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ZusammenfassungIn dieser Arbeit behandele i
h die Verbindung von Geometrie und logarithmis
hkonformen Feldtheorien. Dabei betra
hte i
h zwei vers
hiedene geometris
heSituationen: in Teil I das topologis
he A-Modell mit Einbettungsabbildung x :

R
1 ×S1 →CP

1 und in Teil II konforme, fermionis
he Geister auf dem Torus.Das A-Modell lässt si
h in eine Form bringen, in der das Pfadintegral eine
δ-Distribution auf dem Modulraum der Instantonen ist. Integriert man die Ab-hängigkeit von S1 heraus, erhält man eine Morsetheorie auf der universellenÜberlagerung �LCP1 des Loop-Raumes. Deren Zustandsräume lassen si
h inden Karten dieser Mannigfaltigkeit störungstheoretis
h bestimmen und dur
hDarstellungsräume des 
hiralen de Rham-Komplexes bes
hreiben. Unter derAnnahme, dass die Darstellungstheorie der beiden Theorien übereinstimmen,betra
hte i
h im Folgenden den 
hiralen de Rham-Komplex. Die Zustandsräumesind lokale, induzierte Darstellungen der Symmetrie, die dur
h das Gradienten-feld der Morsefunktion erzeugt wird. I
h zeige, dass eine Verallgemeinerungdieser lokalen Darstellungen als Distributionen auf �LCP1 dazu führt, dass derHamiltonoperator dur
h zusätzli
he Terme korrigiert wird. S
hlieÿli
h diskutierei
h ihre geometris
he Deutung als Kohomologieoperatoren in einem Komplexglobal erweiterter lokaler Darstellungsräume und zeige, dass den zusätzli
henTermen im Hamiltonoperator der Morsetheorie eine logarithmis
he Erweiterungdes 
hiralen de Rham-Komplexes entspri
ht.Die konformen, fermionis
hen Geister aus Teil II transformieren si
h in irre-duziblen Darstellungen der Monodromiegruppe Z2. I
h zeige, dass die dur
h siebes
hriebene konforme Feldtheorie logarithmis
h erweitert werden muss, sobaldman zu den Darstellungen der Monodromiegruppe Felder assoziiert, die si
h freiauf dem Parameterraum CP

1 \ {0,1,∞} bewegen. Das Tripletmodell stellt eineminimale logarithmis
he Erweiterung dieser Theorie dar und bildet die Grund-lage meines letzten Kapitels. Darin werde i
h die spektrale Kurve der SU (2)-Seiberg-Witten Theorie dur
h die Charaktere des Tripletmodelles ausrdrü
ken,und ebenfalls das Präpotential auf dieses Modell zurü
kführen, indem i
h es alsFunktion des Modulus der spektralen Kurve gewinne.
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AbstractThis thesis is about the relation of geometry and logarithmi
 
onformal �eldtheories. I 
onsider two di�erent geometri
 settings: in part I the topologi
alA-model with embedding x : R1 ×S1 →CP
1, and in part II 
onformal, fermioni
ghosts on the torus.The A-modell 
an be transformed su
h that the path integral yields a δ dis-tribution on the moduli spa
e of instantons. Integrating out the dependen
yon S1, one obtains Morse theory on the universal 
over �LCP1 of loop spa
e. Itsstate spa
e 
an be derived perturbatively in the 
harts of this manifold, and 
anbe modelled by the representations of the 
hiral de Rham 
omplex. Assumingthat the representation theory of the A-model and the 
hiral de Rham 
om-plex are identi
al, I 
onsider the 
hiral de Rham 
omplex in the following. Thestate spa
es are lo
al, indu
ed representations of the symmetry generated by thegradient ve
tor �eld of the Morse fun
tion. I prove that the Hamiltonian gainsadditional terms when these lo
al representations are generalized as distributionson �LCP1, and dis
uss their geometri
 signi�
an
e as 
ohomology operators in a
omplex of globally extended lo
al representation spa
es. Eventually, I showthat a logarithmi
 extension of the 
hiral de Rham 
omplex 
orresponds theadditional terms in the Hamiltonian.The 
onformal, fermioni
 ghosts of part II transform in irredu
ible representa-tions of the monodromy group Z2. I show that the 
onformal �eld theory of these�elds has to be logarithmi
ally extended as soon as the representations of themonodromy goup are allowed to move freely on the parameter spa
e CP1\{0,1,∞}of the torus. The triplet model 
onstitutes a minimal logarithmi
 extension ofthis theory and is fundamental for my last 
hapter. Therein, I obtain the spe
-tral 
urve of SU (2) Seiberg-Witten theory in terms of 
hara
ters of the tripletmodel. Further, I tra
e ba
k the prepotential to that model by expressing it asa fun
tion of the torus modulus of the spe
tral 
urve.

ii



Contents

1 Introduction 1

I Supersymmetric Ghosts with Values on the Sphere 7

2 Morse Theory 92.1 The Path Integral Point of View . . . . . . . . . . . . . . . . . . . . 102.1.1 Making CPT Breaking and Lo
alization Manifest . . . . . . 112.1.2 The Instanton Moduli Spa
e . . . . . . . . . . . . . . . . . . 122.2 The Canoni
al Point of View . . . . . . . . . . . . . . . . . . . . . . 152.2.1 On the Cohomology . . . . . . . . . . . . . . . . . . . . . . . 172.2.2 Implementing CPT Breaking and Lo
alization . . . . . . . 182.2.3 The Instanton Moduli Spa
e Revisited . . . . . . . . . . . . 192.2.4 The Out-States . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3 Summary of the Constraints on X . . . . . . . . . . . . . . . . . . . 232.4 Morse Theory on X =CP
1 . . . . . . . . . . . . . . . . . . . . . . . . . 242.4.1 Polynomial distributions on CP

1 . . . . . . . . . . . . . . . . 272.5 Interpretation of the Extension . . . . . . . . . . . . . . . . . . . . . 332.6 Generalization to General Target Manifolds . . . . . . . . . . . . . . 372.6.1 The Perturbative state spa
es . . . . . . . . . . . . . . . . . . 372.6.2 The Grothendie
k-Cousin Operators . . . . . . . . . . . . . . 38

3 From the A-Model to Morse Theory 413.1 Massaging the A-model . . . . . . . . . . . . . . . . . . . . . . . . . . 423.2 The Morse Theory behind the A-model . . . . . . . . . . . . . . . . 463.2.1 The Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2.2 Isolating the Fixed Points . . . . . . . . . . . . . . . . . . . . 483.3 Perturbative Morse Des
ription of the A-Model . . . . . . . . . . . 503.3.1 The Perturbative State Spa
es . . . . . . . . . . . . . . . . . 513.3.2 The Perturbative State Spa
e on L̃X 0,k . . . . . . . . . . . . 52

iii



3.3.3 The Perturbative State Spa
e on L̃X ∞,k . . . . . . . . . . . 543.4 Relation to Conformal Supersymmetri
 Ghosts . . . . . . . . . . . . 553.4.1 The Conformal Supersymmetri
 bc-System . . . . . . . . . 553.4.2 Identifying the State Spa
es . . . . . . . . . . . . . . . . . . . 603.4.3 What if the Gauge Field is Absent? . . . . . . . . . . . . . . 623.5 Conformal Supersymmetri
 Ghosts on CP
1 . . . . . . . . . . . . . . 633.5.1 The Chiral de Rham Complex . . . . . . . . . . . . . . . . . 643.6 Beyond the Perturbative Representations . . . . . . . . . . . . . . . 703.6.1 Existen
e of Grothendie
k-Cousin Operators . . . . . . . . . 703.6.2 Chiral Bosonization . . . . . . . . . . . . . . . . . . . . . . . . 723.6.3 The GCOs and the Cohomology Interpretation . . . . . . . 793.6.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 The A-Model beyond Topology 854.1 The Method of Logarithmi
 Deformation . . . . . . . . . . . . . . . 854.1.1 Extension of the Fields . . . . . . . . . . . . . . . . . . . . . . 864.1.2 Extension of the Representation Theory . . . . . . . . . . . 874.1.3 The Fermioni
 bc-System . . . . . . . . . . . . . . . . . . . . 874.2 Introdu
ing the GCOs . . . . . . . . . . . . . . . . . . . . . . . . . . . 894.2.1 Extension of the Fields . . . . . . . . . . . . . . . . . . . . . . 894.2.2 Notes on the Symmetries . . . . . . . . . . . . . . . . . . . . 914.2.3 Ex
eptional Logarithmi
 Partners . . . . . . . . . . . . . . . 914.2.4 On the Ne
essity to Deform the Fermions . . . . . . . . . . 924.2.5 Extension of the State spa
e . . . . . . . . . . . . . . . . . . 934.2.6 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Summary and Conclusion 97

II Conformal Fermionic Ghosts on the Torus 103

6 Motivation 105

7 Fermionic Ghosts on Algebraic Curves 1077.1 The Algebrai
 Surfa
es . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.2 The Fermioni
 bc-System on T
n,m . . . . . . . . . . . . . . . . . . . 108

iv



7.2.1 Around the Bran
h Points . . . . . . . . . . . . . . . . . . . . 1097.2.2 The Twisted Representations . . . . . . . . . . . . . . . . . . 1117.2.3 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8 On Twist Fields and Torus Periods 1158.1 The Legendre Family . . . . . . . . . . . . . . . . . . . . . . . . . . . 1168.1.1 Relation to the Latti
e Torus . . . . . . . . . . . . . . . . . . 1168.1.2 A Di�erential Equation for the Periods . . . . . . . . . . . . 1188.1.3 Solutions for the Periods . . . . . . . . . . . . . . . . . . . . . 1198.2 LCFT-�
ation of the Legendre Family . . . . . . . . . . . . . . . . . 1208.2.1 A Hypergeometri
 Equation for the Twist Fields . . . . . . 1228.2.2 The Ne
essity of a Logarithmi
 Extension . . . . . . . . . . 1238.3 The Triplet Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.3.1 Symmetries and Representations . . . . . . . . . . . . . . . . 1248.3.2 Realization of the Triplet Model . . . . . . . . . . . . . . . . 1278.3.3 Chara
ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

9 Relation to Seiberg-Witten Theory 1319.1 Some Words on Seiberg-Witten Theory . . . . . . . . . . . . . . . . 1319.1.1 The Spe
tral Curve of SW Theory . . . . . . . . . . . . . . . 1329.1.2 Modular Transformations . . . . . . . . . . . . . . . . . . . . 1339.2 The Spe
tral Curve and Triplet Chara
ters . . . . . . . . . . . . . . 1349.2.1 The Spe
tral Curve in Terms of τ . . . . . . . . . . . . . . . 135

10 Conclusion 139

A Topological Field Theories 143

B From the Sigma to the A-Model 145B.1 Twisting/Gauging the Sigma Model . . . . . . . . . . . . . . . . . . 146

C The Toric CSbc - Unfinished 149C.1 Deformation by Holomorphi
 Completion . . . . . . . . . . . . . . . 149C.2 The Cohomology Operators in Logarithmi
 Coordinates . . . . . . 152

D Notationsindex 159

v





Introduction 1This thesis was initiated by my interest in the relation between geometry andphysi
s. It was sin
e I got to know the publi
ation of V. G. Knizhnik [Kni87℄ thatI wanted to investigate the geometri
 signi�
an
e of the aspe
ts whi
h render a
onformal �eld theory logarithmi
.Knizhnik 
onsiders holomorphi
 di�erential forms on algebrai
 surfa
es whi
hare bran
hed 
overings of CP
1 and have a global Zn monodromy group. Thedi�erential forms 
an be identi�ed with 
onformal fermioni
 ghosts, and themonodromy group has an indu
ed a
tion on these �elds, whi
h thus fall into nirredu
ible representations. In the spirit of 
onformal �eld theory (CFT), theserepresentations are realized by lo
ating the 
onformal �elds isomorphi
 to therespe
tive highest weight ve
tors at the bran
h points. In mathemati
al terms,this amounts to restri
ting the di�erential forms to a neighborhood of a bran
hpoint and to 
onsidering representation theory thereon.If the algebrai
 surfa
e has bran
h points ei , i ∈ {1, . . . ,2N }, N ≥ 2, one may turnthe surfa
e into a family of topologi
ally equivalent surfa
es by allowing 2N −3bran
h points to vary over CP1\
⋃2N−3

i=1
{ei }. This helps to extra
t further geometri
information, su
h as degenera
ies when bran
h points are fusing, or periods,whi
h satisfy di�erential equations with respe
t to the �oating parameters.Although my investigations started with the work of Knizhnik, I will dis
ussthis setting in the se
ond part of my thesis. There, I will 
onsider the CFT rea-lization of both, degenera
ies and periods for the algebrai
 surfa
e being a torus.The di�erential equation for its periods is realized as the nullstate 
onditionfor the odd representation of the monodromy group Z2. Therefore, the four-point fun
tion of the so-
alled twist �eld 
orresponding to this representation isproportional to the periods of the torus. In parti
ular, it 
ontains logarithmsand the fusion of two bran
h points, whi
h is simulated by the operator pro-du
t expansion (OPE) of two su
h �elds, yields a doublet representation of thesymmetries of the 
onformal fermioni
 ghost system. The Hamiltonian is notdiagonalizable on this doublet, whi
h signi�es that the CFT has to be extendedto a logarithmi
 
onformal �eld theory (LCFT). The minimalisti
 way to do this
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will lead to the triplet model, as explained by M. Flohr in [Flo98℄.This setting has been the starting point for my publi
ation with M. Flohr[VF07℄. As the torus is the spe
tral 
urve of pure gauge, SU (2) Seiberg-Wittentheory, we wanted to express the prepotential in terms of 
hara
ters of thetriplet model. Although we only obtained the prepotential in terms of the torusmodulus, whi
h equals the ratio of twist �eld four-point fun
tions, we have beenable to determine the spe
tral 
urve by means of su
h 
hara
ters. This will bethe subje
t of 
hapter 9 in part II.The origin for my se
ond main proje
t, des
ribed in part I of this thesis,is the work of E. Frenkel, A. Losev and N. Nekrasov [FLN06, FLN08℄, whoinvestigated Morse theory and the topologi
al A-model beyond their topologi
alse
tors. What is implied by those 
onsiderations?(Cohomologi
al) topologi
al �eld theories deal with global geometri
 obje
tson manifolds, in parti
ular with di�eomorphism invariants that are in the 
oho-mology of some nilpotent operator Q, 
alled Be

hi-Rouet-Stora-Tyutin (BRST)
harge due to its properties. It has an a
tion on the �elds and state spa
es ofthe theory and the elements in its 
ohomology 
lasses 
omprise what is 
alledthe topologi
al se
tor of a �eld theory.Under 
ertain 
ir
umstan
es a �eld theory has in addition to its topologi
alse
tor further �dynami
al� states and observables. While the 
ohomology of Qis invariant under di�eomorphisms, this is not the 
ase for the dynami
al se
tor.Hen
e, the dynami
al degrees of freedom should in prin
iple des
ribe part of thelo
al geometry of the target or domain manifold.In [FLN06℄, Frenkel, Losev and Nekrasov 
onsider the situation des
ribedabove for Morse theory with a �rst order Lagrangian on a Kähler manifold
X with s
aled metri
 λg , λ ∈ R

>0. The perturbative spe
trum of this theoryin
ludes topologi
al as well as dynami
al states. If X is supplemented with anadditional stru
ture, these states have their support on the des
ending manifoldsof the gradient ve
tor �eld of the Morse fun
tion. Moreover, the submanifoldsyield a disjoint 
over of X , and so do the perturbative state spa
es.The lo
al geometry of X 
an be a

essed employing the dynami
al states.For λ→∞, the Hamiltonian be
omes the Lie derivative in dire
tion of the gra-dient ve
tor �eld of the Morse fun
tion. The perturbative state spa
es whi
hsurvive that limit turn into lo
ally de�ned indu
ed representations of the sym-
2



metry generated by the gradient �eld. This is, metaphori
ally, what an observerlo
ated on a des
ending manifold would expe
t to see. However, Frenkel, Lo-sev and Nekrasov 
laim that there are nonperturbative e�e
ts through whi
h theobserver obtains additional insights into the lo
al representations of the Hamilto-nian on X . They propose that the nonperturbative state spa
es are obtained byextending the perturbative state spa
es as distributions to X and their analysisshows that the thus globalized representations are the lo
al 
ohomology groupsin a 
omplex 
alled the global Grothendie
k-Cousin 
omplex, [Kem78℄. This
omplex has a 
ohomology operator, the Grothendie
k-Cousin operator (GCO),whi
h 
ompounds the lo
al representation spa
es and appears as an additinalterm in the Hamiltonian. The observer is thus 
onfronted with a Hamiltonianwhi
h 
an not be diagonalized on all dynami
al states � a situation well knownin the theory of logarithmi
 CFTs.My initial interest in the work of Frenkel, Losev and Nekrasov [FLN06℄ arosefrom their proposal that the topologi
al A-model in the large volume limit isan LCFT beyond its topologi
al se
tor. In [FLN08℄, they redu
e the A-modelwith embedding x : R
1×S1 →CP

1 to the Morse theory of [FLN06℄ by integratingout the dependen
e on S1. In parti
ular, one 
an derive the perturbative statespa
es and it appears that they 
an be modelled by representation spa
es ofthe 
onformal supersymmetri
 ghosts (CSb
) with target spa
e CP
1. It is nowsuggestive to assume that at least the representation theory of the A-model inthe large volume limit equals that of the CSb
 and the theories 
an, a

ordingly,be substituted.Furthermore, Frenkel, Losev and Nekrasov propose the deformation of theHamiltonian, but do not analyze the extension of the representation spa
es indetail. Moreover, in order to prove their 
onje
ture that the A-model is anLCFT in the large volume limit and beyond its topologi
al se
tor, it is not su�-
ient to 
onsider the underlying Morse theory. A logarithmi
 deformation of theCSb
 has to be found, whi
h yields the 
orre
t extensions of the perturbativerepresentation spa
es and adds the deformation terms to the Hamiltonian. Itis only then, that the Grothendie
k-Cousin operators 
an be interpreted as thezero modes of the logarithmi
 improvement terms whi
h deform the energy mo-mentum tensor. Parts of those 
onsiderations have been addressed in my se
ondpubli
ation with M. Flohr [VF09℄.
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As mentioned above, this thesis has two parts, the �rst treats the logarithmi
extension of the CSb
 underlying the A-model, the se
ond is about fermioni
ghosts on the torus and their relation to Seiberg-Witten theory. Before I startwith an outline, I will brie�y 
omment on the appendix, whi
h serves to supple-ment the main part. In appendix A I summarize and spe
ify the basi
 ingredientsof a topologi
al �eld theory [BBRT91, Wit82, Wit88a, Wit88b℄. In appendix B.1I brie�y explain how the topologi
al A-model is obtained by twisting an N = 2supersymmetri
 sigma model and note down the supersymmetry of this theory[Mar05℄. The last appendix C is the foundation of another publi
ation, whereinI study the possibility to generalize the approa
h of Frenkel, Losev and Nekrasov[FLN08℄, by whi
h they deform the Hamiltonian of the A-model, to a deforma-tion of the asso
iated CSb
.
Part I In the following 
hapter 2, I will start with a dis
ussion of Morse theory.Therein, the geometri
 origin of the deformation operators is dis
ussed and the
onditions on the target spa
e manifold are �xed. This 
hapter follows thepubli
ation of Frenkel, Losev and Nekrasov [FLN06℄, but some subtle pointsare treated in more detail. In parti
ular this 
on
erns the extension of theperturbative representation spa
es. I will propose an alternative ansatz for theextension, whi
h relies on a prin
iple by whi
h I 
an enlarge the representationspa
es. This ansatz is appli
able in the 
ontext of the A-model.In 
hapter 3, I will introdu
e the A-model with target spa
e CP

1 and takethe large volume limit. Redu
ing the thus obtained theory to Morse theory, Iwill derive the perturbative state spa
es and explain why they 
an be modelledby the CSb
. Be
ause the A-model is de�ned on CP
1, it is ne
essary to make
hart transitions. For the CSb
, these transitions are de�ned through the 
hi-ral de Rham 
omplex, whi
h I will also introdu
e. My method to derive thedeformation of the Hamiltonian di�ers again from that of Frenkel, Losev andNekrasov [FLN08℄. It relies 
ru
ially on bosonization, whi
h I will dis
uss indetail. It will be important that the holomorphi
 and anti-holomorphi
 �halves�of the CSb
 are 
onsidered together, not only be
ause of anomalies o

urringbut also be
ause the GCOs are 
omposed of both parts. Indeed, I will explainthat this 
omposition 
onstrains the representation spa
es and the symmetriesof the theory.
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Having determined the perturbative representation spa
es, their extensions,and the Grothendie
k-Cousin operators that mediate between them, I will thenmove ba
k from Morse theory to the 
onformal �eld theory. In 
hapter 4, I willuse the method of Fjelstad et al. [FFH+02℄ to deform the CSb
 logarithmi
ally.I will do that in su
h a way that the representation spa
es are extended 
on-sistently and that the GCOs are added to the Hamiltonian. This has an e�e
ton the operator produ
t algebra of the �elds, but neither on the supersymmetrynor the 
onformal symmetry of the CSb
.I will 
on
lude this part of the thesis with a brief summary and dis
ussion in
hapter 5.
Part II In part two I will 
on
entrate on the fermioni
 
onformal ghosts onbran
hed 
overings of CP1 [Kni87℄. After a brief motivation in 
hapter 6, I willspe
ify the algebrai
 surfa
es under 
onsideration and introdu
e the 
onformalghosts in 
hapter 7. Sin
e they will have nontrivial operator produ
t expansionsin a neighborhood of a bran
h point it is ne
essary to extend the representationspa
es by the representations of the monodromy group.In the the subsequent 
hapter 8, I will derive by geometri
 arguments that thefermioni
 ghosts on the torus ne
essarily 
omprise a logarithmi
 
onformal �eldtheory. The minimal version is the triplet model [Flo98℄, whi
h I will introdu
ein 
hapter 8.3.In the last 
hapter 9, I will explain how the spe
tral torus of pure gaugeSeiberg-Witten theory 
an be obtained from 
ertain 
hara
ters of the tripletmodel and note down an expression of the prepotential whi
h is given 
ompletelyin terms of quantities of this LCFT.The thesis will be 
on
luded with a summary and a dis
ussion of open ques-tions in 
hapter 10.
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I

Supersymmetric Ghosts with

Values on the Sphere





Morse Theory 2This 
hapter has three parts. My starting point will be Morse theory on a generalRiemannian surfa
e X with s
aled metri
 λg .Firstly, I will prepare the topologi
al se
tor of this theory by breaking CPTinvarian
e and by making lo
alization on the instantons expli
it. This amountsto 
onse
utively putting 
onstraints on X . The 
onstraints will be su
h that theinstanton se
tors are well de�ned and that the gradient �eld 
orresponding tothe Morse fun
tion de
omposes X into submanifolds, to ea
h of whi
h one 
anperturbatively asso
iate a state spa
e. Among those, there are ex
ited stateswhi
h are not s
aled out in the large volume limit λ→∞.Frenkel et al. proposed [FLN06℄ that the state spa
es in the limit λ→∞, whengeneralized as distributions on X , 
omprise the nonperturbative low energy spe
-trum. In se
tions 2.4 and 2.5 I will dis
uss some 
onsequen
es of this assumptionfor Morse theory on CP
1, mainly following their publi
ation but also with an ad-ditional dis
ussion of the 
ohomology of the super
harge, as well as a di�erentmethod for extending the state spa
es as distributions. The most important ob-servation will be that observables whi
h in
lude exterior derivatives are no longerdiagonalizable on all states. In parti
ular, this 
on
erns the Hamiltonian andthus draws a similarity to logarithmi
 
onformal �eld theories. Rather, thoseoperators intermix the state spa
es whi
h formerly have been lo
ated in di�erent
harts.Finally, I will dis
uss the physi
al and geometri
al meaning of this sort ofnon-lo
ality, whi
h is due to the non-topologi
al states.This 
hapter will be 
on
luded with a generalization of the toy model to a
lass of manifolds X and will be the basis for an understanding and analysisof the Morse theory underlying the topologi
al A-model. My explanations relymostly on [FLN06, BBRT91, Wit82℄.
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2.1 The Path Integral Point of ViewIn terms of the stru
tures just introdu
ed, the Morse theory I will 
onsider
onsists of a Riemannian surfa
e X , a smooth embedding x : Σ ⊆ R → X , itsGrassmann valued superpartner ψ and another Grassmann valued quantity π,whi
h is the 
onjugate momentum of ψ. The Eu
lidean metri
 g on X is s
aled bysome parameter λ∈R
≥0 and, without loss of generality, I �x a 
onne
tion D to bethe Levi-Civita 
onne
tion, de�ned with positive sign on ∂

∂xµ : Dν
∂

∂xµ = ∂
∂xλ Γ

λ
νµ.Let f : X → R be Morse, i.e. single valued and with isolated 
riti
al points

xc : d f (xc ) = 0, and denote further by Dtψ
µ = dψµ

dt
+Γ

µ

λσ
dxλ

dt
ψσ the pullba
k of Dto Σ and by ∇µ f := gµν∂ν f the gradient of f . In lo
al 
oordinates, the a
tion Iam interested in is

Sλ =
∫

Σ

(1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν∂µ f ∂ν f

+ iπµ∇tψ
µ− iπµ

(
Dα∇µ f

)
ψα+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.1)In the following se
tions I will extra
t its topologi
al se
tor, sele
ting either theinstantons or anti-instantons and by spe
ifying several 
onditions on X .Sin
e d f (xc ) = 0, the Hessian H(x)[γ] := Dγ(d f )(x), γ ∈ Tx X does not dependon the 
hoi
e of the 
onne
tion at a 
riti
al point xc . In lo
al 
oordinates itreads Hµν(xc ) = ∂µ∂ν f (xc ). There exists a basis eµ of tangent ve
tors at Txc X inwhi
h it is diagonal with eigenvalues κc µ : H(xc ) eµ = κc µ eµ. The 
onditionthat the 
riti
al points are isolated is equivalent to the 
ondition that H(xc ) hasno zero eigenvalues. Sin
e the Hessian does not depend on the 
onne
tion, it isreasonable to de�ne an index for every 
riti
al point
ind(xc ) = #{µ : κc µ < 0} , (2.1.2)whi
h is a topologi
al invariant.In order to see what the 
lassi
al solutions are, I will for a moment 
on
entrateon the bosoni
 part. One 
an apply the so-
alled �Bogomlny tri
k� to �nd theabsolute minima of the a
tion:

Sbos =
∫

Σ

(
λ

2

(
dxµ

dt
∓∇µ f

)2

±λ
d f

dt

)
dt . (2.1.3)
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Sin
e it was positive semi-de�nite before, I obtain a lower bound
Sbos ≥

∣∣∣∣
∫

Σ

d f

∣∣∣∣ , (2.1.4)whi
h is satis�ed by the gradient traje
tories
dxµ

dt
±∇µ f = 0. (2.1.5)These are the 
lassi
al bosoni
 solutions to δS = 0. There are three kinds, de-pending on the boundary 
onditions. The va
uum 
on�gurations are solutionsof

dxµ

dt
= 0 ∧ ∇µ f (x) = 0, (2.1.6)whi
h is satis�ed by 
onstant loops, i.e. the 
riti
al points xc . If there existsmore than one 
riti
al point, say {x+, x−}, there are also instanton (−∇ f ) andanti-instanton 
on�gurations (+∇ f ) :

dxµ

dt
±∇µ f (x) = 0 , x(±∞) = x± (2.1.7)where w.l.o.g. I �xed some initial and �nal time. From (2.1.4) one 
an 
on
ludethat the instantons satisfy f (x+) > f (x−) and the anti-instantons f (x+) < f (x−).

2.1.1 Making CPT Breaking and Localization ManifestThe anti-instantons 
an be ex
luded from the 
lassi
al minima by subtra
ting
λ

∫
d f from the a
tion (2.1.1). This term does not depend on the metri
 and ishen
e topologi
al. It, however, breaks CPT invarian
e as one would expe
t fora theory without anti-instantons.1In order to make the lo
alization property manifest, I massage the a
tion

S −λ
∫

d f into a �rst order form, by introdu
ing a Lagrangian multiplier pµ.Viewed as part of the integration kernel exp{−S} in the path integral, I may now
onsider, equivalently to (2.1.1):
Sλ =

∫

Σ

(
− ipµ

(
dxµ

dt
− gµν∂ν f

)
+

1

2λ
gµνpµpν

+ iπµ

(
Dtψ

µ− (Dα∇µ f )ψα
)
+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.8)

1Though for the model under consideration CPT is really CT, I will follow the terminology of Frenkel,

Losev and Nekrasov [FLN06]. For a more detailed discussion of CPT breaking, c.f. section 2.2.4.
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In the limit λ→∞, the integral kernel turns into a δ distribution on instantonmoduli spa
e, whi
h makes lo
alization expli
it. Indeed, for �nite λ, the instan-tons still 
ontribute with a weight fa
tor e−2λ| f (x+)− f (x−)| to 
orrelation fun
tions,but for λ→∞ their 
ontribution disappears. On the 
ontrary, the instantons
ontribute with a 
onstant weight fa
tor 1 for any value of λ.Let vµ(x) := ∇µ f (x) be the ve
tor �eld asso
iated with f and p ′
µ := pµ +

Γ
λ
µνψ

νπλ. The a
tion in the large volume limit 
an now be written as:
S∞ =−i

∫

Σ

(
p ′
µ

(
dxµ

dt
− vµ

)
−πµ

(
dψµ

dt
−ψα∂αvµ

))
dt . (2.1.9)It is invariant under the following susy transformations

[Q , xµ]=ψµ, [Q ,ψµ]= 0 [Q∗, xµ] = 0, [Q∗,ψµ] = vµ

[Q ,πµ] = p ′
µ, [Q , p ′

µ] = 0 [Q∗,πµ]= 0, [Q∗, p ′
µ]= 0

(2.1.10)and moreover, the Lagrangian is Q-exa
t, L =−i[Q ,πµ

(
dxµ

dt − vµ
)
] and thus is theHamiltonian.This is roughly the model I am going to 
onsider. However, I will need somemore informations on the instanton moduli spa
e, espe
ially in order to �nd
onstraints on the target manifold. There will be serveral obsta
les whi
h haveto be resolved and I will list them up, whenever I en
ounter one. In the followingand for 
onvenien
e, I will leave away the prime for p ′

µ.
2.1.2 The Instanton Moduli SpaceThe instanton equation dxµ

dt
= vµ(x) gives rise to a di�eormorphism of X :

φv : X ×Σ→ X x 7→φv (x, t) = x(t) , (2.1.11)where x(t) is an instanton solution and φv (·, t) determines a one parameter groupin t . By means of this �ow equation of v one 
an try to �nd a partition of Xinto submanifolds whi
h is generated by the �xed points of v . These will be thedes
ending Xc and as
ending manifolds X c :
X (c)

c :=
{

x ∈ X : lim
t→ (+)

− ∞
φv (x, t) = xc

}
. (2.1.12)
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If xc is a nondegenerate 
riti
al point and φv a di�eormorphism, they are indeedsubmanifolds [AR67, pg. 87f℄ and inherit the tangent spa
es de�ned by the �owlines.For the following reason I demand that a de
omposition of X into des
endingand as
ending manifolds exists. In se
tion 2.2.4 I will explain that the statespa
es will be lo
alized around the �xed points of v . A de
omposition of Xin terms of, say, des
ending manifolds is useful be
ause one 
an then 
anoni-
ally asso
iate to ea
h su
h submanifold a state spa
e Fα and these 
over X .Therefore:
❏ The target manifold X has a (Bialyni
ki-Birula) de
omposition

X =⊔
α∈A Xα =⊔

α∈A X α with respe
t to v .The instanton moduli spa
es are de�ned by means of des
ending and as
endingmanifolds
M (α,β) := Xα∪X β , (2.1.13)and under further 
onditions it is possible to 
al
ulate the dimension of thismoduli spa
e. Let xc be a 
riti
al point, I 
an 
hoose lo
al 
oordinates su
hthat it is lo
ated at the origin. In its neighborhood I 
an approximate a solutionof the instanton equation by a line element y = xc + x and by making a Taylorexpansion around the 
riti
al point. This yields to lowest order dt xµ−H

µ
ν (0)xν =

0, whith Hessian H evaluated at xc = 0. Thus, lo
ally around the �xed point, thedire
tions along whi
h H has positive eigenvalues span the tangent spa
e of thedes
ending manifold while the others span the tangent spa
e of the as
endingmanifold. Therefore, at least in a neighborhood of a �xed point xc , T Xc ≃
R

dimX−ind(xc ) or ≃C
dimCX− 1

2 ind(xc ) while for the as
ending manifold T X c ≃R
ind(xc )or ≃C

1
2 ind(xc ). The generalization of this 
ondition is as follows:

❏ Let ( f , X ,λg ) allow for Morse-Smale transversality, i.e. ∀ x ∈ M (α,β),

∀ α,β : dim Tx Xα+dim Tx X β−dim X = dim
(
Tx Xα∪Tx X β

).One 
an now 
al
ulate
dimR M (α,β) = ind(β)− ind(α) . (2.1.14)The Morse-Smale 
ondition yiels a ni
e des
ription of the tangent spa
es of Xin terms of instanton �ow lines. Espe
ially the dimensions of the instanton
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moduli spa
es are natural numbers in
luding zero, restri
ted by the dimensionof the target manifold, and there are no dimensional degenera
ies. Sin
e it isexpressed by the Morse inde
es, the dimension of the instanton moduli spa
eis a topologi
al invariant. Morse-Smale transversality does further restri
t the�ow lines to move from �xed points with lower to �xed points with higher Morseindex.There is another, physi
ally inspired way to 
al
ulate the dimension of theinstanton moduli spa
e [H+03, se
. 10.5.2℄. Consider an instanton solution
x : dt xµ − vµ(x) = 0, xµ(−∞) = x

µ
α, xµ(∞) = x

µ

β
. Again, I will move in the so-lution spa
e of this di�erential operator to another solution y = x +ηz, where

η> 0 is an in�nitesimally small number. The 
urve y is an instanton solution ifthe displa
ement z satis�es D−z := ( dt −H(x(t)) ) z = 0, z(±∞) = 0 to the order
η. For every t I may 
hoose a basis of eigenve
tors of H(x(t)) with eigenvalues
κµ(t) whi
h spans the tangent spa
e Tx(t ) X . The operator D− is diagonal in thisbasis and has homogeneous solutions

zµ(t) = eµ exp(

∫t

0
κµ(τ)dτ) , (2.1.15)where eµ diagonalizes D− at t = 0. These solutions have the 
orre
t boundary
onditions if κµ(−∞) > 0 and κµ(∞) < 0.There are two possible s
enarios. The �rst is that the dimension of the solutionspa
e equals the dimension of the eigenspa
e of the Hessian. This is the 
ase ifnone of the eigenvalues κµ(t) 
hanges its sign from a negative to a positive valuewhen passing from t =−∞ to t =∞. If this is satis�ed, dimRM (α,β) = ind(β)−

ind(α) = #{µ : κµ(−∞) > 0, κµ(∞) < 0} = dimkerD−. In the se
ond s
enario thereexist eigenvalues whi
h 
hange their signs from negative to positve value. Theybelong to homogeneous solutions of the di�erential operator D+ := dt +H(x(t)).In that general 
ase, the di�eren
e ind(β)− ind(α) 
an be written as
dimRM (α,β) = dimkerD−−dimkerD+ . (2.1.16)The operators D∓ appear in the equations of motion for the fermions ψµ and

πµ, respe
tively. Under the assumption that the dimension of the instantonmoduli spa
e equals dimkerD−, it further equals the number of linear indepen-dent solutions of D−ψ0,l = 0, l = 1. . . d , d = dimM (α,β), whereas πµ has no �zeromodes�. This leads to the sele
tion rule that observables have to 
ontain a prod-u
t ∏d
l=1

ψ0,l , if the 
orrelation fun
tion is not to be zero. The reason is that
14



the path integral is a δ distribution on the homogeneous solutions of D− and theinstanton 
on�gurations x0

〈O〉 =
∫

M (α,β)
dx0

∏

l=1...d

ψ0,l O |M (α,β) . (2.1.17)An integral over Grassmann variables is zero if the integrand is not a volumeform, and in the next se
tion I will make 
lear that, indeed, the zero modes of
ψ have a geometri
 meaning as di�erentials on X . From the dis
ussion above I
on
lude that they are physi
ally signifying the presen
e of instantons, and thenumber of fermioni
 insertions 
ounts the dimension of their moduli spa
e.2
2.2 The Canonical Point of ViewThe Morse a
tion (2.1.9) has an immediate interpretation in terms of geometri
quantities of the target manifold X . The best pla
e to understand this is the
anoni
al formulation of the theory. Reshu�eling the terms in (2.1.9), I 
an reado� the 
lassi
al Hamiltonian in the large volume limit3

H∞ = vµ (ipµ)+ψα∂α vµ(iπµ) . (2.2.1)Re
onsidering (2.1.10), an immediate 
hoi
e how to quantize 
onsists in relatingthe ��eld�-
oordinates with geometri
 quantities in the following way:bosons: fermions:
xµ xµ ψµ dxµ

ipµ ∂µ iπµ ιµ

(2.2.2)

2In the fermionic bc-system, that I will discuss in the next chapter, it will also be necessary to insert

"zero-modes" in correlation functions. These do, however, not represent instantons because they are

mappings between isomorphic representation spaces, cf. section 3.4.1 and section 8.3. On the con-

trary, instantons relate different vacuum configurations (they are highest weight vectors of different

representations).
3This classical Hamiltonian is not bounded from below. However, in section 2.4, I will derive it from the

canonically quantized Hamiltonian withλ 6= 0 by deforming the spectrum in a specific way, cf. [FLN06].

