, (4.15)

r ≥ 0, s ≥ 0, (4.16)

n − r < 0, s ≥ 0, (4.17)

n − s < 0, r ≥ 0 (4.18)

are satisfied for the first and second term, respectively.

With the help of (4.14c) for i = j and r = s = 1 the equations (2.29a)-(2.29e) from

Proposition 2.10 can easily be verified. Note that the first of these equations follows

directly from the definition Ln = ωn+1. With respect to the other equations, we have

ω1ω = L0ω =

d
∑

i=1

ei
(−1) f i

(−1) 1 − f i
(−1)e

i
(−1) = 2

d
∑

i=1

ei
(−1) f i

(−1) 1 = 2ω,

ω2ω = L1ω = −

d
∑

i=1

f i
(0)e

i
(−1) 1 =

d
∑

i=1

ei
(−1) f i

(0) 1 = 0,

ω3ω = L2ω = −

d
∑

i=1

f i
(1)e

i
(−1) 1 = −

d
∑

i=1

δiiδ1−1 1 = −d 1,

ωnω = Ln−1ω = −

d
∑

i=1

f i
(n−2)e

i
(−1) 1 = 0 for n ≥ 4.

It follows from Proposition 2.10 that the modes Ln satisfy the Virasoro algebra relations.
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Proposition 4.5. The spaces of primary vectors P of weight 2 and 3 in S F+ are given by

P(S F+2 ) =
⊕

1≤i< j≤d

(

�ei, j ⊕ � f i, j ⊕ �hi, j ⊕ �h j,i ⊕ �(hi,i − h j, j)
)

,

P(S F+3 ) =

d
⊕

i, j=1

Hi, j ⊕
⊕

1≤i≤ j≤d

(

�Ei, j ⊕ �F i, j
)

.

It follows that S F+ can be written as the direct sum

S F+2 ⊕ S F+3 = �ω ⊕ P(S F+2 ) ⊕ L−1S F+2 ⊕ P(S F+3 ). (4.19)

Therefore, the vertex operator algebra S F+ forms aW(2, 22d2−d−1, 32d2+d)-algebra.

Proof. We have to establish that the generators of P(S F+2 ) and P(S F+3 ) are indeed pri-

mary. Recall that a primary vector v is defined by the condition L1v = L2v = 0. Keeping

in mind the conditions (4.15)-(4.18) and assuming i , j, one has

L1ei, j = L2ei, j = 0,

L1 f i, j = f i
(0) f

j

(−1)
1 − f

j

(0)
f i
(−1) 1,

L2 f i, j = f i
(1) f

j

(−1) 1 − f
j

(1) f
j

(−1) 1,

L1

(

hi,i − h j, j
)

= − f i
(0)e

i
(−1) 1 = 0,

L2

(

hi,i − h j, j
)

= − f i
(1)e

i
(−1) 1 + f

j

(1)e
j

(−1) 1 = −δii + δ j j = 0,

L1hi, j = − f i
(0)e

j

(−1) 1 = 0,

L2hi, j = − f i
(1)e

j

(−1) 1 = −δi, j = 0.

In the case of the generators of weight 3 one has with i and j arbitrary

L1Ei, j = 2ei
(−1)e

j

(−1)
1 + 2e

j

(−1)
ei

(−1) 1,= 2ei
(−1)e

j

(−1)
1 − 2ei

(−1)e
j

(−1)
1 = 0,

L2Ei, j = 0,

L1F i, j = 2 f i
(−1) f

j

(−1)
1 − f i

(0) f
j

(−2)
1 + 2 f

j

(−1)
f i
(−1) 1 − f

j

(0)
f i
(−2) 1 = 0,

L2F i, j = 2 f i
(0) f

j

(−1) 1 − f i
(1) f

j

(−2) 1 + 2 f
j

(0) f i
(−1) 1 − f

j

(1) f i
(−2) 1 = 0,

L1Hi, j = 2ei
(−1) f

j

(−1) 1 + 2 f
j

(−1)e
i
(−1) 1 − f

j

(0)e
i
(−2) 1 = 0,

L2Hi, j = 2 f
j

(0)e
i
(−1) 1 − f

j

(1)e
i
(−2) 1 = 0.

Since hi, j with i, j = 1 . . . d arbitrary can be written as linear combination of ω, hk,l, hl,k

and hl,l − hk,k with l < k, it follows from Corollary 4.4 that S F+ can be written as a direct

sum as in (4.19). Thus, the only nonprimary generating vector of S F+ is ω, proving the

assertion that S F+ forms aW-algebra. Counting the generators, one gets d2−1 generators

from hi, j withoutω and, assuming i < j, 2 d
2
(d−1) from ei, j and f i, j, adding up to 2d2−d−1

primaries of weight 2. For weight 3, one has d2 from Hi, j and, assuming i ≤ j, d
2
(d + 1)

from Ei, j and F i, j, adding up to 2d2 + d. �
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4.2.3 Construction of SF
+-Modules and Classification

We already know that S F+ and S F− are irreducible S F+-modules. In the following, two

θ-twisted modules S F(θ)± will be constructed. With the help of Zhu’s algebra, Abe has

been able to show that {S F±, S F(θ)±} gives a complete list of inequivalent irreducible

modules.

The two θ-twisted modules are constructed in close analogy to S F. Starting point is

the Lie superalgebra

L̂θ(h) := h ⊗ t
1
2�[t±1] ⊕ �K

with bracket relations

[ψ ⊗ tm, ψ′ ⊗ tn]+ = mδm+n,0〈ψ, ψ
′〉K and [K, L̂θ(h)] = 0 (4.20)

for ψ, ψ′ ∈ h and m, n ∈ 1
2
+ � such that �K is the even part and h ⊗ t

1
2�[t±1] is the odd

part. As in the case of S F, one considers the associative AlgebraAθ which is the quotient

algebra of the universal enveloping algebra U(L̂θ(h)) by the ideal generated by K −1. The

algebraAθ inherits the �2 grading from L̂θ(h) such thatAθ = Aθ

0̄
⊕Aθ

1̄
. WithAθ

>0
defined

to be the left ideal ofAθ generated by the vectors ψ ⊗ tm for ψ ∈ h and m ∈ 1
2
+ �, we set

S F(θ) = A/Aθ
>0.

Again, the vector on which the Fock space will be built is defined by setting 1θ =

1 +Aθ
>0. We denote by ψ(m) the operator of left multiplication by ψ ⊗ tm on S F(θ) for

ψ ∈ h and m ∈ 1
2
+�. Since the involution θ preservesAθ

>0
, the �2-grading ofAθ induces

a decomposition S F(θ) = S F(θ)+ ⊕ S F(θ)−, where S F(θ)± are the (±1)-eigenspaces of

S F(θ) for θ.

To endow S F(θ) with an S F-module structure, we have to find a way to define an

action of the vertex operator Y(v, x) with v = ψ1
(−n1) · · ·ψ

r
(−nr) 1 on S F(θ). This is done in

two steps. First, we introduce

W(ψ, x) =
∑

i∈ 1
2+�

ψ(i)x−i−1

for any ψ ∈ h and define

W(v, x) =: ∂n1−1W(ψ1, x) · · ·∂nr−1W(ψr, x) : (4.21)

for v = ψ1
(−n1) · · ·ψ

r
(−nr) 1 with ψi ∈ h and ni ∈ �>0. Thus we obtain a linear map W(·, x)

from S F to Hom(S F(θ), S F(θ))((x
1
2 )). Taking v as above, the vertex operator associated

to v is defined with the help of a certain operator ∆(x) as

Y(v, x) = W(e∆(x)v, x).

The operator ∆(x) is introduced in Chapter 9.2 of [19]. In the present context, it is defined

as

∆(x) = 2
∑

m,n≥0

d
∑

i=1

cmnei
(n) f i

(m)x
−m−n,

where the coefficients cmn ∈ � are determined by the formal expansion

∑

m,n≥0

cmnxmyn = −log













(1 + x)
1
2 + (1 + y)

1
2

2













.
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Additionally one sets Y(1, x) = id. Writing ψ(m) for (ψ(−1) 1)(m) for ψ ∈ h and m ∈ 1
2
+ �,

one can obtain the following identities by direct calculation (c.f. [19]):

Y(ψ, x) = W(ψ, x) (4.22)

Y(ψ(−1)φ, x) = W(ψ(−1)φ, x) +
〈ψ, φ〉

8
idx−2. (4.23)

Setting ψ = ei and φ = f i we have for the Virasoro vector

Y(ω, x) ≡
∑

n

ωW
n x−1−n = W(ω, x) −

d

8
idx−2.

Using the definition (4.21), this implies

LW
n = ω

W
n+1 =

d
∑

i=1

∑

l<0
l∈ 1

2+�

ei
(l) f i

(n−l) −

d
∑

i=1

∑

l≥0
l∈ 1

2+�

f i
(n−l)e

i
(l) −

d

8
idδn,0. (4.24)

In the following, the W superscript will not be used since the context is clear. We are now

in a position to prove the following statement.

Theorem 4.6. The space S F(θ) carries the structure of a θ-twisted S F module.

Proof. All axioms follow easily from the definitions except for the translation axiom, the

Jacobi identity and the L0-grading related axioms. For the Jacobi identity, the reader is

referred to Theorem 9.5.3 in [19] and its proof therein.

With the help of identity (4.24), one concludes that [Lm, ψ(n)] = −nψ(m+n) for m ∈ �

and n ∈ 1
2
+ � as in the untwisted case since the term proportional to the identity does

not contribute to the commutator. This implies the translation axiom (c.f. Section 4.2.1).

Moreover, it follows as in the untwisted case that

L01θ = −
d

8
1θ

and

L0ψ
1
(−n1) · · ·ψ

r
(−nr)1θ =

(

−
d

8
+

∑

ni

)

ψ1
(−n1) · · ·ψ

r
(−nr)1θ (4.25)

for any ψi ∈ h and ni ∈
1
2
+ �≥0. We know that S F(θ) �

∧
(h ⊗ t−

1
2�[t−1]) by the same

arguments as in the construction of S F. Thus, elements of the form (4.25) form a basis of

S F(θ) as a vector space. Consequently the grading of S F(θ) is given by

S F(θ) =

∞
⊕

i=0

S F(θ)− d
8+

i
2
. (4.26)

�



48 CHAPTER 4. SYMPLECTIC FERMIONS

Let Ω(S F(θ)) be the space of singular vectors of S F(θ). Since S F(θ) has a Poincaré-

Birkhoff-Witt basis of the form (4.25) and the action of positive modes is given by the

contraction according to (4.20), 1θ spans Ω(S F(θ)). But that means that there can be no

vector w which is linearly independent from 1θ such that one can generate a submodule

by acting on w with modes ψ(−n), where n ∈ −1
2
+ �>0 and ψ ∈ h. Consequently, S F(θ)

has to be irreducible.

Recall the decomposition (2.41) of an irreducible twisted module. Since θ is an au-

tomorphism of S F of order 2, we have the decomposition S F(θ) = S F(θ)+ ⊕ S F(θ)−.

According to the discussion in Section 2.4, S F(θ)± are S F+-modules and by (2.40), they

have the grading

S F(θ)+ =

∞
⊕

i=0

S F(θ)− d
8+i and S F(θ)− =

∞
⊕

i=0

S F(θ)− d+4
8 +i. (4.27)

Proposition 4.7. The S F+-modules S F(θ)± are irreducible as S F+-modules.

Proof. Since S F(θ) is an irreducible θ-twisted S F module, the assertion follows from

Theorem 2.18. �

So far, the construction of S F and of S F(θ) has yielded four S F+-modules: S F±

and S F(θ)±. The classification of all irreducible modules is given by the following result

obtained by Abe.

Theorem 4.8. For the vertex operator algebra S F+, any irreducible A(S F+)-module is

isomorphic to one in the list {Ω(S F±),Ω(S F(θ)±)}.

Proof. The proof will only be outlined here since it requires extensive calculations. For a

detailed proof see the proofs of Theorems 4.8 and 4.15 in [1]. The cases d = 1 and d > 1

are treated separately. Using Zhu’s theorem, the problem is reduced to a classification of

irreducible A(S F+)-modules. In the case d = 1, Abe has shown that A(S F+) decomposes

into a direct sum of four ideals on which [ω] acts as scalar multiple of the identity. These

ideals are either commutative or homorphic images of simple algebras. Therefore there

exist at most four irreducible A(S F+)-modules. But since the existence of at least four

irreducible modules has been proven by the above construction, there are exactly four

irreducible A(S F+)-modules.

The case d > 1 is more intricate. First, one has to prove that any irreducible A(S F+)-

module W is a direct sum of eigenspaces for the action of all [hi,i] for i = 1, . . . , d. By ex-

plicit calculations in A(S F+), Abe derived the following equation constraining the eigen-

values:

[hi,i]2 ⋆
(

[hi,i] − 1
)

⋆
(

8[hi,i] + 1
)

⋆
(

8[hi,i] − 3
)

= 0.

This equation is the exact analogue of equation (3.4) in the case d > 1. It follows that the

eigenvalues λ1, . . . , λd take values in the set {0,−1
8
, 1, 3

8
}.

Abe then shows that the following implication holds: if there exists a nonzero simul-

taneous eigenspace for all [hi,i] such that λi is equal to one of the elements of {1, 3
8
, 0,−1

8
},

then W is isomorphic to the respective element of the list

{Ω(S F−),Ω(S F(θ)−),Ω(S F+),Ω(S F(θ)+)}.

�



4.3. EXPLICIT CALCULATIONS IN S F+ 49

The spectrum of S F+ can be read off from the gradings (4.11) and (4.27). It is given

by

h = 0, 1,−
d

8
,
−d + 4

8
. (4.28)

4.3 Explicit Calculations in SF
+

In this section a general commutator formula for modes of vectors which have the form

a(−n1)b(−n2) will be derived. Since all generators are of this form, all relevant commutators

in S F+ may be calculated with this formula. This result will not be needed in the calcu-

lations of Chapter 5 since it suffices to study certain special cases of modes applied to a

fixed S F+-module. However, it would in principle be possible to calculate all commuta-

tors of theW(2, 22d2−d−1, 32d2+d) algebra, so that the result may be of interest. Besides,

the commutator formula allows for an explicit calculation of the Virasoro algebra relations

and formula (4.9).

In the case considered here, the mode definition (4.4) specializes to

(ψ1
(−n1)ψ

2
(−n2) 1)(n) =

∑

i1 ,i2
i1+i2=−n1−n2+n+1

(

−i1 − 1

n1 − 1

)(

−i2 − 1

n2 − 1

)

: ψ1
(i1)ψ

2
(i2) : .

Observing that one summation breaks down and using the definition (4.5) of normal or-

dering, we obtain

(

ψ(−n1)φ(−n2) 1
)

(n) =
∑

ν<0

(

−ν − 1

n1 − 1

) (

−(−n1 − n2 − ν + n + 1) − 1

n2 − 1

)

ψ(ν)φ(n−n1−n2−ν+1) (4.29a)

−
∑

ν≥0

(

−ν − 1

n1 − 1

) (

−(−n1 − n2 − ν + n + 1) − 1

n2 − 1

)

φ(n−n1−n2−ν+1)ψ(ν) (4.29b)

and

(

ρ(−m1)σ(−m2) 1
)

(m) =
∑

µ<0

(

−µ − 1

m1 − 1

) (

−(−m1 − m2 − µ + m + 1) − 1

m2 − 1

)

ρ(µ)σ(m−m1−m2−µ+1)

(4.29c)

−
∑

µ≥0

(

−µ − 1

m1 − 1

) (

−(−m1 − m2 − µ + m + 1) − 1

m2 − 1

)

σ(m−m1−m2−µ+1)ρ(µ).

(4.29d)

The calculation of the commutator of the above two modes is straightforward but we will

need some notation to keep the presentation clear. In the following, (4.29a)-(4.29d) will

be referred to as A − D, where the right hand side is meant in the case of (4.29a) and

(4.29c). With this convention, the commutator becomes

[

(

ψ(−n1)φ(−n2) 1
)

(n) ,
(

ρ(−m1)σ(−m2) 1
)

(m)

]

= [A,C] − [A,D] − [B,C] + [B,D]. (4.30)
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The following notation also helps to keep the formulas compact:

µ′ = m − m1 − m2 − µ + 1

ν′ = n − n1 − n2 − ν + 1

C1 =

(

−ν − 1

n1 − 1

) (

−(−n1 − n2 − ν + n + 1) − 1

n2 − 1

) (

−µ − 1

m1 − 1

) (

−(−m1 − m2 − µ + m + 1) − 1

m2 − 1

)

.

Consider the commutator [A,C] as an example. Using the above notation, it is given by

[A,C] =
∑

ν < 0

µ < 0

C1ψ(ν)φ(ν′)ρ(µ)σ(µ′) −
∑

ν < 0

µ < 0

C1ρ(µ)σ(µ′)ψ(ν)φ(ν′). (4.31)

The strategy for the computation of the commutator is to bring the second term in the

order of the first term. This is done with the help of the anticommutation rule
{

ψ(m), ψ
′
(n)

}

= m〈ψ, ψ′〉δn+m,0.

Thus, in the process of rearranging, applying the anticommutator will yield a term of four

modes which has the desired order and terms involving only two modes because the other

two have been contracted. Since an even number of transpositions is needed to arrange

the second term of (4.31) in the order of the first term, its sign will not be altered. Thus,

the terms involving four modes will cancel each other, leaving only terms involving two

modes. For the following calculation, keep in mind that δx should always be read as δx,0.