Thereby one obtains states which are not in the closure of Ω•
d

(X ) with respect to the L2 norm, but on

which one can define an orthogonal pairing and whose eigenvalues with respect to the canonically

quantized H∞ are positive semidefinit (when considered perturbatively, c.f. section 2.5). Analogous

will be satisfied for the A-model.
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The Hamiltonian above and the super
harges Q and Q∗ 
an now be rewritten as
Q = d, Q∗ = ιv , H∞ =Lv = {Q ,Q∗} , (2.2.3)and they have a 
anoni
al a
tion on di�erential forms on X . The geometri
data satisfy the usual quantization rules [pµ, xν] =−iδνµ, [πµ,ψν] =−iδνµ for thesuperbra
ket, and in parti
ular

Q = iψµpµ . (2.2.4)In the following I will reprodu
e the deformations des
ribed for the path in-tegral ansatz for the 
anoni
al formalism of Morse theory. The idea behind thisis to see what the spe
trum of the Hamiltonian in the large volume limit lookslike and to investigate if there remain well de�ned exited states in this limit. Iwill again start with the a
tion (2.1.1) before taking the large volume limit andthe target manifold (X ,λg ), endowed with an inner produ
t on di�erential forms
η,χ ∈Ω

•(X )

〈η,χ〉 :=
∫

X
(⋆ η̄)∧χ . (2.2.5)The bar denotes 
omplex 
onjugation, if ne
essary, and ⋆ the Hodge operator.4The Hamiltonian 
orresponding to the a
tion (2.1.1) with Morse fun
tion f isobtained from the super
harges

Q = dλ = e−λ f deλ f = d+λ d f ∧ ,

Q† = d†
λ
= eλ f d†e−λ f =

1

λ
d† + ι∇ f ,

(2.2.6)as
H =∆λ =

1

2
{Q ,Q†} =

1

2

(
λ−1

∆+λ‖d f ‖2 +K f

)
, (2.2.7)where, ‖d f ‖2 = ι∇ f d f , K f = L∇ f +L

†
∇ f
, L

†
∇ f

= {d†,d f } and ∆ = {d,d†}. Conju-gation † is de�ned with respe
t to the inner produ
t. Let me emphasize, thatup to now CPT is not broken and the two super
harges are indeed 
onjugate.However, in the large volume limit CPT will be violated and this makes thedi�eren
e between the dagger and the star, for instan
e for the super
harge in(2.2.3).
4On volume elements ⋆ dxµ1 ∧···dxµk =

p
|g |

(dimRX−k)!
ǫ
µ1 ···µk
νk+1 ···νdim X

dxν1∧···dxνk and ǫµ1 ···µdimR X
=+1

for even permutations.
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2.2.1 On the CohomologyAs I explained in the introdu
tion and in appendix A, the topologi
al states arein the 
ohomology of the super
harge Q. Under 
ertain 
onditions on X , thatI will 
on
entrate on in this se
tion, the 
ohomology of Q is isomorphi
 to thekernel of the Hamiltonian.The super
harges above are obtained by a similarity transformation of d and
d†, and I 
an hen
e 
arry over the results on the de Rham di�erential to themore general situation in Morse theory, in parti
ular that H•

dλ
(X ) ≃ H•

d
(X ). If Xis a real manifold whi
h is moreover 
ompa
t, oriented and without boundary,there exists a unique Hodge de
omposition

Ω
k
dλ

(X ) = dλΩ
k−1
dλ

(X )⊕d†
λ
Ω

k+1
dλ

(X )⊕Ω
k
∆λ

(X ) , (2.2.8)where Ω
k
∆λ

(X ) denotes the harmoni
 forms on X with respe
t to H =∆λ [Nak03℄.If su
h a de
omposition exists and moreover an inner produ
t like (2.2.5) one 
anshow that H•
dλ

(X ) ≃Ω
•
∆λ

(X ).5 Thus, in order to identify the 
ohomology of thesuper
harge with the ground states of the Hamiltonian it would be sensible toinvoke that whenever X is real, it should also be 
ompa
t, oriented and withoutboundary.If X is a 
ompa
t Kähler manifold there exist unique, orthogonal Hodge de-
ompositions for the Dolbeault derivatives ∂λ and ∂̄λ. Noti
e that in this 
ase
dλ = ∂λ+ ∂̄λ and similar for the 
onjugate. Sin
e ∆dλ

= 2∆∂λ = 2∆∂̄λ
[Nak03℄, one�nds that H

p,q

∂λ
(X ) ≃Ω

p,q

∆dλ

(X ) and the same is true for the 
onjugate di�erentialforms. Therefore:
❏ Let X be a 
ompa
t Kähler manifold or, if real, 
ompa
t, oriented andwithout boundary.The next se
tion will 
larify that the isomorphy between the 
ohomology ofthe super
harge and the kernel of the Hamiltionian will survive CPT breakingif λ <∞. For λ→∞ this will still be true at least for X = CP

1 and I will provethis in se
tion 2.4.1.
5Let ω ∈Ω

•
∆λ

(X ), then 〈ω,∆λω〉 = 0 = ‖dλω‖2 +‖d†
λ
ω‖2 and this proves that a harmonic form is closed

under dλ and d†
λ

. The Hodge decomposition is orthogonal and therefore the harmonic forms are not

exact with respect to dλ.
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2.2.2 Implementing CPT Breaking and LocalizationThe transformations I have done on the path integral in se
tion 2.1.1 
an betranslated to the 
anoni
al point of view by 
onsidering 
orrelation fun
tions oftopologi
al observables and states
〈ω, e(tn−t+)H

On e(tn−1−tn )H . . . e(t1−t2)H
O1e(t−−t1)H ·χ〉 =

∫

X×X
[⋆ ω̄(x+)]∧χ(x−)

∫

Σ→X : x(t−)=x− , x(t+)=x+
On (tn)∧·· ·∧O1(t1)e−S .

(2.2.9)Subtra
ting the term ∫x+
x−

d f = f (x+)− f (x)+ f (x)− f (x−) from the a
tion musthave an e�e
t on operators and states, for the topologi
al se
tor is supposedto be invariant under this deformation. General expe
tation values, 
al
ulatedwith an Hamiltonian in whi
h CPT is manifestly broken by this term, is hen
etaken between states and observables obtained by the following transformationof the old ones6
χ 7→ eλ f χ

⋆ ω̄ 7→ e−λ f
⋆ ω̄

O 7→ eλ f
Oe−λ f

and in parti
ular Q 7→ d

Q† 7→ Q∗
λ
= 2ιv +λ−1d†

H 7→ Hλ =Lv + 1
2λ∆

(2.2.10)Let me emphasize that all operators transform in the same way and thus itis not a similarity transformation. Therefore, the new Hamiltonian is not self-
onjugate any more and I rather put a ∗ than a †. For �nite values of λ, The newHamiltonian has the same spe
trum as H be
ause the states have just gaineda phase. In parti
ular, the isomorphy between the super
harge 
ohomologyand the ground states is still valid, though the theory is not unitary any moreand the in- and out-states are no longer 
onne
ted by an inner produ
t (I willdis
uss the out states in se
tion 2.2.4). The Morse theory with broken CPTand the one determined by (2.2.7) have the same 
ohomologies with respe
t tothe super
harge, sin
e H•
dλ

≃ H•
d
. Moreover, for �nite λ, H•

d
≃Ω

•
∆λ

≃Ω
•
Hλ
, su
hthat dimΩ

•
∆λ

= dim Hλ. These dimensions are a topologi
al invariants and thusshould not be a�e
ted by taking λ→∞.
6The exponent eλ f := eλ( f (x)− f (x−)) for the “ket” and e−λ f = e−λ( f (x)− f (x+)) for the “bra”.
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2.2.3 The Instanton Moduli Space RevisitedA

ording to the 
onsiderations of the last se
tions, the topologi
al states areelements of the de Rham 
ohomology of d. In the following I will 
onsiderobservables ω̂ whi
h 
an be identi�ed with di�erential forms ω on X , substituting
ψµ with dxµ. Integrating out the 
onjugate momenta, the quantum me
hani
alGreens fun
tion between two 
riti
al points x± is

G
(x+,t+)
(x−,t−) [ω̂1 . . . ω̂n]=

∫

M (−,+)
sgn det

(
δ
µ
α

d

dt
−∂αvµ

) ∧

k=1...n

φ∗ v (ωk , tk ) . (2.2.11)By φ∗ v (ωk , tk ) I denote the push forward of the di�eomorphism (2.1.11), evalu-ating ω along the �ow lines, and I assume that these operators are time ordered.
The Partition Function One of the most famous of su
h Greens fun
tions isthe (supersymmetri
) partition fun
tion

Z (T )=
∫

X
δ(x+− x−)δ(ψ+−ψ−)G

(x+,t+)
(x−,t−)

[1] =
∑

c∈A

sgn det
(
−H

µ
ν (xc )

)
. (2.2.12)The set A en
ompasses the 
riti
al points, T = t+− t− is the time period and theperiodi
 boundary 
onditions 
ause lo
alization on the �ow lines that are loops,i.e. the va
uum 
on�gurations. The operator d

dt
does not 
ontribute to the signof the determinant be
ause of these boundary 
onditions.7 The supersymmetri
partition fun
tion 
an also be written in terms of the Hamiltonian, using (2.2.9):

Z (T )= str eHT = tr (−)F eHT , (2.2.13)where (−)F gives a minus sign on fermions (forms with odd degree) and pluson bosons (even degree). Sin
e the ex
ited eigenstates of H are always boson-fermion pairs due to supersymmetry, the partition fun
tion 
ounts the di�eren
ein the number of fermioni
 and bosoni
 ground states Z (T ) = trΩ•
∆λ

(−)F . Thus,if X is su
h that the harmoni
 di�erential forms are isomorphi
 to the de Rham
ohomology,
Z (T )=

∑
n

(−)n dimR H n
Qλ

(X ,R) . (2.2.14)

7This is nicely explained in [BBRT91]. Due to periodic boundary conditions one can make an expansion

in Fourier modes xµ(t ) = x
µ
n eint and the same holds for the other coordinates. For simplicity let X be

one dimensional. The Hessian is diagonal in the tangent basis of flow lines at xc with eigenvalues λc .

Hence, in that basis and at xc , the sign of the determinant is: sgn det
(∏

n∈Z(−in +λc )
)
. Only the zero

mode contributes with a sign for the others square to a positive number.
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A 
areful reader might have obje
tions against this derivation, be
ause it is notobvious how to interpret the tra
e if CPT is broken. However, for �nite valuesof λ, the in- and out-states are isomorphi
 and the spe
trum of the Hamiltonianis basi
ally the same, su
h that the equation above remains 
orre
t.
Correlation Functions with Observables To be topologi
al, more general
orrelation fun
tions in
luding observables have to be zero on Qλ-exa
t observ-ables. Noti
e, that Qλ = d and using Stokes formula this implies the 
ondition

∫

M (−,+)
d φ∗ v (ω, t) = 0. (2.2.15)This 
an be obtained by demanding that the boundary ∂M (−,+) vanishes. Inthe following I will, however, �x another property of X su
h that the integralyields zero.In order to yield non-trivial 
orrelation fun
tions, the observables must havea total form degree of dim M (−,+). In parti
ular, if the dimension of ∂M (−,+)in the equation above was less than the form degree of φ∗ v (ω, t), the 
orrelationfun
tion would also vanish, and this is what I am going to enfor
e in the following.First, I have to ensure that ∂M (−,+) is a submanifold su
h that an integrationof di�erential forms on this spa
e is de�ned. In order to investigate ∂M (−,+),I take the 
losure of the des
ending and as
ending manifolds X− and X +. Sin
e

X is 
ompa
t these 
losures are 
ompa
t. If the following 
ondition holds
❏ The Xα and X α are strati�
ations of X , i.e. X α =∪β∈A≥α Xβ where A≥α isthe set of 
riti
al points with index greater or equal ind xα and similar

X
α =∪β∈A≤α X β where now A≤α 
ounts lower indi
esthere is a 
anoni
al 
ompa
ti�
ation of the instanton moduli spa
es

M (−,+) =
(
∪α∈A≥− Xα

)⋂(
∪β∈A≤+ X β

)
(2.2.16)and thus their boundaries will be manifolds [Hut02℄.If X is Kähler, the analysis is immediate. All indi
es are even valued, as onehas a holomorphi
 and antiholomorphi
 part. The super
harge is Qλ = ∂+ ∂̄ andraises the total form degree by one. Hen
e, under the 
orrelation fun
tion andafter invoking Stokes formula, the di�erential form has degree (dim M (−,+)−1).

20



Be
ause the 
ompa
ti�ed instanton moduli spa
e 
an be rewritten as
M (−,+) =

⋃

αi∈A>− , β j ∈A<+

M (−,+)×M (−,β j )×M (αi ,β j )×M (β j ,+) , (2.2.17)the boundary must also have even dimension, as it 
onsists of instanton modulispa
es being glued together. Therefore, the 
orrelation of an exa
t di�erentialform must be zero in this 
ase.If X is a real manifold, the situation is more 
ompli
ated and I know of nogeneral argument. Due to that la
k of knowledge I will restri
t to
❏ The manifold X be Kähler.

2.2.4 The Out-StatesThe in- and out-states are related by a CPT transformation: F
∓
out = CPT ·F±

in
,where + denotes parti
les and − anti-parti
les. Formally, an in-state 
an bewritten as

ωin =
∫

x(t ): (−∞,0], x(−∞)=x− , x(0)=x

∏

i

O(ti ) e−Sλ , (2.2.18)where the boundary 
ondition x− de�nes a va
uum 
on�guration, and CPT a
tsby 
onjugation ω 7→⋆ ω̄ and time reversal. Thus, if the theory were unitary theout states would be of the form ωout = ⋆ω̄in. Under that 
ir
umstan
es, thereexists an hermitian inner produ
t and the out-states 
an be identi�ed with thein-states. However, in the 
ase under 
onsideration and due to the additionalterm, CPT a
ts non-trivially on the Lagrangian Lλ(t) = L(t)−λ dt f (x(t)), (2.1.8),
Lλ(t) 7→ Lλ(−t)+2λ dt f (x(−t)) , (2.2.19)and the extra term indi
ates that the theory is not unitary.When de
omposing the thus transformed Lagrangian in analogy with se
tion2.2.2, the out-states obtain a phase fa
tor e−2λ f and thus

ωout = e−2λ f
⋆ ω̄in . (2.2.20)For �nite values of λ, the out-states are still isomorphi
 to the in-states, but inthe limit λ→∞, this is not 
anoni
ally valid.
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The In-States in the Vicinity of a Critical PointIn se
tion 2.1.2 I wrote that the states are lo
alized around the 
riti
al pointsof f . This is de�nitely the 
ase for the topologi
al states. To see this I 
onsider(2.2.7) and undertake the semi
lassi
al analysis in analogy to Witten [Wit82℄.Taking into a

ount that the 
onjugate derivative in real 
oordinates and foran even dimensional manifold X is d† =−ιµ∇µ, the operator K f 
an be writtenin a simpler way:
H =

1

2

(
λ−1

∆+λ‖d f ‖2 +Hν
µ (x) [dxµ, ιν]

)
. (2.2.21)If λ→∞, the potential energy will grow, and this enfor
es the low energy statesto lo
alize around the 
riti
al points. In this 
ase one may undertake a Taylorexpansion around a 
riti
al point to study the low energy spe
trum. Thus, I
hoose lo
al 
oordinates x, in whi
h the 
riti
al point xc is at the origin xc = 0,the metri
 is approximately Eu
lidean, i.e. gµν = δµν and ∂λgµν(0) = 0, and theHessian is diagonal, H

µ
ν (0) = δ

µ
ν κµ. The Hamiltonian 
an now be approximatedas

2H (pert) =
∑
µ

(
−λ−1

(
∂µ

)2 +λ(κµxµ)2 +κµ[dxµ, ιµ]
)
+O(x3)

≃
∑
µ

(
2λ−1H

µ

bos
−κµ(−)Fµ

)
.

(2.2.22)The operator Fµ equals one if the di�erential form 
ontains dxµ and zero, else.The bosoni
 part is just a sum over independent harmoni
 os
illators, and sin
e
[H

µ

bos
, (−)Fµ] = 0 these operators 
an be diagonalized simultaneously. From theeigenvalues

E =
∑
µ

(
|κµ|(2nµ+1)−κµ(−)Fµ

)
, nµ ∈N∪ {0} (2.2.23)one 
an 
on
lude that the va
uum 
on�gurations are unique and the form degreemust equal the index of xc . Namely, κµ 6= 0 sin
e f is Morse, and nµ = 0 forva
uum 
on�gurations.Let me 
on
lude with some remarks. Firstly, for the 
lass of target manifoldsunder 
onsideration, the perturbative ground states equal the a
tual groundstates. The reason is as follows: In general, the perturbative ground states mightget lifted to massive states due to nonperturbative e�e
ts. However, there is apairing of massive fermions and bosons due to supersymmetry. On a Kähler
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manifold, all ground states have an even form degree and a lift to an ex
itedstate would yield bosons, only. This does not 
onform with supersymmetry, su
hthat on a Kähler manifold the number of 
riti
al points must equal the numberof ground states. This does not mean that nonperturbative e�e
ts 
an not beobserved on ex
ited states.Further, I would like to emphasize that due to the s
aling of the metri
 with λ,there remain �nite energy 
ontributions in the large volume limit. These ex
itedstates do also lo
alize on the as
ending and des
ending manifolds. Namely, thein-states take the form (2.2.18), and when λ 7→∞ they lo
alize on the gradienttraje
tories. Sin
e x(−∞) must be a 
riti
al point xc , these states have theirsupport on the des
ending manifolds Xc . Therefore, the in-states are asso
iatedto the des
ending manifolds that 
over X . By the same argument the ex
itedout-states are supported on the as
ending manifolds.The ground states, extended by those ex
ited states, will be fo
used on inthe following. Before, I will brie�y summarize the 
onstraints on X that I haveobtained.
2.3 Summary of the Constraints on XIn the last two se
tions, I have transformed a general Morse theory in su
h away that the main ingredients whi
h make a topologi
al theory integrable aremanifest: breaking of CPT invarian
e and lo
alization. I have dis
ussed therelation between the 
anoni
al and path integral point of view. I had to putseveral 
onstraints on the target manifold X in order to a
hieve that there existsa topologi
al se
tor. Now I would like to add a last 
onstraint.I always assumed that f is Morse and derived a ve
tor �eld v =∇ f as a gradientof this fun
tion. In the situation of the A-model it will be important to reversethe logi
 and start from a given ve
tor �eld v . For the transformations (2.2.10),the existen
e of su
h a potential is essential. It is in general not guaranteed that
v 
an be expressed in terms of a gradient of a unique potential f . However, if
X is 
ompa
t and simply 
onne
ted, one 
an invoke de Rham duality H 1(X ) ≃
H1(X ) = 0 and 
on
lude that ω := ιv g is an exa
t one-form ω= d f . Consequently,for every ve
tor �eld v there exists a unique and single-valued fun
tion f su
hthat v =∇ f .
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❏ Let X be 
ompa
t and simply 
onne
ted.I have been as unrestri
tive as possible and at the end of my dis
ussions itappears that I had to put the same 
onstraints as those used by Frenkel, Losevand Nekrasov [FLN06℄. Here is the summary of the 
onditions:
➀ The target manifold X is a 
ompa
t, simply 
onne
ted, oriented Kählermanifold with Eu
lidean metri
 λg .
➁ There is a Morse fun
tion f : M → R su
h that M has a Bialyni
ki-Birulade
omposition by means of the des
ending and as
ending manifolds.
➂ The des
ending and as
ending manifolds are Morse-Smale transversal.
➃ The des
ending and as
ending manifolds are strati�
ations of X .The main side-e�e
t of the transformations is that the theory is no longer unitaryand therefore the out- and in-states are not related by an inner produ
t. The in-states are supported on the des
ending manifolds Xc and for the va
uum statesI used the argument of [Wit82℄ in order to see that their form degree equals theindex of the �xed point xc .

2.4 Morse Theory on X =CP
1In this se
tion I am going to review the toy model 
onsidered in [FLN06℄. Manyfeatures of the Morse theory underlying the topologi
al A-model 
an already bestudied by this example. The most important aspe
t will be that the Hamilto-nian will be non-diagonal on the ex
ited states in the low energy spe
trum.The toy model is de�ned on X = CP

1 with inhomogeneous 
oordinates z, z̄,endowed with the Fubini-Study metri
 λg = λ dzdz̄
1+|z|2 and a Morse fun
tion f =

1
4
|z|2−1
|z|2+1

. The asso
iated ve
tor �eld is a generator of the C
× symmetry of X , v =

z∂z + z̄∂z̄ .8 It has �xed points {0,∞} and the 
orresponding des
ending manifoldsare obtained from the �ow equation dz(t )
dt

= ζ[z(t)], ζ = z∂z . The point {0} isrepulsive with ind(0) = 0 and has an asso
iated des
ending manifold X0 = C0,where C0 = CP
1 \ {∞}. The other �xed point {∞} is attra
tive with ind(∞) = 2

8The Lie algebra of C× is generated by v = z∂z + z̄∂z̄ and u = i(z∂z − z̄∂z̄ ). The group elements are eφv

and eφu with φ ∈R.
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and des
ending manifold C∞ = {∞}. The Hamiltonian before the transformationsreads
H =−

2

λ
(1+|z|)2∂z∂z̄ +

λ

2

|z|2

(1+|z|)2
+

1−|z|2

1+|z|2
(Fz +Fz̄ −1) . (2.4.1)Be
ause the low energy states I am interested in are lo
alized around the
riti
al points for �nite λ, it is suggestive to start with 
onsidering the situationlo
ally in the 
harts C0 and C∞ := CP

1 \ {0}. Even if these states might get�smeared out� in the large volume limit, they remain supported on the des
endingmanifolds, and lo
al in this respe
t. Therefore, I will now turn to a perturbativeanalysis of Morse theory. The thus obtained ground states are the exa
t groundstates for the global theory due to the argument given in se
tion 2.2.4.In order to treat the situation in the 
harts around {0} and {∞} at the sametime, I introdu
e a 
onstant k ∈ {±1} that distinguishes if the the �xed pointis attra
tive or repulsive. The respe
tive Morse potential and its gradient are
v = k(z∂z+z̄∂z̄ ), f = 1

2 k|z|2 for both 
harts, where k =+1 simulates the �xed point
{0} and k =−1 the �xed point {∞}. Noti
e that I negle
ted the 
onstant in theTaylor expansion of f be
ause it is irrelevant for the analysis of the spe
trum ofthe Hamiltonian, the Morse potential does only enter the Hamiltonian in termsof ∇ f . The energy momentum tensor is perturbatively given by (2.2.22)

H (pert) =−
2

λ
∂z∂z̄ +

λ

2
k2|z|2 +k(Fz +Fz̄ −1) . (2.4.2)For the moment I forget about the fermions dz and dz̄, the bosoni
 eigenfun
-tions are then Laguerre Polynomials

Ψn,m =
(
π(λk)(n+m−1)n!m!

)− 1
2 e

1
2λ|k |zz̄∂m

z ∂n
z̄ e−λ|k |zz̄ , n,m ∈N∪ {0} . (2.4.3)When I apply the transformations (2.2.10) and (2.2.20), the sign of k matters.In analogy with [FLN06℄ I start with k = 1, i.e. {0} is repulsive. The in- andout-states of the transformed theory are now

Ψ
(in,λ)
n,m =

1

λn+m
e−λzz̄ ∂m

z ∂n
z̄ e−λzz̄ ,

Ψ
(out,λ)
n,m =

λ

2π n!m!
∂n

z ∂
m
z̄ e−λzz̄ i

2
dz ∧dz̄

(2.4.4)and the normalization is 
hosen su
h that the limit λ→∞ makes sense.If k =−1 and {0} is attra
tive, the r�le of the in- and out-states are ex
hangedand hen
e, the in-state for an attra
tive �xed point is just the out-state above.
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Taking the large volume limit, the in-states be
ome polynomials in z and z̄.The out-states are fun
tionals on the in-states, and a partial integration makestransparent that the exponential is a representation of the Dira
 distribution.Therefore, when λ→∞,
Ψ

(in,λ)
n,m → zn z̄m ,

Ψ
(out,λ)
n,m →

1

n!m!
∂n

z ∂
m
z̄ δ(2)(z, z̄)

i

2
dz ∧dz̄ .

(2.4.5)The perturbative situation on X = CP
1 is now as follows: On the des
endingmanifold C0, the in-states are given by H0 =F0 ⊗F̄0 , with

F0 =C[[z]]⊗∧[[dz]] ·1|C0 , ∆0 = 1|C0 (2.4.6)and ∆0 is the va
uum 
on�guration. The expression C[[·]] denotes a power seriesand ∧ the exterior produ
t. The operators ∂z and ιz annihilate the va
uum
1|C0 . The in-states asso
iated with the des
ending manifold {∞} are elements of
H∞ =F∞⊗F̄∞ with

H∞ =C[[∂ω,∂ω̄]]⊗∧[[ιω, ιω̄]] ·∆∞ , ∆∞ =
i

2
δ2(ω,ω̄) dω ∧dω̄ . (2.4.7)The lo
al 
oordinate ω belongs to the 
hart C∞ and i

2
δ(2)(ω,ω̄) dω∧dω̄ is anni-hilated by ω and dω.Sin
e these states are lo
alized on the des
ending manifolds, there exist wellde�ned pairings between them. The integral

∫

X
Ψ

(out)
0/∞ ∧Ψ

(in)
0/∞ (2.4.8)has a �nite value, while ∫

X
Ψ

(out)
0/∞ ∧Ψ

(in)
∞/0

= 0. (2.4.9)However, Frenkel et al. [FLN06℄ de�ne an a
tion of these states on general di�er-ential forms on X , beyond holomorphi
 or antiholomorphi
 ones. In parti
ular,they extend the support of the exited states to X , whi
h means that the poly-nomials have to be generalized as distributions. The rationale behind that istheir 
onje
ture, or assumption, that this generalization of the exited statesin the perturbative low energy spe
trum (2.4.2), yields nonperturbative states[FLN06, pg. 62℄. The 
onsequen
e is, that the �globalized� polynomials will bethe sour
e for the Hamiltonian being non-diagonal. This will be the subje
t ofthe following se
tion.
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2.4.1 Polynomial distributions on CP
1Let φ be an element of the smooth fun
tions with bounded support on CP

1, thatis φ ∈ D. In parti
ular, all smooth fun
tions on CP
1 are test fun
tions for CP

1is 
ompa
t. I will also use a generalization of test fun
tions to test forms whi
hare smooth di�erential forms with 
ompa
t support.9 I will denote the spa
e oftest forms of degree (a,b) by D⊗Λ
a,b .In this se
tion I will de�ne the polynomial zν z̄µ as a distribution on CP

1, i.e.an element of D
∗ := L(D,C), the linear fun
tionals on D, for arbitrary ν, µ ∈

C, ν−µ ∈Z. This 
an be 
arried over to distribution forms dual to D⊗Λ
a,b . Inparti
ular, the va
uum state 1C0 
an immediately be generalized by de�ning it tobe the distribution form ∆0 a
ting on di�erential forms η ∈Ω

1,1
d

(CP1) a

ordingto ∆0(η) =
∫
C0

η.Firstly, I will 
on
entrate on polynomials on C. If the exponents ν and µare negative integers they have poles at z = 0. Therefore, I will explain how toregularize them, su
h that they 
an be de�ned as distributions everywhere on C.That situation will appear for CP1 in the 
hart around {∞} and I will generalizethe situation to that 
ase. Thereby, the polynomials with support in the 
hartaround {0} are extended as distributions on the whole of CP1.Most results of this se
tion are obtained, using the de�nitions of Gel'fand andShilov [GS64℄. The extension to CP
1 is handmade and the main result of thisse
tion equals that of [FLN06, pg. 55℄, though I 
hose a di�erent approa
h.

The case CLet d2z := i
2

dz ∧dz̄ and denote by ∫ an integration over C with this measure.The expression ∫
zν z̄µφ , φ ∈D , n := ν−µ ∈Z (2.4.10)is analyti
 in ν, µ and lo
ally integrable if the real part of s := ν+µ is ℜ(s)>−2and thus de�nes a distribution on φ. One 
an understand this, writing theexpression in angular 
oordinates

∫
zν z̄µφ=

∫∞

0
r s+1

(∫2π

0
φ(r e iα,r e−iα) e inαdα

)
dr . (2.4.11)

9In the mathematical literature these distribution forms are denoted as “currents” [GH78], I will, how-

ever, not use that terminology in order to avoid confusion with their physical namesakes.
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If ℜ(s) = −2 there might be a logarithmi
 pole and lo
al integrability fails in asubset 
ontaining the origin. For integer values less than −2 there will be polesas explained below. In two steps I will generalize (2.4.10) as a distribution formore general values of ν and µ.
Analytic continuation to ℜ(s) > −2−m , m ∈ N, s ∉ Z In the �rst step it ispossible to 
ontinue (2.4.10) analyti
ally to ℜ(s) >−2−m, s ∉ Z. Suppose that
ℜ(s) >−2 and add 0 in a ni
e way in order to extra
t the simple poles at negativeinteger values of s :

∫
zν z̄µφ=

∫

|z|≤1
zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l

)

+
∫

|z|>1
zν z̄µφ+2π

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !

δl−k ,n

k + l + s +2
,

(2.4.12)where φ(k ,l )(z, z̄) := ∂k
z ∂

l
z̄φ(z, z̄). The last term is just minus the insertion underthe integral, integrated over in polar 
oordinates. The equation above is analyti
in ν, µ up to simple singularities at s =−l −k −2 ∧ n = l −k or equivalently at

ν=−k −1 ∧ µ=−l −1. Hen
e, they 
an be analyti
ally 
ontinued. If further mis su
h that −m −2 <ℜ(s)<−m −1, one 
an simplify that expression:
∫

zν z̄µφ=
∫

zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l

)
. (2.4.13)The point is, that in this 
ase, the last term in (2.4.12) 
an be expressed as

−
∫

|z|>1
zν z̄µ

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l , (2.4.14)sin
e k + l + s +2 < 0. In detail that 
an be seen in polar 
oordinates. It is nowreasonable to de�ne (2.4.10) as equation (2.4.13) if ℜ(s) <−2 ∧ s ∉Z, as one 
analways 
hoose m as above.

Analytic continuation to s ∈Z<−1 The transition to s ∈Z<−1 is done by sub-tra
ting the singular term, say at s = −m −1, and taking the limit s →−m −1with �xed n = l−k or equivalently one 
an take the limit ν→−k−1 ∧ µ→−l−1.From (2.4.12) one 
an see, that this pole 
orresponds to k + l = m −1, whi
h is
28



the highest order term in
∫

z−k−1z̄−l−1φ : = lim
ν→−k −1

µ→−l −1

∫(
zν z̄µ−2π

(−)k+l

k!l !

δ(k ,l )(z, z̄)

m +1+ s

)
φ(z, z̄)

=
∫

z−k−1z̄−l−1

(
φ(z, z̄)−

m−2∑

a+b=0

φ(a,b)(0,0)

a!b!
za z̄b

−
∑

a+b=m−1

φ(a,b)(0,0)

a!b!
za z̄bθ(1−|z|)

)
.

(2.4.15)

This equation follows from (2.4.12) and redoing the steps leading to the �nalexpression (2.4.13), su
h that from the sum under the integral the term of highestorder is left and leads to the theta-fun
tion term above. Here θ(x) = 1 if x ≥ 0, x ∈
R and 0 otherwise.
Differentiating It is important to noti
e that due to the appearan
e of thetheta fun
tion in the 
ase s ∈Z<−1, di�erentiating is not a trivial task. Using theproperty of the derivative on distributions one obtains

∫(
∂z z−k−1z̄−l−1

)
φ=

∫(
(−k −1)z−k−2z̄−l−1 −

2π(−)k+l

l !(k +1)!
δ(k+1,l )(z, z̄)

)
φ , (2.4.16)and similar for ∂z̄ .

The case CP
1Up to now, (2.4.10) is de�ned on test fun
tions with bounded support in C. Inparti
ular, the support of the polynomial distribution is in C and, if there areany, singularities appear at |z| = 0. However, for the Morse theory on CP

1 I needthe a
tion on test fun
tions with bounded support in C∪ {∞} and therefore, Ihave to extend the de�nition of the distributions on
e more.I 
hoose two 
harts C0 and C∞ in
luding the points {0} and {∞}, respe
tively.By this means I 
an distinguish test fun
tions with bounded support in eitherand as a 
anoni
al notation I introdu
e D∞ for those whose support 
ontainsthe point {∞}. Without loss of generality, I let the polynomial distribution bede�ned as before in the situation C0. If I want to apply it to elements of D∞,be
ause integration is now taken over CP1, the polynomial has to be regularized
29



at {∞}. Let therefore f be an element of D∞, then formally
∫

zν z̄µφ=
∫

|z|<ǫ
zν z̄µφ+

∫

|z|≥ǫ
zν z̄µφ , (2.4.17)where z is the 
oordinate in C0 and ∫

· =
∫
CP1 ·. Allowing for a 
oordinate trans-formation to C∞ in the se
ond integral z 7→ω−1 yields

∫
zν z̄µφ=

∫

|z|<ǫ
zν z̄µφ(z, z̄)+

∫

|ω|≤ǫ−1
ω−ν−2ω̄−µ−2φ(ω−1,ω̄−1) . (2.4.18)The fun
tion φ̂(ω,ω̄) := φ(ω−1,ω̄−1) is now 
onsidered in the 
orre
t 
hart, thepoint {∞} is transformed to the point {0} whi
h is in
luded in the support of φ̂su
h that I end up with a situation to whi
h all results that I already obtainedapply. One gets the following generalization in the limit ǫ→ 0 :

∫
zν z̄µφ :=

{ ∫
ω−ν−2ω̄−µ−2φ̂(ω,ω̄) , φ ∈D∞∫
zν z̄µφ(z, z̄) , else . (2.4.19)Again, the integrals on the right hand side are analyti
ally 
ontinued and regu-larized as before (eqns. (2.4.13) and (2.4.15)) and integration is over C. However,integration on the left hand side is over CP1.

Ket notation I will now introdu
e another notation in a

ordan
e with Frenkel,Losev and Nekrasov [FLN06℄. Let φ be any test fun
tion on CP
1, i.e. φ ∈ D. Ide�ne the 
orresponding test form as an element of D ⊗Λ

a,b , su
h that φ :=
φ(z, z̄) dza ∧dz̄b in 
oordinates of C0 and φ = ω−2aω̄−2bφ̂ in 
oordinates of C∞where φ̂ := φ̂(ω,ω̄) dωa ∧dω̄b and a,b ∈ {0,1}. Let me further denote every poly-nomial distribution (form) of the type (2.4.19) with n,m ∈N by:

|n,m, p, q〉0 ∈D
′⊗Λ

p,q , p, q ∈ {0,1} ,

|n,m, p, q〉0 [φ] :=





i
2

∫
ω−n−2p−2aω̄−m−2q−2b dωp ∧dω̄q ∧ φ̂

i
2

∫
zn z̄m dzp ∧dz̄q ∧φ

0 if n,m < 0, p, q > 1

,
(2.4.20)where in the �rst equation φ ∈ D∞⊗Λ

a,b and in the se
ond φ ∈ (D/D∞)⊗Λ
a,b.Let me also de�ne an expression

|n,m, p, q〉∞ [φ̂] :=
i

2

(−)m+n

n!m!

∫
δ(m,n)(ω,ω̄) dωp ∧dω̄q ∧ φ̂ . (2.4.21)
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It is de�ned in lo
al 
oordinates of C∞, however, sin
e the support of this distri-bution form is just the point {∞}, it has zero value on all φ 6∈D∞ and thereforeis globally well de�ned.I 
an now generalize the notion of an exterior derivation on su
h distributionforms by means of
∂|n,m, p, q〉0 [φ] := (−)p+q+1|n,m, p, q〉0 [∂φ] . (2.4.22)In order to 
al
ulate the derivative of (2.4.20), espe
ially for the 
ase φ ∈ D∞,apply ∂= dω∧∂ω (rather than only ∂ω like in the subse
tion before). Let φ ∈D∞,then

∂|n,m, p, q〉0 [φ] = (−)p+q+1|n,m, p, q〉0 [∂ωφ̂(ω,ω̄) dωa+1 ∧dω̄b]

= (−)p+q i

2

∫(
∂ωω

−n−2p−2aω̄−m−2q−2b
)

×dωp ∧dω̄q ∧ φ̂(ω,ω̄) dωa+1 ∧dω̄b .

(2.4.23)Without loss of generality, I set p = a = 0 and keep the other degrees of freedom
∂|n,m, p, q〉0 [φ] =

i

2

∫(
∂ωω

−nω̄−m−2q−2b
)
dω∧dω̄q ∧ φ̂

=
2π(−)n+m−1

n!(m +2q +2b −1)!

∫
δ(n,m+2b+2q−1)dω∧dω̄q ∧ φ̂

−n|n−1,m, p +1, q〉0 [φ] .