ρ(µ)σ(µ′)ψ(ν)φ(ν′) =ρ(µ)

(

µ′〈σ, ψ〉δµ′+ν − ψ(ν)σ(µ′)

)

φ(ν′)

=µ′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) −
(

µ〈ρ, ψ〉δµ+ν − ψ(ν)ρ(µ)

)

σ(µ′)φ(ν′)

=µ′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) − µ〈ρ, ψ〉δµ+νσ(µ′)φ(ν′)

+ ψ(ν)ρ(µ)

(

µ′〈σ, φ〉δµ′+ν′ − φ(ν′)σ(µ′)

)

=µ′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) − µ〈ρ, ψ〉δµ+νσ(µ′)φ(ν′) + µ
′〈σ, φ〉δµ′+ν′ψ(ν)ρ(µ)

− µ〈ρ, φ〉δµ+ν′ψ(ν)σ(µ′) + ψ(ν)φ(ν′)ρ(µ)σ(µ′)

Performing the same calculations for all the other commutators, we obtain the following

terms for the commutators [A,C], [A,D], [B,C] and [B,D], respectively.

E = ρ(µ)σ(µ′)ψ(ν)φ(ν′) =µ
′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) − µ〈ρ, ψ〉δµ+νσ(µ′)φ(ν′) + µ

′〈σ, φ〉δµ′+ν′ψ(ν)ρ(µ)

− µ〈ρ, φ〉δµ+ν′ψ(ν)σ(µ′) + ψ(ν)φ(ν′)ρ(µ)σ(µ′)

(4.32a)

F = σ(µ′)ρ(µ)ψ(ν)φ(ν′) = − µ
′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) + µ〈ρ, ψ〉δµ+νσ(µ′)φ(ν′) − µ

′〈σ, φ〉δµ′+ν′ψ(ν)ρ(µ)

+ µ〈ρ, φ〉δµ+ν′ψ(ν)σ(µ′) + ψ(ν)φ(ν′)ρ(µ)σ(µ′)

(4.32b)

G = ρ(µ)σ(µ′)φ(ν′)ψ(ν) =µ
′〈σ, ψ〉δµ′+νφ(ν′)ρ(µ) − µ〈ρ, ψ〉δµ+νφ(ν′)σ(µ′) + µ

′〈σ, φ〉δµ′+ν′ρ(µ)ψ(ν)

− µ〈ρ, φ〉δµ+ν′σ(µ′)ψ(ν) + ψ(ν)φ(ν′)ρ(µ)σ(µ′)

(4.32c)

H = σ(µ′)ρ(µ)φ(ν′)ψ(ν) = − µ
′〈σ, ψ〉δµ′+νφ(ν′)ρ(µ) + µ〈ρ, ψ〉δµ+νφ(ν′)σ(µ′) − µ

′〈σ, φ〉δµ′+ν′ρ(µ)ψ(ν)

+ µ〈ρ, φ〉δµ+ν′σ(µ′)ψ(ν) + ψ(ν)φ(ν′)ρ(µ)σ(µ′)

(4.32d)
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Except for the coefficients which have to be calculated by evaluating the Kronecker deltas,

the computation of the commutators is already finished. In the following, E′, F′, G′, H′

will be taken to denote the respective terms E, F, G, H after subtraction of ψ(ν)φ(ν′)ρ(µ)σ(µ′).

Note that for [A,C] and [A,D], we have the summation regions µ < 0, ν < 0 and µ < 0, ν ≥

0, respectively. Furthermore, comparing (4.32a) and (4.32b), we see that E′ = −F′ so that

the sums corresponding to [A,C] and [A,D] in (4.30) add such that the sum over ν gets

unrestricted. The same is true for the commutators [B,C] and [B,D]. This implies that

the whole commutator takes the form

K =
[

(

ψ(−n1)φ(−n2) 1
)

(n) ,
(

ρ(−m1)σ(−m2) 1
)

(m)

]

= [A,C] − [A,D] − [B,C] + [B,D]

= −
∑

ν<0
µ

C1E′ +
∑

ν≥0
µ

C1G′. (4.33)

Hence, the Kronecker deltas can be evaluated without taking into account additional con-

ditions coming from restricted summation indices. Evaluating these Kronecker deltas,

one obtains the conditions

δµ+ν ⇒ µ = −ν (4.34a)

δµ′+ν ⇒ µ = m − m1 − m2 + ν + 1 (4.34b)

δµ+ν′ ⇒ µ = −n + n1 + n2 + ν − 1 (4.34c)

δµ′+ν′ ⇒ µ = m + n − m1 − m2 − n1 − n2 − ν + 2. (4.34d)

Additional notation is needed to denote the coefficients with the above conditions applied,

C11 = µC1 where (4.34a) is satisfied,

C12 = µ
′C1 where (4.34b) is satisfied,

C13 = µC1 where (4.34c) is satisfied,

C14 = µ
′C1 where (4.34d) is satisfied.

It is straightforward to compute the coefficients under the respective conditions, yielding

C11 = − ν

(

−ν − 1

n1 − 1

)(

−m + m1 + m2 − ν − 2

m2 − 1

)(

ν − 1

m1 − 1

)(

−n + n1 + n2 + ν − 2

n2 − 1

)

, (4.35a)

C12 = − ν

(

−ν − 1

n1 − 1

)(

−m + m1 + m2 − ν − 2

m1 − 1

)(

ν − 1

m2 − 1

)(

−n + n1 + n2 + ν − 2

n2 − 1

)

, (4.35b)

C13 = (−n + n1 + n2 + ν − 1)

(

−ν − 1

n1 − 1

)(

n − n1 − n2 − ν

m1 − 1

)(

−n + n1 + n2 + ν − 2

n2 − 1

)

×

(

−m + m1 + m2 − n + n1 + n2 + ν − 3

m2 − 1

)

,

(4.35c)

C14 = (−n + n1 + n2 + ν − 1)

(

−ν − 1

n1 − 1

)(

n − n1 − n2 − ν

m2 − 1

)(

−n + n1 + n2 + ν − 2

n2 − 1

)

×

(

−m + m1 + m2 − n + n1 + n2 + ν − 3

m1 − 1

)

.

(4.35d)
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We can now put the pieces together by plugging (4.32a) and (4.32c) into (4.33).

K =−
∑

ν<0,µ

C1

[

µ′〈σ, ψ〉δµ′+νρ(µ)φ(ν′) − µ〈ρ, ψ〉δµ+νσ(µ′)φ(ν′)

+µ′〈σ, φ〉δµ′+ν′ψ(ν)ρ(µ) − µ〈ρ, φ〉δµ+ν′ψ(ν)σ(µ′)

]

+
∑

ν≥0,µ

C1

[

µ′〈σ, ψ〉δµ′+νφ(ν′)ρ(µ) − µ〈ρ, ψ〉δµ+νφ(ν′)σ(µ′)

+µ′〈σ, φ〉δµ′+ν′ρ(µ)ψ(ν) − µ〈ρ, φ〉δµ+ν′σ(µ′)ψ(ν)

]

= −
∑

ν<0

[

C12〈σ, ψ〉ρ(µ)φ(ν′) − C11〈ρ, ψ〉σ(µ′)φ(ν′) +C14〈σ, φ〉ψ(ν)ρ(µ) − C13〈ρ, φ〉ψ(ν)σ(µ′)

]

+
∑

ν≥0

[

C12〈σ, ψ〉φ(ν′)ρ(µ) − C11〈ρ, ψ〉φ(ν′)σ(µ′) + C14〈σ, φ〉ρ(µ)ψ(ν) −C13〈ρ, φ〉σ(µ′)ψ(ν)

]

.

(4.36)

In the second step the commutator has been rewritten using the conventions (4.35a)-

(4.35d). Equation (4.36) is the general commutator formula advertised in the beginning

of this section.

In the following, the commutator will be used to calculate directly the Virasoro algebra

relations in S F+, which have already been established using Proposition 2.10. According

to the definition (4.8) of the conformal vector of S F+, let ψ = ρ = ei, φ = σ = f i and

n1 = n2 = m1 = m2 = 1. The general commutator formula then specializes to (a minus

sign is introduced to obtain the usual ordering)

−[Ln−1, Lm−1] =

d
∑

i=1















∑

ν<0

(

(−n + ν + 1)ei
(ν) f i

(m+n−ν−2) − νe
i
(m+ν−1) f i

(n−ν−1)

)

+
∑

ν≥0

(

ν f i
(n−ν−1)e

i
(m+ν−1) − (−n + ν + 1) f i

(m+n−ν−2)e
i
(ν)

)















=

d
∑

i=1















∑

ν<0

(−n + ν + 1)ei
(ν) f i

(m+n−ν−2) −
∑

ν<−1+m

(ν − m + 1)ei
(ν) f i

(m+n−ν−2)

+
∑

ν≥m−1

(ν − m + 1) f i
(m+n−ν−2)e

i
(m+ν−1) −

∑

ν≥0

(−n + ν + 1) f i
(m+n−ν−2)e

i
(ν)















.

In the last step, the indices of two sums have been shifted so that the mode combinations

can later be interpreted as modes of the conformal vector. In the following, the two cases

m < 1 and m ≥ 1 have to be treated separately. In these respective cases, the sums need

to be split according to
∑

ν<0

=
∑

ν<m−1

+
∑

m−1≤ν<0
∑

ν≥0

=
∑

ν≥m−1

−
∑

m−1≤ν<0

(4.37)
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in the case m < 1 and according to

∑

ν<0

=
∑

ν<m−1

−
∑

0≤ν<m−1
∑

ν≥0

=
∑

ν≥m−1

+
∑

0≤ν<m−1

(4.38)

in the case m ≥ 1. The inequalities for m < 1 and m ≥ 1,

m − 1 ≤ ν < 0

0 ≤ ν < m − 1,

will be denoted by I1 and I2, respectively. The notation

±
∑

I1,I2

=



























∑

m−1≤ν<0

for m < 1

−
∑

0≤ν<m−1

for m ≥ 1

serves to unify the following manipulations of the commutator for the two cases. Using

the sum splitting (4.37) and (4.38) the commutator −[Ln−1, Lm−1] can be written as

d
∑

i=1

















∑

ν<m−1

(m − n)ei
(ν) f i

(m+n−ν−2) ±
∑

I1,I2

(−n + ν + 1)ei
(ν) f i

(m+n−ν−2)

+
∑

ν≥m−1

(n − m) f i
(m+n−ν−2)e

i
(ν) ±

∑

I1,I2

(−n + ν + 1) f i
(m+n−ν−2)e

i
(ν)

















.

By adding and subtracting certain sums, the argument of the outer sum over i can be

rewritten as
∑

ν<m−1

(m − n)ei
(ν) f i

(m+n−ν−2) ±
∑

I1,I2

(m − n)ei
(ν) f i

(m+n−ν−2)

+
∑

ν≥m−1

(n − m) f i
(m+n−ν−2)e

i
(ν) ∓

∑

I1,I2

(n − m) f i
(m+n−ν−2)e

i
(ν)

∓
∑

I1,I2

(m − n)ei
(ν) f i

(m+n−ν−2) ±
∑

I1,I2

(−n + ν + 1)ei
(ν) f i

(m+n−ν−2)

±
∑

I1,I2

(n − m) f i
(m+n−ν−2)e

i
(ν) ±

∑

I1,I2

(−n + ν + 1) f i
(m+n−ν−2)e

i
(ν).

Collecting terms with the same ordering of the modes, we obtain

∑

ν<0

(m − n)ei
(ν) f i

(m+n−ν−2) +
∑

ν≥0

(n − m) f i
(m+n−ν−2)e

i
(ν)

±
∑

I1,I2

(−m + ν + 1)ei
(ν) f i

(m+n−ν−2) ±
∑

I1,I2

(−m + ν + 1) f i
(m+n−ν−2)e

i
(ν).

With the help of the Virasoro modes (4.13), we can identify the sum over i of the first two

sums as (m−n)Lm+n−2. The second two sums are just the anticommutator
{

ei
(ν), f i

m+n−ν−2

}

=
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νδm+n−2,0. Thus, the full commutator becomes

−[Ln−1, Lm−1] = (m − n)Lm+n−2 ∓

d
∑

i=1

∑

I1,I2

(−m + ν + 1)νδm+n−2,0

= (m − n)Lm+n−2 +
−2d

12

(

(m − 1)3 − m + 1
)

δm+n−2,0.

This is of course equivalent to the usual notation for the Virasoro algebra with the central

charge c = −2d,

[Lm, Ln] = (m − n)Lm+n +
c

12

(

m3 − m
)

δm+n,0.

For the proof of Theorem 4.1, formula (4.9) for the commutator of the Virasoro modes

with the modes of a primary vector ψ(−1) 1 with ψ ∈ h is needed. In the rest of this section,

formula (4.9) will be derived. The reasoning is very similar to the one in the derivation of

the general commutator formula. Consider the commutator
[

h
i, j

n+1
, ψ(m)

]

=
∑

k∈�

: ei
(k) f

j

(n−k)
: ψ(m) −

∑

k∈�

ψ(m) : ei
(k) f

j

(n−k)
: . (4.39)

Writing out the normal ordering, the second term becomes
∑

k∈�

ψ(m) : ei
(k) f

j

(n−k)
:=

∑

k<0

ψ(m)e
i
(k) f

j

(n−k)
−

∑

k≥0

ψ(m) f
j

(n−k)
ei

(k).

Using the same reordering strategy as in the derivation of the general commutator formula,

the right hand side can be rewritten as
∑

k<0

(

m〈ψ, ei〉δm+k f
j

(n−k)
− m〈ψ, f j〉δm+n−ke

i
(k) + ei

(k) f i
(n−k)ψ(m)

)

−
∑

k≥0

(

m〈ψ, f j〉δm+n−kei
(k) − m〈ψ, ei〉δm+k f

j

(n−k)
+ f i

(n−k)e
j

(k)
ψ(m)

)

.
(4.40)

In the commutator (4.39), the terms with three modes cancel each other, so that only terms

with one mode remain. Evaluating the Kronecker deltas in (4.40), we obtain conditions

on m and n. For the terms in the first row these are m > 0 and m + n < 0, while for the

terms in the second row these are m ≤ 0 and m+n ≥ 0. Thus, for each of the modes ei
(n+m)

and f
j

(n+m)
exactly one term does not vanish so that we arrive at

[

h
i, j

n+1, ψ(m)

]

= −m〈ψ, f j〉ei
(m+n) + m〈ψ, ei〉 f

j

(m+n).

Since the expansion of ψ in basis elements of the symplectic vector space h can be written

as

ψ =

d
∑

i=1

(

〈ψ, ei〉 f j − 〈ψ, f i〉ei
)

,

we finally obtain

d
∑

i=1

[

h
i,i

n+1, ψ(m)

]

=
[

Ln, ψ(m)

]

= −mψ(m+n).



Chapter 5

Lie Algebra Structure of d Symplectic

Fermions

The investigation into the structure of the zero mode algebra of S F+ presented in this

chapter starts from the question if there is a generalization to the Lie algebra su(2) which

is found in the case d = 1. As mentioned in section 3.2, Gaberdiel and Kausch have used

certain explicitly known null vectors to establish the zero mode Lie algebra.

Without these known null vectors, using the general commutator formula derived in

section 4.3 may be thought to be an alternative. This approach has the disadvantage that

generally the result of the commutator of two zero modes is not in a form that can easily

be interpreted in terms of zero modes of a generating vector. This interpretation gets

much easier if the zero mode algebra is restricted to a certain module. For this reason, the

above problem is circumvented here by computing the Lie algebra of zero modes on the

top level of the S F+-module S F−. It will be explained below how this restriction to one

module is lifted afterwards.

Even by confining the analysis to the top level of S F−, the resulting zero mode Lie

algebra is still relatively large and complicated, so that no immediate interpretation is

possible. A first hint comes from the heuristics of simple counting arguments. It was

shown in section 4.2.2, that there are 2d2 + d generating vectors of weight 3. Incidentally,

the dimension of both su(2d) and sp(2d) equals this number of generators. Though the

d = 1 case points to the special unitary Lie algebra, the construction of S F with the

help of a symplectic vector space makes the symplectic Lie algebra more likely; and this

is indeed the structure that is found. Furthermore it will be shown that the zero modes

corresponding to the vectors of weight 2 form an irreducible representation of sp(2d).

So far, the whole analysis into the structure of the zero mode algebra applies only to

the top level of S F−. Thus, the question is how to extend the assertions about the structure

on all S F+-modules. The answer will be given with the help of Zhu’s algebra. We know

from Zhu’s theorem that the top level of every S F-module is a representation of Zhu’s

algebra. All that is needed then is a relation of the zero mode algebra to Zhu’s algebra.

It will be shown that this relation is given by an isomorphism of both algebras. More

precisely, the zero mode Lie algebra restricted to the top level of S F− is isomorphic to

Zhu’s algebra with the canonical Lie algebra structure induced by the commutator.

55
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5.1 Commutation Relations of the Zero Mode Algebra

The first step in the approach outlined above is to compute the action of the zero modes

of the generators on the top level of S F−. The top level of the S F+-module S F− has the

special property that it is given by h =
{

ψ(−1) 1 |ψ ∈ S F+
}

. The dimension of h is taken to

be fixed and equal to 2d for the rest of this chapter. The generators of S F+ of weight 2

and 3 have the form a(−1)b(−1) 1 and a(−2)b(−1) 1 with a, b ∈ S F+, respectively. Therefore,

it is prudent to calculate the action of zero modes of such general vectors. We have the

mode expansion

(

a(−2)b(−1) 1
)

(2) =
∑

i<0

(−i − 1)a(i)b(−i) −
∑

i≥0

(−i − 1)b(−i)a(i).

Applying this zero mode on a vector ψ(−1) 1 ∈ S F−1 and using {ψ(m), ψ
′
(n)} = m〈ψ, ψ′〉δm+n

we obtain

(

a(−2)b(−1)

)

(2) ψ(−1) 1 =
∑

i<0

(−i − 1)a(i)(−i)δ−i−1〈b, ψ〉 1

−
∑

i≥0

(−i − 1)b(−i)iδi−1〈a, ψ〉 1

= 0 + 2b(−1)〈a, ψ〉 1

= 2〈a, ψ〉b.