(2.4.24)For φ 6∈ D∞ one obtains the �rst term on the right but with another sign andthus:
∂|n,m, p, q〉0 =±n|n−1,m, p +1, q〉0 +2π|n,m +2q −1, p +1, q〉∞ , (2.4.25)whereby �−� must be taken for D∞⊗Λ

a,b . Cal
ulating the exterior derivative of(2.4.21) is not so te
hni
al, it turns out to be
∂|n,m, p, q〉∞ =−(n+1)|n+1,m, p +1, q〉∞ (2.4.26)and the prefa
tor 
omes from the normalization of the state.Another important operation is the interior produ
t ιζ with some ve
tor �eld

ζ= z∂z (lo
ally in C0 ). The point is, that the Hamiltonian is given by the Liederivative on su
h polynomial distribution forms. Again, I make use of
ιζ|n,m, p, q〉0 [φ] := (−)p+q+1|n,m, p, q〉0 [ιζφ] . (2.4.27)
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Sin
e ζ=−ω∂ω in C∞, the a
tion of the interior produ
t is
ιζ|n,m, p, q〉0 =±|n+1,m, p −1, q〉0 , �−� on D∞⊗Λ

(a,b) . (2.4.28)The a
tion on a distribution |n,m, p, q〉∞ is derived analoguousely by means ofsome partial integration (again, I �x the non-trivial values p = 1 = a ):
ιζ|n,m, p, q〉∞ [φ̂]= (−)p+q+1|n,m, p, q〉∞ [−ωφ̂(ω,ω̄) dωa−1 ∧dω̄b]

=
i

2

(−)q

n!m!

∫
δ(ω,ω̄)dωp ∧dω̄q ∧

(
−n ∂n

ω∂
m
ω̄ φ̂(ω,ω̄)+O(ω)

)
dωa−1 ∧dω̄b

=−|n−1,m, p −1, q〉∞ [φ̂] .

(2.4.29)In the 
al
ulation above I used the fa
t that the delta fun
tion lo
alizes on ω= 0and therefore the terms proportional to ω vanish. Now I 
an 
al
ulate the Liederivative for f ∈D⊗Λ
a,b

Lζ|n,m, p, q〉0 = (n+p)|n,m, p, q〉0 −2π|n+2p −1,m +2q −1, p, q〉∞ ,

Lζ|n,m, p, q〉∞ = (n+1−p)|n,m, p, q〉∞ .
(2.4.30)Thus, due to the extension as distributions, the operators in
luding exterior dif-ferentials are in general not diagonal on |n,m, p, q〉0. These states get mixedwith states |n,m, p, q〉∞ on whi
h the operators have a one-dimensional repre-sentation. In parti
ular, the analyti
 extension of the ex
ited states to X makesit ne
essary that the spa
es of in-states 
an not be 
onsidered independently,rather one has to take a dire
t sum of the extended state spa
es H 0 ⊕H ∞.Here, the underline shall denote the spa
e of states as distributions.

❏ If H is a perturbative state spa
e related with some des
ending manifold,I will denote its extension to X as H .In se
tion 2.5, I will make the di�eren
e between the unextended and extendedrepresentation spa
es and operators more expli
it.
Out-States as Dual States As explained in se
tion 2.4, up to some normal-ization fa
tor, the out-states are de�ned by the right hand sides of (2.4.20) with
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the r�le of the in-states ex
hanged [FLN06℄
∞〈n,m, p, q| ∼





i
2

∫
z−n−2p−2a z̄−m−2q−2b dzp ∧dz̄q ∧φ

i
2

∫
ωnω̄m dωp ∧dω̄q ∧ φ̂

0 if n,m < 0

,

0〈n,m, p, q| ∼
i

2

(−)m+n

(n)!(m)!

∫
δ(m,n)(z, z̄) dzp ∧dz̄q ∧ φ .

(2.4.31)Thus, |n,m, p, q〉0/∞ are test forms if restri
ted to C0, and distribution forms ina neighborhood of {∞}, whereas 0/∞〈n,m, p, q| are test forms on C∞ and distri-butions around {0}. For that reason, it makes sense to generalize the pairing forin and out states for distributions, setting
∫

X
Ψ

(out) ∧Ψ
(in) :=

∫

D
Ψ

(out) ∧Ψ
(in) +

∫

X−D
Ψ

(out) ∧Ψ
(in) , (2.4.32)whereby D is the unit disk around {0}, 
f. [FLN06℄. One 
an then normalize theout states above su
h that

i 〈n,m, p, q|n′,m′, p ′, q ′〉 j = δn,n′δm,m′ ,δp+p′ ,1δq+q ′ ,1δi , j , i , j ∈ {0,∞} . (2.4.33)

Cohomology of the Supercharge I will now �ll in the missing details for myassertion in se
tion 2.2.2, that the 
ohomology of the super
harge is not a�e
tedby taking λ→∞, and that it still equals the spa
e of ground states.The kernel of Q∞ = ∂+∂̄ is generated by {|n,m,1,1〉0/∞, |0,0,0,0〉}. Among those,the states |n,m,1,1〉∞ , n,m ≥ 1 are in the image of Q∞. For m ≥ 0, ∂̄[|n,m,1,0〉0−
2π

n+1
|n,m,1,0〉∞] =±m|n,m−1,1,1〉0 and similar for the holomorphi
 di�erential.Thus, the 
ohomology of Q∞ is e�e
tively restri
ted to {|0,0,0,0〉0 , |0,0,1,1〉∞},whi
h are just the ground states. By a dire
t 
al
ulation one �nds, that thesolutions of H∞|n,m, p, q〉0/∞ = 0, H∞ =Lζ+Lζ̄ equal the kernel of Q∞.

2.5 Interpretation of the ExtensionExtending the states asso
iated with the des
ending manifolds to distributionson X was the sour
e for a sort of non-lo
ality. Some state spa
es whi
h formerlywere restri
ted to live in di�erent 
harts, are now intermixed by operators 
on-taining exterior di�erentials. In this se
tion, I will spe
ify between what state
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spa
es this happens. Moreover, this kind of non-lo
ality 
an only be seen onthe ex
ited, non-topologi
al states, and therefore must be analyzed as an e�e
tof the broken topologi
al phase. Therefore, 
ertain aspe
ts of the geometry ofthe target manifold should be
ome visible. To ta
kle those, I will de
ouple theintermixing e�e
t in the operators, extra
ting the mathemati
ally responsibleparts. My dis
ussion follows Frenkel et al. [FLN06℄, but also in
ludes my owninterpretations, in parti
ular that of non-lo
ality as an instanton e�e
t.
Perturbative States and Naive OperatorsPerturbatively, the state spa
es under 
onsideration are asso
iated with the de-s
ending manifolds and in
lude the part of the low lying spe
trum whi
h hasa �nite energy spe
trum in the limit λ→∞. I will 
all these the perturbativespa
es of states. They seem to be independent from ea
h other, in that theyare lo
ally de�ned on the des
ending manifolds and do not intermix under thea
tion of observables. This 
hanges for the ex
ited states, as soon as they areextended to X .Besides distinguishing the perturbative states from the extended ones, I willfurther introdu
e what I 
all naive operators. They a
t on the extended statesas if they were a
ting on the perturbative ones. For instan
e, the naive Hamil-tonian is diagonal on all extended states, L

(naive)
ζ

|n,m, p, q〉0 = (n+p)|n,m, p, q〉0

∀ n,m, p, q , whereas the full Hamiltonian 
an now be de
omposed Lζ =L
(naive)
ζ

+
g. I will also de�ne a representation of this Hamiltonian on the perturbativestates in the following way. Instead of g, 
onsider the operator δ := g◦e, wherein
e denotes the extension H i

e→ H i , i ∈ {0,∞}. Consequently, δ a
ts on H i andthe full Hamiltonian 
an be represented on the perturbative states by Lζ+δ.
❏ For the rest of my thesis I will �x the following notation. Let O be anoperator a
ting on the perturbative state spa
e H . I will denote the sameoperator, a
ting on the extended state spa
e H by O = O +gO , whereinreally O = O

(naive). For 
onvenien
e I use this abuse of notation, it willalways be possible to 
on
lude from the 
ontext if O denotes the operatora
ting on H or O
(naive), a
ting on H .The additional operator g is supposed to make lo
al geometri
 aspe
ts of thetarget spa
e visible (in 
ontrast to the global, topologi
al invariants), and 
auses
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that the Hamiltonian is not redu
ible on all states: non-redu
ibility of the Hamil-tonian 
an be viewed as an e�e
t of the broken topologi
al phase. More ventured,I am tempted to say that the additional term 
an be understood as an e�e
t oftarget spa
e gravity, sin
e beyond the topologi
al phase, invarian
e under di�eo-morphisms is broken down to invarian
e under the isometries of some ba
kgroundmetri
.
The Local Geometry behind the Deformation TermIn order to understand what kind of geometry be
omes visible in the deformationoperator δ, I will now dis
uss its proper interpretation as a Grothendie
k-Cousinoperator (GCO), 
.f. [FLN06, Har67, Kem78, Har70℄.The Hamiltonian Lv represents the a
tion of φv (·, t), indu
ed on di�erentialforms, 
f. (2.1.11). Therefore, the perturbative state spa
es 
an be interpretedas representations of the symmetry generated by the gradient ve
tor �eld v =
z∂z + z̄∂z̄ asso
iated to the Morse fun
tion. The target manifold X = CP

1 isthen
e 
overed by di�erent representation spa
es, ea
h of whi
h is supported ona des
ending (as
ending) manifold.Frenkel et al. [FLN06℄ had the idea to des
ribe those lo
al representations bymeans of sheaves on X .10 Let X be endowed with the Zariski topology, then
X0 = C0 is an open subset while X∞ = X \ X0 is 
losed. The representation H0
an now be des
ribed as follows. The homogeneous rational fun
tions OX [n]∞on X that are regular ex
ept for a pole of order n > 0 at {∞} form a sheave on
CP

1. A

ording to se
tion 2.4.1, I 
an identify
H0 \ {∆0} =

⊕

n,m>0

Γ(X0,OX [n,m]∞) , (2.5.1)whereby OX [n,m]∞ =OX [n]∞⊗ŌX [m]∞ and Γ(U ,OX [n,m]∞) denotes the se
tionsof those polynomials, restri
ted to the open subset U ⊂ X .11 In parti
ular, therestri
tion to X0 is inje
tive, and the analysis of se
tion 2.4.1 implies that thesequen
e
0 →

⊕

n,m>0

Γ(X ,OX [n,m]∞) →H0 \ {∆0}
δ→H∞ \ {∆∞} → 0 (2.5.2)

10For a definition of sheaves and an introduction, cf. [GH78, Har70, Gat02].
11The sections ofΓ(X0 ,OX [n,m]∞) are polynomials in the inhomogeneous coordinates and thus obey the

equivalence relation C
2 \ {0} ∋ ( f ,g ) ∼ λ( f ,g ), f ∈C\ {< 0} of the homogeneous coordinates. Therefore,

I may take the direct sum.
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is exa
t. It summarizes the extension of the lo
al (irredu
ible) representationsto (non-redu
ible but inde
omposable) representations de�ned globally X .It would be ni
e, if not only H0 
ould be related with the theory of sheaves,but also H∞. Sin
e the support of H∞ is a 
losed set but sheaves are de�nedon open sets, some generalization will be ne
essary. This will lead to the theoryof lo
al 
ohomology [Har67℄. Let F be a sheaf on X , Z ⊂ X a 
losed set and
U ⊂ X an open set su
h that Z ⊂U . The support of a se
tion s ∈ F (U ) := Γ(U ,F )is {p ∈U : sp 6= 0}, where sp is the germ of s in the stalk Fp .12 The se
tions of
F with support in Z are de�ned to be the subgroup ΓZ (X ,F ) of se
tions F (U ),whose support is in Z . The se
tions with support on 
losed subsets will be atthe heart of the interpretation of H∞.The term �lo
al 
ohomology� enters the work of Frenkel et al. [FLN06℄ througha publi
ation of G. Kempf [Kem78℄, wherein the sequen
e (2.5.2) appears as anexample in the introdu
tion. A huge part of the paper is dedi
ated to an analysisof the following setting. Given a topologi
al spa
e X , �ltered by 
losed subsets
X = Z0 ⊇ Z1 ⊇ ·· ·Zn ⊃ ; and supplemented with a sheaf F . Kempf derives anexa
t sequen
e whi
h he 
alls a �global Grothendie
k-Cousin 
omplex�:

0 →Γ(X ,F ) → H 0
Z0/Z1

δ1→ H 1
Z1/Z2

δ2→ H 2
Z2/Z3

δ3→···H n
Zn

→ 0. (2.5.3)Here, I shortened H i
Zi /Zi+1

(X ,F ) = H i
Zi /Zi+1

, H n
Zn /; = H n

Zn
, and the spa
es H i

Zi /Zi+1denote (abstra
t) 
ohomology groups, asso
iated with the quotient presheaf
ΓZi

(X ,F )/ΓZi+1
(X ,F ). These are the so-
alled lo
al 
ohomology groups.By 
omparison, for the toy model on X = CP

1, the 
orresponding data are
F =

⊕
n,m>0 OX [n,m]∞ and the 
losed sets X ⊃ {∞} ⊃;. Consequently, H∞ \{∆∞}
an be identi�ed with the �rst lo
al 
ohomology group H 1

∞(X ,F ). This is themathemati
al answer to the question what sort of lo
al geometry of X gets visibledue to the ex
ited states. Be
ause the 
omplex above is 
alled Grothendie
k-Cousin 
omplex,
❏ the operator δ is 
alled the Grothendie
k-Cousin operator (GCO). I willalso denote the operator g in δ = g ◦ e as Grothendie
k-Cousin operator,whi
h I am 
onsidering will always be evident from the 
ontext.

12Let {Ui } denote an open covering of X , a stalk Fp of F at p ∈ X is the set of pairs (Ui ,si ), p ∈ Ui , s j ∈
F (Ui ) modulo si |Ui ∩U j

= s j |Ui ∩U j
. An equivalence class in Fp is called a germ, and I denoted it by sp

[Har70, Gat02].
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Non-locality as an Effect of InstantonsThe additional term δ has besides the geometri
 a further physi
al interpreta-tion. It 
ontains the nonperturbative e�e
ts due to the presen
e of instantons.Instantons, 
onsidered as tunneling solutions, 
an be viewed as non-lo
al �eld
on�gurations that pro
ure some of the stru
ture of the theory as de�ned in the
hart around the repulsive �xed point {∞} to the one de�ned in the other 
hartaround the attra
tive �xed point {0}. Sin
e there are no anti-instantons this doesnot apply the other way around. This makes it obvious that one might 
onsiderthe following: The Grothendie
k-Cousin operator δ mixes the state spa
e H0 with
H∞, but not the other way around, and in that sense it mimi
s the instantons.
Mixing of Holomorphic and Antiholomorphic PartsA further spe
iality of the Grothendie
k-Cousin operator is that it mixes theholomorphi
 and antiholomorphi
 parts. In parti
ular, it 
ontributes only onstates whi
h are not purely holomorphi
 or antiholomorphi
. From (2.4.30)follows that kerδ= {|n,0, p,0〉0 , |0,m,0, q〉0 : n,m ≥ 0, p, q ∈ {0,1}}. For that reason,as soon as the ex
ited spe
trum is 
onsidered, the theory 
an not be dividedinto an holomorphi
 and antiholomorphi
 �half �. Just as the existen
e of non-diagonalizable operators, this is a typi
al 
hara
teristi
 of logarithmi
 
onformal�eld theories [DF08℄.
2.6 Generalization to General Target ManifoldsIn the following se
tions I will generalize the dis
ussion to a larger 
lass ofmanifolds X , again relying on [FLN06℄. For 
onvenien
e I will restri
t my 
on-siderations to the in-states. Furthermore, I will restri
t to Morse fun
tions withthe property that their gradient ve
tor �eld equals v = xa∂a + x ā∂ā , where xaand x ā are lo
al 
oordinates on X .
2.6.1 The Perturbative state spacesThe perturbative state spa
es lo
alize on the des
ending manifolds, thus I will�rst start with a generalization of those.
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Let Xα be a des
ending manifold with 
riti
al point xα whi
h has an index
ind(xa) = dimCX −nα. By 
oordinates along Xα I understand (holomorphi
) 
o-ordinates x1, . . . , xnα su
h that Xα is the hyperplane de�ned by the zero set of the
omplementary, transversal 
oordinates xnα+1, . . . , xdimCX . In the toy model, thereexists one holomorphi
 
oordinate z along X0 ≃C and no transversal 
oordinate,whereas X∞ = {∞} is zero dimensional and has just a transversal 
oordinate z.Now the perturbative state spa
es 
an be generalized. In the toy model, theva
uum asso
iated with X0 was the 
hara
teristi
 fun
tion in the 
oordinatealong X0, whereas the va
uum asso
iated with X∞ was a Dira
 distribution.This 
an be generalized as follows:

❏ A ground state ∆α is a distribution form de�ned by ∫
X ∆α∧η=

∫
Xα

η|Xα ondi�erential forms η.Again, in the toy model, the ex
ited states on X0 are polynomials in the
oordinates along Xα multiplied with the exterior algebra again along X0. Theex
ited states asso
iated with X∞ whi
h has only transversal 
oordinates, arepolynomials in interior derivatives and simple derivatives along the transversal
oordinates. This is also 
anoni
ally generalized:
❏ The ex
ited states asso
iated with Xα are given by

(C[[xa ]]⊗∧[[dxa ]])a=1,...,nα
⊗ (C[[∂a ]]⊗∧[[ιa ]])a=nα+1,...,dimC X ·∆α.

2.6.2 The Grothendieck-Cousin OperatorsIn order to determine the Grothendie
k-Cousin operators for the more general
ase I will use two properties of δ as determined before.The �rst property is that the Grothendie
k-Cousin operator is a mapping be-tween di�erent representation spa
es whi
h are lo
ally de�ned in 
harts of X ,and that it appears in an exa
t sequen
e of the kind (2.5.3). This is, however,too general. In the situation of the toy model, the GCO is a mapping betweentwo state spa
es of relative 
odimension one, i.e. {∞} ≺ C0 = codim({∞},Cc
0) = 1,where the upper
ase c denotes taking the 
losure. In order to preserve this pro-perty, one must further 
onstrain X and the sheaf F . I will not arti
ulate those
onditions and refer the reader to the publi
ation of [T
h04℄. Thus, I assumethat X and F are su
h that the Grothendie
k-Cousin operators are mappings
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between representation spa
es on des
ending manifolds with relative 
odimen-sion one, (Zi \Zi+1) ≺ (Zi−1 \Zi ) = 1. This restri
ts the state spa
es between whi
hGrothendie
k-Cousin operators exist:
❏ The GCOs are mapping between perturbative state spa
es whose des
en-ding manifolds have relative 
odimension one.

∃ δi : H i−1
Zi−1/Zi

→ H i
Zi /Zi+1

⇔ (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) . (2.6.1)The se
ond property does not follow from a geometri
 analysis as above and ismore heuristi
. The situation of the topologi
al A-model I am going to introdu
ein the next 
hapter, will turn into an analysis of an in�nite dimensional manifold.Thus, I do not know how to transfer the results above from its roots. When it
omes to determine the GCOs, I will rather sear
h after an adequate extension
e of the perturbative representation spa
es, su
h that I �nd operators g whi
hhave the properties of 
ohomology operators on the extended 
omplex. Thus, inorder to determine the extension, I will make use of the following observation:For simpli
ity, I will negle
t the exterior produ
t part. If the perturbativestate spa
e H0 is restri
ted to the overlap C

×, it may be identi�ed with thepolynomials ωnω̄m in 
oordinates of C∞. The extension e 
an now be viewed asto allow su
h polynomials to have negative exponents, 
f. se
tion 2.4.19. Due tothe polynomials with negative exponents, the naive Hamiltonian is now degen-erate. Therefore, the analyti
 extension e means e�e
tively that the spe
trum
H0 ≃ C[[ω,ω̄]] is enlarged by the missing degenerate, �dual part�, of the naiveHamiltonian, H

∗
0 ≃ C[[ω−1,ω̄−1]]. The mapping g is then a mapping from thisdual part onto the lo
al 
ohomology group at {∞} :

❏ The GCOs a
t non-trivially on the �dual part� of the spe
trum of the naiveHamiltonian, obtained by an extension of the state spa
e
HXα

e→ H Xα
=HXα ⊕H

∗
Xα

g→HXβ
→ 0, (2.6.2)where Xβ ≺ Xα and HXα denotes the states on whi
h the symmetries of thetheory be
ome degenerate.Instead of determining the Grothendie
k-Cousin 
omplex I will make use of thisheuristi
 re
ipe.
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From the A-Model to Morse Theory 3This 
hapter has again three parts. I will su

essively reprodu
e the situationof the last 
hapter for the topologi
al A-model, reformulating it as an in�nitesum of Morse theories of the kind just 
onsidered. Thereby, I will obtain itsperturbative representation spa
es. It will be possible to identify them withrepresentations of 
onformal supersymmetri
 ghosts, whi
h I will further sub-stitute for the A-model. Bosonization of the 
onformal theory will enable meto derive the Grothendie
k-Cousin operators and propose the extension of theperturbative state spa
es. Due to the properties of the Grothendie
k-Cousinoperators it is then evident that if the topologi
al A-model is a 
onformal �eldtheory, it must be a logarithmi
 
onformal �eld theory beyond its topologi
alse
tor. The main referen
e of this 
hapter is the publi
ation of Frenkel et al.[FLN08℄.In the �rst part, I will massage the topologi
al A-model, [Wit88b, Mar05,DVV91℄, into a �rst order form su
h that in the large volume limit, it yields a
δ distribution on the instantons. The a
tion thus obtained is that of a super-symmetri
 bc-system, and I will 
all it the topologi
al supersymmetri
 bc-system(Tb
).In the se
ond part, 3.2 - 3.6, I will reverse the dire
tion of analysis of [Wit88b℄and derive the super quantum me
hani
s asso
iated with the Tb
, as was doneby Frenkel et al. [FLN08℄. The result will be a theory that is not yet Morse anddemands two further steps to reprodu
e the situation of the last 
hapter. I willdis
uss how to do that in se
tion 3.2 and afterwards restri
t my 
onsiderations tothe target manifold X =CP

1, 
.f. se
tion 3.3. I will then derive the perturbativestate spa
es asso
iated with the des
ending manifolds 
orresponding to the �xedpoints {0,∞} ∈ CP
1. They 
an be modeled by some 
onformal supersymmetri
ghost system (CSb
) that I introdu
e in 3.4. In order to formulate the CSb
 on

CP
1, it is ne
essary to implement 
hart transitions. Therefore, I have to furtherintrodu
e the 
hiral de Rham 
omplex, invented by Malikov et al. [MSV99℄, 
f.se
tion 3.5.1.That the representation spa
es of the Morse theory behind the Tb
 
an be
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modeled by a 
onformal �eld theory raises the question whether this 
ould betrue for the A-model itself. I will only tou
h lightly on that question, pg. 62f,and otherwise assume that the CSb
 will simulate all aspe
ts relevant for theperturbative low energy spe
trum of Morse theory behind the A-model.In the last part, starting with 3.6, I will extend the perturbative represen-tations to the nonperturbative spe
trum and introdu
e the in�nite dimensionalanalogues of the Grothendie
k-Cousin operators. This analysis is done for theCSb
, and I again assume that it generalizes to the A-model. The most impor-tant step will be to bosonize the CSb
. To do that, I will use and generalize themethods des
ribed in [FMS86, Fri85, FF91, FF90℄, 
f. 3.6.2. This will enable meto analyze the algebrai
 properties of the representation theory for the pertur-bative and nonperturbative states of the Morse theory underlying the A-model.Some parts of that investigation have been published in [VF09℄. My approa
hdi�ers from that of Frenkel et al. [FLN08℄, who relied on a publi
ation of Malikov[Bor01℄. Motivated by a prior work of Frenkel and Losev [FL07℄, they proposedthat the Grothendie
k-Cousin operator is the zero mode of a parti
ular �eld,whi
h is part of a vertex algebra 
onstituted by the CSb
 after rewriting it inlogarithmi
 
oordinates and extending it by additional �eld zero modes. Myapproa
h will make use of the bosonized CSb
 and of the method of logarithmi
deformation invented by Fjelstad et al. [FFH+02℄. I will dis
uss the approa
h ofFrenkel, Losev and Nekrasov and its relation to the method I have 
hosen in anappendix C.
3.1 Massaging the A-modelThe A-model is a two dimensional �eld theory with an N = 2 (N = (2,2)) world-sheet supersymmetry [Mar05℄, 
f. appendix B.1. I will start with preparing thetopologi
al se
tor of this model and with the transformation of its integrationkernel in the path integral to a delta distribution. For this purpose, let Σ=CP

1with lo
al metri
 h = dz ⊗dz̄ and volume form d2z := i
2

dz ∧dz̄, as before. Theindi
es µ, ν will denote lo
al 
oordinates σµ : σ1 = t , σ2 = σ on Σ 
onsideredas a real manifold. The 
omplex 
oordinates are z = t + iσ, z̄ = t − iσ. Further,I will need the epsilon symbol ǫz̄z = −ǫzz̄ = 2i, as de�ned by 1
2
ωµνdxµ ∧dxν =:

1
2ωµνǫ

µν ·d2z. The target manifold X be a simply 
onne
ted, 
onne
ted, 
om-
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pa
t Kähler manifold with metri
 λg . I denote its lo
al holomorphi
 
oordinatesas xa with small latin letters a = 1, . . . ,dimC X and similarly the anti-holomorphi

oordinates as x ā .The A-model, without auxiliary �elds, has the a
tion
S =

∫

Σ

d2z
{
λgab̄(∂z xa∂z̄ xb̄ +∂z̄ xa∂z xb̄ + iπaDzψ

b̄ + iπb̄Dz̄ψ
a )

−
1

2λ
Rab̄cd̄ πaπb̄ψcψd̄

}
,

(3.1.1)where the embedding x is a Grassmann even and ψ a Grassmann odd s
alar,
πa ∈ Γ(Σ,Ω1,0(Σ)⊗ x∗(Ω1,0(X ))) and similar for πā .1 The 
ovariant derivative, forinstan
e on ψa , is given by Dz̄ψ

a = ∂z̄ψ
a +Γ

a
bc
∂z̄ xbψc . I will 
all the Grassmannodd �elds fermions, though they have the wrong statisti
s.Among others (
f. appendix B.1), this theory has a symmetry generated by

δ=κ++Q+++κ−−Q−− :
δxa = κ++ψa , δx ā =κ−−ψā ,
δψa = 0 , δψā = 0 ,
δπa = 2iκ−− ∂z̄ xa +κ++

Γ
a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ .

(3.1.2)From the transformation of the fermions one 
an 
on
lude that the holomorphi
embeddings ∂z̄ xa = 0 = ∂z x ā are �xed points of that symmetry. These are 
alledinstantons, whereas the antiholomorphi
 ones, whi
h are �xed points of anothersymmetry generator, are 
alled anti-instantons. The nilpotent generator Q0 =
Q+++Q−− is independent of the geometry of the domain manifold in the sensethat [Pµ,Q0] = 0, as 
an be derived from the relation [Q0,Gµ] = Pµ, where Gµ isanother supersymmetry generator, 
f. appendix B.1.The a
tion above has more than just instantons as �xed points. In the follow-ing I will make lo
alization on instanton 
on�guration spa
e manifest, in orderto satisfy ➄ of the introdu
tion. Therefore, I will again apply the Bogomolnytri
k and add a term whi
h ex
ludes the anti-instantons (i.e. antiholomorphi
embeddings) from the global minima of the a
tion. When I write the Lagrangian

1The reader who is puzzled by the presence of λ−1 in the last term in (3.1.1) might consider the fol-

lowing. Take the usual action with metric g and not λg . Call the fermionic one form ρā , its indices

are lowered with gab̄ . Now introduce λg and identify πā = ρā , where πā is the corresponding field

lowered by λgab̄ . Then Ra
bc̄d

ρaρ
bψc̄ψd ≃ λ−1R̃a

bc̄d
πaπ

bψc̄ψd because ρa = λ−1(λgab̄π
b̄ ), whereas

R̃a
bc̄d

=Ra
bc̄d

and I omitted the tilde in the action.
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in �rst order form and integrate over the S1 
oordinate, the a
tion will have thesame shape as the Morse theory of the last 
hapter.
Excluding the Anti-InstantonsConsider the bosoni
 part of the a
tion, it 
an alternatively be written as

∫

Σ

d2z
(
2|∂z xa |2 − x∗(ωK )

) or ∫

Σ

d2z
(
2|∂z̄ xa |2 + x∗(ωK )

)
, (3.1.3)where ωK = i

2
λgab̄ dxa ∧dxb̄ is the Kähler form. Obviously, the a
tion has bothsorts of instantons as global minima. In order to ex
lude the anti-instantons Isubtra
t ∫

Σ
x∗(ωK ) from the a
tion above. The transformed a
tion

Sλ =
∫

Σ

d2z

(
2λgab̄ ∂z̄ xa∂z xb̄ + iπa Dz̄ψ

a + iπb̄Dzψ
b̄ −

1

2λ
Rab̄cd̄ πaπb̄ψcψd

)

(3.1.4)does not have the full supersymmetry of the former one but still the symmetrygenerated by Q++ and Q−− .The pullba
k x∗(ωK ) of the Kähler form is a volume form on Σ and hen
etopologi
al with respe
t to the domain manifold. However, it is de�ned withrespe
t to the target spa
e metri
 λg and the question remains if it 
hanges thetopologi
al se
tor of the theory. Sin
e the Kähler form is 
losed, the integral∫
Σ

x∗(ωK ) =
∫

x∗(Σ)ωK does only depend on the 
ohomology 
lass of β := x∗(Σ) ∈
H2(X ,Z). Therefore, it is invariant under a smooth 
hange of the Kähler form,respe
tively the metri
. Consequently, the topologi
al se
tor is not 
hangedwhen the anti-instantons are ex
luded.By the 
hoi
e of β, the instanton 
on�guration spa
es 
an be distinguished.A familiar way to make that visible in the a
tion is to introdu
e the analogueof a theta angle. Instead of subtra
ting ∫

Σ
x∗(ωK ) from (3.1.1), one adds a
losed, 
omplex two form with real part proportional to the Kähler form B =

Bab̄ d xa ∧d xb̄ := τ−ωK on X , τ= τab̄dxa ∧dxb̄ . With this de�nition
Sτ,τ̄ = Sλ+

∫

Σ

x∗(τ) (3.1.5)and the last term yields the �theta angle�. Sin
e τ is a 
losed di�erential form on
X , the integral again depends only on the homology 
lass β. In order to preserve
τ, the limit λ→∞ is reformulated as the 
ondition that τ̄ab̄ := Bab̄−

iλ
2

gab̄ →−i∞,whilst τ= const. . In the following, I will not make use of the theta angle τ.
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First Order Formalism and the Supersymmetric bc-systemTo make lo
alization expli
it, I introdu
e a Lagrangian multiplier p = pa dzdxa+
p ā dz̄dx ā and rewrite the a
tion in �rst order form

Sλ =
∫

Σ

d2z
[
− ipa∂z̄ xa − ip ā∂z x ā + iπaDz̄ψ

a + iπā Dzψ
ā

+
1

2λ

(
g ab̄ pa pb̄ −Rab̄cd̄ πaπb̄ψcψd̄

) ]
.

(3.1.6)In the large volume limit λ→∞, the exponential of the a
tion be
omes a deltafun
tion on the instanton moduli spa
es while the a
tion itself be
omes what is
alled a supersymmetri
 ghost or b
-system
S∞ =

∫

Σ

d2z
(
−ipa∂z̄ xa − ip ā∂z x ā + iπa∂z̄ψ

a + iπā∂zψ
ā
)

, (3.1.7)where I rede�ned p ′
a := pa +Γ

b
ac ψcπb and already left the prime away in theformula above. The supersymmetry takes the simple form

[Q0, xa ]=ψa , [Q0, x ā ] =ψā ,
[Q0, p ā] = 0 , [Q0, pa ]= 0 ,
[Q0,πā] = p ā , [Q0,πa ]= pa , (3.1.8)in analogy with (2.1.10), and Q0 plays the r�le of the BRST operator. In se
tion3.5.1 it will be
ome 
lear in what respe
t Q0 
an be identi�ed with the de Rhamdi�erential. The a
tion S∞ is Q0-exa
t

S∞ =
∫

Σ

d2z [Q0,−i(πa∂z̄ xa +πā∂z x ā )] , (3.1.9)and I will 
all it the topologi
al bc-system (Tb
). It will be the main 
hara
terin the following.
Remark: Let me 
on
lude the large volume limit with a remark on the symme-tries of the Tb
. The a
tion (3.1.7) has an additional bosoni
 axial symmetry inanalogy with (B.0.4), that the original a
tion did not have. Therefore, it seemsthat in the large volume limit, the theory a
quires an additional anomaly. Inse
tion 4.2 I will prove, that the bosoni
 axial symmetry will be broken by theGrothendie
k-Cousin operators.
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3.2 The Morse Theory behind the A-modelIn analogy with Frenkel et al. [FLN08℄, I will now reverse the analysis of Witten[Wit88b℄ to obtain the super quantum me
hani
s (SQM) underlying the Tb
. Itwill di�er in two aspe
ts from the model of 
hapter 2. The target manifold willnot be simply 
onne
ted and the 
riti
al manifold of the Morse fun
tion will notbe zero-dimensional, su
h that additional steps have to be taken to redu
e thesuper quantum me
hani
s derived from the Tb
 to the Morse theory dis
ussedin the last 
hapter. Afterwards, I will restri
t to the 
ase X =CP
1 in se
tion 3.3.To extra
t the Morse theory, let Σ = R×S1 with lo
al 
oordinates z = t + iσ.For a �xed value of t , the embedding xa |t (σ) is an element of loop spa
e LX :={

γ∈C∞(S1, X ) : γ is 
ontra
tible} and 
an be represented by a Fourier series
xa |t (σ)=

∑

n∈Z
xa

n e−inσ . (3.2.1)Similar holds for the other �elds, for instan
e pa |t (σ) =
∑

n∈Z paneinσ. The modes
xa

n are lo
al 
oordinates on LX and one 
an reformulate the Tb
 as a SQM on
LX by integrating out the dependen
e on S1. Up to irrelevant prefa
tors, theholomorphi
 part of the a
tion yields

S∞(t ,σ) 7→ S∞(t)=−i

∫
dt

(
pa,−n [∂t xa

n − v a
n (x)]−πa,−n [∂tψ

a
n −ψb

n∂b v a(x)]
)

(3.2.2)and similar holds for the antiholomorphi
 one. Summation over n is understoodand v a
n (x)∂an :=−nxa

n
∂

∂xa
n
. The Lagrangian 
an be understood as an in�nite sumLagrangians of the kind (2.1.9), if the vn are interpreted as the gradient �eldsof a Morse fun
tions.The gradient �elds are asso
iated with the generator of loop rotations ∂σ.It is represented on the loops x by means of the ve
tor �eld v(x) =−i∂σxa∂a +

i∂σx ā∂ā , ∂a := ∂
∂xa and on the 
oordinates of LX by integrating over the parameter

σ, ∫
S1 v a(x)∂a =

∑
n v a

n∂an . Therefore, the �xed points of v are the 
onstant loops,i.e. points on X . These are the zero modes xa
0 . Consequently, the �xed pointsof the gradient �eld are not isolated but 
omprise what is 
alled a �
riti
almanifold�, whi
h in the situation above is X ⊂ LX .Another way to see this is by analyzing the spe
trum of the Hessian Haa n =

−n. The 
oordinates xa
n with n > 0 belong to negative eigenvalues and thus
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are 
oordinates on the as
ending manifold, 
oordinates with n < 0 belong tothe des
ending manifolds while the zero modes xa
0 are 
oordinates at whi
h theHessian is indi�erent.The instanton equation 
an be written as the �ow equation generated by theve
tor �eld v :

∂t xa − v a(x) = ∂t xa + i∂σxa = 0, (3.2.3)whi
h is nothing else but the 
ondition of holomorphi
ity ∂z̄ xa = 0. In lo
al
oordinates of LX the instanton equation is
∂t xa

n − v a
n (x) = 0, v a

n (x) =−nxa
n . (3.2.4)However, the SQM above di�ers in two aspe
ts from the one of the last 
hapter.Firstly, the 
riti
al points are not isolated and se
ondly, the target manifold LX is
onne
ted but not simply 
onne
ted. This latter observation raises the questionwhether there exists a fun
tion f su
h that d f = ιv gγ. Here, gγ is the indu
edKähler metri
 gγ(η1,η2) :=

∫
S1 λg |γ(η1(σ),η2(σ)), η1/2 ∈ Γ(TγLX ), TγLX := γ∗T Xare ve
tor �elds along the loop γ, and the 
ontra
tion is understood as ιv gγ[η] =∫

S1 λg |γ(v(σ),η(σ)). In the next se
tion I will introdu
e a potential su
h that theve
tor �eld v 
an be obtained as its gradient. The potential will, however, notbe single-valued on loop spa
e.
3.2.1 The PotentialOn a simply 
onne
ted, symple
ti
 manifold, every symple
tomorphism 
an beexpressed as a gradient of some potential.2 The universal 
over of loop spa
e
L̃X := {(γ, γ̃) | γ ∈ LX , γ̃ : D → X s.t. γ= γ̃|∂D }/ ∼, where ∼ means equivalen
eunder homotopy and D is the 
omplex unit disk, is a simply 
onne
ted andsymple
ti
 manifold (with the indu
ed Kähler metri
).In the situation of the last 
hapter, I subtra
ted a term −λ

∫
d f to get rid ofthe anti-instantons. It trivially determines the Morse fun
tion. This motivatesto try

fγ(γ̃) :=−
∫

D
γ̃∗(ωK ) (3.2.5)

2A symplectomorphism is a vector field v s.t. Lv ωK = d ιv ωK = 0, with ωK the symplectic form. If the

manifold is simply connected, a closed one form is already exact and ιvωK = d f for some f .

47



as a 
andidate for the Morse fun
tion on L̃X . Indeed, taking the exterior deriva-tive and evaluating it in the dire
tion of a smooth ve
tor �eld η ∈ TγLX , oneobtains an appropriate one form on the boundary d fγ(γ̃)[η] = −
∫

S1 ωK (∂σγ,η) =
ιv gγ[η], while the orthogonal, radial dire
tion does not 
ontribute. However, thepotential is only single-valued on L̃X but multi-valued on LX , namely

fγ(γ̃) = fγ(γ̃′)−
∫

S2
(γ̃• γ̃′)∗(ωK ) (3.2.6)when two disks γ̃ and γ̃′ with the same boundary γ are glued together (whi
hI denoted by the • ). The sphere S2 is the generator of H2(X ,Z) and 
ountsthe 
omponents of u−1(X ), X ⊂ LX in the universal 
over u : L̃X → LX . Moreillustrative, in the 
ase X = CP

1 it 
ounts the number of times the disks arewrapped around X .That the potential is multi-valued on loop spa
e has an impa
t on the spa
eof states and I will dis
uss that in se
tion 3.3.1. For the time being, let menote that under the mapping u, LX fans out into leaves in L̃X , distinguishedby H2(X ,Z). A

ording to Frenkel et al. [FLN08℄, I will denote these leaves as
L̃X n , n ∈ H2(X ,Z).
3.2.2 Isolating the Fixed PointsI will now approa
h the se
ond problem and isolate the �xed points. This is doneby deforming the instanton �ow equation. The deformation will be su
h thatthe �xed point set is redu
ed to the points {0,∞} ∈ X . Frenkel et al. do a
hievethis by introdu
ing an additional target spa
e symmetry into the a
tion, whi
hfor the 
ase X =CP

1 will be a generator of the C
× symmetry of X [FLN08℄.The starting point is the supersymmetri
 bc-system (3.1.7) whi
h I generalizein analogy to the Morse theory a
tion (2.1.9)

S :=
∫

Σ

d2z
(
−ipa [∂z̄ xa +µV a(x)]+ iπa [∂z̄ψ

a +µ∂bV a (x)ψb]+c.c.
)

, (3.2.7)where µ ∈ R. This step 
an be understood as a deformation of the ve
tor �eld
v(x) =−i∂σxa∂a+i∂σx ā∂ā a

ording to v(x) 7→ V (x) = v(x)−µ V (x). The instantonequation is 
hanged to

∂z̄ xa +µV a(x) = ∂t xa −V
a(x) = 0 (3.2.8)
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and its �xed points are solutions of V
a(x) = 0.In order to approa
h the situation of the last 
hapter, it would be ni
e ifin the situation X = CP

1 these were again {0,∞} ∈ X . This 
an be a
hieved by
hoosing the additional ve
tor �eld to be V (x) = xa∂a+x ā∂ā , whi
h is a generatorof the C
× symmetry of CP

1. Assumed that the 
omposite ve
tor �eld V (x) isnot degenerate, the 
riti
al manifold redu
es to the interse
tion of the 
riti
almanifolds of V and v , whi
h 
onsists of the points {0} and {∞} ∈CP
1.A deformation of the gradient ve
tor �eld must be followed by a rede�nitionof the Morse fun
tion f

fγ(γ̃) 7→ −
∫

D
γ̃∗(ωK )− iµ

∫

S1
HV (γ,σ)dσ , (3.2.9)where HV is the solution of dHV (γ,σ)[η] =ωK (V ,η), η ∈ TγLX . The deformationterm only depends on the boundary γ and, hen
e, does not 
ontribute with anadditional term to (3.2.6).

The Deformation as “Gauging” the TheoryIn the 
ase of the symmetry I have just implemented, the a
tion further simpli�esto
S =

∫

Σ

d2z
(
−ipa(∂z̄ +µ)xa + iπa(∂z̄ +µ)ψa +c.c.

)
, (3.2.10)where µ now looks like a gauge 
onne
tion. Frenkel et al. give this interpretationa meaning by re
onsidering the original a
tion as a quantum me
hani
al system[FLN08℄. I will follow their dis
ussion for the bosoni
 part whi
h thus takes theform

Sbos =−i

∫

R

[∫

S1
(pa∂t xa +p ā∂t x ā)dt ∧dσ−dt H(x, p)

]
, (3.2.11)with H(x, p) = p[v], p[v] =

∫
S1

(
pa(−i∂σxa )+p ā(i∂σx ā )

)
dσ. The Hamiltonian

H(x, p) 
ouples to the one form dt on R and one might be tempted to 
on-sider the more general situation where it is a representation of some Lie algebra
oupling to a gauge potential A(t)dt = AL(t)H L(x, p)dt with [H L , H M ]= f LM
N

H N .3In order to interpret the deformation as a sort of gauging, I let X = CP
1and 
hoose H 1 := p[V ], H 2 := p[U ] where U (x) = i(xa∂a − x ā∂ā) is the U (1) =

3The idea behind this is that exp{
∫

A(t )Hdt } can either be considered as a propagator, A = 1, or the

holonomy of a gauge field.
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R/2πZ generator on X and V = xa∂a + x ā∂ā . These Hamiltonians are indeedrepresentations of the Lie algebra of C× with [H 1, H 2] = 0. The deformation of thea
tion 
an then be interpreted as a deformation of the Hamiltonian H(x, p)dt 7→
H(x, p)dt − AL(t)H Ldt with A1 = µ and A2 = ρ. The form of the a
tion (3.2.7),now in
luding fermions, is reprodu
ed when de�ning A z̄ :=µ+ iρ, µ,ρ ∈R

S =
∫

Σ

d2z
(
− ipa [∂z̄ xa + A z̄ V a(x)]− ip ā [∂z x ā + Az V ā(x)]

+ iπa[∂z̄ψ
a + A z̄ ∂bV a (x)ψb]+ iπā[∂zψ

ā + Az ∂b̄V ā (x)ψb̄]
)

.

(3.2.12)and spe
i�
ally, for the dis
ussion above, when setting ρ = 0. For �nite timeevolutions, the holonomy of A is invariant under the U (1) gauge transformation
ρ 7→ ρ+ 2πn

T , µ 7→µ. However, the gauge �eld is not quantized and I will only usethe name �gauged�, if I want to expli
itely distinguish the a
tion (3.2.10), fromnow on 
alled the �gauged� Tb
, from the a
tion (3.1.7).
3.3 Perturbative Morse Description of the A-ModelFrom now on I will restri
t my 
onsiderations to the 
ase X =CP

1. Furthermore,I will write x for the homolorphi
 and x̄ the anti-holomorphi
 target spa
e 
om-ponents and similar for the other �elds. I assume that these 
oordinates are theinhomogeneous 
oordinates on CP
1. The a
tion I am going to 
onsider is thedeformed one (3.2.10) with µ ∈ (−1,0).4In the 
onse
utive se
tion I will determine the perturbative state spa
es of theunderlying Morse theory. After I will start with some general dis
ussion of thein-state spa
es and then determine the state spa
e lo
ated on the des
endingmanifold with �xed point {0} ∈ CP

1 in se
tion 3.3.2. In order to derive theperturbative state spa
e on the des
ending manifold with �xed point {∞} ∈CP
1,it is ne
essary to make a 
hart transition, and I will explain how this works inse
tion 3.3.3.

4The gauge field component µ is not allowed to be an integer since otherwise V would be degenerate.

This will become evident in equation (3.3.5).
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3.3.1 The Perturbative State SpacesIn the last 
hapter and parti
ularly se
tion 2.6, the perturbative state spa
esasso
iated with a des
ending manifold Xc have been obtained as
(
C[[xµ]]⊗∧[[dxµ]]

)
µ=1,...,nc

⊗
(
C[[∂µ]]⊗∧[[ιµ]]

)
µ=nc+1,...,dimR X

·∆c ,wherein dxµ are di�erential forms on and xµ are the 
oordinates along Xc whi
hhas dimR Xc = nc , while the derivatives are in the transversal dire
tions. Theva
uum state ∆c was the volume form on Xc , extended in the transversal dire
-tions as a distribution.This situation 
arries over to the Morse theory behind the supersymmetri
 bc-system up to a pe
uliarity. Sin
e LX is not simply 
onne
ted, the perturbativestate spa
es and also the des
ending manifolds will be bran
hed. On every leaf,the situation is however the same as in the toy model of the last 
hapter.
Branching of the State SpacesIn the Morse theory of 
hapter 2, the perturbative states 
orresponding to ades
ending manifold Xc have been obtained by solving H (pert)

Ψ= EΨ, and takingthe large volume limit of eλ f
Ψ, 
f. 2.4. These states should be related with thoseof the Morse theory behind the A-model with a
tion Sλ = S −

∫
Σ

x∗(ωK ).In
luding the points {±∞} ∈ R su
h that Σ ≃ S2, I 
an split the integral∫
S2 x∗(ωK ) =

∫
D γ̃− ∗ (ωK )−

∫
D γ̃+ ∗

(ωK ). Here, (γ̃−• γ̃+)∗ = x∗, γ̃− 
overs the hemi-sphere of CP2 in
luding a repulsive �xed point and γ̃+ 
overs the other hemi-sphere of X , in
luding an attra
tive �xed point. Therefore, the ket states of thesuper quantum me
hani
s on loop spa
e and asso
iated with some des
endingmanifold LXc , are of the form
Ψ0 = e

∫
D γ̃− ∗(ωK )

Ψ (3.3.1)with Ψ a di�erential form on LX . Sin
e the integrand is not a total derivative, Ψ0depends on the integration �path�. In parti
ular, from the dis
ussion in se
tion3.2.1 follows that the states are homotopi
ally distinguished by H2(X ,Z), whi
hmeasures how often Σ is wrapped around X . Consequently, one 
an distinguisha sta
k of Hilbert spa
es by the winding number n via the relation
Ψn := e

∫
n∈H2 (X ,Z) γ̃

− ∗(ωK )
Ψ0 , Ψn+m = e

∫
n∈H2 (X ,Z) γ̃

− ∗(ωK )
Ψm . (3.3.2)
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The full state spa
e of in-states, 
orresponding to some 
riti
al point xc ∈ LX , isthe tensor produ
t of the state spa
es with a spe
i�
 wrapping number,
H

in
c :=

⊗

n∈H2(X ,Z)

H
in
c ,n . (3.3.3)However, sin
e all states are isomorphi
 by a multipli
ation with

qn := e
∫

n∈H2(X ,Z) γ̃
− ∗(ωK )

, (3.3.4)I will restri
t my dis
ussion to H
in
c ,0.5

3.3.2 The Perturbative State Space on L̃X 0,kThe operator q may serve to distinguish not only the leaves of the state spa
esbut also the instanton se
tors (
f. pg. 44) and the leaves L̃X k . Therefore, I willasso
iate the kth instanton se
tor with the kth bran
h and the kth se
tor of thestate spa
e. Every leaf L̃X k 
ontains Xk ≃ X and the preimages of the 
riti
alpoints with respe
t to u : L̃X → LX . Due to (3.3.2), the instanton equation looksthe same on all leaves, and I will denote the des
ending manifolds 
orrespondingto some preimage xc ,k ∈ Xk of a 
riti
al point xc ∈ X by L̃X c ,k . The perturbativestate spa
es will be asso
iated with these des
ending manifolds.The perturbative state spa
es follow from the knowledge of the 
oordinateson the des
ending manifolds, 
.f. se
tion 2.6. Therefore, I 
onsider the instantonequation (3.2.4) for the gauged Tb
 in a neighborhood of {0} ∈ X0,k

dt xn − (−n−µ)xn = 0, µ ∈ (−1,0) , (3.3.5)wherein the xn are 
oordinates of L̃X k for an arbitrary k. By means of theHessian Hn = −(n +µ) one 
an distinguish the dire
tions of the tangent spa
ealong the des
ending manifold L̃X 0,k . They belong to positive eigenvalues andare thus the {xn }n≤0, in
luding the 
riti
al point x0 = 0. The di�erential formson L̃X 0,k are the modes {ψn}n≤0, and ψ0 
an be identi�ed with the usual holo-morphi
 di�erential form dx0 on the zero mode part X0,k ⊂ L̃X 0,k , X0,k ⊂ Xk ofthe des
ending manifold:
xn ≃ xn , ψn ≃ dxn . (3.3.6)

5Frenkel et al. considered a different operator q with τ in the exponent, cf. section 3.1 and [FLN08].
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The momenta, 
onjugate to xn and ψn , n ≤ 0 are also 
oordinates along thedes
ending manifold. These are the modes ip−n and iπ−n with n ≥ 0, and theymay be identi�ed with geometri
 data a

ording to
ip−n ≃ ∂n , iπ−n ≃ ιn . (3.3.7)These 
oordinates satisfy the 
onditions for a 
anoni
al quantization [pn , xm ] =

−iδn,−m and [πn ,ψm ] =−iδn,−m . Consequently, the perturbative state spa
e on
L̃X 0,k , k = 0, now in
luding the antiholomorphi
 part, must 
ontain the span

H
in
0,0 =C[xn , x̄n ,ψn ,ψ̄n ]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 ·∆0 , (3.3.8)where

∆0 = ΞL̃X 0,0
(ψ1ψ2 · · · )(ψ̄1ψ̄2 · · · ) ,

ΞL̃X 0,0
∼

∏

n>0,m≥0

δ(2)(xn , x̄n )δ(2)(ψn ,ψ̄n )δ(2)(pm , p̄m)δ(2)(πm , π̄m)
(3.3.9)a
ts like a 
hara
teristi
 fun
tion along L̃X 0,0 and a distribution in the other
oordinates. I have been 
arful with stating that the state spa
e 
ontains (3.3.8)and not with 
laiming that it equals this spa
e. The reason is that I want to relatethe perturbative state spa
es of Morse theory to a 
onformal �eld theory. If inthe spirit of Morse theory the �eld modes are interpreted as simple 
oordinatesor di�erentials, it makes sense to allow for Taylor expansions and thus for powerseries. However, the representations of CFTs are usually spanned by polynomials[KR87℄. Yet, if this related CFT will be formulated on CP

1 this 
ondition mustbe relaxed for the zero modes, 
f. se
tion 3.5.1.An alternative way to identify the des
ending manifolds is to 
onsider theinstanton �ow equation (3.2.3) for x(z) in the gauged Tb
 and after a 
hange toradial 
oordintates ω= t + iσ 7→ exp ω ∈C×

(
∂z̄ +

µ

z̄

)
x(z) = 0. (3.3.10)To derive this, it is ne
essary to remember that A = Aωdω+ Aω̄dω̄ and Aω̄ = µtransforms like a one form, A z̄ = Aω̄

∂ω̄
∂z̄
. In parti
ular, if I add the point {0} to

C
× and 
onsider the instanton �ow equation of the Morse theory to the va
uum
on�guration {0} ∈ X when z 7→ 0 (⇔ t 7→ −∞), i.e. invoking x(0) = 0, the solutions

x(z) = |z|−2µ
∑

n≤0

xn z−n , x(0) = 0, µ ∈ (−1,0) (3.3.11)
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reprodu
e the �ow lines along the des
ending manifold and thus along the statespa
e (3.3.8).6 In the equation above I have s
aled x with the �homogeneity�
|z|2µ. It would have been su�
ient to multiply z̄µ, however, the solution x wouldthen have been multi-valued. Single-valuedness of the �elds and of 
orrelationfun
tions is a property demanded by 
onformal �eld theories, and I anti
ipatedthis in the solution above.
3.3.3 The Perturbative State Space on L̃X ∞,kIn order to derive the state spa
e on L̃X ∞,0, it is at suggestive to make a 
oor-dinate transition for x ∈ LX

x(σ) 7→ x̃(σ) = x̃n e−inσ := [x(σ)]−1 , (3.3.12)where I de�ne x(σ)−1 = x−1
0

∑∞
n=0(−)n x−n

0 ∆x(σ)n by a Taylor expansion and with
∆x(σ) =

∑
k 6=0 xk e−ikσ. For the only mode being inverted one has to assumethat x0 6= 0. Noti
e, that the inverse [x(σ)]−1 is well de�ned be
ause x0 has themeaning as a simple 
oordinate on CP

1.Under this 
oordinate transition, the instanton �ow equation (3.2.8) is 
hangedto
∂t x̃n − (−n+µ)x̃n = 0, (3.3.13)or alternatively in radial 
oordinates z = exp t + iσ for x̃(z) to

(
∂z̄ −

µ

z̄

)
x̃(z) = 0. (3.3.14)This mirrors, that the a
tion (3.2.10) is not invariant under 
oordinate 
hanges.7In analogy to the dis
ussion in the last se
tion, I 
an now add the point {∞} =

{x̃0 = 0} ∈ X∞,0 to C
× and solve the instanton equation with boundary 
ondi-tion x̃(0) = 0 (z → 0 ⇔ t → −∞), in order to extra
t the 
oordinates along thedes
ending manifold L̃X ∞,0. The single-valued solution for x̃ reads

x̃(z)= |z|2µ
∑

n<0

x̃n z−n , (3.3.15)

6The solutions ascending to {0} ∈ X0,0 require a different boundary condition: x(∞) = 0. Notice further,

that closing C
× to the disk C

× ∪ {0} ≃ D and demanding x(0) = 0 identifies x ∈ LX with an element in

L̃X .
7The composition x 7→ x−1, µ 7→−µ is a symmetry of the action.
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and similar holds for ψ̃. The other �eld modes along L̃X ∞,0 
an now indire
tly beobtained as the modes 
onjugate to those of x̃ and ψ̃. Therefore, the perturbativestate spa
e on L̃X ∞,0 equals
H

in
∞,0 =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn ]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 ·∆∞ , (3.3.16)with

∆∞ =ΞL̃X∞,0
(ψ0ψ1 · · · )(ψ̄0ψ̄1 · · · ) ,

ΞL̃X∞,0
∼

∏

n≥0,m>0

δ(2)(xn , x̄n )δ(2)(ψn ,ψ̄n )δ(2)(pm , p̄m)δ(2)(πm, π̄m ) .
(3.3.17)This �ts with an analysis of the eigenvalues of the Hessian H̃n =−n+µ.

3.4 Relation to Conformal Supersymmetric GhostsOn a �rst sight, these state spa
es equal parti
ular representations of the 
on-formal supersymmetri
 bc-system (CSb
) with domain manifold C
× and targetspa
e C. I will �rst give a brief introdu
tion to the CSb
 whi
h should 
larify thisrelation. Afterwards, I am going to explain why I am 
areful with identifyingthe CSb
 and the Tb
, though I will argue that the perturbative state spa
es ofthe Morse theory underlying the gauged Tb
 
an be modelled by the CSb
.I assume that the reader has a basi
 knowledge of CFTs, otherwise she or hemay 
onsult [Fri85, Gin88, Gab00℄.

3.4.1 The Conformal Supersymmetric bc-SystemAs long as it is not logarithmi
ally extended [DF08℄, the CSb
 is assumed tosplit into (equivalent) holomorphi
 and antiholomorphi
 halves. For the momentI will start with the holomorphi
 part.
Representation TheoryLet the domain manifold be C× with 
oordinates z = et+iσ and the target spa
e be
C. The CSb
 
onsists of bosoni
 �elds x(z)=∑

n∈Z xn z−n and p(z)=∑
n∈Z pn z−n−1,whose modes de�ne a Heisenberg algebra [pn , xm ] = −iδn,−m , and of the super-partners ψ(z) =

∑
n∈Zψn z−n , and πn =

∑
n∈Zπn z−n−1 whi
h 
omprises a Cli�ord

55



algebra [πn ,ψm ]=−iδn,−m .8 There exists a whole sta
k of �
harged� representa-tions
xn |p〉− = 0 =ψn |p〉+ , n >−p , pn |p〉− = 0 =πn |p〉+ , n ≥ p (3.4.1)with p ∈Z [FF91, Fri85℄. In the 
ase of the fermions, these representation spa
esare equivalent be
ause all highest weight states are related by

|p〉+ =ψ−p+1 · · ·ψ0|0〉+ , p ≥ 0,

|p〉+ = ip πpπp+1 · · ·π−1|0〉+ , p < 0.
(3.4.2)This does not hold for the bosoni
 representation spa
es, as I am going to dis
ussin se
tion 3.6.2. This observation will be of 
ru
ial importan
e for the existen
eof the Grothendie
k-Cousin operators.The representation spa
es are graded by some bosoni
 and fermioni
 U (1)
urrents j−(z) =−i : x(z)p(z) : and j+(z)=−i :ψ(z)π(z) :, where normal ordering isde�ned in the |0〉± va
uum.9 Under that 
ondition, |p〉ǫ has 
harge −ǫp, where

ǫ = +1 for fermions and −1 for the bosons. The �eld modes satisfy [ j−n , xm ] =
−xn+m , [ j−n , pm ] = pn+m , [ j+n ,ψm ] = −ψn+m , [ j+n ,πm] = πn+m and the 
urrents
omprise Lie Heisenberg algebras [ j ǫn , j ǫm] = ǫnδn,−m . A

ording to Feigin andFrenkel [FF91℄, I will denote the thus graded representation spa
es as Mǫ(p) =
⊕

l∈Z Mǫ(p)l , where l is the U (1) 
harge.To the algebra of the �eld modes 
orresponds the operator produ
t algebraof the �elds. It is represented on the p va
ua by means of the operator produ
texpansions (OPEs)
x(z)p(ω)=

i

z −ω

( z

ω

)p
, ψ(z)π(ω)=

−i

z −ω

( z

ω

)p
,

p(z)x(ω)=
−i

z −ω

(ω
z

)p
, π(z)ψ(ω)=

−i

z −ω

(ω
z

)p
.

(3.4.3)The Virasoro algebra is represented on these spa
es by the energy momentumtensor
T (z) = i : p(z)∂z x(z)−π(z)∂zψ(z) : , T (z)=

∑

n∈Z
Tn z−n−2 . (3.4.4)

8Remember, that [·, ·] denotes the superbracket.
9I use : · : as a C-linear mapping such that λ : a +b :=: λa +λb :,λ ∈C.
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It 
an be obtained from the �elds
G (z)= i :π(z)∂z x(z) : and Q(z)= i : p(z)ψ(z) : (3.4.5)by T (z) = [Q0,G (z)], where Q0 =

∮
0 Q(z). These �elds together with the fermioni


U (1) 
harge de�ne a twisted N = 2 super
onformal algebra [DVV91℄. Sin
e thebosoni
 and fermioni
 parts 
ontribute with opposite 
entral 
harges cǫ = −2ǫ,the 
omposite system has 
entral 
harge zero.The basi
 �elds have 
onformal weights
∆T (x) = 0 =∆T (ψ) and ∆T (p)= 1 =∆T (π) (3.4.6)and the 
ommutation relations with the Virasoro generators are [Tn , xm ] =−(m+

n)xm+n , [Tn , pm ]=−mpn+m and analogously for the fermions. In parti
ular, onehas [ j ǫ0 ,T0] = 0 and the Hamiltonian respe
ts the grading of the representationspa
es Mǫ(p)l .
The Antiholomorphic PartThe antiholomorphi
 
urrents ne
essarily have to be taken into a

ount, whenthe CSb
 gets related to the Tb
. Two reasons are that the Tb
 has an anomalyfree ve
torial 
urrent and the 
entral 
harge is zero. These e�e
ts 
an be a
hievedfor the CSb
, only if the holomorphi
 and antiholomorphi
 parts are both 
on-sidered.I de�ne the antiholomorphi
 
urrents to be

j̄+(z̄) =+i : ψ̄(z̄)π̄(z̄) : , j̄−(z̄) =+i : x̄(z̄)p̄(z̄) : , (3.4.7)with representation spa
es just as before. A

ording to my 
hoi
e of sign inthat de�nition, the grading is, however, di�erent, namely M̄ǫ(p̄) =
⊕

l∈Z M̄ǫ(p̄)l ,
j̄ ǫ0 |p̄〉ǫ = ǫp̄ |p̄〉ǫ. Sin
e

j ǫV (z, z̄) = j ǫ(z)+ j̄ ǫ(z̄) ,

j ǫA(z, z̄) = j ǫ(z)− j̄ ǫ(z̄)
(3.4.8)are the ve
torial and axial 
urrents, respe
tively, the 
hoi
e above invokes thatthe holomorphi
-antiholomorphi
 representation spa
es Mǫ(p, p̄) =

⊕
l ,s∈Z Mǫ(p)l⊗

M̄ǫ(p̄)s are graded with respe
t to the ve
torial 
urrents. At this stage, this
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hoi
e is a question of 
onvenien
e, however, when the CSb
 is logarithmi
allydeformed, the bosoni
 axial symmetry will be broken, whi
h I am going to ex-plain in se
tion 4.2.Con
erning the other �elds in the antiholomorphi
 half, they are de�ned in
omplete analogy with the holomorphi
 s
enario. The full Virasoro algebra a
tson Mǫ(p, p̄) by means of
T −(z, z̄) = i : ∂z x(z)p(z)+∂z̄ x̄(z̄)p̄(z̄) : ,

T +(z, z̄) = i : ∂zψ(z)π(z)+∂z̄ψ̄(z̄)π̄(z̄) :
(3.4.9)under whi
h the state |p, p̄〉ǫ := |p〉ǫ⊗|p̄〉ǫ has 
onformal weight

∆T ǫ (|p, p̄〉ǫ) =
1

2
ǫ[p(p −1)+ p̄(p̄ −1)] , (3.4.10)as follows from 
al
ulating (T ǫ

0+T̄ ǫ
0 )|p, p̄〉. Together with the super
hargesQ(z, z̄) =

i : p(z)ψ(z)+p̄(z̄)ψ̄(z̄) : and G(z, z̄) = i : π(z)∂z x(z)+π̄(z̄)∂z̄ x̄(z̄) :, the 
omplete CSb
determines a twisted N = (2,2) super
onformal algebra.
Ground StatesThe full, supersymmetri
 theory has several states with weight zero, i.e. all
ombinations of |0〉± and |1〉±. However, only one of them, |0,0〉 := |0,0〉−⊗|0,0〉+,is a 
onformally invariant ground state. This 
an be seen by applying T±1. Forinstan
e, the state |1,1〉, whereby

|p, p̄〉 := |p, p̄〉−⊗|p, p̄〉+ , (3.4.11)has weight zero but is not invariant under T±1. A 
omputation shows that
T−1|1,1〉 = i(x−1p0 +ψ−1π0)|1,1〉 6= 0, and similar for the antiholomorphi
 part.
Correlation Functions and UnitarityLike the Tb
, the CSb
 is not unitary. I will now dis
uss, how that 
an beunderstood as an e�e
t of the anomaly q of the 
urrents

T (z) j ǫ(ω) =
q

(z −ω)3
+

j ǫ(z)

(z −ω)2

[Tn , j ǫm ] =−m j ǫn+m +
q

2
n(n+1)δn,−m

, q= ǫ . (3.4.12)
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Similar holds for the antiholomorphi
 part with q̄=−ǫ. The appearan
e of theanomaly for T1 means that j ǫ(z) is not invariant under SL(2,C)/Z2 transforma-tions. Under a holomorphi
 transformation z 7→ f (z), the 
urrents a
quire anadditional term
j ǫ(z)= j ǫ( f (z))∂z f +

q

2

∂2
z f

∂z f
. (3.4.13)The quantities that make non-unitarity manifest are the 
orrelation fun
tions.These are C-bilinear mappings (|q〉,φ(z)|p〉)= q 〈φ(z)〉p ∈C, whereby φ is an arbi-trary 
ombination of quasi-primary �elds and their �eld modes. This pairing isde�ned su
h, that the adjoint of φ(z) is obtained by the transformation z 7→ z−1,whi
h maps an in
oming to an outgoing �eld.10 Moreover, it shall be SL(2,C)invariant and respe
t the operator produ
t algebra (OPA) in the sense that

q 〈b(z)c(ω)〉p = b(z)c(ω) for appropriate q, p.11 What is meant by �appropriate�will be 
lari�ed below.The adjoint 
urrents, in the sense above, are given by
j ǫ † (ω) = z−2 j ǫ(z−1) , j̄ ǫ

†
(ω) = z̄−2 j̄ ǫ(z̄−1) ,

j ǫ †
k

= −q δk ,0 − j ǫ−k
, j̄ ǫ

†
k = −q̄ δk ,0 − j̄ ǫ−k

.
(3.4.14)Due to the di�erent sign of q= ǫ and q̄=−ǫ, the adjoint of the ve
torial 
urrentremains anomaly free. If, however, the holomorphi
 part is 
onsidered separately,the anomalies due to z 7→ z−1 have to be 
ompensated, if the 
orrelation fun
tionsare supposed to be SL(2,C) invariant. Therefore, they have to satisfy

(|q〉, j ǫ(z)φ(ω)|p〉)= ( j ǫ
†

(ω)|q〉,φ(ω)|p〉) . (3.4.15)In parti
ular, for the zero mode that means ( j ǫ0
† |q〉, |p〉) = ([−q+ q]|q〉, |p〉) !=

(|q〉,−p|p〉)= (|q〉, j ǫ0|p〉), and the state dual to |p〉 is given by (|−p +q〉, ·). In thefollowing I will use the notation 〈p| = (|q〉, ·), su
h that
〈q|p〉 = δq,−p+q . (3.4.16)

10This conjugation shall not be confused with the definition of the dual states I have used in (2.2.5). The

adjoint fields here are different, for they are not the antiholomorphic counter parts.
11Usually, one also demands that correlation functions be single valued. This can be achieved by in-

cluding the anti-holomorphic half, and the way how to do that is restricted by the demand to build a

single-valued quantity.
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The same line of arguments holds if any 
ombination of �elds is inserted, andthe non-trivial 
orrelation fun
tions are subje
t toCorr(q, p) =
{

q 〈φ(z)〉p : J (φ)= q +p −q
}

, (3.4.17)whereby J (φ) denotes the total 
harge of that 
ombination. The 
harge q is
alled a ba
kground 
harge, it 
auses that the dual �bra� and �ket� states aredetermine a pairing but not a s
alar produ
t.
3.4.2 Identifying the State SpacesThe Fo
k spa
e of the CSb
 in the representation on |0,0〉 equals

H0 =C[xn , x̄n ,ψn ,ψ̄n ]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 · |0,0〉 , (3.4.18)whi
h seems to be identi
al with the perturbative state spa
e (3.3.8) on L̃X 0,0,when the �eld modes are related and under ∆0 ≃ |0,0〉. This is further promotedby the observation that upon 
anoni
al quantization, the loop spa
e 
oordinatesand �eld modes satisfy the same 
ommutation relations, 
f. pg. 53. However,the identi�
ation fails to be exa
t with respe
t to the quantum numbers of the�eldmodes and states.Moreover, a

ording to (3.4.1) and if the CSb
 were 
onsidered on the 
hartof CP1 in
luding the point {∞}, the representation
H∞ =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn ]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn ]n≤0 · �|1,1〉 (3.4.19)should stru
turally be identi�ed with the perturbative state spa
e of Morse the-ory (3.3.16), putting H

in
∞,0 ≃H∞ and ∆∞ ≃ �|1,1〉. It is, however, not yet 
lear howto de�ne the CSb
 on CP

1 and, in parti
ular, how to implement 
hart transitions.This has been ta
kled by Malikov, S
he
htman and Vaintrob [MSV99℄, and willbe the subje
t of se
tion 3.5.1. Before I dis
uss this topi
, I will extend theCSb
 by introdu
ing the homogeneities, appropriate to a

omodate the quan-tum numbers. Moreover, I will brie�y dis
uss the 
onsequen
es it would haveif one related the CSb
 without homogeneity to the ungauged Tb
. This willtou
h the question if the Tb
 
an be identi�ed with a CFT.
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The CSbc with HomogeneityFor 
onvenien
e, I will restri
t my 
onsiderations to the 
hart around 0 ∈ CP
1.The Hamiltonian of the Morse des
ription of the topologi
al bc-system (3.2.10)is

H =−i
∑

n∈Z
(µ+n)(xn p−n +ψnπ−n + x̄n p̄−n + ψ̄n π̄−n)

=
∑

n∈Z
(LVn +L

V̄n
) , Vn =−(µ+n)xn∂n , V̄n = (Vn)

(3.4.20)and due to the shift by µ di�ers from T0 = T +
0 + T̄ +

0 +T −
0 + T̄ −

0 . One 
an over
omethis mismat
h of energies by rede�ning the �elds of the CSb
:
x(z) =

∑

n∈Z.

xn z−n |z|−2µ , p(z)=
∑

n∈Z
pn z−n−1|z|2µ , (3.4.21)and similar for the fermions [FLN08℄. As has been the 
ase for the Morse theory,the �elds are not holomorphi
 any more. Indeed, the equation of motion for the
onformal �eld x with homogeneity µ equals the instanton equation of Morsetheory (

∂z̄ + µ
z̄

)
x(z) = 0. Furthermore, the boundary 
ondition whi
h sele
ted thedes
ending manifold for Morse theory has been x(0) = 0 and led to the expansion(3.3.11). In 
ase of the CSb
, this boundary 
ondition is realized by plugging inthe representation |0,0〉 and 
onsidering the on-shell expansion of x(z), i.e.

x(z)|0,0〉− = |z|−2µ
∑

n≤0

xn z−n |0,0〉 . (3.4.22)The �eld rede�nitions introdu
e tadpoles due to the inhomogeneity. Cal
u-lating T (z)T (ω), one �nds that the stress tensor should be 
orre
ted
T ǫ(z) 7→T ǫ(z)+

ǫµ(µ+1)

2z2
, T̄ ǫ(z̄) 7→ T̄ ǫ(z̄)−

ǫµ(µ+1)

2z̄2
, (3.4.23)where T ǫ, T̄ ǫ are de�ned as before but with the rede�ned �elds. However, thefull stress tensor has no tadpoles and its zero mode equals the Hamiltonian ofthe Morse theory, T0 = H . Indeed, [T0, xn ] = (−µ−n)xn , [T0, pn ] = (µ−n)pn andsimilar for the other �eld modes. The highest weight states obtain new 
onformalweights of value ∆T ǫ (|p〉ǫ) = ǫ

2 (p −µ)(p −µ−1), while the 
entral 
harges for thebosons and the fermions are still the same. The U (1) 
harges are also 
orre
tedby tadpoles,
j ǫ(z) 7→ j ǫ(z)+

ǫµ

z
, j̄ ǫ(z̄) 7→ j̄ ǫ(z̄)−

ǫµ

z̄
, (3.4.24)
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while the 
harge anomalies are not a�e
ted. Thus, the states |p〉ǫ and |p̄〉ǫ have
U (1) 
harges of value −ǫ(p−µ) and ǫ(p̄−µ), while the 
harges of the �eld modesare insensitive to µ.Let me 
on
lude that for the CSb
 with homogeneity one may identify

H
in
0,0 ≃H0 , ∆0 ≃ |0,0〉 , (3.4.25)and the �eld modes and states have the 
orre
t quantum numbers.