The calculation for a(−1)b(−1) 1 is very similar. Starting from the mode expansion

(

a(−1)b(−1) 1
)

(1) =
∑

i<0

a(i)b(−i) −
∑

i≥0

b(−i)a(i),

one obtains

(

a(−1)b(−1) 1
)

(1) ψ(−1) 1 =
∑

i<0

a(i)(−i)δ−i−1〈b, ψ〉 1 −
∑

i≥0

b(−i)i δi−1〈a, ψ〉 1

=〈b, ψ〉a − 〈a, ψ〉b.

Using the definitions (4.12) for the generators of S F+, we obtain the following list for the

action of the zero modes on the top level of S F− (the parantheses around mode indices

will be omitted for the modes of the generators of S F+):

(Ei, j)2ψ =〈e
i, ψ〉e j + 〈e j, ψ〉ei (5.1a)

(F i, j)2ψ =〈 f
i, ψ〉 f j + 〈 f j, ψ〉 f i (5.1b)

(Hi, j)2ψ =〈e
i, ψ〉 f j + 〈 f j, ψ〉ei (5.1c)

(ei, j)1ψ =〈e
j, ψ〉ei − 〈ei, ψ〉e j (5.1d)

( f i, j)1ψ =〈 f
j, ψ〉 f i − 〈 f i, ψ〉 f j (5.1e)

(hi, j)1ψ =〈 f
j, ψ〉ei − 〈ei, ψ〉 f j. (5.1f)

To establish that these endomorphisms of h are linearly independent, the explicit matrix

form is helpful. It will not be needed for the subsequent discussion, though. The descrip-

tion of the matrix entries will be given in the canonical basis e1, . . . , ed, f 1, . . . , f d of h and
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with respect to the block diagonal form

(

A B

C D

)

,

where A, B,C,D are assumed to be d × d-matrices. With this convention the entries are

given according to the following table, as one can easily confirm by calculating the action

of the various zero modes on basis elements.

Akl Bkl Ckl Dkl

Ei, j 0 −δikδ jl − δilδ jk 0 0

F i, j 0 0 δikδ jl + δilδ jk 0

Hi, j δikδ jl 0 0 −δilδ jk

ei, j 0 δilδ jk − δikδ jl 0 0

f i, j 0 0 −δilδ jk + δikδ jl 0

hi, j δikδ jl 0 0 δilδ jk

From this table it is immediately obvious that all zero modes are linearly independent

endomorphisms and that the matrices span the entire space of 2d × 2d matrices. Thus the

zero modes span the entire space of endomorphisms of S F−1 .

In order to analyze the Lie algebra structure of this matrix algebra, one has to calculate

the commutators between all the zero modes. Starting with the commutator [E
i, j

2
, Fk,l

2
], one

has to calculate the products

E
i, j

2 F
k,l

2 ψ =E
i, j

2

(

〈 f k, ψ〉 f l + 〈 f l, ψ〉ψk
)

=〈ei, f l〉〈 f k, ψ〉e j + 〈ei, f k〉〈 f l, ψ〉e j + 〈e j, f l〉〈 f k, ψ〉ei + 〈e j, f k〉〈 f l, ψ〉ei

= − δil〈 f k, ψ〉e j − δik〈 f l, ψ〉e j − δ jl〈 f k, ψ〉ei − δ jk〈 f l, ψ〉ei

and

F
k,l

2 E
i, j

2 ψ =F
k,l

2

(

〈ei, ψ〉e j + 〈e j, ψ〉ei
)

=〈ei, ψ〉〈 f k, e j〉 f l + 〈e j, ψ〉〈 f k, ei〉 f l + 〈ei, ψ〉〈 f l, e j〉 f k + 〈e j, ψ〉〈 f l, ei〉 f k

=δk j〈ei, ψ〉 f l + δki〈e j, ψ〉 f l + δl j〈ei, ψ〉 f k + δli〈e j, ψ〉 f k.

The commutator is of course given as the difference of the above products:
(

E
i, j

2 F
k,l

2 − F
k,l

2 E
i, j

2

)

ψ = − δk j
(

〈 f l, ψ〉ei + 〈ei, ψ〉 f l
)

− δki
(

〈 f l, ψ〉e j + 〈e j, ψ〉 f l
)

− δl j
(

〈 f k, ψ〉ei + 〈ei, ψ〉 f k
)

− δli
(

〈 f k, ψ〉e j + 〈e j, ψ〉 f k
)

=
(

−δk jH
i,l

2 − δ
kiH

j,l

2 − δ
l jHik

2 − δ
liH

j,k

2

)

ψ.

As another example, consider the commutator [h
i, j

1
, e

k,l

1
], which is calculated as above by

first considering the products

h
i, j

1 e
k,l

1 ψ =h
i, j

1

(

〈el, ψ〉ek − 〈ek, ψ〉el
)

=〈el, ψ〉〈 f j, ek〉ei − 〈ek, ψ〉〈 f j, el〉ei

=δ jk〈el, ψ〉ei − δ jl〈ek, ψ〉ei
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and

ek,l

1
h

i, j

1
ψ =e

i, j

1

(

〈 f j, ψ〉ei − 〈ei, ψ〉 f j
)

= − 〈ei, ψ〉〈el, f j〉ek + 〈ei, ψ〉〈ek, f j〉el

=δ jl〈ei, ψ〉ek − δ jk〈ei, ψ〉el.

Thus, we have the commutator

[h
i, j

1
, ek,l

1
]ψ =δ jk

(

〈ei, ψ〉el + 〈el, ψ〉ei
)

− δ jl
(

〈ei, ψ〉ek + 〈ek, ψ〉ei
)

=
(

δ jkEi,l

2
− δ jlEk,i

2

)

ψ.

The commutator [H
i, j

2
, hk,l

1
] shall serve as final example. Proceed as above by calculating

H
i, j

2
h

k,l

1
ψ =H

i, j

2

(

〈 f l, ψ〉ek − 〈ek, ψ〉 f l
)

=〈 f l, ψ〉〈 f j, ek〉ei − 〈ek, ψ〉〈ei, f l〉 f j

=δ jk〈 f l, ψ〉ei − δil〈ek, ψ〉 f j

and

h
k,l

1
H

i, j

2
ψ =h

k,l

1

(

〈ei, ψ〉 f j + 〈 f j, ψ〉ei
)

= − 〈ei, ψ〉〈ek, f j〉 f l + 〈 f j, ψ〉〈 f l, ei〉ek

=δ jk〈ei, ψ〉 f l + δil〈 f j, ψ〉ek,

leading to the commutator

[H
i, j

2
, hk,l

1
]ψ =δ jk

(

〈 f l, ψ〉ei − 〈ei, ψ〉 f l
)

+ δil
(

〈ek, ψ〉 f j − 〈 f j, ψ〉ek
)

=
(

δ jkhi,l

1
− δi,lh

k, j

1

)

ψ.

Calculating all the missing commutators, one obtains the following list of all non-vani-

shing commutators

[

h
i, j

1 , e
k,l

1

]

= δ jkE
i,l

2 − δ
jlE

i,k

2 (5.2a)
[

h
i, j

1 , f
k,l

1

]

= δikF
j,l

2 − δ
liF

j,k

2 (5.2b)
[

h
i, j

1 , h
k,l

1

]

= δ jkH
i,l

2 − δ
liH

j,k

2 (5.2c)
[

e
i, j

1 , f
k,l

1

]

= −δ jkH
i,l

2 + δ
ikH

j,l

2 + δ
jlH

i,k

2 − δ
ilH

j,k

2 (5.2d)

[

H
i, j

2
, Ek,l

2

]

= δ jlEi,k

2
+ δk jEi,l

2
(5.3a)

[

H
i, j

2
, Fk,l

2

]

= −δikF
j,l

2
− δilF

j,k

2
(5.3b)

[

H
i, j

2
,Hk,l

2

]

= δ jkHi,l

2
− δilH

j,k

2
(5.3c)

[

E
i, j

2
, Fk,l

2

]

= −δ jkHi,l

2
− δikH

j,l

2
− δ jlHi,k

2
− δliH

j,k

2
(5.3d)
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[

H
i, j

2
, ek,l

1

]

= δ jkei,l

1
+ δ jlek,i

1
(5.4a)

[

h
i, j

1
, Ek,l

2

]

= δ jkei,l

1
+ δ jlei,k

1
(5.4b)

[

H
i, j

2
, f k,l

1

]

= δik f
l, j

1
+ δil f

k, j

1
(5.4c)

[

h
i, j

1
, Fk,l

2

]

= δik f
j,l

1
+ δil f

j,k

1
(5.4d)

[

H
i, j

2 , h
k,l

1

]

= δ jkh
i,l

1 − δ
ilh

k, j

1 (5.4e)
[

E
i, j

2 , f
k,l

1

]

= −δ jkh
i,l

1 − δ
ikh

j,l

1 + δ
jlh

i,k

1 + δ
ilh

j,k

1 (5.4f)
[

e
i, j

1 , F
k,l

2

]

= −δ jkh
i,l

1 + δ
ikh

j,l

1 − δ
jlh

i,k

1 + δ
ilh

j,k

1 . (5.4g)

For the discussion of the above commutators, it is useful to introduce some notation.