3.4.3 What if the Gauge Field is Absent?Having stated a 
orresponden
e between the low energy spe
trum of the gaugedMorse theory on the des
ending manifold L̃X 0,0 and the CSb
 with homogeneity,one might now ask, if the CSb
 with µ= 0 were the appropriate theory to des
ribethe Morse theory of the Tb
 without gauge �eld? The Hamiltonians are identi
aland the �eld modes have the same energies. I will now argue, that su
h a relationfails, be
ause the Tb
 without gauge �eld has more topologi
al states than theordinary CSb
.
The Topological States of Morse Theory without HomogeneitySin
e the Hessian is inde�nite on the zero modes, these 
oordinates are nei-ther transversal 
oordinates nor 
oordinates along the des
ending manifold.Moreover, they have zero energy and in prin
iple may 
ontribute to the groundstates. Thus, there are not su
h strong 
onstraints on the ground states as inthe situation with gauge �eld.A �rst 
onsequen
e is that the ground states are smooth di�erential formson X = CP

1 with respe
t to the de Rham di�erential d, i.e. elements of Ω•
d

(X )[FLN08℄. To 
omprise ground states in the sense of topologi
al states, this spa
emust be further restri
ted by the BRST 
ondition Q0∆0 = 0. In analogy with(2.2.4) and in 
oordinates of loop spa
e, the BRST 
harge for the Morse theoryequals
Q0 = i

∑

n∈Z
(ψn p−n + ψ̄n p̄−n) . (3.4.26)In parti
ular, its zero mode part 
an be identi�ed with the usual de Rham deriva-tive d = ∂+ ∂̄ on X . Sin
e CP

1 has Betti numbers dim H 0
d

(X ,R) = dim H 2
d

(X ,R) = 1
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and dim H 1
d

(X ,R) = 0, all 
losed di�erential forms must have an even form de-gree, i.e. an even number of ψ0, ψ̄0. Consequently, the topologi
al states areeven graded di�erential forms on X .In 
ontrast, if µ ∈ (−1,0), the zero modes have non-vanishing energy and arenot subje
t to the restri
tion via Q0. In parti
ular, this signi�es that the theorywith gauge �eld in
ludes di�erential forms with odd numbers of ψ0,ψ̄0.
The Ungauged Morse Theory is not Canonically Related to the CSbcThe representation spa
e for the CSb
 
onsists of polynomials in the zero modesand not of smooth di�erential forms. However, in my oppinion this is not themain aspe
t whi
h makes the di�eren
e to the Morse theory with µ = 0, as
laimed by Frenkel et al. in [FLN08, pg. 32℄. As already mentioned on pg. 53,the zero modes will be allowed to appear in power series, when the CSb
 is ge-neralized to the 
hiral de Rham 
omplex [MSV99℄. Rather, the di�eren
e lies inthe following observation. The ground states in the Morse type theory do notne
essarily fa
torize into holomorphi
 and antiholomorphi
 (target spa
e) 
oor-dinates, in general there do not exist holomorphi
 and antiholomorhpi
 fun
tions
h and h̄ su
h that f (x0, x̄0)ψpψ̄q = [h(x0)ψp ] · [h̄(x̄0)ψ̄q ]. In ordinary 
onformal�eld theories this is, however, the 
ase be
ause the Virasoro algebra fa
torizes.Therefore, the va
uum se
tor of the CSb
 is smaller than that of the Tb
 when
µ= 0.That the holomorphi
 and antiholomorphi
 parts do not fa
torize is a propertywhi
h is also typi
al for logarithmi
 
onformal �eld theories. However to thebest of my knowledge, this is still untypi
al for the ground states. At leastit indi
ates that if the Tb
 without gauge �eld is 
onformal, it 
an not be anordinary 
onformal �eld theory.
3.5 Conformal Supersymmetric Ghosts on CP

1In the last se
tion I have obtained the perturbative state spa
es of the Morsetheory underlying the Tb
. The most important observation has been that they
an be modelled by representations of the 
onformal supersymmetri
 bc-system(CSb
). However, this relation had the drawba
k that the CSb
 is not globally
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de�ned on CP
1, su
h that I 
ould not reprodu
e the 
hart transition of the Morsetheory on the level of the CSb
.I will now 
larify how the CSb
 
an be formulated globally on CP

1 and in-trodu
e the 
hiral de Rham 
omplex [MSV99℄. This se
tion will 
on
lude theanalysis of the perturbative representation theory of the Morse theory underlyingthe Tb
.
3.5.1 The Chiral de Rham ComplexThe 
hiral de Rham 
omplex generalizes the usual de Rham 
omplex on X toa larger 
omplex Ω

•
Q0

(X ), de�ned on a sheaf of vertex algebras on X . In the
ontext of the A-model, it will be the Dolbeault 
omplex with is generalizedby the 
ohomology operator Q0 = ∂+D, [∂,D] = 0, Q
2
0 = 0. Hereby, ∂ denotesthe holomorphi
 (Dolbeault) di�erential on X , and the vertex algebra under
onsideration is the holomorphi
 CSb
 with homogeneity, 
f. se
tion 3.4.1. Itssuper
harge Q0 = i

∑
n∈Zψn p−n will play the r�le of the generalized exterior dif-ferential.

Local Vertex Algebra of the CSbcConsider the holomorphi
 CSb
 with homogeneity and embedding x : Σ→ C0 ⊂
X = CP

1. For 
onvenien
e, I 
hoose the representation to be Mǫ(0) on |0〉 =
|0〉+⊗|0〉−.The state spa
e 
an be identi�ed with the polynomials in the modes

P0 =C[xn ,ψn , ]n≤0 ⊗C[pn ,πn]n<0 (3.5.1)and one 
an de�ne a so-
alled vertex operator, 
onstituting an isomorphy be-tween �elds and states
Y (x0, z) = x(z) , Y (x−n , z) =

1

n!
∂n

z x(z) , n < 0,

Y (p−1, z) = p(z) , Y (p−n , z) =
1

n!
∂n

z p(z) , n <−1,

(3.5.2)and similar for the other �elds. For any monomial y1 · · · yk built by elements
yi ∈ {xn , pm ,ψn ,πm }n≤0,m<0 the vertex operator is generalized by means of

Y (y1 · · · yk , z) =: Y (y1, z) · · ·Y (yk , z) : , (3.5.3)
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and this further extends to polynomials. In order to simplify notations, I willequivalently write Y (y1 · · · yk , z) = y1 · · · yk (z).Due to their transformation property under Q0 and their 
onformal weights,at least for µ = 0, the zero modes 
an be identi�ed with the geometri
 data on
X , as has already been done for the Morse theory, 
f. (3.3.6) and (3.3.7). Onthat grounds, it would be ni
e to extend the de�nition of the vertex algebra topower series in the zero modes. I will adopt the approa
h of [MSV99, pg. 449f℄to the situation µ 6= 0. Let f (x0) be a power series and de�ne Y ( f (x0), z) by theTaylor expansion

Y ( f (x0), z) :=
∞∑

n=0

∆x(z)n 1

n!
∂n
|z|−2µx0

f (|z|−2µx0) , ∆x(z) = |z|−2µ
∑

k 6=0

xk z−k . (3.5.4)One 
an write ∆x(z)n =
∑

k∈Z ck (|z|)z−k , wherein ck (|z|) is an in�nite sum of mono-mials in {|z|−2µxn }n 6=0. On any |v〉 ∈ C[xn , pn ,ψn ,πn ]n<0 ⊗C[[x0,ψ0]] · |0〉, ck (|z|)breaks down to a �nite sum and thus Y ( f (x0), z) is a well de�ned endomorphismon that spa
e. The thus generalized �elds 
an be multiplied by any polynomial�eld g (y)(z), y ∈ {xn , pm ,ψn ,πm}n≤0,m<0

Y (g (y) f (x0), z) =: Y (g (y), z)Y ( f (x0), z) : . (3.5.5)The inverse operation, to obtain a state given a �eld, works by
f (y)= Y ( f (y), z)|µ=0 · |0〉

∣∣
z=0

, (3.5.6)where Y ( f (y), z) is an arbitrary �eld. Thus, Y de�nes an isomorphism betweenstates and �elds.
Local Extension of the de Rham ComplexSin
e the zero modes 
an be identi�ed geometri
 data on X , the super
harge Q0takes the required form Q0 = ∂+d−+d+, d− :=

∑
n<0 p−nψn and d+ =

∑
n>0 p−nψnon P0. Malikov et al. [MSV99℄ prove, that there is a quasiisomorphism (Ω,∂) →

(P0,Q0), whereΩ=C[x0,ψ0]. That means, ∂ does only a
t on the subse
tor of thezero modes and 
ommutes with d± and the 
ohomologies are the same H•
∂

(Ω) ≃
H•

Q0
(P0). The proof is made by su

essively 
al
ulating the 
ohomologies of d+and d− and 
an be generalized to Ω= C[[x0,ψ0]] and P0 =C[xn , pn ,ψn ,πn]n<0 ⊗

C[[x0,ψ0]], 
f. [MSV99, pg. 448℄. Thus, lo
ally, the de Rham 
omplex generalizesto a 
omplex of vertex algebras under Q0.
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Chart TransitionsIn order to extend the lo
al setting to CP
1, it is espe
ially important to give themapping X0,0 \ {0} ≃C

× ∋ x0 7→ x−1
0 a meaning on the level of �elds.Firstly, on the level of �eld zero modes p0 a
ts as a derivative and thus a
ommutation with x−1

0 
an be de�ned as [p0, x−1
0 ]=−[p0, x0]x−2

0 . Now, in analogywith (3.5.4), the �eld 
orresponding to x−1
0 
an be de
lared to equal

Y (x−1
0 , z) = |z|2µx−1

0

∞∑

n=0

(−)n |z|2nµx−n
0 ∆x(z)n , (3.5.7)where I de�ne Ỹ (x̃0, z) = Y (x−1

0 , z). For 
onvenien
e, I will also use the nota-tion Ỹ (x̃0, z) = x̃(z) = |z|2µ
∑

n∈Z x̃n z−n . Noti
e, that in analogy with (3.4.2), thetransformed �eld x̃ satis�es the equation of motion (∂z̄ −
µ
z̄ )x̃(z) = 0.In the same spirit as above, Malikov et al. generalize 
hart transitions of theother zero modes to 
hart transitions of �elds. Let f : x0 7→ φx = f (x0) be aninvertible 
oordinate transformation with f ∈ C[[x0]]. Sin
e they 
an be relatedto geometri
 quantities on X , the other �eld zero modes transform a

ording to

φx = f (x0) , φψ =
∂ f

∂x0
ψ0 ,

φp =
∂ f −1

∂φx
p0 +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ0π0 , φπ =

∂ f −1

∂φx
π0 .

(3.5.8)Here, Malikov et al. assume that the a
tion 
orresponding to the CSb
 equals(3.1.7), where pa is rather p ′
a = pa + Γ

b
acψ

cπb . The transformation of Γ 7→(
∂ f −1

∂φx

)2 ∂ f
∂x0

Γ+ ∂2 f −1

∂φ2
x

∂ f
∂x explains why p0 above does not transform homogeneousely.The �elds 
orresponding to the power series above are now de�ned to be

φx (z) = f (x0)(z) , φψ(z)=:
∂ f

∂x0
(z)ψ(z) : ,

φp (z)=:
∂ f −1

∂φx
(z)p(z)+

∂2 f −1

∂φ2
x

∂ f

∂x0
(z)ψ(z)π(z) : , φπ(z)=:

∂ f −1

∂φx
(z)π(z) : .

(3.5.9)This de�nition is not obtained by simply using the vertex operator on the �eldmodes above. The reason is twofold. Firstly, Y is not de�ned on π0 and p0 sin
ethey are not part of P0. Se
ondly, the de�nition is su
h that the transformed�elds are again primary �elds.
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In a next step, that I will not reprodu
e, the authors verify that the trans-formed �elds preserve the 
ommutation rules (3.4.3). The ambitioned readermay 
he
k this for the following example, making use of the relation
f (x)(z)p(ω)=

∂ f

∂x0
(ω) x(z)p(ω) (3.5.10)and similar for p(z) f (x)(ω). In terms of the �eld modes, this amounts to [p0, f (x0)]=

[p0, x0]∂x0 f (x0).
Example in Logarithmic Coordinates A parti
ular example that I will makeuse of in C is the CSb
 in logarithmi
 
oordinates x0 7→ exp x0. The thus trans-formed �elds are

φx (z)=: ex(z) : , φp (z)=: e−x(z)
[
p(z)−ψ(z)π(z)

]
: ,

φψ(z) =: ex(z)ψ(z) : , φπ(z) =: e−x(z)π(z) : .
(3.5.11)A 
oordinate transition φx 7→φ−1

x 
hanges the sign of the �elds {x, p,ψ,π} above.
The Vertex Operator Algebra in the New Fields The vertex algebra in termsof the �elds in (3.5.9) is obtained in analogy to (3.5.2) and (3.5.3). The questionis indeed not how the �elds are 
onstituted, but how to get ba
k the �eld modesin the new 
oordinates. This is obtained by (3.5.6). In parti
ular, for a monomial
y1

n1
· · · y N

nN
, where yk

n is a �eld mode among P0, one 
an spe
ify the 
orrespondingstates in the new 
oordinates a

ording to
φy1

n1
···y N

nN
|0〉 = [φy1

n1
(z)]n1 · · · [φy N

nN
(z)]nN · |0〉 , (3.5.12)where [φy (z)]n denotes the �eld mode (φy )n in the �eld expansion φy (z) =

|z|2µ
∑

n∈Z(φy )n z−n−∆.Important examples are the 
omposite �elds Q(z), T (z), G (z) and j±(z). Take,for instan
e, φQ(z) = i : φp (z)φψ(z) :, a

ording to the dis
ussion above this �eldis obtained as φQ(z) = Y (iφp−1φψ0 , z). Is it possible to further express the �eldmodes (state) in terms of the original ones and thereby obtain a formulation interms of the original �elds? In the new 
oordinates, the state 
orresponding to
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the super
harge reads
φQ|0〉 = i

(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψπ

)

−1

(z)

(
∂ f

∂x0
ψ

)

0

(z) · |0〉 =

i

[(
∂ f −1

∂φx

)

0

p−1

][(
∂ f

∂x0

)

0

ψ0

]
· |0〉 +

i

[(
∂ f −1

∂φx

)

−1

p0 +
(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

π0

](
∂ f

∂x0

)

0

ψ0 · |0〉 ,where I noted down all modes that potentially 
ontribute non-trivially. To nor-mal order the expression above, I 
ommute them to the right su
h that
i(φp )−1(φψ)0 · |0〉 = ip−1ψ0 · |0〉 +

[(
∂2 f

∂x2
0

)

0

(
∂ f −1

∂φx

)

−1

ψ0 +
(
∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

(
∂ f

∂x0

)

0

]
· |0〉 .Here, I used (3.5.10) in order to 
al
ulate the 
ommutator [p0, x0]. Now, thefa
t that (

∂2 f

∂x2
0

)

0

= −
(
∂ f

∂x0

)3

0

(
∂2 f −1

∂φ2
x

)
0
, and (

∂ f −1

∂φx

)
−1

(
∂ f

∂x0

)
0
= −

(
∂ f

∂x0

)
−1

(
∂ f −1

∂φx

)
0
allowsto simplify the expression above, and one ends up with

φQ(z)=Q(z)+∂z

[
∂φx

(
log

∂ f −1

∂φx

)
φψ(z)

]
. (3.5.13)In parti
ular, sin
e the �
orre
tion� to Q is only a derivative in z, the zero modeis invariant under a 
oordinate 
hange, i.e. Q0 = φQ 0, the 
ohomology 
harge ofthe 
hiral de Rham system must already globally de�ned on X .This observation holds for the zero modes of the fermioni
 
urrent, and alsothe stress tensor T (z) is globally de�ned on X , as follows from:

φ j+(z)= j+(z)+∂z log

(
∂ f

∂x0

)
, φG (z) =G (z) (3.5.14)and T (z)= [Q0,G (z)]. Consequently, the j+0 operator, that measures the fermioni

harge, and the BRST operator are well de�ned on the 
hiral de Rham 
omplexand j+0 determines a grading of the sheaf. The bosoni
 U (1) 
urrent does nottransform in a parti
ular ni
e way, as the reader might want to 
he
k. In loga-rithmi
 
oordinates one gets

φ j−(z)=− j+(z)− ip(z) , ( with φx (z) = ex (z) ) . (3.5.15)
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The CSbc on CP
1The out
ome of the former se
tions is that I 
an lo
ally write down the CSb
and apply 
hart transitions. In order to formulate the theory globally on CP

1,the lo
al vertex algebras have to be glued together.Let
F0 :=C[[x0,ψ0]]⊗C[xn ,ψn ]n<0 ⊗C[pn ,πn]n<0 · |0〉 . (3.5.16)together with Y be the CSb
 on C0 and
F∞ =C[[x̃0,ψ̃0]]⊗C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n ]n<0 · |0̃〉 (3.5.17)with Ỹ another CSb
 on C∞. To both, I 
an apply x0 7→ x−1

0 = x̃0, x̃0 7→ x̃−1
0 = x0and formulate the theories on the overlap C

×. By means of (3.5.9), Y 7→ Ỹ andvi
e versa, and the vertex algebras 
an be glued together
F

× =C[[x−1
0 ,ψ0]]⊗C[xn ,ψn ]n<0 ⊗C[pn ,πn ]n<0 ⊗·|0〉

≃C[[x̃−1
0 ,ψ̃0]]⊗C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n ]n<0 ⊗·|0̃〉 .

(3.5.18)This heuristi
ally 
on
ludes the interpretation of the CSb
 as a sheaf on CP
1.12

Sheaves with Support In order to dis
uss the 
hiral de Rham 
omplex asso
i-ated to the topologi
al A-model it is ne
essary to extend the analysis to se
tionswith support in 
losed or lo
ally 
losed subsets.13 In parti
ular, the perturbativestate spa
e on L̃X ∞,0 are modeled by
F

1
∞ =C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n]n≤0 · |1̃〉 , (3.5.19)whi
h is the holomorphi
 part of (3.4.19), and not by F∞.While the fermioni
part of that spa
e 
an be identi�ed with the one in F∞, be
ause all these repre-sentations are isomorphi
 (3.4.2), this is not true for the bosons.I will not attempt to enlarge the analysis of the Chiral de Rham 
omplex to(lo
ally) 
losed subsets. I will rather assume that this 
an be done and that F0and F

1
∞ are part of a sequen
e similar to (2.5.3) or (2.6.2).

12For a rigorous prove that the CSbc on CP
1 and more general manifolds X constitutes a sheaf, cf.

[MSV99].
13A locally closed set is a set which is an intersection of an open with a closed set.
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3.6 Beyond the Perturbative RepresentationsIn the last se
tions, I have des
ribed the perturbative state spa
es of the A-modelon target spa
e X =CP
1. While the ground states are already globally and non-perturbatively de�ned on X , the exited states may be sensitive to nonperturba-tive 
orre
tions whi
h destroy their lo
al 
hara
ter, 2.5. One distinguished pla
ewhere these 
orre
tions appear is the Hamiltonian, and the main task in the fol-lowing se
tions will be to determine the analogues of the Grothendie
k-Cousinoperators of 
hapter 2. Throughout my thesis, I will denote these analogousoperators as �Grothendie
k-Cousin operators�, though the term may not be 
or-re
t for the in�nite dimensional setting.In order to determine the Grothendie
k-Cousin operators, I will bosonize theCSb
 in the spirit of Feigin and Frenkel [FF90, FF91℄ and of Friedan, Martine
and Shenker [FMS86, Fri85℄. Thereby, I obtain the GCOs in a spe
i�
 formula-tion of the vertex algebra of the CSb
. As already mentioned, this des
riptiondi�ers from the one used by Frenkel et al. [FLN08℄, and ex
tends the analysis of[FF90, FF91, FMS86, Fri85℄.Moreover, I will dis
uss the interpretation of the GCOs as 
ohomology opera-tors. In the bosonized des
ription of the vertex algebras de�ned by (3.5.16) and(3.5.19), it will be
ome transparent that the GCOs are the bosoni
 analogues ofthe s
reening operator for the purely fermioni
 bc-system, 
f. [FFH+02℄.

3.6.1 Existence of Grothendieck-Cousin OperatorsThe Grothendie
k-Cousin operators δ are mappings between the perturbativestate spa
es H0/∞,n subje
t to the 
ondition (2.6.1):
∃ δ : H in

∞/0,n →H
in
0/∞,k ⇔ L̃X 0/∞,n ≺ L̃X ∞/0,k . (3.6.1)Therefore, one has to 
larify whi
h des
ending manifolds satisfy L̃X 0/∞,n ≺ L̃X ∞/0,k .I owe Edward Frenkel a ni
e proof of the fa
t that L̃X ∞,n ≺ L̃X 0,n and L̃X 0,n+1 ≺

L̃X ∞,n .The proof starts with re
onsidering the situation of Morse theory on CP
1in se
tion 2.4. The target manifold is de�ned as CP

1 := (C2 \ {0})/C×, where
C

2 \ {0} ∋ ( f , g ) ∼ λ( f , g ), λ ∈ C
× are the homogeneous 
oordinates.14 In terms of

14In the former sections I have considered the descending manifolds X0 ≃ C and X∞ ≃ {∞} always in
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homogeneous 
oordinates, when identifying the ve
tors (0,1) with {0} ∈CP
1 and

(1,0) with {∞} ∈ CP
1, one 
an des
ribe now X0 as the C

× orbit of ( f ,1) and X∞as the C
× orbit of (1,0). These reprodu
e the inhomogeneous 
oordinates for X0by z = f ∈ C, whereas for X∞ it is ω= 0 and X∞ ≃ {∞}. One 
an now proof that

X∞ ≺ X0 by letting f 6= 0 and ( f ,1) ∼ (1, f −1)
f →∞−→ (1,0).The spa
e �LCP1 
an analogously be de�ned by (C[[z]]×C[[z]]− {0})/C×[[z]]with ve
tors C[[z]]×C[[z]] ∋ ( f (z), g (z))∼λ(z)( f (z), g (z)), λ ∈C

×[[z]]. Here, C[[z]]denotes the spa
e of power series in z with f (z) =∑
n≤0 fn z−n, where z ∈ D, andsimilar holds for g (z).In the situation under dis
ussion µ ∈ (−1,0), and the des
ending manifolds

L̃X 0/∞,n 
orrespond to solutions of the instanton equation with boundary 
on-dition x(0) = 0. As dis
ussed in 3.4.2, in a neighborhood of {0} ∈ CP
1 they read

x(z) = |z|−2µ∑
n≥0 x−n zn and L̃X 0,k has inhomogeneous 
oordinates {xn }n≤0. In aneighborhood around {∞} one has solutions x̃(z) = |z|2µ

∑
n≥1 x−n zn and inhomo-geneous 
oordinates {x̃n }n≤−1 on L̃X ∞,k , 
f. se
tion 3.3.3.The des
ending manifold L̃X 0,k 
an now be des
ribed as the orbit of ( f (z), g (z))under C

×[[z]], whereby
f (z) ∈ zk |z|−µC[[z]] , g (z)= (1+O(z))zk |z|µ ∈ zk |z|µC[[z]] .Analogously, L̃X ∞,k is obtained as the orbit of ( f (z), g (z)) with

g (z) ∈ zk+1|z|µ ·C[[z]] , f (z) = (1+O(z))zk |z|−µ ∈ zk |z|−µC[[z]] ,and g is proportional to an additional fa
tor of z in order to yield the 
orre
texpansion index in x̃(z)= |z|2µ
∑

n≥1 x−n zn . Moreover, I have assumed that z 6= 0and s
aled the power series by zk in order to distinguish the index by H2(X ,Z).Without loss of generality I set µ= 0 and prove below that ➊ L̃X ∞,k ≺ L̃X 0,k and
➋ L̃X 0,k+1 ≺ L̃X ∞,k .

➊ Let ( f (z), g (z)) = zk ( fk +O(z),1+O(z)) be an element of L̃X 0,k with fk 6= 0,then ( f (z), g (z)) ∼ zk (1+O(z), f −1
k

+O(z))
gk→∞−→ zk (1+O(z), zh(z)) with h ∈ C[[z]],and this is an element of L̃X ∞,k .

➋ Let ( f (z), g (z))= zk (1+O(z), gk+1z+O(z2)) be in ∈ L̃X ∞,k with gk+1 6= 0, then
( f (z), g (z)) ∼ zk (g−1

k+1
+O(z), z +O(z2))

gk+1→∞−→ zk+1(h(z),1 +O(z)), where h(z) ∈
C[[z]], and this is an element of L̃X 0,k+1.

inhomogeneous coordinates.
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To 
on
lude, in the situation that X =CP
1 and the gauge �eld is determinedby µ ∈ (−1,0), there exist two sorts of Grothendie
k-Cousin operators

δ1 : H
in
∞,n →H

in
0,n ,

δ2 : H
in
0,n+1 →H

in
∞,n .

(3.6.2)

3.6.2 Chiral BosonizationThe method of 
hiral bosonization goes ba
k to Friedan, Martine
 and Shenker[FMS86℄ and starts with the holomorphi
 (or antiholomorphi
) part of the CSb
.In the following, I will generalize this approa
h to the CSb
 with homogeneity
µ. In order to treat the bosons and fermions in one and the same formalism, Ires
ale the �elds of the CSb
 in 3.4.1

ǫ=− : x 7→ b− , ip 7→ c− ,

ǫ=+ : ψ 7→ b+ , iπ 7→ c+ ,
(3.6.3)whereby the index ǫ dis
riminates bosons, ǫ=−, from fermions, ǫ=+. The basi
idea of 
hiral bosonization is to express the Heisenberg and Cli�ord algebras andtheir representations in terms of Heisenberg Lie algebras A

ǫ(h) :
[J ǫn , J ǫm] = ǫnδn,−m (3.6.4)with representation

J ǫnν
ǫ
h = hδn,0 ·νǫh , n ≥ 0, h ∈C , (3.6.5)and equally for the antiholomorphi
 part. I de�ne the �elds 
orresponding to J ǫas

J ǫµ(z) = J ǫ(z)+
ǫµ

z
, J ǫ(z)J ǫ(ω) =

ǫ

(z −ω)2
,

J̄ ǫµ(z̄) = J̄ ǫ(z̄)−
ǫµ

z̄
, J̄ ǫ(z̄) J̄ ǫ(ω̄) =

ǫ

(z̄ − ω̄)2
.

(3.6.6)The di�erent signs for the holomorphi
 and antiholomorphi
 �elds will be under-standable when it 
omes to mat
h the Heisenberg Lie algebras with the CSb
.The a
tion of the Virasoro algebra on these representations is given by
TJǫ(z) = ǫ :

1

2
J ǫµ(z)2 +α0∂z J ǫµ(z) : , T̄ J̄ǫ (z̄) = ǫ :

1

2
J̄ ǫµ(z̄)2 + ᾱ0∂z̄ J̄ ǫµ(z̄) : . (3.6.7)
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Taking the OPE between TJǫ and J ǫµ yields
TJǫ(z)J ǫµ(ω) =

−2α0

(z −ω)3
+

J ǫµ(z)

(z −ω)2
, (3.6.8)and similar for the antiholomorphi
 situation. Thus, I set α0 = − 1

2ǫ, ᾱ0 = 1
2ǫ,in order to obtain the same ba
kground 
harges as for the CSb
, 
f. (3.4.12).Noti
e, that now

TJǫ(z) =
ǫ

2
(J ǫ(z)2 −ǫ∂z J ǫ(z))+

µ

z
J ǫ(z)+

ǫ

2

µ(µ+1)

z2
,

T̄Jǫ(z̄) =
ǫ

2
( J̄ ǫ(z̄)2 +ǫ∂z̄ J̄ ǫ(z̄))−

µ

z̄
J̄ ǫ(z̄)+

ǫ

2

µ(µ+1)

z̄2
.

(3.6.9)The 
entral 
harge for the holomorphi
 as well as the antiholomorphi
 partis given by c Jǫ = (1− 3ǫ) and νǫ
h,h̄

:= νǫ
h
⊗ νǫ

h̄
is a highest weight ve
tor with
onformal weight ∆TJǫ+T̄ J̄ǫ

(νǫ
h,h̄

) = 1
2ǫ[h(h + ǫ)+ h̄(h̄ − ǫ)+2µ(µ+1)]+µ(h − h̄ ) and
harges h + ǫµ, h̄ − ǫµ. Sin
e the zero modes of the 
urrents 
ommute withthe Hamiltonians, one may grade the representation spa
es by the U (1) 
harges

A
ǫ

− 1
2 ǫ

(h) =
⊕

l∈ZA
ǫ

− 1
2 ǫ

(h + l) and Ā
ǫ
1
2 ǫ

(h̄) =
⊕

l∈Z Ā
ǫ
1
2 ǫ

(h̄ + l), where l distinguishesse
tors of di�erent U (1) 
harges, measured by J ǫ0 and J̄ ǫ0.Bosonization means to de�ne an a
tion of the Cli�ord and Heisenberg algebrason these spa
es. To do that, one introdu
es the operators
V ǫ(r, z) =: exp

(
rφǫ(z)

)
:= eǫrφǫ

0 |z|2rµzǫr Jǫ0
∑

n∈Z
V ǫ

n (r )z−n

= eǫrφ0 |z|2rµzǫr Jǫ0 e−ǫr
∑

n<0
Jǫn
n z−n

e−ǫr
∑

n>0
Jǫn
n z−n

, r ∈C\ {0}

(3.6.10)and similar operators for the antiholomorphi
 �eld, whereby the bosoni
 s
alar�elds are
φǫ(z)=µ log z̄ +ǫ

∫z

J ǫµ(ω)dω =µ log |z|2 +ǫ

(
φǫ

0 + J ǫ0 log z −
∑

n 6=0

J ǫn

n
z−n

)
,

φ̄ǫ(z̄) =µ log z +ǫ

∫z̄

J̄ ǫµ(ω̄)dω̄=−µ log |z̄|2 +ǫ

(
φ̄ǫ

0 + J̄ ǫ0 log z̄ −
∑

n 6=0

J̄ ǫn

n
z̄−n

) (3.6.11)with [φ0, J ǫn] = −ǫδn,0 = [φ̄0, J̄ ǫn ]. The vertex algebra is de�ned by taking deriva-tives and produ
ts of the operators V ǫ, just as for the CSb
. The OPE of two
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�elds V ǫ in the va
uum νǫ
h
is

V ǫ(r, z)V ǫ(s,ω) = (z −ω)ǫr s |z|2rµ|ω|2sµzǫr hωǫsh : V ǫ(r, z)V ǫ(s,ω) : ,

V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) = (z̄ − ω̄)ǫr s |z|−2rµ|ω|−2sµ z̄ǫr hω̄ǫsh : V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) :
(3.6.12)the 
harge of V ǫ 
an be read o� from

J ǫ(z)V ǫ(r,ω) =
r

z −ω
V ǫ(r,ω)+

ǫ

r
∂ωV ǫ(r,ω) (3.6.13)to be of the value r for the holomorphi
 and also for the antiholomorphi
 �eld.Taking the OPE with the energy momentum tensors, their 
onformal weightsread

∆TJǫ
(V ǫ(r, z)) =

1

2
ǫ r (r +ǫ) , ∆T̄ J̄ǫ

(V̄ ǫ(r, z̄)) =
1

2
ǫ r (r −ǫ) . (3.6.14)In parti
ular, the operator

eǫrφ0 : A
ǫ

− 1
2 ǫ

(h) →A
ǫ

− 1
2 ǫ

(h+ r ) , νǫh 7→ νǫh+r , (3.6.15)and therefore also V ǫ(r, z) are mappings between di�erent representations. Its
onformal weight in the representation νǫ
h
equals [(TJǫ)0, eǫrφ0 ]·νǫ

h
= ( 1

2ǫ r (r +ǫ)+
ǫr h) ·eǫrφ0νǫ

h
, and similar for the antiholomorphi
 operator.

Bosonizing FermionsIn the fermioni
 
ase, the a
tion of the Cli�ord algebra of the bc-system isgenerated by
c+(z)≃V +(+, z) , c̄+(z̄) ≃ V̄ +(−, z̄) ,

b+(z) ≃V +(−, z) , b̄+(z̄) ≃ V̄ −(+, z̄) ,
(3.6.16)in other words A

+
− 1

2

(−p + l) ≃ M+(p)l and Ā
+
1
2

(p̄ + l) ≃ M̄+(p̄)l [FF91℄.Namely, these �elds have the 
orre
t OPEs (3.4.3) in
luding the homogeneityand, when I further identify
j+(z)+

µ

z
≃ J+µ (z) , j̄+(z̄)−

µ

z̄
≃ J̄+µ (z̄) ,

T +(z)≃ TJ+ (z) , T̄ +(z̄) ≃ T̄ J̄+ (z̄) ,

(3.6.17)
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also the 
orre
t 
harges and 
onformal weights. In parti
ular, the vertex oper-ators above a
t on ν+−p,p̄ like the original �elds b+ and c+ on |p, p̄〉+. The �eldmodes 
an be determined by the Fourier expansions, for instan
e for V +(−, z),
V +(−, z)ν−p = |z|−2µzp e−φ0

∑

n≤0

V +
n (−)z−nν−p

= |z|−2µ
∑

m≤−p
e−φ0V +

m+p (−)z−mν−p

(3.6.18)in analogy with b+(z)|p〉+ = |z|−2µ∑
n≤−p b+

n z−n |p〉+, and similar holds for theother �eld mode V +(+, z). The �eld modes inherit the 
orre
t 
ommutationrelations from the OPEs. Moreover,
|p, p̄〉+ ≃ ν+−p,p̄ (3.6.19)and these states have the same 
onformal weight and axial and ve
torial 
harges.

Bosonizing BosonsIn the bosoni
 
ase [FF91, FF90℄ one has to in
lude an auxiliary fermioni
 bc-system be
ause of the wrong 
entral 
harge. Thus, I introdu
e fermioni
 s
alars
ξ(z), ξ̄(z̄) and fermioni
 �elds of weight one η(z), η̄(z̄) (all these �elds do nothave a homogeneity). The 
urrents and the stress tensor are de�ned as before,see se
tion 3.4.1.The operators

c−(z)≃V −(+, z)⊗η(z), c̄−(z̄) ≃V −(−, z̄)⊗ η̄(z̄) ,

b−(z)≃V −(−, z)⊗∂zξ(z) , b̄−(z̄) ≃V −(+, z̄)⊗∂z̄ ξ̄(z̄)
(3.6.20)have the 
orre
t OPE to de�ne an a
tion of the Heisenberg algebra on a subspa
eof

N (p, p̄) =
(
⊕

l∈Z
A

−
1
2

(p + l)⊗A
+
ηξ,− 1

2

(l)

)
⊗

(
⊕

s∈Z
Ā

−
− 1

2

(−p̄ + s)⊗ Ā
+
ηξ,+ 1

2

(s)

)
, (3.6.21)where I impli
itly assumed that the auxiliary part may be bosonized as before.The adequate subspa
e will be determined in the next se
tion. For 
onvenien
e,whenever I 
onsider the (anti)holomorphi
 part alone, I will use the notation(N̄ (p)) N (p̄) in the following. The spa
e N (p) 
olle
ts all possible representationsof (3.6.20) on the ve
tors . . . , ν−p+1|−1〉ηξ, ν−p |0〉ηξ, ν−p−1|1〉ηξ, . . . .
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In order to prove that the spa
es above respe
t the OPE of the bosoni
 ghosts,on has to take into a

ount that the bosonized �elds are tensored and hen
e,
c−(z)b−(ω) ≃V −(+, z)∂zξ(z)V −(−,ω)η(ω) . Moreover, sin
e the auxiliary part andthe �elds V − have the same U (1) 
harges in (3.6.20), the vertex algebra is gradedwith the same 
harges for the ηξ-system and the vertex operators as above, whi
hexplains the summation indi
es. For the same reason I may identify

j−(z)−
µ

z
≃ J−(z)=

1

2

(
J−µ (z)+ jηξ(z)

)
, j̄−(z̄)+

µ

z̄
≃ J̄−(z̄) =

1

2

(
J̄−µ (z̄)+ j̄ηξ(z̄)

)
.

(3.6.22)These 
urrents measure the 
harge of the representation spa
es. In se
tion 4.2I will argue, that the 
oupling of the auxiliary 
urrent with J− 
auses that thebosons do not introdu
e an additional anomaly into the theory. Similarly, thestress tensor of the bc-system a
ts like a sum of the stress tensors of the partsof the bosonized system
T −(z)≃ TJ− (z) − : ∂zξ(z)η(z) : , T̄ −(z̄) ≃ T̄ J̄−(z̄) − : ∂z̄ ξ̄(z̄)η̄(z̄) : . (3.6.23)The �elds in (3.6.20) have the 
orre
t 
onformal weights and 
harges underthese identi�
ations and they 
omprise the relations (3.4.1) on ν−p,−p̄ ⊗ |0,0〉ηξ.However, only if the bosoni
 axial symmetry was broken, one 
an determinestates that have the same bosoni
 ve
torial 
harge as the 
orresponding statesof the non bosonized CSb
. Sin
e the axial symmetry will be broken due tothe GCOs, I will now assume this to be true. Under these 
ir
umstan
es andfor p = p̄, the state |p, p〉− has the same quantum numbers as ν−p,−p ⊗ |0,0〉ηξ.Therefore, I will identify

|p, p〉− ≃ ν−p,−p ⊗|0,0〉ηξ . (3.6.24)Noti
e, that only the diagonal (p = p̄) representation spa
es N (p, p) will berelevant for an analysis of the A-model.
Grading of N (p, p) The spa
es N (p, p̄) are graded by the zero modes of

JN (z, z̄)=
1

2

{
[J−(z)− jηξ(z)]− [ J̄−(z̄)− j̄ηξ(z̄)]

}
, (3.6.25)whi
h further respe
t the grading by 
onformal weight and the fermion number.The 
urrent JN generates a third symmetry besides the ve
torial and axial sym-metries, whi
h is due to the extension of the bosons by the auxiliary fermions.
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Due to the 
ombination of the 
urrents J− and jηξ, JN is anomaly free. Still, alsothis symmetry will be broken due to the Grothendie
k-Cousin operators, whi
hensures that JN does not enter the theory as an additional symmetry.
Possible Vacuum Representations The 
ondition of zero 
onformal weightis satis�ed by the states that 
onsist of all possible 
ombinations of ν−p,q |s, t〉ηξwith p, s, t ∈ {0,1} and q ∈ {0,−1}. Here is the 
olle
tion of su
h states in therepresentation N (1,1), that will be
ome important in the following se
tions

ν−1,0|0,1〉ηξ
ν−1,−1|0,0〉ηξ ν−0,0|1,1〉ηξ

ν−0,−1|1,0〉ηξ
. (3.6.26)The states in the middle have zero ve
torial 
harge and 
omprise a doubletwithin N (1,1). The state on the top has a ve
torial 
harge of value 1, and thelowest state has 
harge −1. However, only the state ν−1,−1|0,0〉ηξ is an element ofthe representation spa
e of the bosonized bosons, as I will explain below. Thestate ν−0,0|1,1〉ηξ will later obtain the interpretation as the logarithmi
 partner of

ν−0,0|0,0〉ηξ ∈ N (0,0).A further remark has to be made. If JN gets broken as a symmetry of thetheory, there is no reason why ν−0,0|0,0〉ηξ should be in a di�erent multiplet than
ν−0,0|1,1〉ηξ. Indeed, only then, those two states 
an be logarithmi
 partners,be
ause there is no way to further de
ompose the two-dimensional representationof the Hamiltonian on these states by means of an additional symmetry.
Restriction of N (p, p̄) The representation spa
e N (p, p̄) above is not yet the
orre
t representation of the Heisenberg algebra de�ned by b− and c−. Due tothe absen
e of the zero modes ξ0 and ξ̄0, the vertex algebras must be 
ontainedin the interse
tion of the kernels of η0 and η̄0 and the spa
e N (p, p̄) is too large.In addition, from Feigin's and Frenkel's analysis in [FF91℄ it follows that the
orre
t representation spa
e for the holomorphi
 part (without loss of generality)
oin
ides with the kernel of η0 : The kernel of η0 is obtained by applying ( jηξ)n ,
ηn with n ∈Z and ξn , n 6= 0 to |0〉ηξ. Consequently, the representation spa
e ofthe bosonized bosons equals the kernel of η0 if η, ∂zξ and jηξ 
an be expressedin terms of the �elds b, c and V −. This is possible by means of jηξ(z) =−∂zφ(z),
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∂zξ(z) = 1
2∂z b−(z)⊗V −(+, z) and η(z) = ∂z c−(z)⊗V −(−, z). The same holds for theantiholomorphi
 �elds.Therefore, M−(p, p) ≃ N (p, p), whereby the overline denotes the interse
tionof the equivalen
e 
lasses N (p) and N̄ (p) of �eld operators modulo η0 and η̄0,respe
tively.This result yields a ni
e heuristi
 interpretation why the instanton e�e
ts aresupposed to be found within the bosoni
 part of the CSb
 and not within thefermioni
. Due to the presen
e of c+0 and b+

0 in the �eld operator algebra, therepresentations of the fermioni
 ghosts on ν+0 and ν+−1 are isomorphi
. For thefermions, there exists only one fundamental va
uum, namely ν+0 sin
e it hasthe highest symmetry.15 On the other hand, the bosoni
 representations on
ν−0 ⊗ |0〉ηξ and ν−1 ⊗ |0〉ηξ are di�erent, for ξ0 is absent as a dynami
al degreeof freedom and η0 is e�e
tively set to zero in the operator algebra, as arguedabove. The bosoni
 ghosts 
an thus be 
onsidered to 
omprise dynami
al degreesof freedom in the presen
e of di�erent ba
kground va
ua. For these reasons, the
harged representations of the bosons may serve as a sour
e for instantons, tobe introdu
ed additionally to the bosoni
 ghosts, interpolating between thoseba
kgrounds. These explanations will obtain an exa
t mathemati
al sense interms of the Grothendie
k-Cousin operators.
Summary of the Main FactaIn order to des
ribe the perturbative state spa
es of the gauged topologi
al A-model in terms of bosonized bosons, it is su�
ient to restri
t the representationspa
e to the diagonal situation p = p̄. As a result, M−(p, p)l ,s ≃ N(p, p)l ,s andthe highest weight ve
tor is now uniquely determined by |p, p〉 ≃ νp,−p ⊗|0,0〉ηξ.In parti
ular, only the state ν−1,−1|0,0〉 in the diamond (3.6.26) is an element of
N (1,1).The perturbative state spa
es for the A-model on CP

1 
an now be identi�edwith the bosonized representation spa
es
H

in
0,0 =F0 ⊗F̄0 ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗ Ā
+
1
2

(s′)]⊗N (0,0) ,

H
in
∞,0 =F

1
∞⊗F̄

1
∞ ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗ Ā
+
1
2

(s′)]⊗N (1,1) ,
(3.6.27)

15I will discuss the representation theory of the conformal ghost systems more detailed in section 8.3.
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where I used that all fermioni
 representation spa
es are equivalent (
.f. (3.4.2)),and 
onsequently ⊕
s A

+
− 1

2

(s +p)≃
⊕

s A
+
− 1

2

(s).The stress tensor and fundamental �elds are derived above. The super
harge,must also be 
omposed by bosoni
 and fermioni
 �elds. An immediate 
al
ula-tion proves that the �elds
Q(z)=V +(−, z)⊗η(z)⊗V −(+, z) , Q̄(z̄) = V̄ +(+, z̄)⊗ η̄(z̄)⊗ V̄ −(−, z̄) (3.6.28)have the 
orre
t OPEs with the bosonized �elds to be identi�ed with the super-
harge Q(z, z̄) =Q(z)+Q̄(z̄).I will now approa
h the question what operators may serve to de�ne theGrothendie
k-Cousin operators.

3.6.3 The GCOs and the Cohomology InterpretationBy (3.6.15), the nilpotent operator c+0 ≃ eφ
+
0 is a 
ohomology operator

· · · →A
+
− 1

2

(−p)
e
φ+

0−→A
+
− 1

2

(−p +1) →··· , (3.6.29)
f. [FFH+02℄. However, sin
e it 
onne
ts isomorphi
 representation spa
es, thisoperator 
an not be the GCO mapping between F0 and F
1
∞. As just ex-plained, the di�eren
e between the perturbative state spa
es must be rootedin the bosoni
 se
tor.The extension of N(p, p̄) to N (p, p) by means of eφ

−
0 ξ0 and e−φ̄

−
0 ξ̄0 permits anontrivial a
tion of η0 and η̄0. Thereby, one obtains a 
omplex for the bosoni
se
tor in analogy to the fermioni
 one, above. The r�le of c0 for the purelyfermioni
 bc-system is now played by the nilpotent operator η0η̄0 : N (p, p̄) →

N (p−1, p̄−1). Therefore [FF91℄, it 
an be interpreted as a 
ohomology operatorfor the 
omplex
· · · → N (p, p̄)

η0η̄0−→ N (p −1, p̄ −1) →··· , (3.6.30)whose grading is measured by JN , sin
e [ JN 0 + J̄N 0 ,η0η̄0] =−η0η̄0. Noti
e, thatin prin
iple I 
ould de�ne di�erent 
omplexes using other 
ombinations of η0and η̄0 a
ting on N (p, p̄), for instan
e η0 + η̄0. However, for the representationspa
es of the gauged A-model the relation p = p̄ has ne
essarilty to be satis�edand this restri
ts the 
hoi
e to η0η̄0 up to a prefa
tor.
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To spe
ify the 
ohomology of η0η̄0, I will now determine the image of thisoperator. Consider the 
omplement N (p, p)/N(p, p) of N (p, p) in N (p, p). Sin
e
N (p, p) denotes the interse
tion of the kernels of η0 and η̄0 
onsidered indepen-dently, this spa
e must not be equal to the kernel of η0η̄0. Indeed, it is justa subspa
e. For instan
e, N(1,1) does not in
lude the states ν−1,0 ⊗ |0,1〉ηξ and
ν−0,−1|1,0〉ηξ whi
h are sent to zero by η0η̄0. I will 
all the expression

NL(p, p) =
∑

k≥1

(
⊕

l ,s∈Z
A

−
1
2

(l)⊗A
+
ηξ,− 1

2

(l)⊗ Ā
−
− 1

2

(s)⊗ Ā
+
ηξ, 1

2

(s)

)

η0,η̄0=0

ν−p−k ,−p+k |k,k〉

(3.6.31)the �logarithmi
 extension� of N (p−1, p−1). With this de�nition I 
an now split
N (p, p)= NL(p, p)⊕N (p, p)⊕R(p, p) ,

R(p, p) =
(
N (p)⊗ N̄L(p)

)
⊕

(
NL(p)⊗ N̄(p)

)
,

(3.6.32)wherein NL(p) and N̄L(p) signify the holomorphi
 respe
tively antiholomorphi
half of (3.6.31). One 
an now extra
t the image of η0η̄0, namely
imη0η̄0 (NL(p, p)) = N(p −1, p −1) . (3.6.33)Therefore, the pth 
ohomology 
lass of η0η̄0 is

H
p
η0η̄0

= R(p, p) . (3.6.34)This result di�ers from the situation where only the holomorphi
 or antiholo-morphi
 parts are 
onsidered. In the 
ase when η0 is taken for the 
ohomologyoperator, the 
ohomology of this operator is trivial.As a 
onsequen
e of the following dis
ussion, the lo
al 
ohomology spa
esin the analogue of the Grothendie
k-Cousin 
omplex will, however, not be the
ohomology spa
es of η0η̄0.
The First GCO δ1In se
tion 2.6.2, I made two formal assumptions on the Grothendie
k-Cousinoperators. The �rst was, that it is a mapping between the perturbative spa
esof states if the des
ending manifolds have relative 
odimension one. The se
ondwas the observation, that the Grothendie
k-Cousin operator is basi
ally a
ting
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on the �dual part� of the eigenstates of the naive Hamiltonian. In the Morsetheory on CP
1 this was obtained by extending its spe
trum by the missing stateswith the same quantum numbers. I will make use of this in order to proposethat N (1,1) is the appropriate extension, 
f. 39

0 →H
in
∞,0

e−→H
in
∞,0 = M+(0,0)⊗N (1,1)

g1−→H
in
0,0 → 0. (3.6.35)I will restri
t my 
onsideration to the holomorphi
 part. The representation

N (1) is generated by the a
tion of N = {η−ne−φ
−
0 , ξ−neφ

−
0 , J−

−n}n<0 on ν−1 ⊗|0〉ηξ.The spe
trum 
an in analogy with the fermioni
 bc-system [FFH+02℄ be framedby the extremal states
ν−0 |1〉ηξ× •ν

−
1 |0〉ηξ

ν−−1|2〉ηξ× .................... •ν−2 |−1〉ηξ

ν−−2|3〉ηξ× ............................... •ν
−
3 |−2〉ηξ

ν−−3|4〉ηξ× ..................................... •ν−4 |−3〉ηξ
... ...................................... ...The horizontal axis is s
aled by the U (1) 
harge of J−(z), while the verti
al axisdistinguishes the 
onformal weights. The states denoted by × are not 
ontainedin N(1), and I will now explain that they appear due to an extension by the�dual� states. Generalizing the re
ipe of se
tion 2.6.2, those have to be 
hosensu
h that they have the same quantum numbers as have the extremal states in

N (1).An extremal state ν−r |s〉ηξ ∈ N(p), r, s ∈ Z must be subje
t to the 
ondition
r + s = p. Moreover, it has 
onformal weight − 1

2
r (r −1)+ 1

2
s(s−1). The 
onformalweight is invariant under r 7→ −r + 1 and/or s 7→ −s + 1, while the grading isin general not invariant under those transformations. The 
ases in whi
h thegrading is preserved are values of r and s that solve r + s = 1. Therefore, dualstates in that sense only exist in the representation N(1). I will argue below,that this already 
overs the situation of the gauged A-model. Thus, for p = 1the dual states are exa
tly those, whi
h extend N (1) to N (1).The 
ohomology operator η0η̄0 for (3.6.30) has now the desired properties tobe identi�ed with g1. Thus, up to a prefa
tor, whi
h is 
hosen to �t with theresults of the following 
hapter 4, I set

δ1 = 2 η0η̄0 ◦e , g1 = 2η0η̄0 , (3.6.36)
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whereby e denotes the extension N (1,1) → N (1,1).
The Second GCO δ2The se
ond GCO already follows from the dis
ussion above. This 
an be seenby a method that I owe Edward Frenkel.In se
tion 2.5, I promoted the idea to interpret the GCOs as operators thatmimi
 the instantons. Consequently, an observer on the 
hart L̃X 0,0 and 
al-
ulating with states H

in
0,0 gets some insight into the perturbative state spa
esaround {∞} ∈ X . Be
ause there are no anti-instantons, no states of H

in
0,0 willappear to an observer on L̃X ∞,0.16In order to �see� the instantons that �ow from {0} to {∞}, the observer has tomove to the other hemisphere and 
onsider the states H

in
∞,0, where the instantonsintrodu
e states of H

in
0,1, 
f. (3.6.2). This movement should not 
hange thephysi
s, and thus is invoked by the 
omposite mapping x 7→ x̃, µ 7→ −µ, whi
hleaves the a
tion (3.2.10) invariant. Also the �ow equation remains stru
turallythe same and turns into (∂z̄ + µ

z̄
)x̃ = 0.There is an additional e�e
t on the state spa
es whi
h 
an not be seen fromthe a
tion. Considering x 7→ x−1, µ 7→ −µ and the instanton �ow equations,one 
ould 
on
lude that F

1
∞ → F∞, F0 → F

1
0 , where the states are de�nedas in equations (3.5.16) and (3.5.19), respe
tively (in adequate 
oordinates).However, one has to take 
are of the fa
t that the state spa
es are weighted by

qn = exp{
∫

D γ̃− ∗ (ωK )}, 
f. (3.3.2). Intuitively, a 
oordinate transformation hasto move the disk D to the other hemisphere, whi
h 
an be done by wrappingit on
e around CP
1. Therefore, x 7→ x−1, µ 7→ −µ should be a

ompanied by thetransformation ∫

D γ̃∗(ωK ) 7→
∫

D γ̃∗(ωK )+
∫

S2 x̃∗(ωK ), and this adds to the operator
qn 7→ qn+1. The theory is then rather invariant under x 7→ x̃, µ 7→ −µ and anadditional multipli
ation of the transformed spa
es of in-states with q−1.17The se
ond GCO 
an now be derived from δ1. The reason is that if the theoryis invariant under x 7→ x̃, µ 7→ −µ and a multipli
ation of the states with q−1,the globally de�ned Hamiltonian must also be invariant under this mapping.Therefore, under this transition, δ1 7→ δ2 su
h that

δ2 = 2 η̃0 ˜̄η0 ◦e , g2 = 2η̃0 ˜̄η0 . (3.6.37)

16These would be mimicked by the presence of ξ0ξ̄0 in the Hamiltonian.
17Because of (2.2.9), the operators are not affected by this transformation of q.
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In that way, δ2 is a
ting on q−1
H

in
0,1 ≃H

in
0,0. Be
ause the GCOs are stru
turallythe same, it is su�
ient to restri
t my investigations to δ1, whi
h I will do inthe rest of my thesis.

3.6.4 ConclusionIn (3.6.27) I have summarized the perturbative state spa
es that will serve as theCFT model for the representations of the Tb
 with gauge �eld. The �ground�states of the A-model are identi�ed with
∆0 ≃ ν+0,0 ⊗ν−0,0|0,0〉ηξ , ∆∞ ≃ ν+−1,1 ⊗ν−1,−1|0,0〉ηξ (3.6.38)The Grothendie
k-Cousin operators appear in an extension of the perturbativestate spa
es that is analoguousely to that of pg. 39. If have noted down thatextension for δ1 in (3.6.35).The Grothendie
k-Cousin operators add to the Hamiltonian, that has an a
-tion on the nonperturbative representations a

ording to pg. 34 :

H = H +g1 +g2 ≃ T 0 = T0 + T̄0 +g1 +g2 . (3.6.39)With these data, I 
on
lude my analysis of the low-energy, nonperturbativeMorse theory behind the gauged A-model. In the following 
hapter, I will extendthe fo
us on the quantum me
hani
al operators to the �elds. I will prove that aspe
i�
 logarithmi
 transformation of the CSb
 on CP
1 adds the Grothendie
k-Cousin operators to the Hamiltonian and further deforms the stress tensor and�elds. The following analysis again shifts the attention ba
k from Morse theory[FLN06, FLN08℄, to �eld theory [VF09℄.
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The A-Model beyond Topology 4In the last 
hapter I have 
onsidered the Morse theory underlying the A-modelin the large volume limit (Tb
). Using the re
ipe of 
hapter 2, I have derived itsnonperturbative state spa
es and the Grothendie
k-Cousin operators mappingbetween them. The representation spa
es have been modelled by a 
onformalsupersymmetri
 bc-system (CSb
).One of the main proposals of Frenkel et al. was that, if there 
orrespondsa 
onformal �eld theory to the �gauged� Tb
, beyond the topologi
al se
tor itmust be a logarithmi
 
onformal �eld theory [FLN06, FLN08℄. However, theydid not push forward their proposal and introdu
e the logarithmi
 CFT. Thiswill be the subje
t in the following and 
on
lude part one of my thesis. The
hapter is grounded on and also extends my publi
ation with M. Flohr, [VF09℄.Firstly, I will a

ommodate a method by Fjelstad et al. [FFH+02℄, whi
hallows for a logarithmi
 extension of 
onformal �eld theories. The extension willbe su
h that the Virasoro algebra as well as supersymmetry are preserved andthe Grothendie
k-Cousin operators of se
tion 4.2 are added to the Hamiltonian.The logarithmi
 deformation a�e
ts not only the Hamiltonian but also the o-perator produ
t algebra (OPA) of the �elds and the other modes of the stresstensor. I will dis
uss those e�e
ts and 
on
lude the 
hapter with a proof thatthe logarithmi
 extension implies the extension of the perturbative state spa
es
H

in
0,0 and H

in
∞,0 as des
ribed in se
tion 3.6.3.

4.1 The Method of Logarithmic DeformationFjelstad et al. invented a 
onstru
tive method to deform CFTs to logarithmi
CFTs [FFH+02℄. The main idea is to enlarge the representation spa
e of any
hiral (anti
hiral) CFT systemati
ally, by introdu
ing additional �eld modes andtensoring their representation spa
e to the one of the CFT. Thereby, the stresstensor gains an additional term whi
h a
ts on the tensored ve
tor spa
e su
hthat some of the Virasoro generators yield higher-dimensional, non-redu
iblerepresentations.
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4.1.1 Extension of the FieldsLet C denote some 
hiral algebra of 
onformal �elds and F the 
orrespondingrepresentation spa
e with 
onformally invariant highest weight ve
tor |0〉F . Iwill further require that there exists a fermioni
 �eld E (z)∈C of weight one su
hthat E0|0〉F = 0 and E (z)E (ω) = 0. Fjelstad et al. deform the �elds f (z) ∈ C byintrodu
ing an odd graded ve
tor spa
e K with operators ǫ and ρ and a ve
tor
|0〉K ∈ K , su
h that [ǫ,ρ] = 1K and ρ|0〉K = 0 [FFH+02℄. In order to have anisomorphism between �elds and states, they de�ne a new �eld e(z)

e(z)= 1F ⊗ǫ−
∫z

E (ω)dω⊗1K ,

∫z

E (ω)dω= E0 log z −
∑

n 6=0

En

n
z−n

(4.1.1)
orresponding to |0〉F ⊗ ǫ|0〉K . This �extension �eld� determines a deformationmap on f ∈C

f (z) 7→ f (z) = : exp{−ρe(0)} : f (z) , (4.1.2)whi
h extends the algebra of �eld modes by the additional zero modes ǫ and ρ.The a
tion of e on a �eld F (z)= f (z)⊗σ, σ ∈ End(K ), is de�ned by means of theOPE
e(z)F (ω)=

(
−[E , f ]1 log(ω− z)+

∑

n≥1

1

n

[E , f ]n+1

(z −ω)n

)
⊗σ , (4.1.3)wherein [E , f ]n denotes the 
ontribution with pole of order n in the OPE of Ewith f , i.e. E (z) f (ω) =

∑
n≥0

[E , f ]n (ω)

(z−ω)n . In parti
ular, the energy momentum tensorgets deformed to
T (z) 7→ T (z)= T (z)+

ρ

z
E (z) . (4.1.4)In my opinion, further extensions of the �elds generating the symmetries of thetheory should be made, whi
h Fjelstad et al. did not take into a

ount. Namely,for e to make sense as a �eld, ǫ should have the same quantum numbers as E ,whi
h imposes further 
onditions on ǫ and ρ. Suppose, for instan
e, that thereexists a 
urrent j a

ording to whi
h E has some 
harge qE . Only if this 
urrentis extended by an additional zero mode

j (z) 7→ j (z)⊗1K +1F ⊗qE
ρ

z
, (4.1.5)the �eld e has a well de�ned 
harge. From the 
ommutation relation of ǫ with ρthen follows that ρ must have 
harge −qE . These additional extensions are notan integral part in the deformation by the extension �eld e, however, in the 
aseof the CSb
 this will be the 
ase, 
f. 4.2.
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4.1.2 Extension of the Representation TheoryDue to the additional term, the Virasoro algebra has two-dimensional represen-tations on 
ertain 
omposite �elds
Ψ f (z)=− : e(z) f (z) : . (4.1.6)Their OPE with the stress tensor yields1

T (z)Ψ f (ω)=
∑

m≥3

[E , f ]m−1

(z −ω)m
+
∆T ( f )Ψ f + [E , f ]1

(z −ω)2
+
∂ωΨ f

z −ω
, (4.1.7)whi
h means for the state spa
e that the ground state has now a logarithmi
partner E∗

0 ǫ · |0〉F ⊗|0〉K , due to [ǫ,ρ] = 1K . Here, E∗
0 is de�ned by [E0,E∗

0 ] = 1.Indeed, this kind of logarithmi
 deformation 
auses an extension of the statespa
es. Let |0〉 := |0〉F ⊗ |0〉K and denote by F
′ the Fo
k representation of Con that ve
tor. Obviously F ≃ F

′. However, by the 
onstru
tion above, thereis a new state ǫ|0〉 
orresponding to the extension �eld e, and a representation
F

′′ of C thereon. The extended representation spa
e 
an be identi�ed with
F :=F

′⊕F
′′ and the deformed �elds mix F

′ and F
′′. In se
tion 4.2.5, the spa
e

F
′′ will take the r�le of the �dual part� that extends the perturbative state spa
eof the Morse theory behind the A-model.

4.1.3 The Fermionic bc-SystemAs a 
ru
ial example for the A-model, I will now 
onsider the auxiliary ηξ-systemof se
tion 3.6.2 and apply to it the method of Fjelstad et al. [FFH+02℄.The �elds 
onstituting the vertex algebra are deformed to
ξ(z) 7→ ξ(z) = ξ(z)+ρ log z ,

η(z) 7→ η(z) = η(z) ,

Tηξ(z) 7→ T ηξ(z)= Tηξ(z)+ρ η(z)z−1 ,

jηξ(z) 7→ jηξ(z)+ρz−1 −ρ η(z) log z ,

(4.1.8)and extended by the new �eld
e(z) = ǫ−

∫z

η(ω)dω . (4.1.9)

1I thank J. Fuchs who pointed out to me that I have to use the definition of normal ordering and contrac-

tion for interacting fields, (i.e. fields that have not just one singular term proportional to the identity in

the OPE): a(z) : bc : (ω) =
∮
ω

dζ
ω−ζ (a(z)b(ζ)c(ω)+ (−)Fa Fb b(ζ)a(z)c(ω)) , cf. [DFMS97].
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The additional �eld modes ρ and ǫ satisfy [ǫ,ρ] = 1K and ρ|0〉K = 0 for some
|0〉K ∈ K , whereby K is an odd graded Ve
tor spa
e. They extend the statespa
e of the original fermioni
 bc-system M+

ηξ
(0) → M+

ηξ
(0)⊗K , |0〉ηξ 7→ |0〉ηξ⊗

|0〉K . The CFT de�ned by the �elds above exhibits logarithms in the OPE anda non-degenerate stress tensor
ξ(z)e(ω)= log(z −ω) ,

T ηξ(z)Ψξ(ω) =
0 ·Ψξ(ω)+1

(z −ω)2
+
∂ωΨξ(ω)

z −ω
,

(4.1.10)wherein Ψξ(z) =− : e(z)ξ(z) : is the logarithmi
 partner of the identity operatoron M+
ηξ

(0)⊗K . In parti
ular, the extra term in the Hamiltonian
T ηξ 0

= Tηξ 0
+ρ η0 (4.1.11)looks similar to the GCOs if ρ was adjusted to be η̄0 and the ηξ-system wasidenti�ed with the auxiliary fermions of se
tion 3.6.2. Before I adapt the defor-mation to this situation in the next se
tion, a 
omment on the the OPE of ξwith e is indispensable.Due to the logarithm, the 
orrelator of ξ with η yields a multi-valued fun
tion.This 
an be resolved by in
luding the antiholomorphi
 se
tor and restri
ting thevariable z̄, usually 
onsidered to be independent from z, to be the 
omplex
onjugate. Thus, the observation in the last 
hapter, that the GCOs mix upthe holomorphi
 and antiholomorphi
 parts of the CSb
, �ts with a typi
alsituation in a CFT whi
h exhibits logarithms in OPEs. The deformed fermioni


bc-system 
anoni
ally demands that the holomorphi
 and antiholomorphi
 partsare 
onsidered together. Still, for 
onvenien
e I will often restri
t my dis
ussionto the holomorphi
 �half�.Moreover, the logarithm in the OPE of e with ξ 
auses that Möbius 
ovari-an
e is broken. Indeed, under (z,ω) 7→ eλ(z,ω), λ 6= 0, I �nd that ξ(z)e(ω) 7→
log (eλ(z −ω)) 6= ξ(z)e(ω). This signi�es that e 
an not enter the 
onformal �eldtheory as an additional dynami
al �eld. It just serves to deform the �eld algebraand to extend the representation spa
es.
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4.2 Introducing the GCOsI will now dis
uss, how the bosons of the CSb
 
an be logarithmi
ally extended ina way, su
h that the Hamiltonian and extended representation spa
es 
over thesituation of the Morse theory behind the A-model, 
f. 
hapter 3. From se
tion3.6.2 it is already 
lear that the deformation has to be applied to the bosons ofthe CSb
. Above, I have further motivated that the auxiliary fermions will bethe main 
hara
ters.In the following se
tion, I will propose a spe
i�
 logarithmi
 extension e andanalyze its e�e
ts on the �eld algebra. The Hamiltonian will turn out ni
ely,and I will �ll in the missing argument why the logarithmi
 deformation breaksthe bosoni
 axial symmetry and the symmetry generated by JN , 
f. (3.6.25).Se
tion 4.2.5 
on
ludes this analysis. Therein, I will explain that the �eld edoes not only deform the �eld algebra but also extends the representation spa
ein a way, su
h that the results of the last 
hapter are reprodu
ed.
4.2.1 Extension of the FieldsIn order to introdu
e the Grothendie
k-Cousin operator g1, I �x the representa-tion of the bosoni
 bc-system to be N (1,1). The se
ond GCO 
an be obtainedafter a 
hart transition of the CSb
 to the other hemisphere and just in the samemanner as des
ribed below.The GCOs are mixing holomorphi
 and anti-holomorphi
 (target-spa
e) 
o-ordinates. Therefore, I set K = M̄+

ηξ
(0), K̄ = M+

ηξ
(0) and de�ne the additional�elds

e(z)=e−φ̄
−
0

(
1M+

ηξ
⊗ ξ̄0 −

∫z

η(ω)dω⊗1M̄+
ηξ

)
,

ē(z̄) =eφ
−
0

(
ξ0 ⊗1M̄+

ηξ
−1M+

ηξ
⊗

∫z̄

η̄(ω̄)dω̄

)
.

(4.2.1)By this means, the holomorphi
 part is extended by the antiholomorphi
 partand vi
e versa. Having introdu
ed the �eld modes eφ
−
0 and e−φ̄

−
0 does not onlyextend N(1,1) in the desired way, but it is also ne
essary be
ause it is now abosoni
 system to whi
h I apply the deformation.De�ning the �eld transformations as

f (z, z̄) 7→ f (z, z̄) =: exp
[
−e(0) ·eφ̄

−
0 η̄0 −e−φ

−
0 η0 · ē(0)

]
: f (z, z̄) , (4.2.2)
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the stress tensor of the ηξ-system is deformed to
T ηξ(z, z̄) =

(
Tηξ(z)+

1

z
η(z)η̄0

)
+

(
T̄ηξ(z̄)+

1

z̄
η0η̄(z̄)

)
. (4.2.3)The deformation further implies

T ηξ n
+ T̄ ηξ n

= Tηξ n
+ T̄ηξ n

+ηn η̄0 +η0η̄n (4.2.4)on the �eld modes and leads to the desired result (3.6.39). As I have alreadymentioned, not only the Hamiltonian but also the other modes of the Virasorogenerator are deformed. This e�e
t is invisible in the Morse theory des
rip-tion, and I will therefore dis
uss some 
onsequen
es at the end of this 
hapter.In the following, I will refer to the deformation terms in the stress tensor as�Grothendie
k-Cousin �elds�, whi
h I will denote by
g1(z) =

1

z
η(z)η̄0 , ḡ1(z̄) =

1

z̄
η0η̄(z̄) . (4.2.5)In addition, the transformation a�e
ts the bosoni
 �elds in N (1,1)

b−(z) =V −(−, z)⊗
(
∂zξ(z)− η̄0z−1

)
, b̄

−
(z̄)= V̄ −(+, z̄)⊗

(
∂z̄ ξ̄(z̄)+η0 z̄−1

)

c−(z) =V −(+, z)⊗η(z) , c̄−(z̄) = V̄ −(−, z̄)⊗ η̄(z̄)
(4.2.6)and

T −(z) = T −(z)+g1(z) , T̄
−

(z̄) = T̄ −(z̄)+ ḡ1(z̄) ,

j
ηξ

(z) = jηξ(z)− log z η(z)η̄0 , j̄
ηξ

(z̄) = j̄ηξ(z̄)+ log z̄ η0η̄(z̄) ,

J−(z, z̄) = J−(z, z̄) , Q(z, z̄) =Q(z, z̄) ,

(4.2.7)whereas the super
harge is not deformed, Q(z, z̄) = Q(z)+ Q̄(z̄) with Q(z) =
V +(−, z)⊗η(z)V −(+, z), 
f. eqn. (3.6.28). Hen
e, the topologi
al se
tor of thetheory is insensible to this pro
edure.In addition, the zero mode of the ve
torial 
urrent J−

V
= (J−+ J̄−)+ ( j

ηξ
+ j̄

ηξ
)is not 
orre
ted, whi
h means that it still measures the same quantum numbersas the undeformed one. This is not only an in
idental remark, there is anotherreason why the ve
torial 
urrent is preferential. As explained before, for e and

ē to have well de�ned 
harges, the holomorphi
 and antiholomorphi
 
urrentshave to be generalized. Consider the a�e
ted holomorphi
 auxiliary 
urrent jηξ.The 
harge of ξ̄0 is measured by j̄ηξ and yields the same value as the 
harge of
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η under jηξ. Therefore, it must be 
ompleted by the antiholomorphi
 
urrentin su
h a way, that the total auxiliary 
urrent is ve
torial. Sin
e the auxiliary
urrent is 
oupled to J− via (3.6.22), this is inherited by J−. This explains my
laim that for the parti
ular deformation above, the extension of the symmetrygenerating �elds and the extension by e, ē is the same.In order to further spe
ify my 
omments on the symmetries of the deformedtheory, I will now dis
uss how the logarithmi
 deformation indeed breaks all sym-metries whose generators 
ontain the axial 
urrent of the auxiliary ηξ-system.Moreover, I will 
onsider if supersymmetry and the Virasoro algebra are a�e
ted.
4.2.2 Notes on the SymmetriesThe axial symmetry of the auxiliary system is broken by the presen
e of thedeformation term in the Hamiltonian. To see this, I 
al
ulate the 
ommutator

∮
dz [η0η̄0, j

ηξ
(z)]±

∮
dz̄ [η0η̄0, j̄

ηξ
(z̄)]=−η0η̄0 ±η0η̄0 . (4.2.8)Therefore, only the zero mode of the ve
torial 
urrent 
ommutes with the de-formed Hamiltonian, whereas this fails for the axial symmetry. This 
on
ludesthe proof that the 
urrents JN of eqn. (3.6.25) and J−− J̄− of eqn. (3.6.22) donot 
omprise symmetries of the logarithmi
ally deformed CSb
.On the other hand, this is not true for supersymmetry and 
onformal symme-try. The reason is that besides in the expression j

ηξ
, only derivatives of the �eld

ξ enter the extended �eld algebra. Sin
e all deformation terms are proportionalto zero modes of η(z) and η̄(z̄), the logarithmi
 extension does not spoil the
ommutation relations and, hen
e, preserve supersymmetry and the Virasoroalgebra.The absen
e of ξ has two further 
onsequen
es that I will now dis
uss.
4.2.3 Exceptional Logarithmic PartnersA �rst 
onsequen
e is that the �eld Ψb−(z) = − : e(z)b−(z) : has no logarithmi
partner,2

T −(z)Ψb−(ω) =
e−φ̄

−
0 V −(−,ω)

(z −ω)3
+
∂ωΨb− (ω)

z −ω
. (4.2.9)

2Due to the anomaly of the holomorphic current jηξ, (4.1.7) does not apply and one has to derive the

OPE by hand.
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On the other hand,Ψ jηξ (z)=− : e(z) jηξ(z) :, and other 
ombinations : φ(z)Ψ jηξ(z) :,
φ a �eld in the CSb
, have logarithmi
 partners. In parti
ular,

T (z)Ψ jηξ(ω) =
−e(ω)

(z −ω)3
+
Ψ jηξ(ω)+∂ωe(ω)

(z −ω)2
+
∂ωΨ jηξ (ω)

z −ω
. (4.2.10)This turns the logarithmi
ally deformed CSb
 into an ex
eptional 
ase amonglogarithmi
 
onformal �eld theories. Namely, its U (1) 
urrent breaks the SL(2,C)symmetry and therefore, the logarithmi
ally deformed CSb
 is an example foran LCFT whose basi
 Jordan blo
k is not a primary �eld [Flo03, pg. 4516℄.

4.2.4 On the Necessity to Deform the FermionsIn se
tion 4.1 I have 
onsidered the ηξ-system in its own right and argued thatthe extension �eld e should not be part of the dynami
al �elds be
ause it breaksMöbius 
ovarian
e. Sin
e ξ is not a �eld in the vertex algebra of the bosonizedbosons, I 
an not ex
lude e and ē from the dynami
al �elds by this argument.However, if I treated them as additional dynami
al �elds in the CSb
, I wouldexpe
t that I also have to logarithmi
ally deform the fermioni
 se
tor, in orderto supply the extension �elds with their supersymmetri
 partners. I denote thefermions as in the last 
hapter by b+ and c+, an extension as des
ribed in se
tion4.1.3 
an be performed
e+(z) = b̄+

0 −
∫z

c+(ω)dω , ē+(z̄) = b+
0 −

∫z̄

c̄+(ω̄)dω̄ ,

f +(z, z̄) 7→ f +(z, z̄) =: exp
[
−e+(0)c̄0 −c+0 ē+(0)

]
: f +(z, z̄)

(4.2.11)and the zero modes of the bosoni
 and fermioni
 extension �elds are related bysupersymmetry
[Q0,eφ

−
0 ξ0] = e−φ

+
0 ≃ b+

0 , [Q0,e−φ
+
0 ]= eφ

−
0 ξ0 . (4.2.12)However, eqn. (4.1.10) forbids that e+ and ē+ 
an be 
onsidered as a dynami
al�elds in the fermioni
 se
tor. Therefore, it is again impossible to interpret e and

ē as dynami
al �elds in the CSb
.Sin
e supersymmetry was already preserved without deforming the fermions,it is not demandatory that the fermions are logarithmi
ally extended. On theother hand, to the best of my knowledge there is nothing to be said against it,
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and I will argue below that, if the reader wishes to logarithmi
ally extend thefermions, this will not a�e
t the representation theory of the CSb
 and thus theresults of 
hapter 3.
4.2.5 Extension of the State spaceAlthough ξ(z), ξ̄(z̄) are not part of the dynami
al �elds, the zero modes ξ0 and
ξ̄0 are introdu
ed by the extension �elds e, ē and thus extend the state spa
e. Iwill now prove that the extension is as in equations (2.6.2) and (3.6.35):

N(1,1)
e,ē−→ N (1,1)

g1−→ N (0,0) . (4.2.13)Firstly, I will restri
t my 
onsiderations to the auxiliary ηξ-system in orderto illustrate two aspe
ts. As stated above, this will show that a logarithmi
deformation of the fermions in the CSb
 does not interfere with the extensionof the representation spa
es. Furthermore, the essential r�le of the 
ouplingbetween the bosonized bosons and the auxiliary fermions will be
ome evident.Se
ondly, I will explain how the logarithmi
 extension indeed leads to (4.2.13).By an expli
it 
al
ulation of the a
tion of the Grothendie
k-Cousin �elds on thatextended spa
e, I will substantiate the impa
t of the additional �eld modes thatare invisible in the Morse theory des
ription.A

ording to the deformation rule (4.2.2), the �elds e, ē and their 
omposite
eē extend the ground state |0,0〉ηξ of the ηξ-system by the new states ξ0|0,0〉ηξ,
ξ̄0|0,0〉ηξ and ξ0ξ̄0|0,0〉ηξ. This extends the representation spa
e as des
ribed inse
tion 4.1,
⊕

l ,r

A
+
− 1

2

(l)⊗Ā
+
1
2

(r )→
(
⊕

l ,s

A
+
− 1

2

(l)⊕A
+
− 1

2

(s −1)

)
⊗

(
⊕
r,m

Ā
+
1
2

(r )⊕ Ā
+
1
2

(m +1)

)
. (4.2.14)In parti
ular, the logarithmi
 partners are modelled on the representation spa
ewith highest weight state ξ0ξ̄0|0,0〉ηξ,

T ηξ 0
|1,1〉ηξ = 0 · |1,1〉− |0,0〉ηξ , (4.2.15)while T ηξ 0

is diagonal on the other representations. Therefore, one wouldnaively assume that the logarithmi
 extension of the original state spa
e equals
M+

ηξ L
(1,1) =

⊕
l ,s A

+
− 1

2

(l − 1)⊗ Ā
+
1
2

(s + 1), in analogy with the bosonized bosons
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eqn. (3.6.31). This state spa
e is, however, isomorphi
 to the one de�ned bythe partner �elds, ⊕
l ,s A

+
− 1

2

(l)⊗ Ā
+
1
2

(s), be
ause ξ0 and ξ̄0 are part of the �eldalgebra. This is the reason, why the ηξ-system alone is not 
apable of explainingthe di�erent nature of H
in
0,0 and H

in
∞,0 .Fortunately, the extension of the state spa
e of the full supersymmetri
 bc-system is more 
ompli
ated be
ause the algebra of the auxiliary fermioni
 �elddoes not fa
torize. The new highest weight states, introdu
ed by e and ē, arerather

eφ
−
0 ξ0

e−φ̄
−
0 ξ̄0

eφ
−
0 −φ̄

−
0 ξ0ξ̄0





·ν−1,−1 ⊗|0,0〉ηξ =





ν−0,−1 ⊗|1,0〉ηξ
ν−1,0 ⊗|0,1〉ηξ
ν−0,0 ⊗|1,1〉ηξ

, (4.2.16)and the extension �elds �ll in the missing states in the diamond (3.6.26). Thealgebra of �eld modes
⊕

l ,s∈Z
A

−
1
2

(l)⊗A
+
ηξ,− 1

2

(l)⊗ Ā
−
− 1

2

(s)⊗ Ā
+
ηξ, 1

2

(s)

∣∣∣∣∣
η0,η̄0=0

(4.2.17)is now represented on those states, and
N (1,1)

e,ē−→ [N (1)⊕NL(1)]⊗ [N̄ (1)⊕ N̄L(1)] = N (1,1) , (4.2.18)wherein the logarithmi
 extension NL(1,1) of N (0,0) appears, 
f. eqn. (3.6.31).
The Action of the Grothendieck-Cousin OperatorI 
an now substantiate the a
tion of T ηξ on NL(1,1)⊗R(1,1), 
f. se
tion 3.6.2.Therefore, I 
onsider the states

χ(l )
0 :=O(J−)ηr1 · · ·ηri

ξk1
· · ·ξk j

·νi− j+1|0〉ηξ ,

χ(l )
1 :=O(J−)ηr1 · · ·ηri

ξk1
· · ·ξk j

·νi− j |1〉ηξ ,

r1 < ·· · < ri < 0, k1 < ·· · < ki < 0, l = i − j ,

(4.2.19)wherein O(J−) is a monomial in J−
−n , n > 0. They are elements of the Virasoromodule with �xed 
harge l + 1

2
, measured by J−

0 .3 I will denote these modules
3The value of 1

2 is due to the fact that I consider solely the holomorphic part.