Definition 5.1. Let Z2 and Z3 be the following subspaces of EndS F−1 ,

Z2 =
⊕

1≤i< j≤d

(

�e
i, j

1
⊕ � f

i, j

1
⊕ �h

i, j

1
⊕ �h

j,i

1
⊕ �(hi,i − h j, j)1

)

⊕ �ω

Z3 =

d
⊕

i, j=1

H
i, j

2 ⊕
⊕

1≤i≤ j≤d

(

�E
i, j

2 ⊕ �F
i, j

2

)

.

Denote by Z′2 the space Z2 without the span of the conformal vector.

Note that the reason for choosing a special basis for Z2 that distinguishes the conformal

vector ω will become clear in Section 5.3. Some conclusions can be drawn simply by

looking at the commutator list. First of all, it can be concluded from (5.3a)-(5.3d) that

the zero modes of the vectors of weight 3 form a Lie algebra with the commutator as Lie

bracket. Rephrased in the notation introduced above, this means that (Z3, [·, ·]) is a Lie

algebra which has yet to be determined.

Since the commutators of the zero modes of the vectors of weight 2, (5.2a)-(5.2d),

do not close among the weight 2 vectors, they cannot form a Lie algebra. This may be

surprising since there seems to be no reason why the zero mode algebra of the vectors of

weight 2 should be fundamentally different from that of the vectors of weight 3. Since

the Lie algebra of all zero modes is isomorphic to the Lie algebra of all 2d × 2d matrices,

the problem could be cured by going over to another basis. But we are interested in an

interpretation in terms of the generating fields of theW-algebra, so this is not an option.

However, it is still possible to find interesting structure in the space Z2. Observe that

the last nine commutators (5.4a)-(5.4g) indicate that the space Z2 is a representation space

for the representation ρ : Z3 → End(Z2), defined by ρ(X
i, j

2
)xk,l

1
= [X

i, j

2
, xk,l

1
], for X = E, F,H

and x = e, f , h. This means that the zero modes corresponding to the vectors of weight 3

are represented on the zero modes corresponding to the vectors of weight 2 by the adjoint

action. The question of irreducibility of this representation will be examined after the Lie

algebra of the space Z3 has been determined.

As one would expect, the commutators corresponding to weight 3 reproduce the com-

mutator found by Gaberdiel and Kausch in the case d = 1. In this case, equations (5.3a)-

(5.3d) become

[H2, E2] = 2E2, [H2, F2] = −2F2 and [E2, F2] = −4H2.
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These equations can be combined in the notation of Section 3.2 into

[

Wa,Wb
]

= 2 f ab
c Wc, (5.5)

where W+ = F, W− = E and W0 = H. Equation (5.5) is equal to (3.5) with h = 1. This

was to be expected since h = 1 is the weight of the top level S F− on which the zero mode

algebra has been calculated.

5.2 The Symplectic Lie Algebra Structure

It has been mentioned in the introduction to this chapter that the dimension of the space

of generating vectors of S F+ of weight 3 equals dim su(2d) = dim sp(2d) = 2d2 + d.

Thus, from dimensional considerations alone, both so(2d) and sp(2d) are candidates for

the Lie algebra (Z3, [·, ·]). It was also argued above that the symplectic Lie algebra seems

more natural in this context. To determine if it is indeed realized, one could rewrite the

commutators in some standard basis and compare them with the expressions given in the

literature (see e.g. [4], section V). However, there is a much better way of establishing the

sp(2d) structure directly from its definition.1

The symplectic group Sp(n) is defined to be the group of automorphisms of an n-

dimensional vector space V preserving a nondegenerate, skew-symmetric bilinear form

Q. Given a one parameter subgroup At of Sp(n) with A0 = id and d
dt

At|t=0 = X this means

that

Q(Atu, Atv) = Q(u, v)

for all u, v ∈ V . Taking derivatives, this translates to

Q(Xu, v) + Q(u, Xv) = 0 (5.6)

for the elements X of the symplectic Lie algebra sp(n). If (5.6) can be verified, the zero

modes of the vectors of weight 3 have to form a subalgebra of the symplectic Lie algebra.

But since the dimension of sp(2d) equals the number of these zero modes and all zero

modes are linearly independent, this subalgebra has indeed to be the full algebra.

The verification of (5.6) is straightforward and uses only 〈u, v〉 = −〈v, u〉:

〈E
i, j

2 u, v〉 =〈〈ei, u〉e j + 〈e j, u〉ei, v〉

=〈ei, u〉〈e j, v〉 + 〈e j, u〉〈ei, v〉

〈u, E
i, j

2
v〉 =〈u, 〈ei, v〉e j + 〈e j, v〉ei〉

= − 〈ei, u〉〈e j, v〉 − 〈e j, u〉〈ei, v〉,

〈F
i, j

2
u, v〉 =〈〈 f i, u〉 f j + 〈 f j, u〉 f i, v〉

=〈 f i, u〉〈 f j, v〉 + 〈 f j, u〉〈 f i, v〉

〈u, F
i, j

2 v〉 =〈u, 〈 f i, v〉 f j + 〈 f j, v〉 f i〉

= − 〈 f i, u〉〈 f j, v〉 − 〈 f j, u〉〈 f i, v〉,

1I am grateful to Nils Carqueville for proposing this approach.
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〈H
i, j

2
u, v〉 =〈〈ei, u〉 f j + 〈 f j, u〉ei, v〉

=〈ei, u〉〈 f j, v〉 + 〈 f j, u〉〈ei, v〉

〈u,H
i, j

2 v〉 =〈u, 〈ei, v〉 f j + 〈 f j, v〉ei〉

= − 〈ei, u〉〈 f j, v〉 − 〈 f j, u〉〈ei, v〉.

Thus, we have Q(Xi, ju, v) + Q(u, Xi, jv) = 0 for X = E, F,H and i, j = 1, . . . , d. The result

of this section can be summarized as follows.

Theorem 5.2. The Lie algebra of the zero modes corresponding to the vectors of weight

three, (Z3, [·, ·]), is isomorphic to the symplectic Lie algebra sp(2d).

5.3 How do the Weight 2 Zero Modes Fit In?

As was noted in the discussion following the list of commutators, the zero modes of the

vectors of weight 2 form a representation for the Lie algebra Z3 which has now been es-

tablished to be sp(2d). This immediately brings up the question if this representation is

irreducible. To answer this question, some facts (cf. [20], chapter 17 and [8], chapter

VI.5) from the representation theory of sp will be needed. The defining representation

of sp(2d) on a 2d-dimensional vector space V is of course irreducible. All other irre-

ducible representations ρk are subspaces of the k-th exterior power ΛkV . The irreducible

representations arising in this way have dimension

dimρk =

(

2n

k

)

−

(

2n

k − 2

)

for k ≥ 2. This result can be obtained with help of the Weyl character formula, see [8],

chapter VI.5. As we know, dim(P(S F+2 )) = 2d2−d−1 which equals dimρ2 = 2d2−d−1.

This means that the space of the zero modes of weight 2, without the span of the conformal

vector, is a candidate for an irreducible representation. Of course the fact that this space

has the right dimension is not yet a proof for the irreducibility of the representations.

The representation could still have trivial subrepresentations or it could decompose into a

direct sum of irreducible representations.

The latter case can be excluded from dimensional considerations alone. First of all,

one observes that dimρk > dimρ2 for k = 3, . . . , n (note that dimρk = 0 for k > n).

Consequently, the only irreducible representation a representation of dimension d2−d−1

can decompose into is the defining representation of dimension 2d. But this is impossible

since
2d2 − d − 1

2d
=

2d − 1

2
−

1

2d
,

which cannot be an integer. Thus, one only has to exclude the possibility of trivial sub-

representations. This will be done by showing that the representation acts nontrivially

on at least d(d − 1) elements. Since d(d − 1) > 2d for d > 3, the representation cannot

decompose into the defining representation and a trivial representation for d > 3 and has

to be irreducible in this case.

Consider the d(d − 1) elements P = {e
i, j

1 , f
i, j

1 }i< j. If it can be shown that there exists

no linear combination of these elements on which the representation acts trivially, then
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the condition above is met and it is shown that the representation is irreducible for d > 3.

This will be achieved by first acting with a certain element of sp(2d) and then projecting

out a single basis vector2 of the representation space by acting with a second element of

sp(2d).

In the rest of this section, the mode index will be left away. All elements xi, j with

x = e, f , h should be read as x
i, j

1
. Then an arbitrary linear combination of the d(d− 1) zero

modes ei, j and f i, j can be written as

p =
∑

i< j

ai je
i, j +

∑

i< j

bi j f i, j.