94



by N (1)l and NL(1)l , respe
tively, whi
h immediately generalizes to the 
ompo-sitions N (1,1)l ,l̄ , NL(1,1)l ,l̄ and R(1,1)l ,l̄ by means of
χ(l ,l̄ )

s,s̄ :=χ(l )
s ⊗ χ̄(l̄ )

s̄ , s, s̄ ∈ {0,1} . (4.2.20)The a
tion of T ηξ n
= Tηξ n

+ηn η̄0 on su
h states is as follows.For the zero mode, whi
h is the Grothendie
k-Cousin operator, I obtain
T ηξ 0

·χ(l ,l̄ )
s,s̄ = Eχ ·χ(l ,l̄ )

s,s̄ −N N̄ χ(l ,l̄ )
0,0 , (4.2.21)where I used N := (−)i+ī+ j+ j̄δs,∞ and N̄ := (−)i+ī+ j+ j̄δs̄,∞. The deformed Hamil-tonian is non-diagonal only on the states in NL(1,1), as I have already dis
ussedin se
tion 3.6.3.For the other modes of the stress tensor with n 6= 0, I �nd

T ηξ n
·χ(l ,l̄ )

s,s̄
= Tηξ n

·χ(l ,l̄ )
s,s̄

+ (−)s
N̄ ηn ·χ(l ,l̄ )

s,0 , (4.2.22)and T ηξ n
is in general not diagonal if the states are in R(1,1)⊕NL (1,1).For all modes of the Virasoro �eld it is true that the �ground� state ν−1,−1|0,0〉ηξis not sensible for the logarithmi
 extension, as it is annihilated by all modes ofthe Grothendie
k-Cousin �eld.

4.2.6 ConclusionI have logarithmi
ally deformed the CSb
 in su
h a way that it in
ludes thesituation of the Morse theory behind the A-model in the large volume limit.Thereby, also the �elds and their OPA was deformed, and I have dis
ussed thee�e
ts on the symmetries of the CSb
. In parti
ular, the stress tensor obtainedimprovement terms
T (z, z̄) = T (z, z̄)+g1(z, z̄)+g2(z, z̄) ,

g1(z, z̄) = η(z)η̄0 +η0η̄(z̄) , g2(z, z̄) = η̃(z) ¯̃η0 + η̃0 ˜̄η(z̄) ,
(4.2.23)whi
h I 
alled Grothendie
k-Cousin �elds. Above, I in
luded the se
ond of these�elds that is determined by a 
hart transition. The Grothendie
k-Cousin ope-rators break the bosoni
 axial symmetry, as well as the symmetry JN whi
h dis-tinguishes the 
hains in the 
omplex of extended bosoni
 representation spa
es,
f. se
tion 3.6.3. For this reason, the states in NL(1,1) and the 
orresponding�elds 
an be interpreted as the logarithmi
 partners of the states and �elds inthe representation N(0,0).
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Summary and Conclusion 5In my �rst part of this thesis I have investigated the geometri
 signi�
an
e of theimprovement terms in the Hamiltonian of the logarithmi
 
onformal bc-systemwith target X = CP
1. Taking the perspe
tive of its underlying Morse theory onloop spa
e, I may now 
on
lude the following.The zero modes of the improvement terms are the in�nite dimensional ana-logues of lo
al 
ohomology operators (Grothendie
k-Cousin operators � GCOs)in a 
omplex of extended representation spa
es of the Hamiltonian, wherebyextension means that the representation spa
es are extended by their missingdual part in the sense dis
ussed in se
tion 2.6.2. Therefore, the logarithmi

onformal bc-system on CP

1 is a �eld theoreti
 appli
ation of the Grothendie
k-Cousin 
omplex as 
onsidered by G. Kempf [Kem78℄, an interpretation alreadydis
ussed by Frenkel, Losev and Nekrasov in [FLN08℄.The same authors interpreted the extension as the transition from perturbativeto nonperturbative state spa
es, by whi
h the zero modes of the improvementterms gain a se
ond interpretation. They mimi
 the instantons be
oming visiblein the dynami
al se
tor of the theory. This interpretation is in addition pro-moted by the fa
t that the GCOs are mappings in a spe
i�
 dire
tion, whi
his determined by a �ltration of the lo
al representation spa
es. This dire
tion
onforms with the dire
tion into whi
h the instantons �ow with growing time.I will now brie�y summarize the steps I have taken.
Morse Theory and Induced Representations In 
hapter 2, I have 
onsi-dered Morse theory on a 
ompa
t Kähler manifold X , 
f. [FLN06℄. It was ne-
essary to 
onstrain X in order to guarantee that a non-empty topologi
al se
torwould exist. After several transformations whi
h left the topologi
al se
tor in-variant, I 
ould massage the a
tion into a �rst order form, su
h that the pathintegral would manifestly lo
alize on the instantons. In parti
ular, this spoiledCPT invarian
e and the transformed theory lost its former unitarity.The spe
iality of this Morse theory has been that the metri
 was s
aled withsome positive, real-valued parameter λ, and that, hen
e, it got possible to move
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in the moduli spa
e of the theory. Two phases of Morse theory have been ofspe
ial importan
e, the phase when λ 6= ∞ and the large volume limit λ→∞.For �nite λ, the representation spa
es of the Hamiltonian are isomorphi
 to therepresentation spa
es of the unitary theory. In the large volume limit it is notpossible to make su
h a statement in general, besides for the topologi
al se
tor,whi
h is insensitive to the value of λ.The most important impa
t of the s
aled metri
 was that the perturbativespe
trum of the Hamiltonian in
luded apart from the topologi
al further dy-nami
al states. For the situation that the target manifold is X = CP
1, theseperturbative state spa
es survived the large volume limit and be
ame indu
edrepresentations of the symmetry generated by the gradient �eld of the Morsefun
tion.The perturbative representation spa
es were de�ned lo
ally on the so-
alleddes
ending manifolds. These are the submanifolds into whi
h X is de
omposedby means of the gradient ve
tor �eld. Frenkel et al. 
laimed that if the lo
al re-presentation spa
es were extended as distributions to X , they did 
omprise thenonperturbative low energy spe
trum of the theory, 
f. [FLN08℄. I have extendedthe perturbative spe
trum in a manner whi
h di�ers from that used by Frenkelet al. [FLN06℄. The Hamiltonian turned out to be no longer diagonal on the thusobtained representation spa
es. I did then de
ompose it into a trivial part and anoperator whi
h is responsible for that e�e
t. The thus obtained operator entang-led the extended representation spa
es and, by 
omparison, 
ould be identi�edwith the lo
al 
ohomology operator (GCO) of a parti
ular Grothendie
k-Cousin
omplex [Kem78℄. Therefore, the GCO makes it possible to take an insight intothe stru
ture of the indu
ed representations of the symmetry generated by thegradient �eld of the Morse fun
tion. In parti
ular, this is an insight into theex
ited spe
trum of the Morse theory and thus an e�e
t beyond the topologi
alse
tor.Due to the GCO the Hamiltonian is inde
omposable on 
ertain dynami
alstates and also mixes the holomorphi
 and antiholomorphi
 target spa
e 
oordi-nates. These aspe
ts are typi
al for logarithmi
 
onformal �eld theories and itis, hen
e, reasonable to generalize this 
on
ept to two-dimensional �eld theories,[FLN08℄.

98



A Field Theory Application In 
hapter 3 I have 
onsidered the A-model withdomain manifold Σ=R×S1 and target spa
e X =CP
1. The target spa
e was againsupplemented with a metri
 s
aled by λ, 
f. [FLN08℄. Sin
e many physi
ists andmathemati
ians assume that there exists a point in the moduli spa
e of thistheory where it is 
onformal [FL07, MSV99, DVV91℄, it was a good startingpoint for generalizing the dis
ussion of the last 
hapter to a �eld theory and,additionally, for analyzing the meaning of the Grothendie
k-Cousin operators ina 
onformal �eld theory.As in the situation of Morse theory, I transformed the A-model into a �rst or-der shape by breaking CPT invarian
e and taking the large volume limit. Underthis treatment, the A-model took the form of a supersymmetri
 bc-system whi
hI 
alled the �topologi
al bc-system� (Tb
). Stru
turally, it looks like the 
onfor-mal supersymmetri
 bc-system (CSb
), and I assumed that the representationtheory for both systems is the same.Having integrated out the dependen
e of S1, the Tb
 turns into an in�nitesum of super quantum me
hani
al theories on loop spa
e LX , whi
h look similarto the Morse theory 
onsidered before. In order to attain the full analogy, it wasne
essary to add another ve
tor �eld to the gradient ve
tor �eld, whi
h ensuredthat the 
riti
al manifold redu
ed to singular points. Like Frenkel, Losev andNekrasov [FLN08℄, I have 
alled this pro
edure as �gauging� and denoted thethus obtained Tb
 as the gauged Tb
. Moreover, in order to obtain a Morsefun
tion for the gradient ve
tor �eld it was ne
essary to lift the theory from loopspa
e to its universal 
over.The Morse fun
tion thus obtained was multi-valued on loop spa
e. Therefore,the preimages of LX in its universal 
over fanned out into in�nitely many leaves,distinguished by homology 
lasses in H2(X ,Z). In the same manner, the pertur-bative state spa
es and the des
ending manifolds were distinguished. However,the state spa
es were isomorphi
, and I 
ould restri
t my 
onsideration to oneof those se
tors.Analyzing the Hessian of the Morse fun
tion, I 
ould determine the 
oordinatesof the des
ending manifolds in this se
tor. Be
ause of the analogy to the Morsetheory of 
hapter 2, I then 
ould note down the perturbative representationspa
es whi
h lo
alize on these submanifolds. It turned out that they 
ould bemodeled by representation spa
es of the CSb
.
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In order to de�ne the CSb
 on X =CP
1 it was ne
essary to explain how 
harttransitions work, and I introdu
ed the 
hiral de Rham 
omplex [MSV99℄ to 
losethis gap.To determine the Grothendie
k-Cousin operators, I had to �nd the lo
al rep-resentation spa
es between whi
h su
h operators intermediate. As it turned out,there exist two su
h operators whi
h, however, are related by a 
hart transition
omposed with a rede�nition of the additional ve
tor �eld I had used to redu
ethe 
riti
al manifold to isolated points. Therefore, it was su�
ient to dis
ussonly one Grothendie
k-Cousin operator.In order to obtain this GCO, I assumed that I may substitute the CSb
 for theA-model. Having adjusted and generalized the method of 
hiral bosonization[FMS86℄, I 
ould derive a 
ohomology operator in a long exa
t sequen
e ofparti
ular state spa
es. The perturbative state spa
es of the Tb
 are part ofthis sequen
e, and I 
ould extend them in su
h a way that the GCOs havebeen extra
ted as the 
ohomology operators in the short exa
t sequen
es ofperturbative state spa
es. Thise GCOs deform the Hamiltonian of the CSb
and are non-diagonalizable on a subspa
e of dynami
al state spa
es.In the last 
hapter I dis
ussed the question whi
h deformation of the CSb

orresponds to the deformation of the Hamiltonian by the Grothendie
k-Cousinoperator [VF09℄.

Logarithmic Deformation of the Chiral de Rham Complex The GCOsmade it ne
essary to re
onsider the 
hiral de Rham 
omplex. I looked for alogarithmi
 extension of this theory whi
h would produ
e the GCOs within theHamiltonian and extend the state spa
es in the appropriate way. For this pur-pose, I have su

essfully a

ommodated the method of logarithmi
 deformationinvented by Fjelstad et al. [FFH+02℄.The deformation revealed additional interesting aspe
ts.Sin
e it must be applied to the bosoni
 subse
tor of the CSb
, this raisedthe question if, due to supersymmetry, it was not ne
essary to further deformthe fermioni
 part. I have argued that supersymmetry did not demand this.Nevertheless, if the fermioni
 part is in addition logarithmi
ally deformed, thisdoes not a�e
t the representation theory of the CSb
.Moreover, the logarithmi
 deformation did neither destroy the Virasoro alge-
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bra nor supersymmetry. Yet, it spoiled all anomalous symmetries by whi
h theTb
 ex
eeded the A-model with �nite values of λ. I 
onsider this as an additional
on�rmation that the logarithmi
 deformation of the 
hiral de Rham 
omplexmight be ne
essary, if the dynami
al se
tor of the Tb
 is taken into a

ount.Another interesting aspe
t has been that the basi
 Jordan blo
ks in the dou-blets of logarithmi
 partners are always 
omprised by �elds whi
h are not pri-mary. In this respe
t, the theory is ex
eptional among logarithmi
 
onformal�eld theories [Flo03℄.
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II

Conformal Fermionic Ghosts

on the Torus





Motivation 6In the last part of my thesis I have investigated the 
onformal supersymmetri

bc-system with target manifold CP

1. Under the assumptions that this theorydes
ribes the topologi
al A-model in the large volume limit and that it has aparti
ular nonperturbative spe
trum on the des
ending manifolds of its underly-ing Morse theory, it be
ame ne
essary to logarithmi
ally deform this CFT. Theimprovement terms in the stress tensor thereby inherited an interpretation aslo
al 
ohomology operators and of instanton 
ontributions.This time I will 
onsider a di�erent geometri
 setting, whi
h again gives riseto a logarithmi
 extension, now of the fermioni
 
onformal bc-system.1 In thissetting, the CFT has target spa
e C, whereas the domain manifold is an algebrai
surfa
e T
n,m with global monodromy group Zn as a bran
hed 
overing of CP1.This situation has been dis
ussed by V. Knizhnik [Kni87℄ for the non-logarithmi
situation, and extended to the triplet model, in 
ase that T

n,m is the torus, byM. Flohr [Flo98℄. The triplet model [Kau95, GK96, Gab03℄, is not the sameLCFT as the one I have dis
ussed in the 
ontext of the A-model. It in
ludesthe situation of the last 
hapter but also ex
eeds it, in parti
ular it 
ontainsadditional twisted representations whi
h mimi
 the bran
h points.In the following 
hapters I will dis
uss two topi
s related with this setting.Firstly, I will argue from a purely geometri
 point of view that a logarithmi
extension of the bc-system on the torus is unavoidable. Se
ondly, sin
e thetorus is the spe
tral 
urve of pure gauge, SU (2) Seiberg-Witten (SW) theory[SW94℄, I will redu
e the prepotential and the spe
tral 
urve of this theory toquantities in the triplet model [VF07℄.In 
hapter 7 I will introdu
e the bc-system on the algebrai
 surfa
es Tn,m alongthe lines of [Kni87℄. The monodromy group will be responsible for additional,twisted representations whi
h mimi
 the bran
h points.In the following 
hapter 8, I will restri
t my 
onsiderations to the 
ase thatthe algebrai
 surfa
e is a torus. Sin
e the twisted representations mimi
 thebran
h points, there will exist a geometri
 argument why the bc-system must
1Since I will only treat this theory in the following, I will often refer to it as “the bc-system”.
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be logarithmi
. This works by relating the Legendre family, whi
h is a oneparameter family of tori, to the nullve
tor 
ondition of the twist �elds. Theminimal logarithmi
 CFT 
ontaining these representations is the triplet modelwhi
h I will brie�y introdu
e.The last 
hapter 9 will be on pure gauge, SU (2) Seiberg-Witten theory. Aftersome introdu
tionary remarks, I will explain how its spe
tral 
urve 
an be ex-pressed in terms of triplet 
hara
ters and how the prepotential 
an be obtainedas a fun
tion of the torus modulus. Sin
e this modulus equals the ratio of thefour-point fun
tions of the twist �elds it is possible to determine the prepoten-tial, and therefore this parti
ular Seiberg-Witten theory, by means of quantitiesof the triplet model.
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Fermionic Ghosts on Algebraic Curves 7In this 
hapter I will summarize how Knizhnik formulates the 
onformal fermioni

bc-system on a spe
i�
 
lass of algebrai
 surfa
es whi
h are bran
hed 
overingsof CP1, [Kni87℄. Their monodromy group a
ts on the �elds whi
h thereby fallinto irredu
ible representations. The highest weight ve
tors of those representa-tions 
an again be related with 
onformal (twist) �elds that simulate the e�e
tsof the bran
h points.
7.1 The Algebraic SurfacesEvery 
ompa
t Riemannian surfa
e 
an be obtained from a zero set of some poly-nomial in two variables by an in
lusion of �nitely many points [Fre09℄. There-fore, I will trade su
h algebrai
 surfa
es for 
ompa
t Riemannian surfa
es in thefollowing. Parti
ularly, I am interested in the 
lass of polynomials

T
n,m =

{
(y, x) ∈C× (CP1 \ {ei }) : P (y, x) = yn −

nm∏

i=1

(x −ei ) = 0

}
, n,m ∈N , (7.1.1)with ei 6= e j , ∀i 6= j , and in those des
ribing ellipti
 
urves, subje
t to the re-stri
tion n = 2 and m = 2. I am parti
ularly interested in the ellipti
 
urves,be
ause they be
ome tori when 
ompa
ti�ed and the spe
tral 
urve of puregauge Seiberg-Witten theory with SU (2) gauge group is a torus.The proje
tion p : (y, x) 7→ x, yields a 
overing (lo
ally biholomorphi
 mapping)of Σ=CP

1\{ei } by T
n,m , and the Monodromy group has a global representation ondi�erential forms on Σ due to the global Zn symmetry. In an open neighborhood

U (e) of a bran
h point e ∈ Σ, there exists an open set V (e) ⊂ p−1(U (e)) andbiholomorphi
 mappings φV and φ̃U , su
h that the following diagram 
ommutes,[Fre09℄
T

n,m : V (e)
φV→ D∗ z

p ↓ ↓ p̃ ↓

Σ : U (e)
φ̃U→ D∗ zn

. (7.1.2)
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Hereby, D∗ denotes the unit disk without the point e, whi
h I set to 0 withoutloss of generality. Therefore, in a neighborhood of a bran
h point e, the 
overinglooks like p̃(z)= e + zn with inverse
p̃−1(z)= (z −e)1/n . (7.1.3)By (z − e)1/n I denote the whole sta
k of the n solutions to this equation, andwhi
h I label by l mod n, l ∈N. Whenever I want to distinguish a spe
ial root,I will denote it by (z − e)1/n|Vl
. When 
ompa
tifying the algebrai
 
urve, themapping φV is analyti
ally extended to the symbol p−1(e) by setting φV (p−1(e))=

0. For this reason, though it is not quite 
orre
t, I will 
all (V (e),φV ) a 
hartaround p−1(e).In the following I will des
ribe how Knizhnik introdu
es the fermioni
 bc-system on the leaves of the 
overing and how the bran
h points introdu
e asta
k of lo
al representations of the theory on additional ba
kground �elds.
7.2 The Fermionic bc-System on T

n,mKnizhnik de�nes a fermioni
 bc-system on the algebrai
 surfa
e Tn,m . It 
onsistsof a s
alar �elds b and a one-form c whi
h he 
onsiders in the representation on
|0〉, 
f. se
tion 3.4.1. These �elds des
ribe the purely holomorphi
 (and purelyantiholomorphi
) di�erential forms on the surfa
e.1 Due to the lo
al biholo-morphism, one 
an 
onsider these �elds on the di�erent sheets l and in lo
al
oordinates z on Σ. For instan
e b(l )(z) = b◦p−1|Vl

(z), where Vl is an open subsetof the l th sheet, not in
luding a bran
h point.2 Similar holds for the one-form
c. These �elds have an a
tion whi
h due to the lo
al biholomorphisms 
an beformulated on Σ

S(l ) =
∫

Σ

d2z c(l )(z)∂z̄ b(l )(z) . (7.2.1)A

ordingly, the total state spa
e is a tensor produ
t of n equivalent highestweight states, in parti
ular
|0〉 =

n−1⊗

l=0

|0〉l . (7.2.2)

1I will only consider fermionic fields b and c in this part of my thesis. Therefore, I will omit the index +
used in section 3.4.1.

2In a chart I will allow myself the abuse of notation to equivalently denote by z a local coordinate on Σ or

its preimage on T
n,m .
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On every sheet, the stress tensor is de�ned as in se
tion 3.4.1 and the same holdsfor the �elds. In parti
ular, their operator produ
t expansion yields
b(l )(z)c(l ′)(z ′) =

δl ,l ′

z − z ′ . (7.2.3)

7.2.1 Around the Branch PointsSin
e analyti
 transitions between all sheets are possible in a 
hart around abran
h point, this situation is more deli
ate. To visualize this, I depi
ted theRiemannian surfa
e of pz, below. Let U (e) be a neighborhood of a bran
hpoint e. The di�erent paths betweenthe sheets, along whi
h fun
tions on
T

n,m 
an be analyti
ally 
ontinued, 
anbe 
lassi�ed by means of the mon-odromy group related to e. It is de�nedas follows.Let γ ∈ π1(U (e), z0) be a 
losed path starting and ending at z0 and en
losing atmost the bran
h point e, and denote by γ̃l the (unique) lift of γ starting on the
lth sheet at ql , p̃(ql ) = z0.3 The monodromy group permutes the elements ofthe �ber p−1(z0) = {q0, · · · , qn−1} and is de�ned by the a
tion

µγ ·ql = γ̃l (1) . (7.2.4)It is isomorphi
 to the group of roots de�ned by ql 7→ q(l+k) mod n = e
2πik

n ql , k ∈
Zn , and thus to Zn .The monodromy group indu
es a representation on the �elds by means of

µ̂γ ·b(ql ) = b(γ̃l (1)) , (7.2.5)and similar for c. In a 
hart without bran
h point, the points ql 
an again beproje
ted on Σ su
h that this relation holds for �elds b(l ) and c(l ).
3Composing such loops defined with respect to different branch points, one can generate all possible

loops enclosing one or several branch points. Therefore, and due to the global Zn symmetry, it is

sufficient that I restrict my discussion to one branch point.
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Sin
e T
n,m is globally Zn symmetri
, the representation of the monodromygroup 
an be diagonalized simultaneously for every bran
h point. This is ob-tained by the Fourier transformations

bk (z)=
n−1∑

l=0

ek+1−n(l)b(l )(z)

ck (z)=
n−1∑

l=0

ēk+1−n(l)c(l )(z)

, em(l) = e2πil m
n , k = 0, . . . ,n−1. (7.2.6)The monodromy group now introdu
es the boundary 
onditions

µ̂ : bk (z) 7→ e−2πi k+1−n
n bk (z) , ck (z) 7→ e+2πi k+1−n

n ck (z) , (7.2.7)and the n di�erent Fourier transformations distinguish n di�erent irredu
iblerepresentations of this group. The domain of bk and ck is p−1(U ) =⊔
l∈{0,...,n−1} Vl ,where U does not 
ontain a bran
h point. While before it was reasonable toseparate the �elds together with the di�erent sheets, the idea to entangle them inone equation is natural in a neighborhood of a bran
h point. The most important
onsequen
e is that the 
urrents 
an now be de�ned also in a neighborhood of abran
h point and as the single-valued �elds

jk (z)=− : bk (z)ck (z) : . (7.2.8)

Operator Product Expansions Sin
e the sheets of the algebrai
 surfa
e areoverlapping in a neighborhood of a bran
h point, the �elds may have nontrivialOPEs in this region. To see this, Knizhnik starts with two lo
al �elds b(l )(z) and
c(l ′)(ω), z ∈ p−1(U )|Vl

, ω ∈ p−1(U )|Vl ′ , whi
h are lo
ated 
lose to a bran
h point
e. Applying a 
hart transition to a neighborhood of e, z 7→ y = (z−e)1/n|Vl (e) and
ω 7→ y ′ = (ω−e)1/n|Vl ′ (e) one ends up with

b(l )(z)c(l ′)(ω)=
n−1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

. (7.2.9)Here, I used that in the presen
e of a bran
h point b(l )(y)c(l ′)(y ′) = (y−y ′)−1, evenif l 6= l ′. In order to apply this to the �elds in the Fourier expansion, I will usethat the basis elements em(l) de�ne a s
alar produ
t
em · ēs =

n−1∑

l=0

em−s(l) =
{

n if ∃ t ∈Z : tn = m − s

0 else (7.2.10)
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whi
h 
an be applied to bk and ck . Combining it with the OPEs above, oneends up with
bk (z) ·ck ′(ω)= δk ,k ′

1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

(7.2.11)This quantity has to respe
t the transformation (7.2.7), in parti
ular letting zen
ir
le e, this must result in a phase shift of bk . Indeed, the produ
t aboveyields a fa
tor (yn)−
r+1−n

n 7→ e−2πi r+1−n
n (yn)−

r+1−n
n , whi
h restri
ts r to r

!= k, andthe sum 
ollapses to this single term. Extending yn around y ′ n , one obtains
bk (z) ·ck ′(ω) =

(
1

z −ω
−

k+1−n
n

ω−e
+ : bk (ω)ck (ω) : +O(z −ω)

)
. (7.2.12)For k = k ′, this result should be 
ompared with the de�nition of the 
urrent

jk (ω) = lim
z→ω

[−bk (z)ck(ω)+ (z −ω)−1] . (7.2.13)Therefore, Knizhnik 
on
ludes that the additional term due to the bran
h pointindi
ates the presen
e of some ba
kground �eld, serving as a sour
e for theadditional 
harge qk

jqk
(z) = jk (z)+

qk

z −e
, qk =

k +1−n

n
, k = 1, . . . ,n−1. (7.2.14)

7.2.2 The Twisted RepresentationsMotivated by the dis
ussion above, I will now extend the representation theoryof se
tion 3.4.1 to 
harges with values in the rational numbers, su
h that
bk (z)ck(ω)|qk〉 = (z −ω)−1

(ω
z

)qk

|qk〉 . (7.2.15)Here, I assume that normal ordering is again de�ned with respe
t to |0〉 and
bk n |qk 〉 = 0 , n > 0, ck n |qk 〉 = 0 , ≥ 0. This representation is meant to existlo
ally in a 
hart around a bran
h point e whi
h I have set to e = 0.Due to the monodromy, the �elds in the di�erent se
tors are supposed to havea new series expansion in this representation

bk (z)=
∑

n∈Z
bk n z−n−qk , ck (z) =

∑

n∈Z
ck n z−n+qk−1 , (7.2.16)
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whi
h must have an impa
t on the 
omposite �elds. Take for instan
e the thestress tensor. Firstly, it a
quires additional terms
Tqk

(z)= Tk (z)+
1

2

qk (qk +1)

z2
(7.2.17)due to the OPE above. Se
ondly, it is build from bk and ck whi
h are now in therepresentation (7.2.16) on |qk 〉. Therefore, the modes gain a shift by the 
harge

qk

Tqk m
=

∑

n∈Z
(n−qk ) : bk −n ck n+m : +

1

2
qk (qk +1)δm,0 . (7.2.18)and the �eld modes have new 
onformal weights [ Tqk 0

, bk n] = (−n − qk ) bk nand [ Tqk 0
, ck n] = (−n + qk ) ck n . On the other hand, [ jqk 0

, bk n] = − bk n and
[ jqk 0

, ck n]= ck n , as before, and the U (1) 
harges are not a�e
ted. The state |qk 〉has 
harge qk , 
onforming with the dis
ussion in the last se
tion, and 
onformalweight 1
2 qk (qk +1), also 
f. se
tion 3.4.2.To 
on
lude this se
tion on the representation theory of the bc-system on

|qk 〉, noti
e that the U (1) 
urrent behaves under Möbius transformations as inequation (3.4.13). Therefore, the representation on |qk〉 is not unitary and itinherits the ba
kground 
harge q= 1 already obtained in se
tion 3.4.1.
Twist FieldsFrom the CFT point of view there should 
orrespond a unique �eld to thisrepresentation whi
h has the same quantum numbers and whi
h is �xed at theposition of the bran
h point. Formally, I will denote this isomorphism by themapping ∗ : µqk

(0)∗ |0〉 = |qk〉 wherein µqk
(0) is the �eld 
orresponding to |qk 〉and |0〉 =

⊗n−1
l=0

|0〉l . For 
onvenien
e, I will omit the ∗ in a 
orrelator and write
· · ·µqk

(0)∗ |0〉 = ·· ·µqk
(0)〉0, 
f. se
tion 3.4.1.In order to represent a bran
h point, µqk

(0) should respe
t the monodromyproperty of the �elds bk and ck , i.e.
bk (e2πiz)µqk

(0) = e−2πiqk bk (z)µqk
(0) ,

ck (e2πiz)µqk
(0) = e2πiqk ck (z)µqk

(0) .
(7.2.19)Consequently, the boundary 
onditions (7.2.7) are represented on the bc-systemby means of these �elds. If the indu
ed boundary 
onditions are non-trivial, i.e.
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qk 6∈Z, it is 
ommon to 
all µqk
a �twist �eld� [Gin88℄ and the representation ofthe bc-system on the respe
tive state |qk〉 a �twisted representation�.The monodromy 
ondition imposed on the �eld µqk

allows for a whole sta
k oftwist �elds with 
harge qk +n , n ∈Z, 
alled �ex
ited twist �elds�. For instan
ethe operator
µqk−1(0) = µqk

(0) bk 0 (7.2.20)de�nes a �eld of 
harge qk −1 and with 
onformal weight 1
2 qk (qk +1)− qk . Si-milarly, other ex
ited twist �elds 
an be generated by an a
tion of the modesof bk and ck . However, be
ause they are in the same representation of themonodromy group, all these ex
ited twist �elds belong to the same representationon |qk 〉. The operator µqk

(0) bk 0 is spe
ial sin
e it formally 
an be identi�ed with
µqk

(0)|1〉, whereby |1〉 is the se
ond possible, however not 
onformally invariant,va
uum representation in the CSb
. It played the r�le of the logarithmi
 partnerof |0〉 in se
tion 4.1.3. This time, however, the 
onformal weights of µqk
(0) and

µqk
(0) bk 0 are not the same and both �elds 
an not be logarithmi
 partners.

7.2.3 ConclusionDue to the a
tion of the monodromy group and in addition to the representationon the 
onformally invariant state |0〉, the fermioni
 bc-system on T
n,m fallsinto n representations, ea
h of whi
h is 
omprised by the �elds bk and ck , k ∈

{0, . . . ,n − 1}, with the �eld algebra des
ribed by (7.2.15) and represented on
µqk

(e) respe
tively |µqk
〉. These representations are lo
ally de�ned in the sensethat the �elds µqk

(e) are �xed at a bran
h point e and the operator produ
talgebra (7.2.15) is de�ned in a neighborhood of this point. However, sin
e themonodromy group is Zn for every bran
h point, it is su�
ient to 
onsider therepresentation theory in a 
hart in
luding a single bran
h point. The 
urrents jkde�ned by the �elds in these representations are single-valued on Σ and yield thesame quantum numbers for any value of k. This is not true for the stress tensor,whi
h measures di�erent weights depending on the parti
ular representation.
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On Twist Fields and Torus Periods 8It is the a
hievement of M. Flohr to have related the twisted bc-system on
T

2,2 to SU (2) SW theory, [Flo98, Flo04℄. Thereby, he took three 
ru
ial steps.Firstly, Flohr �released� the twist �elds and 
onsidered the bran
h points asdynami
al degrees of freedom on CP
1. As a 
onsequen
e, the question arisedhow the operator produ
t algebra gets enlarged when OPEs between these �eldsare taken into a

ount and whi
h �elds must be added in order to 
lose thisalgebra. The answer to this question was the se
ond step Flohr had taken, heproposed that the bc-system on the torus should be identi�ed with the so-
alledtriplet model [GK96, Roh96, Kau95℄. Finally, he argued that if the bc-systemon the torus is identi�ed with the triplet model it is possible to des
ribe themain data of SU (2) SW in terms of 
orrelation fun
tions of this theory.In this 
hapter I will motivate the 
hoi
e of the triplet model but take a moregeometri
 approa
h than that of Flohr. From this will follow that it is ne
essaryto release the twist �elds in order to des
ribe the fundamental parameters of thetorus (its periods and their ratio). As a 
onsequen
e I will then further dedu
ethat the bc-system on the torus must be extended to a logarithmi
 CFT, andthe triplet model will be the minimalisti
 extension.In the �rst se
tion, I will release the bran
h points and transform the algebrai

urve T

2,2 into the �Legendre family�. This formulation is 
anoni
al in order tostudy small movements in the moduli spa
e of tori. In parti
ular, the periods ofthe tori satisfy a hypergeometri
 di�erential equation in the moduli parameter[CMSP03℄.In the following se
tion 8.2, I will identify this di�erential equation with thenullve
tor 
ondition on the twist �eld µ− 1
2
[Flo98, Flo04, Flo03, Gab03℄, whi
hagain relies on the possibility that the bran
h points may vary. This will explainwhy it is ne
essary to extend the bc-system to an LCFT.The 
hapter will be 
on
luded with a brief dis
ussion of the representationtheory of the bc-system and a brief introdu
tion of the triplet model as theminimalisti
 logarithmi
 extension in
ludeing the twist �elds.

115



8.1 The Legendre FamilyThe algebrai
 
urve T
2,2 
an be transformed into a polynomial of third order

Eλ : y2(z;λ) = z(z −1)(z −λ) , λ ∈CP
1 \ {∞,0,1} (8.1.1)by means of SL(2,C) transformations of z and y .1 Indeed, every 
ompa
t Rie-mannian surfa
e of genus one is the set of zeros of a polynomial of this form forsome λ [Jos02, FB00℄. Therefore, the moduli spa
es of the two des
riptions oftori are equivalent, T2,2 ≃ Eλ. The bran
h points are now positioned at {∞,0,1,λ},and Eλ 
an be 
onsidered to be parametrized by λ ∈ CP

1 \ {∞,0,1}. This makesthe Legendre family parti
ularly ni
e to study variations of the 
orrespondingequivalen
e 
lasses of tori as fun
tions of λ, or to study the singularities of Eλwhi
h are evident in terms of λ. I will denote the spa
e ME = CP
1 \ {∞,0,1} asthe moduli spa
e of the Legendre family Eλ, with 
oordinate λ.

8.1.1 Relation to the Lattice TorusIn what sense 
an a variation in λ evoke a movement between di�erent equiva-len
e 
lasses of tori? The 
anoni
al parameter to distinguish or identify equiva-len
e 
lasses of tori is the ratio τ of the periods of a torus in the latti
e des
ription.Below I will argue that ea
h non-singular member of the Legendre family isequivalent to a latti
e torus
C/Lλ−{[0]} , Lλ = { mΠD (λ)+nΠ(λ) , τ(λ) =±

ΠD (λ)

Π(λ)
, ℑ(τ) > 0, m,n ∈Z } , (8.1.2)whereby the 
hoi
e of sign in the de�nition of τ is su
h as to 
ustomize ℑ(τ) > 0[FB00℄. Without loss of generality I will assume that after some res
aling of theperiods I may 
hoose the plus sign. The periods of Lλ are des
ribed in terms of
ohomology 
lasses of Eλ. The di�erential form

̟(z;λ) =
dz

y(z;λ)
(8.1.3)

1Without loss of generality, e4 6= 0. Apply the following transformations and some redefinition of y

z 7→
e4z

z +e−1
4

⇒ y 2 7→ y ′ 2 =
3∏

i=1

(e4 −ei )(z −u1)(z −u2)(z −u3), ui = ei [e4(e4 −ei )]−1 .