Acting on p with Fk,k, we can ignore the f i, j. Since [Fk,k, ei, j] = 2δ jkhi,k − 2δikh j,k, one

obtains

















Fk,k,
∑

i< j

ai je
i, j

















=2
∑

i< j

ai jδ
jkhi,k − 2

∑

i< j

ai jδ
ikh j,k

=2

d
∑

j=1

δ jk

j
∑

i=1

ai jh
i,k − 2

d
∑

j=1

j
∑

i=1

ai jδ
ikh j,k

=2

k
∑

i=1

aikh
i,k − 2

k−1
∑

j=1

j
∑

i=1

ai, jδ
ikh j,k − 2

d
∑

j=k

j
∑

i=1

ai jδ
ikh j,k

=2

k
∑

i=1

aikh
i,k − 2

d
∑

j=k

ak jh
j,k,

where the second sum was split from the second to the third line. Acting now with Hl,l,

where l , k and assuming without loss of generality l > k, we obtain

















Hl,l,

















Fk,k,
∑

i< j

ai je
i, j

































=2

k
∑

i=1

(

aikh
l,kδil − aikh

i,lδkl
)

− 2

d
∑

j=k

(

ak jh
l,kδ jl − ak jh

j,lδkl
)

.

Most of the above terms are zero. The second terms of both sums are zero since k , l.

The first term of the first sum vanishes because the summation index i never reaches l.

Thus the result is

















Hl,l,

















Fk,k,
∑

i< j

ai je
i, j

































= −2aklh
l,k,

yielding the desired projection on a single basis vector of the representation space. If one

acts first with Ek,k, one obtains by a similar calculation

















Ek,k,
∑

i< j

bi j f i j

















= 2

k
∑

i=1

bikhk,i − 2

d
∑

j=k

bk jh
k, j,

2Note that these vectors are endomorphisms themselves, i.e. zero modes of vectors of weight 2.
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since [Ek,k, f i, j] = −2δkihk, j + 2δk jhk,i. We can project out with Hl,l in the same way as

above,

















Hl,l,

















Ek,k,
∑

i< j

bi j f i, j

































= −2bklh
k,l.

Therefore, given any linear combination of vectors from P, we now know that for both

Ek,k and Fk,k to act trivially on it, akl and bkl have to be zero. Since k and l can be chosen

arbitrarily, it can be concluded that the representation acts trivially only on the trivial

linear combination with akl = bkl = 0 for all k, l = 1, . . . d. This yields the desired assertion

that there are at least d(d − 1) vectors on which the representation acts nontrivially.

This leaves us with the cases d = 2 and d = 3, where d(d−1) elements are not enough

for proving that there is no irreducible 2d-dimensional subrepresentation. For these two

cases, the basis {ei, j, f i, j, hi, j, h j,i, hi,i − h j, j}i< j ∪ ω is chosen. In the case d = 2, it has to be

shown that the representation acts nontrivially on h1,2, h2,1 and h1,1−h2,2, since we already

know that the representation acts nontrivially on the ei, j and f i, j. This is shown by the

following list of commutators,

[E2,2, h1,2] = −2e1,2

[E1,1, h2,1] = 2e1,2

[E1,2, h1,1 − h2,2] = −2e1,2.

In the case d = 3, the first commutator from the above three suffices to prove that we have

7 > 6 = 2d vectors on which the representation acts nontrivially.

Theorem 5.3. The zero modes of the vectors of weight 3, which form the sp(2d) Lie

algebra, are irreducibly represented on the space of the zero modes of the vectors of

weight 2 without the conformal vector. The representation ρ : Z3 → Z′2 is given by

ρ(X
i, j

2
)xk,l

1
= [X

i, j

2
, xk,l

2
],

where X = E, F,H, x = e, f , h and i, j, k, l ∈ {1, . . . , d}. Note that the statement of the

theorem is trivial for d = 1 since then the representation space is the null space.

5.4 An Isomorphism Between A(SF
+) and the Zero Mode

Algebra

The results obtained on the zero mode algebra so far are restricted to the S F+-module

S F−. In order to extend the Lie algebra structure which has been found above to all other

irreducible modules, the following assertion will be proven in this section: For d > 1,

Zhu’s algebra A(S F+) is isomorphic as Lie algebra to the zero mode algebra EndS F−0 .

The proof will be given in two steps. First, it will be shown that the commutators of

the zero mode algebra for the weight 2 fields, (5.2a)-(5.2d), are reproduced in the Zhu

algebra. Then it will be proven that the fact that [ei, j], [ f i, j] and [hi, j] already generate

Zhu’s algebra carries over to the zero mode algebra. With the commutators for the weight
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2 fields being the same in the two algebras and the commutators of the weight 3 fields

fixed by those of the weight 2 fields, the isomorphism follows.

Before establishing the commutators in Zhu’s algebra, some notation has to be intro-

duced. Setting

Θm(ψ, φ) =
1

m − 1
[ψ(−m+1)φ],

where the bracket denotes equivalence classes in Zhu’s algebra, the fields can be expressed

in the following way:

[ei, j] = Θ2(ei, e j) [hi, j] = Θ2(hi, f j) [ei, j] = Θ2( f i, f j)

[Ei, j] = Θ3(ei, e j) + Θ3(e j, ei) = 2Θ3(ei, e j) + Θ2(ei, e j)

[Hi, j] = Θ3(ei, f j) + Θ3( f j, ei) = 2Θ3(ei, f j) + Θ2(ei, f j)

[F i, j] = Θ3( f i, f j) + Θ3( f j, f i) = 2Θ3( f i, f j) + Θ2( f i, f j).

Calculations in Zhu’s algebra require identities for simplifying products and permuting

factors. The following Lemma consists of assertions which are proven in section 4.2 of

[1].

Lemma 5.4. For any ψ, φ ∈ h and m ≥ 2, arguments of Θ can be exchanged according to

the equation

Θm(φ, ψ) = (−1)m−1

m−2
∑

i=0

(

m − 2

i

)

Θm−i(ψ, φ). (5.7)

For ψ, φ, ξ, η ∈ h and m ≥ 2 the following Θ-product identity holds:

Θ2(ψ, φ) ⋆ Θm(ξ, η) =
1

m − 1
[ψ(−1)φ(−1)ξ(−m+1)η]

+ 〈φ, ξ〉 ((m + 1)Θm+2(ψ, η) + 2mΘm+1(ψ, η) + (m − 1)Θm(ψ, η))

− 〈ψ, ξ〉 ((m + 1)Θm+2(φ, η) + 2mΘm+1(φ, η) + (m − 1)Θm(φ, η))

+ 〈φ, η〉

((

m + 1

2

)

Θm+2(ξ, ψ) + 2

(

m

2

)

Θm+1(ξ, ψ) +

(

m − 1

2

)

Θm(ξ, ψ)

)

− 〈ψ, η〉

((

m + 1

2

)

Θm+2(ξ, φ) + 2

(

m

2

)

Θm+1(ξ, φ) +

(

m − 1

2

)

Θm(ξ, φ)

)

.

(5.8)

The commutator [hi, j, hk,l] is the easiest to calculate. Using (5.8), one obtains

[[hi, j], [hk,l]] = Θ2(ei, f j) ⋆ Θ2(ek, f l) − Θ2(ek, f l) ⋆ Θ2(ei, f j)

= [ei
(−1) f

j

(−1)e
k
(−1) f l

(−1)1] + δ jk(Θ2(ei, f l) + 4Θ3(ei, f l) + 3Θ4(ei, f l))

+ δil(2Θ3(ek, f j) + 3Θ3(ek, f j))

− [ek
(−1) f l

(−1)e
i
(−1) f

j

(−1)1] − δ jk(2Θ3(ei, f l) + 3Θ4(ei, f l))

− δil(Θ2(ek, f j) + 4Θ3(ek, f j) + 3Θ4(ek, f j))

= δ jk(Θ2(ei, f l) + 2Θ3(ei, f l)) − δil(Θ2(ek, f j) + 2Θ3(ek, f j))

= δ jk[Hi,l] − δil[H j,k],
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where the definition of [Hi, j] has been used in the last step. Note also that the two terms

with four modes cancel each other since permutations of the modes only lead to sign

changes. Calculating the other commutators requires two identities which follow from

equation (5.7) for exchanging Θ-arguments. First, the following equations are obtained

from (5.7) by setting m = 2, 3, 4:

Θ4(a, b) = −Θ4(b, a) − 2Θ3(b, a) − Θ2(b, a)

Θ3(a, b) = Θ3(b, a) + Θ(b, a)

Θ2(a, b) = −Θ2(b, a),

Using these three equations, a straightforward calculation shows that the identities

2(Θ3(a, b) + Θ3(b, a)) + 3(Θ4(a, b) + Θ4(b, a))

= − Θ2(a, b) − 2Θ3(a, b),
(5.9)

Θ2(a, b) + Θ2(b, a) + 4(Θ3(a, b) + Θ3(b, a)) + 3(Θ4(a, b) + Θ4(b, a))

=Θ2(a, b) + 2Θ3(a, b)
(5.10)

hold for a, b ∈ h. With the help of these two identities the rest of the commutators can be

computed. Starting with [[hi, j], [ek,l]], we obtain

[[hi, j], [ek,l]] =Θ2(ei, f j) ⋆ Θ2(ek, el) − Θ2(ek, el) ⋆ Θ2(ei, f j)

=[ei
(−1) f

j

(−1)e
k
(−1)e

l
(−1)1] − [ek

(−1)e
l
(−1)e

i
(−1) f

j

(−1)1]

=δ jk((Θ3(ei, el) + Θ2(ei, el))

+ δ jl(2(Θ3(ei, ek) + Θ3(ek, ei)) + 3(Θ4(ei, ek) + Θ4(ek, ei))

=δ jk[Ei,l] − δ jl[Ei,k],

where (5.9) has been used in the last step. Using (5.10), we can calculate

[[hi, j], [ f k,l]] = − δil(2Θ3( f k, f j) + Θ2( f k, f j))

+ δik
(

(Θ2( f j, f l) + Θ2( f l, f j) + 4(Θ3( f j, f l) + Θ3( f l, f j))

+3(Θ4( f j, f l) + Θ4( f l, f j))
)

=δik[F j,l] − δil[Fk, j].

This leaves us only with the commutator

[[ei, j], [ f k,l]] =[ei
(−1)e

j

(−1)
f k
(−1) f l

(−1)1] − [ f k
(−1) f l

(−1)e
i
(−1)e

j

(−1)
1]

=δ jk
(

Θ2(ei, f l) + 2Θ3(ei, f l)
)

− δil
(

Θ2( f k, e j) + 2Θ3( f k, e j)
)

− δ jl
(

2Θ3(ei, f k) + 2Θ3( f k, ei) + 3
(

Θ4(ei, f k) + Θ4( f k, ei)
))

+ δik
(

Θ2(e j, f l) + Θ2( f l, e j) + 4
(

Θ3(e j, f l) + Θ3( f l, e j)
)

+3
(

Θ4(e j, f l) + Θ4( f l, e j)
))

=δik[H j,l] + δ jl[Hi,k] − δ jk[Hi,l] − δil[H j,k].

Obviously the commutators in Zhu’s algebra for the fields of weight two are exactly the

same as (5.2a)-(5.2d). Thus, the first step of the proof is completed. In the second step,
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calculating the commutators for the fields of weight 3 will be avoided by exploiting the

fact that [ei, j], [ f i, j] and [hi, j] generate Zhu’s algebra for d > 1. It now has to be shown

that this applies to the zero mode algebra as well. From [1], we have the identities

[Ei, j] = ([hi,i] − [h j, j]) ⋆ [ei, j] (5.11a)

[Hi, j] = ([hi,i] − [h j, j]) ⋆ [hi, j] (5.11b)

[F i, j] = ([hi,i] − [h j, j]) ⋆ [ f i, j] (5.11c)

[Ei,i] = −2[hi, j] ⋆ [ei, j] (5.11d)

[F i,i] = 2[hi, j] ⋆ [ f i, j] (5.11e)

[H j, j] = [ei, j] ⋆ [ f i, j] − [hi, j] ⋆ [h j,i]. (5.11f)

Simply inserting action of the zero modes (5.1a-5.1f) on the right hand side of the equa-

tions in (5.11) yields

(hi,i

1
− h

j, j

1
)e

i, j

1
ψ =〈e j, ψ〉ei − δi j〈ei, ψ〉ei − δi j〈e j, ψ〉e j + 〈ei, ψ〉e j

=〈e j, ψ〉ei + 〈ei, ψ〉e j

=E
i, j

2 ψ,

(hi,i

1 − h
j, j

1 )h
i, j

1 ψ =〈 f
j, ψ〉ei − δi j〈ei, ψ〉 f i − δi j〈 f j, ψ〉e j + 〈ei, ψ〉 f j

=H
i, j

2
ψ,

(hi,i

1
− h

j, j

1
) f

i, j

1
ψ =〈 f j, ψ〉 f i − δi j〈 f i, ψ〉 f i − δi j〈 f j, ψ〉 f j + 〈 f i, ψ〉 f j

=F
i, j

2 ψ,

2h
i, j

1
e

i, j

1
= − 2δi j〈e j, ψ〉ei + 2δ j j〈ei, ψ〉ei

=2〈ei, ψ〉ei

=E
i,i

2 ,

2h
i, j

1
f

i, j

1
=2δ j j〈 f i, ψ〉 f i − 2δi j〈 f j, ψ〉 f j

=2〈 f i, ψ〉 f i

=F i,i

2
,

e
i, j

1
f

i, j

1
− h

i, j

1
h

j,i

1
=〈 f j, ψ〉e j + 〈 f i, ψ〉ei − 〈 f i, ψ〉ei + 〈e j, ψ〉 f j

=〈e j, ψ〉 f j + 〈 f j, ψ〉e j

=H
j, j

2 .

Thus, the respective elements corresponding to the fields of weight two generate the zero

mode algebra in exactly the same way as Zhu’s algebra. With the commutators for the

fields of weight 2 fixed and equal in both algebras, the commutators for the fields of

weight 3 also have to be the same. Consequently, the two Lie algebras are isomorphic.



5.4. ISOMORPHISM BETWEEN A(S F+) AND THE ZERO MODE ALGEBRA 67

This isomorphism extends the results on the zero mode algebra on S F−0 in the following

way to all modules.

Theorem 5.5. For all d ≥ 1, the top level space Mh0
of an arbitrary S F+ module M

is a representation of the symplectic Lie algebra sp(2d). Furthermore, the statement of

Theorem 5.3 extends to the zero mode algebra on arbitrary S F+-modules.

Proof. For d > 1, the zero mode algebra on S F−0 contains the symplectic Lie algebra

sp(2d) as the Lie subalgebra which is spanned by the zero modes of the vectors of weight

3. As was shown above, Zhu’s algebra is isomorphic in this case as a Lie algebra to the

zero mode algebra on S F−0 . By Theorem 3.1, the top level Mh0
of every S F+-module

M is a representation of Zhu’s algebra A(S F+) and the assertion follows. For d = 1 the

assertion follows from the fact (c.f. [1], Remark 4.5) that any module for A(S F+) is a

module for sl(2), which is isomorphic to sp(2). The second statement of the theorem

follows directly from the isomorphism. �
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Chapter 6

Conclusion

The aim of this work has been to investigate the generalized symplectic fermion model

constructed by Abe. This model, which is actually a family of theories parameterized by

a natural number d, has a rich structure. For d = 1 it reproduces the well known triplet

algebra at c = −2, while the case d > 1 has not yet been studied from a physical point of

view. In an attempt to explore the relation of the d > 1 case to the d = 1 case, the first step

consisted in establishing the W-algebra structure of S F+. This algebra is considerably

more complicated than in the d = 1 case; in particular, one needs certain weight 2 fields

to generate the whole algebra which are not present in the d = 1 case.

The zero mode algebra has been chosen as the most effective tool for exploring the

structure of thisW-algebra. This has technical as well as conceptual reasons. The tech-

nical reason is that it is easier to work with the zero mode algebra than to calculate the

commutators of all modes of the generating fields. On the conceptual level, it has been

the aim to make contact with the analysis of the triplet algebra in terms of zero modes by

Kausch and Gaberdiel.

By exploiting the special structure of the top level of the fermionic part of S F, it could

be shown that the zero modes of the weight 3 vectors behave very similar to the d = 1

case. The symplectic Lie algebra formed by them is a generalization of the Lie algebra

found in the d = 1 case. For the zero modes corresponding to vectors of weight 2, there

is no information which can be extrapolated from the d = 1 to the d > 1 case since these

vectors do not arise in the d = 1 case. One might guess that they form a Lie algebra of

their own, but it was shown that this is not the case since their commutators do not close.

However, it has been proven that they still have an interesting structure because they form

an irreducible representation of the zero mode Lie algebra corresponding to the weight 3

vectors.

One of the questions posed in the introduction pertains to the relation of the physi-

cal and the mathematical approach to the problem of classifying the modules of a given

field algebra. A Mathematician might think that this question is not important since the

relevance of Zhu’s algebra is given by Zhu’s theorem while there is no such theorem for

the zero mode algebra. However, physicists have used the zero mode algebra successfully

to investigate the representation structure of, e.g. the triplet algebra. Also, it has been

proven by Brungs and Nahm that the zero mode algebra and Zhu’s algebra are isomor-

phic as Lie algebras. This isomorphism has been explicitly exhibited in the present work.

While such an explicit isomorphism is useful in itself, it also serves to extend the results

69
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of the previous paragraph from one representation of the W-algebra to all irreducible

representations.

However, it should be noted that this does not make the zero mode Lie algebra and the

Zhu algebra approach equivalent. As one can see in the analysis by Gaberdiel and Kausch,

the classification with the zero mode Lie algebra gives no one-to-one correspondence

between Lie algebra modules and field algebra modules. One can therefore make the

general statement that by going over from Zhu’s algebra to its Lie algebra, one loses

information: the Lie algebra is not able to discern modules as finely as Zhu’s algebra

itself.
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[14] W. Eholzer, A. Honecker, and R. Hübel, How complete is the classification ofW-

symmetries?, Phys. Lett. B 308 (1993), 42.
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