The change of variables z 7→ (u1−u2)z+u1 and another appropriate redefinition of y ′ yield the desired

result, whereby λ= u3−u1
u1−u2

.
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is holomorphi
 and without zeros on Eλ .2 Therefore, it is 
losed with respe
tto the de Rham di�erential and has a well de�ned 
ohomology 
lass. By meansof de Rham duality, this 
ohomology 
lass 
an be de�ned to be the dual of somehomology 
lass in H1(Eλ,Z), whi
h, without loss of generality, is generated bythe 
y
les as depi
ted below,
α β

PSfrag repla
ements
∞ u10and with interse
tion number 1. Denote by α∗ and β∗ the basis for H 1(Eλ,Z)dual to α and β, i.e. ∫

αα
∗ = 1, ∫

αβ
∗ = 0. The 
ohomology 
lass of ̟ is given byan expansion in this basis as

[̟]=α∗
∫

α
̟+β∗

∫

β
̟ . (8.1.7)Thus, if [γ] ∈ H1(Eλ,Z), [γ]= mα+nβ , m,n ∈Z one �nds that

∫

[γ]
[̟]= m

∫

α
̟+n

∫

β
̟ . (8.1.8)

2This is most obvious in the Weierstrass formulation of Eλ, [FB00]. Let Lλ be the lattice corresponding

to Eλ. One may again redefine Eλ by z 7→ 41/3z + λ+1
3 which yields the Weierstrass normal form

X (g2,g3 ) : y 2 = 4z3 −g2 z −g3 , y,z ∈C

g2 =
41/3

3
(λ2 −λ+1), g3 =

1

27
(λ+1)(2λ2 −5λ+2).

(8.1.4)

This curve is called Weierstrass normal form because the Weierstrass function

℘(z) =
1

z2
+

∑

ω∈Lλ\{0}

(
1

(z −ω)2
−

1

ω2

)
, (8.1.5)

satisfies the differential equation

℘′(z)2 = 4℘(z)−g2℘(z)−g3℘(z). (8.1.6)

The Weierstrass function is periodic in Π and ΠD and is defined on C/Lλ. It induces a conformal

equivalence between X (g2,g3) and C/Lλ−{[0]}, via [z] 7→ (℘(z),℘′(z)), whereby [0] is taken out since ℘

has a pole at this point [FB00]. Let γ(t ) be a curve on C/Lλ which does not pass a zero of ℘′. Omitting [·]
for convenience, dγ(t ) = ℘′(γ)

℘′(γ)
dγ= d℘(γ)

℘′(γ)
, and the elliptic integral E(γ) =

∫
γ

d℘

℘′ is formally the inverse

of ℘, mapping X (g2,g3) to C/Lλ. This integrand, restricted to a curve which is not passing a zero of ℘′,

is a holomorphic one form and thus closed. It can be identified with ̟ on Eλ.
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Sin
e the ellipti
 integrals like ∫
α̟ take their values on Lλ (
f. the explanationin the footnote on pg. 117), I 
an identify

ΠD (λ) =
∫

α
̟ , Π(λ) =

∫

β
̟ (8.1.9)and interpret (8.1.8) as the representative for [γ] on C/Lλ.

8.1.2 A Differential Equation for the PeriodsThe homotopy 
lass [̟(λ)] and, if the 
y
les are �xed, also the periods ΠD and
Π, satisfy a hypergeometri
 di�erential equation

λ(λ−1)
d2̟(λ)

dλ2
+ (2λ−1)

d̟(λ)

dλ
+

1

4
̟(λ) = 0, (8.1.10)whereby ̟ is the representative of [̟] and the di�erential equation is zero up toexa
t forms.The following ni
e proof is taken from [CMSP03℄. The quantity [̟(λ)] =

ΠD (λ)α∗+Π(λ)β∗ 
an be interpreted as a di�erential form on
H 1(E ,Z) :=

⋃

λ∈CP1\{∞,0,1}

H 1(Eλ,Z) . (8.1.11)The derivative ∂λ = d
dλ denotes the the 
ovariant di�erential on this spa
e,whereby the 
onne
tion is 
hosen su
h that α∗ and β∗ are (lo
ally) 
onstant.Then, formally, ∂λ[̟(λ)] = ∂λΠD (λ)α∗ + ∂λΠ(λ)β∗ = [∂λ̟(λ)]. For this relationto make sense, one has to prove that ∂λ̟(λ) is indeed a representative of a
ohomology 
lass of E . Take the representative ̟(λ), then

∂λ̟(λ)=
1

2
[z(z −1)(z −λ)3]−

1
2 dz (8.1.12)is a meromorphi
 one-form. However, its pole has a multipli
ity greater equal twoat (y, z) = (0,λ) =: P , su
h that it nevertheless de�nes a 
ohomology 
lass. Namely,in a neighborhood of P , y(z) is invertible and one 
an write y2 = h(y)

λ(λ−1)
(z(y)−1),whereby h(y) is holomorphi
 in y and h(0) = 1. Solving for z and expanding

h(y)−1 around y = 0 yields z = λ+O(y2). Now, with y2(z) = p(z) one has ̟ =
2

dy
∂z p(z) , and inserting the approximation for z yields ̟= 2

dy
λ(λ−1) +O(y−2). Thus,plugging in again z −λ=O(y2),

∂λ̟(λ)=
1

2

̟(λ)

z −λ
=

dy

λ(λ−1)(z −λ)
+O(y−2) ∼

dy

λ(λ−1)y2
+O(y−3) . (8.1.13)
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The following remarks 
on
lude the proof. By Stokes theorem, the residuum ofa one-form depends only on the 
ohomology 
lass. Therefore, the sequen
e
0 → H 1(E ,Z)

r estr ict ion−→ H 1(E \ {P },Z)

∮
P→ 0. (8.1.14)is exa
t and ∂λ̟(λ) is a 
ohomology 
lass on E and not just on E \ {P }. Sin
e

̟ and ∂λ̟ are both 
ohomology 
lasses and H 1(E ,Z) has two generators, everyother 
ohomology 
lass 
an be expanded in these two. In parti
ular
A(λ)∂2

λ̟+B(λ)∂λ̟+C (λ)̟= 0, (8.1.15)modulo an exa
t form. A 
al
ulation reveals that f = [z(z−1)(z−λ)−3]
1
2 satis�es

d f = (z −1)∂λ̟+ z∂λ̟−2z(z −1)∂2
λ
̟. Using z = z −λ+λ in this equation and

(z−λ)∂λ̟= 1
2
̟, (z−λ)∂2

λ
̟= 3

2
∂λ̟ yields the di�erential equation for the periods.

8.1.3 Solutions for the PeriodsThis di�erential equation is a spe
ial 
ase of the hypergeometri
 equation
(
λ(λ−1)

d2

dλ2
+ [(a +b +1)λ−c]

d

dλ
+abλ

)
F = 0, (8.1.16)with a = b = 1

2
and c = 1. Its solutions are the hypergeometri
 fun
tions F (a,b;c|λ),
lassi�ed for instan
e in [E+85℄. In the 
ase under 
onsideration, the solutionspa
e may be spanned by the fun
tions

F1(λ) = F ( 1
2 , 1

2 ;1|λ) , F2(λ) = iF ( 1
2 , 1

2 ;1|1−λ) . (8.1.17)Erdelyi de�nes the fun
tion F ( 1
2

, 1
2

;1|λ) by an integral representation whi
h yieldsan analyti
, single-valued fun
tion on C \R≥0 [E+85℄. Its lo
al form in a neigh-borhood of λ= 0 equals
F ( 1

2
, 1

2
;1|λ) =

1

π

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2

)n!

)2

[kn − log(1−λ)](1−λ)n , (8.1.18)whereby |1−λ| < 1 , |arg(1−λ)| <π and
kn = 2ψ(n+1)−2ψ( 1

2 +n) , ψ(λ) = ∂λ logΓ(λ) . (8.1.19)
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In this shape (8.1.18), it is evident that the solutions F1 and F2 of the di�eren-tial equation for the periods have logarithmi
 singularities at λ = 1 and λ = 0,respe
tively.Both solutions F1 and F2 get, however, mixed whenever λ passes the bran
h
ut between 0 and 1. The results are again taken from [E+85℄, who used therelation
1

2
πF1(λ)−

i

2
log(1−λ)F2(λ) =

1

2

∞∑

n=0

(
Γ( 1

2 +n)

Γ( 1
2

)n!

)2

kn(1−λ)n , (8.1.20)to obtain
µ0 :

(
F1

F2

)
7→

(
1 0

2 1

)(
F1

F2

)
, µ1 :

(
F1

F2

)
7→

(
1 −2

0 1

)(
F1

F2

)
, (8.1.21)whereby µ0 and µ1 denote the operation of en
ir
ling the bran
h points 0 and

1, on
e. The group generated by the matri
es above is 
alled the �global mon-odromy group� of Eλ [CMSP03℄. Due to the monodromy property, the 
hoi
e ofthe solutions F1 and F2 has no fundamental meaning. Indeed, given the latti
ede�ned by the periods F1, F2, all latti
es in the orbit of the monodromy groupare identi
al. For this reason, the periods 
orresponding to di�erent algebrai
surfa
es are 
lassi�ed by the global monodromy groups and vi
e versa.
8.2 LCFT-fication of the Legendre FamilyThe Legendre family has a �oating bran
h point, whereas in Knizhniks approa
hall bran
h points were �xed. Therefore, in order to �nd a �eld theoreti
 expres-sion for the periods, I will now reinvestigate the fermioni
 bc-system on T

2,2and reformulate the bran
h points as dynami
al degrees of freedom. Behind thiswork stands a pile of publi
ations on the LCFT at c =−2, on my table are sta
kedup in parti
ular the referen
es [Flo98, Flo03, Flo04, Kau95, Gab03, Gur93℄.Until now, the bc-system on T
2,2 
onsists of two di�erent lo
al representations

|q0/1〉 in every 
hart whi
h 
ontains a bran
h point, and one globally de�nedrepresentation on |0〉 with support on Σ. The following list summarizes the
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representations and �elds I have dis
ussed in 
hapter 7:reps. 
harges J weights ∆ �elds domain
|0〉 0 0 1(z) Σ

|0̃〉 := |q1〉 0 0 1̃(ei ) :=µ0(ei ) {ei }

|µ〉 := |q0〉 − 1
2 − 1

8 µ(ei ) :=µ− 1
2

(ei ) {ei }

|σ〉 := b0 0 |q0〉 − 3
2

3
8 σ(ei ) := b0 0µ− 1

2
(ei ) {ei }

(8.2.1)Only, the latter two rows denote twist �elds, whereas the �rst representationshave trivial monodromy. Noti
e that the untwisted representations have thesame quantum numbers and might be logarithmi
 partners, whereas this is nottrue for the twist �elds. The dynami
al �elds represented on these spa
es arethe �elds b(z) and c(z). I have distinguished their representations by an index
k su
h that for instan
e b(z) denoted the representation on |0〉 and bk (z) therepresentation on |qk〉. For 
onvenien
e I will now drop this index.It is ne
essary to release the �elds representing the bran
h points in order toreprodu
e the situation of the Legendre family. The bran
h point 
oordinatesand 
orresponding �elds may then move on CP

1, and the ba
kground �eldsbe
ome additional dynami
al quantities. In this sense, the 
orresponding lo
alrepresentations be
ome global representations on Σ and by a 
onformal transfor-mation of the algebrai
 surfa
e as des
ribed in the last se
tion, one may identify
{ei }i=1,...,4 = {0,1,∞,λ} ∈CP

1, λ∈ME .As soon as twist the �elds related to the bran
h points are released, the ques-tion arises what the operator produ
t algebra looks like. In parti
ular, I wouldlike to be able to 
al
ulate 
orrelation fun
tions of the kind
{
〈

s∏

l=1

Ol

n∏

i=1

φi (zi )
m∏

j=1

µqk j
(ω j )〉 6= 0,

zi ∈Σ , ω j ∈CP
1

∑
i J (i )+

∑
j J ( j )+

∑
k J (l)] =−1

}
, (8.2.2)whereby φi 
an be b(z) or c(z) and 〈·〉 = 0〈·〉0, 
f. se
tion 3.4.1. The 
ondition

∑
i J (i )+

∑
j J ( j )+

∑
k J (l) =−1 is ne
essary to 
an
el the ba
kground 
harge q= 1.This is a

omplished by the operators Ol , whi
h denote any non-dynami
al quan-tities and whi
h I will 
all �s
reening operators�, for this reason. For instan
e,

b0 is a s
reening operator in 〈b01(z)〉 = 〈0|1〉 = 1.
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8.2.1 A Hypergeometric Equation for the Twist FieldsFor the moment, I am interested in 
orrelation fun
tions in
luding the twist �elds
µ− 1

2
. They are promising 
andidates to simulate the periods of the Legendrefamily be
ause they introdu
e some monodromy and, hen
e, mimi
 the non-trivial behaviour of the bran
h points.In order to 
al
ulate 
orrelation fun
tions, it is helpful to sear
h for restri
tionssu
h as nullve
tor 
onditions. Indeed, the representation |µ〉 satis�es a nullve
tor
ondition at level 2

(T−2 +2T 2
−1)|µ〉 = 0, (8.2.3)whi
h signi�es that the four-point fun
tion has to satisfy a hypergeometri
 dif-ferential equation [Gur93, Flo03℄,

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉 = λ
1
4 (λ−1)

1
4 F (λ) ,

λ(λ−1)
d2F (λ)

dλ2
+ (2λ−1)

dF (λ)

dλ
+

1

4
F (λ)= 0.

(8.2.4)Thus, up to a prefa
tor, the four-point fun
tion of the µ �elds reprodu
es theperiods of the Legendre family and, without loss of generality, I 
hoose the twosolutions to be F1 and F2 as in (8.1.3). The 
orresponding four point fun
tionsnow equals
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉k =λ

1
4 (λ−1)

1
4 Fk (λ) , k ∈ {1,2} , (8.2.5)and should be 
ompared with

Π(λ) = F ( 1
2

, 1
2

,1|λ) , ΠD (λ) = iF ( 1
2

, 1
2

,1|λ) . (8.2.6)Consequently, the 
orrelation fun
tions above and the periods of the Legendrefamily de�ne equivalent tori and their quotient yields the same fundamentalparameter3
τ(λ) =

ΠD (λ)

Π(λ)
=

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉2

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉1
(8.2.7)Applying the monodromy group (8.1.21), I 
an rede�ne the periods without
hanging the underlying latti
e torus. In this respe
t, the �
onformal blo
ks� inthe 
orrelation fun
tions are not uniquely determined.

3Two tori are equivalent, iff their lattices differ by some nonzero complex number L = aL′, a ∈ C \ {0}.

This is more general than saying that two tori are identical, i.e. L = L′. The identical tori are related by

the global monodromy group, cf. section 8.1.
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8.2.2 The Necessity of a Logarithmic ExtensionThe ne
essity for a logarithmi
 extension of the bc-system on the torus 
an nowbe seen from the operator produ
t expansion between the twist �elds, whi
h wasoriginally derived by V. Gurarie [Gur93℄. To explain this, I will, however, followa publi
ation of M. Gaberdiel in [Gab03℄. A general solution of the nullve
tor
ondition equals
F (λ) = A F1(λ)+B [F1(λ) log (λ)+H(λ)] , (8.2.8)whereby F1 and H are regular at z = 0, and I used (8.1.20) as well as λ 7→ 1−λ toreformulate F2(λ) = i
π

(
F1(λ) logλ+H

). In the expression above it is immediatethat the OPE between two �elds µ must 
ontain logarithms and splits into twoparts. Namely, if two of the �elds in the four-point fun
tion are shifted to aneighborhood of in�nity and treated as a ba
kground �eld Ω(∞), the 
orrelationfun
tion still has to respe
t the OPE by its de�nition. Thus,
µ(z)µ(ω)= (z −ω)

1
4 (φ1(ω)+φ2(ω) log(z −ω)) , (8.2.9)with A = 〈Ω(∞)φ1(0)〉 , B = 〈Ω(∞)φ2(0)〉. Gaberdiel uses a further tri
k whi
hallows to determine the �elds φi . He lets λ en
ir
le 0 in the OPE with the othertwist �elds shifted nearby in�nity, whi
h yields

〈Ω(∞)e2πiT0µ(λ)µ(0)〉 =λ
1
4 (A+2πiB +B log(λ)) . (8.2.10)Thus, with φi |0〉 =: |φi 〉 he obtains

T0|φ2〉 = 0, T0|φ1〉 = |φ2〉 . (8.2.11)I have en
ountered su
h an equation already in (4.1.10) and thus may 
on
ludethat the fermioni
 bc-system on the torus unavoidably has to be logarithmi
allyextended, whereby φ2(z) = 1(z) and φ1(z) =Ψb(z), 
f. 
hapter 4. The �elds 1(z)and Ψb(z) have the same 
onformal weights and U (1) 
harges, as is demandedfor logarithmi
 partners of the Virasoro algebra. In (8.2.1) already appears a setof �elds and representations subje
t to that 
onstraint. Therefore, I 
laim thatfor the fermioni
 bc-system on Eλ,
µ(z)µ(ω) = (z −ω)

1
4 (1̃(ω)+1(ω) log(z −ω)) ,

1̃(z)=Ψb(z) , |0̃〉 = b0|0〉⊗ǫ|0〉K ,
(8.2.12)
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and all �elds in the untwisted se
tor have to be logarithmi
ally extended inanalogy with 
hapter 4.
8.3 The Triplet ModelThe triplet model is an LCFT whi
h 
ontains the logarithmi
ally extended un-twisted se
tor as well as the twisted representations [GK96, Roh96, Kau95℄. Tothe best of my knowledge, this model is in addition the LCFT whose opera-tor produ
t algebra 
loses on the representations noted down in (8.2.1) with aminimal amount of additional representations added. Its basi
 ingredient is anadditional symmetry whi
h restri
ts and 
ontrols the possible representations.In order to make this expli
it, I will 
omment on the means whi
h restri
t therepresentation spa
es of a 
onformal �eld theory. Therefore, I will �rstly intro-du
e what I understand under a physi
ally eligible representation, and thereafterdis
uss the impa
t of the additional symmetries and nullstate 
onditions whi
hlead to the triplet model.
8.3.1 Symmetries and RepresentationsThe OPE of the twist �elds 
ould be re
onstru
ted due to a nullstate 
onditionwhi
h made it ne
essary to extend the representation of the fermioni
 bc-systemon |µ〉 by |0〉 and |0̃〉. Behind this stands a general feature of CFTs. Sin
ethe �elds and states are supposed to be isomorphi
, obtaining knowledge of theoperator produ
t algebra of the �elds and studying the possible representationspa
es are two sides of the same medal. This knowledge is basi
ally dedu
edfrom nullstates and symmetries. To explain how this works, I must spe
ify whatI understand under a �physi
ally relevant� representation spa
e.In se
tion 3.4.1, I have de�ned a 
olle
tion of representations on 
harged states
|p〉, however, not all of them are �physi
ally� reasonable. In the situation of aCFT for instan
e, the �physi
al� representation spa
es should be build on stateswhi
h preserve 
onformal symmetry. This 
ondition would have restri
ted the
bc-system to be build solely on |0〉, whi
h is the only SL(2,C) invariant stateamong the states |p〉, p ∈ Z. On the other hand, sin
e the bc-system breaksunitarity, it is not possible to 
onstru
t a thoroughly �physi
al� theory, anyway,
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and it was ne
essary to in
lude the dual state 〈1| to a

ount for the ba
kground
harge. Therefore, I will restri
t the representations as follows:
Restriction by Symmetries:Let C ∪S be some operator produ
t algebra of holomorphi
 �elds, whereby Ihave extra
ted the part S 
onsisting of the symmetry generators T , for the inte-rior Virasoro symmetry, and Sa(z) , a = 1. . . A for additional exterior symmetries.These symmetries are subje
t to [Sa

0 ,T0]= 0, [Sa
0 ,Sb

0 ]= 0, and I assume that thereexists a unique SL(2,C) invariant state |0〉, on whi
h they are diagonal. In thespirit of the 
onsequen
es a logarithmi
 deformation along the lines of [FFH+02℄implies, I understand by a physi
ally eligible representation (PER) of C ∪S amultiplet M(φ)K of ve
tors |φ,k〉 , k = 1, . . . ,K subje
t to the following 
onditions:
➀ REPRESENTATION OF THE OPA: In the representation on M(φ)K , the �eldsin C have a mode expansion

Φ(z) =Φ
(naive)(z)+ Φ̃(z) , Φ

(naive)(z)=
∑

n∈Z
Φn z−n−∆T (Φ)whereby Φ̃ ∈ End(M(φ)K )((z, z−1))[log z]. For all k, |φ,k〉 is annihilated by

Φn , Φ̃n , n > 0.4 The set of states {|φ,k〉 ∈ M(φ)K : Φ̃(z)|φ,k〉 = 0} is notempty. The operator produ
t algebra of the �elds in C is represented on
|φ,k〉 ∀ k.

➁ INTERIOR SYMMETRY: On every |φ,k〉, the �eld T 
an be de
omposed as
T (z)= T (naive)(z)+g(z) ,su
h that the a
tion of the �eld modes in T (naive) =

∑
n∈Z T (naive)

n z−n−2 on
|φ,k〉 does not lead out of the kth se
tor, and the zero mode is diagonal.The other �eld g(z) ∈ End(MK )((z, z−1)) permutes the elements of the mul-tiplet. Hen
e, the eigenvalue ∆φ of T (naive)

0 is a quantum number of M(φ)K .Moreover, I assume that the OPA of T with the �elds in C is preservedand that there exists some |φ,k〉 ∈ {|φ,k〉 ∈ M(φ)K : Φ̃(z)|φ,k〉 = 0} su
h that
g(z)|φ,k〉 = 0.

4In order to avoid indices which are not integers, I do not assume that the field modes Φn have conformal

weight −n.
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➂ EXTERIOR SYMMETRY: I assume that the �elds Sa(z) ∈S have expansionsand representations of the kind
Sa(z)= Sa (naive)

(z)+gSa (z) (8.3.1)with ga
S
∈ End(MK )((z, z−1))[log z]. The �elds Sa (naive) and gSa shall enjoyanalogue properties as were demanded for T on any |φ,k〉. The 
ondi-tions [ Sa (naive)

0 ,T (naive)
0 ] = 0 and [ Sa (naive)

0 , Sb (naive)
0 ] = 0 shall be valid su
hthat the eigenvalues of Sa (naive)

0 are quantum numbers of M(φ)K . I do fur-ther assume that there exists some �non-logarithmi
� states |φ,k〉 ∈ {|φ,k〉 ∈
M(φ)K : Φ̃(z)|φ,k〉 = 0 = g(z)|φ,k〉} subje
t to gSa (z)|φ,k〉 = 0 ∀a.

➃ FIELD-STATE CORRESPONDENCE: There exists an isomorphism ∗ su
h that
φk (0)∗ |0〉 = |φ,k〉 ∀ k de�nes an element φk ∈ End(Mk )((z, z−1))[log z]. Iassume that the symmetry generators T (z) and Sa (z) have OPEs with the�elds φk whi
h take the generi
 form for the naive �elds and do not lead outof the representation. Consequently, φk has the same quantum numbersas |φ,k〉 with respe
t to T (naive) and Sa (naive). The OPE of g(z) and gSa (z)with φk , 
ontains �elds φk ′ , k 6= k ′ or their derivatives, 
orresponding tothe a
tion of those operators on a state |φ,k〉.

➄ IRREDUCIBILITY: If there exist isomorphi
 representations MK ≃ M ′
K
, i.e.the �eld algebra C 
ontains a bije
tive linear mapping between the modulesgenerated from C on these spa
es, I treat them as equivalen
e 
lasses and�
hoose� the set of ve
tors whi
h is annihilated by the maximal amount ofsymmetry generators T (naive)

n , S(naive) a
n , n ∈Z as representative.By this means it is 
lear that the PERs are also representations of 
ertainsymmetries and 
an thus be 
lassi�ed and restri
ted.

Some Examples The holomorphi
- antiholomorphi
 fermioni
 bc-system of
hapter 4 has four PERs if the zero modes b, b̄ and c, c̄ are ex
luded. The states
|0,0〉 and |1,1〉 yield a doublet, the o�-diagonal states |0,1〉 and |1,0〉 singletrepresentations. The representations with higher 
harge are not PERs, be
ausethere exist modes in the �eld algebra whi
h a
t as isomorphisms. If, as des
ribedin 
hapter 4, it is logarithmi
ally extended, the PERs are preserved. The reasonis that even though the modes b0 and b̄0 enter the extension �elds, these 
an
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not add to the �eld algebra, for it would break Möbius 
ovarian
e, 
f. se
tion4.1.3.Similar arguments for other s
enarios lead to the following tabular, wherein�+� denotes the theory with zero modes, �−� the theory without zero modes andall states without tilde or ǫ are non-logarithmi
:
bc-system unextended PERs logarithmi
ally extended PERsholo + |0〉

{
|0〉, |0̃〉

}holo − |0〉 , |1〉
{
|0〉, |0̃〉

}
, |0〉⊗ǫ|0〉K , |1〉⊗ |0〉Kholo-anti + |0,0〉 { |0,0〉, |1,1〉 }holo-anti − { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉 { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉

Restriction by NullstatesThis exampli�es that the 
ondition of irredu
ibility puts 
onstraints on the the-ory. Another example is the twist state |µ〉, whi
h has a potential subrepresen-tation on a nullstate, 
f. se
tion 8.2.1. This state was, however, identi
al to zero,su
h that the submodule generated by it already was ex
luded. Still, it mayhappen that there are subrepresentations on ve
tors |N〉 ∈ span
C

{∏
n,i φi ni

|0〉} :

φi ni
∈C ∪S , ni < 0

} whi
h do not vanish identi
ally. The modules build onsu
h ve
tors must be divided out, whi
h is e�e
tively the same as setting |N〉 = 0.This must be a

ompanied by the 
ondition that any 
orrelation fun
tion whi
hin
ludes the �eld N (z) 
orresponding to |N〉 must vanish, and this is equivalentto requiring that in the representation on any M(φ)K

gN (z)|φ,k〉 = 0, N (naive)
0 |φ,k〉 = 0, ∀k . (8.3.2)If N (naive)

0 is 
onstituted by the zero modes of 
ertain symmetry generators,this restri
ts the possible eigenvalues of those generators and thus the possiblerepresentation spa
es.
8.3.2 Realization of the Triplet ModelThe triplet model results from an additional SU (2) symmetry in the logarith-mi
 fermioni
 bc-system.5 The additional symmetry introdu
es new nullstate

5This also works for the non-logarithmic fermionic bc-system without zero modes, which is a special

case.
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onditions and thus restri
ts the PERs [GK96, Roh96, Kau95℄.The su(2) Lie algebra is realized in terms of the (naive part of the) zero modesof the �eld generators W a
n 
orresponding to the �elds6

W 1(z)=−∂2
z e(z)∂z e(z) ,

W 2(z)=
1

2

[
∂2

z e(z)∂z b(z)+∂2
z b(z)∂z e(z)

]
,

W 3(z)=−∂2
z b(z)∂zb(z) .

(8.3.3)The �eld modes W a
n extend the Virasoro algebra by

[T m ,T n ]= (m −n)T m+n −
1

6
m(m2 −1)δm,−n ,

[T m ,W a
n ]= (2m −n)W a

m+n ,

[W a
m ,W b

n ]= g ab

(
2(m −n)Λm+n +

1

20
(m −n)(2m2 +2n2 −mn−8)T m+n

−
1

120
m(m2 −1)(m2 −4)δm,−n

)

+ f ab
c

(
5

14
(2m2 +2n2 −3mn−4)W c

m+n +
12

5
V c

m+n

)
,

(8.3.4)

whereby Λ(z) =: T 2(z) : − 3
10
∂2

z T (z) and V a (z) =: T (z)W a(z) : − 3
14
∂2

zW a (z). Themetri
 is symmetri
 with g ab = δab and the stru
ture 
onstants are those of
su(2), namely f ab

c = iǫabc .Gaberdiel and Rhosiepe also note down the nullstates whi
h are de
isive forthe determination of the possible representations. The 
ondition that the zeromodes of the naive part of the 
orresponding null�eld on a PER be zero yields
∆

2
φ(8∆φ+1)(8∆φ−3)(∆φ−1) |φ,k〉 = 0 (8.3.5)for arbitrary multiplets M(φ)K , and is a

ompanied by

[W a
0 ,W b

0 ](naive) |φ,k〉 =
2

5
(6∆φ−1) f ab

c W c (naive)
0 |φ,k〉 . (8.3.6)Consequently, the only allowed PERs fall into representations of su(2) and arestates with highest weights {

0,− 1
8

, 3
8

,1
}. This extends the representations listedin (8.2.1) in a minimalisti
 way.

6For the logarithmic case, one may set b0 = 0 = c0, ad libitum. If the non-logarithmic situation is consid-

ered, set in addition ǫ= ρ = 0.
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8.3.3 CharactersIn the next 
hapter I will determine the prepotential of pure gauge, SU (2)Seiberg-Witten in terms of some 
hara
ters of the triplet model. Therefore,I will 
on
lude this 
hapter by quoting the ones relevant for my 
onsiderations.H. G. Kaus
h, [Kau95℄, proposed that 
ertain primary �elds in the Ka
 table,for instan
e those in the �augmented� minimal model c6,3 with 
onformal weights
∆r,s =

1

8
((2r − s)2 −1) , 0< r < 3, 0 < s < 6, (8.3.7)
an be identi�ed with the �elds appearing in the non-logarithmi
 triplet model.Indeed, the �elds in the augmented minimal model have the 
orre
t quantumnumbers and the �eld whi
h by su
h is the analogue of µ also has the 
orre
tnullstate 
ondition, 
f. [Flo03, RRS08℄. By this analogy, Kaus
h 
on
luded thatthe 
hara
ters of the non-logarithmi
 triplet model are those of the augmentedminimal model

χ− 1
8

(q) =
Θ0,2(q)

η(q)
, χ 3

8
(q) =

Θ2,2(q)

η(q)
,

χ0(q)=
1

2

(
Θ1,2(q)

η(q)
−η2(q)

)
, χ1(q) =

1

2

(
Θ1,2(q)

η(q)
+η2(q)

)
,

(8.3.8)with Ja
obi-Riemann theta fun
tions Θr,s (q) =
∑

n∈Z q
(2kr+s)2

4s , Dedekind η fun
tion
η(q) = q

1
24

∏
n∈N(1− qn ) and q = e2πiτ. The parameter τ is the modulus of somelatti
e torus.These 
hara
ters were 
ompleted by [GK96, Flo96℄ to mat
h with the logarith-mi
ally extended triplet model. However, I will not make use of the additional
hara
ters and refer the interested reader to the literature just 
ited.Now, I have everything together to relate the triplet model to Seiberg-Wittentheory.
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Relation to Seiberg-Witten Theory 9In this 
hapter I will determine the spe
tral torus of pure gauge, SU (2) Seiberg-Witten theory in terms of 
hara
ters of the triplet model. Moreover, I will obtainthe prepotential as a fun
tion of the torus modulus τ, whi
h 
an be expressedas the ratio of the four-point fun
tions of the twist �eld µ in this theory, (8.2.7).It follows, that this spe
i�
 Seiberg-Witten theory is 
ompletely determined bythe triplet model.Firstly, I will start with a brief introdu
tion to Seiberg-Witten theory anddis
uss its spe
tral 
urve. The relation to the triplet model will be dis
ussed inse
tion 9.2 and summarizes the results of [VF07℄.
9.1 Some Words on Seiberg-Witten TheoryIn [SW94℄, N. Seiberg and E. Witten derived the full prepotential F (in
ludinginstantons) of the low energy e�e
tive a
tion for N = 2 supersymmetry withgauge group SU (2). In terms of N = 1 �elds, this theory is des
ribed by a familyof Lagrangians
LA =

1

8π
ℑ

(∫
d4θ Ā AD +

∫
d2θ τ(A)W αWα

)
, AD =

dF (A)

dA
, τ=

d2
F (A)

dA2
. (9.1.1)The spa
etime metri
 has a Minkowskian (mostly minus) signature and, with theex
eption that I use another normalization for the Pontrjagin index,

1
8π2

∫
S4 F ∧F ∈ Z [Ber96℄, I sti
k to the 
onventions of [Bil96℄. The prepoten-tial F is holomorphi
 in the expe
tation value A of the N = 1 
hiral multiplet

〈Φ〉 = 1
2 Aσ3.The Lagrangian above has its domain on the e�e
tive va
uum 
on�gurationswhile the massive Goldstone bosons are integrated out. By the term �e�e
tiveva
uum� I mean that for nonvanishing values of 〈Φ〉 the SU (2) gauge symmetryis broken to U (1) and the thus obtained �eld 
on�gurations do not enjoy thefull symmetry of the theory. Furthermore, as soon as the s
alar �eld is in ane�e
tive va
uum 
on�guration, all other parti
les have the same property forthey belong to the same N = 2 multiplet.
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In the following I will only motivate the basi
 geometri
 fa
ts whi
h lead tothe spe
tral 
urve of this theory and to its interpretation as a torus. The readerinterested in the details, is refered to the literature [Bil96, SW94, DP99, Ler97℄.Afterwards, I will relate the spe
tral torus to the triplet model.
9.1.1 The Spectral Curve of SW TheoryThere is a remnant of the larger SU (2) symmetry hidden behind the 
hoi
e of A,namely under rotations by π around the �rst or se
ond axis of the gauge group,
A 7→ −A and these are equivalent gauge 
on�gurations. Thus, rather than 〈Φ〉, itis reasonable to 
onsider the Casimir 〈tr Φ

2〉 as a gauge invariant parameter. If
φ is the s
alar �eld in the 
hiral multiplet Φ, the Casimir yields some u = 〈tr φ2〉.The parameter spa
e of u ∈C 
onstitutes the moduli spa
e of gauge inequivalente�e
tive va
ua MSW , and thus of the family LA(u) =Lu . Formally one 
an add
{∞} to MSW , whi
h is a singular point for Lu .In general, the moduli spa
e MSW has singularities at those values of u atwhi
h the e�e
tive a
tion is not de�ned or inadequate to des
ribe the masslessse
tor. Besides {∞}, these are the points u at whi
h massive �eld modes whi
hhave been integrated out turn massless, 
f. [SW94, Bil96, DP99, Ler97℄.Seiberg and Witten argued [SW94℄ that there should exist two additionalsingular points {s,−s} ∈MSW , su
h that

MSW =CP
1 \ {∞, s,−s} . (9.1.2)The parametrization in terms of u = 〈tr φ2〉 seems to make the setting moredi�
ult. The reason is that the inverse of 〈φ〉 7→ 〈tr φ2〉 has two roots in terms of

u. Indeed, the analysis of Seiberg and Witten revealed that the paramtetrizationin 〈φ〉 yields a two-sheeted 
overing of MSW . Therefore, A, AD and in parti
ular
F are not single-valued in u.The parti
le spe
trum for Seiberg-Witten theory is bound to satisfy the massformula [DP99℄

Z (u)= na(u)+maD (u) , (9.1.3)whereby a and aD are the s
alar �eld 
omponents in A and AD , respe
tively, n
orresponds to an ele
tri
 
harge and m to a magneti
 
harge. By this means,the spe
trum 
an be read o� from some latti
e torus. In addition, ℑ(τ(u)) > 0 by
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requiring that ℑ(τ) shall serve as a metri
 on the spa
e of va
uum 
on�gurations
a and aD [Bil96, SW94℄. The relation above (9.1.3) is the spe
tral torus des
ri-bing the massive parti
les in Seiberg-Witten theory. The singularities in MSW
orrespond to those values of a and aD for whi
h the torus be
omes singular.
9.1.2 Modular TransformationsThe spe
tral torus does only deserve its name �torus�, if it is possible to provethat the physi
s behind it is invariant under modular SL(2,Z) transformations.As already mentioned in se
tion 8.2.1, the orbit of a latti
e torus under SL(2,Z)
olle
ts all equivalent tori. Thus, I will in the following explain that the partitionfun
tion of Seiberg Witten theory is modular invariant.The Lagrangians

LA =
1

8π



∫

d2θ ℑ
[
τ(A)W αWα

]
+

1

2

∫
dθ4

(
AD

A

)†

I

(
AD

A

)
 , I =

(
0 i

−i 0

)
(9.1.4)are invariant under

(
AD

A

)
7→ M(n)

(
AD

A

)
, M(n) =

(
1 n

0 1

)
, n ∈Z . (9.1.5)While M†I M = I , one obtains a shift of the 
oupling 
onstant τ= θ(u)

2π + 4πi
g 2(u)

τ=
dAD

dA
7→ τ+n (9.1.6)whi
h adds an, however, irrelevant term to the theta angle

τ(u)+n =
θ(u)+2nπ

2π
+

4πi

g 2(u)
. (9.1.7)To see this, I have used the 
onventions of Bilal, W αWα|θ2 = 1

4
(Fµν − iF̃µν)

(Fµν− iF̃µν)+ . . . [Bil96℄ and the observation that sin
e 1
8π2

∫
S4 F ∧F ∈Z the shiftdoes not 
ontribute to the partition fun
tion1

Z [u] = exp{

∫
d4x iLu } . (9.1.8)

1This is an abuse of denotation. The partition function is rather Z =
∫
MSW

Z [u]du, for some appropriate

measure du on MSW .
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The partition fun
tion is further invariant under a duality whi
h inverts thegauge 
oupling. This is obtained by a Legendre transformation
FD (AD ) =F (A)− A AD , (9.1.9)su
h that

τD (AD ) =−
dA

dAD
=−

1

τ(A)
, (9.1.10)whilst the a
tion looks stru
turally as before with new 
onjugate 
oordinate

∂AD FD =−A. How this transformation is implemented for the N = 1 formulationof the theory is dis
ussed in full detail in [Bil96, SW94℄. Physi
ally, it 
onstitutesan analyti
 extension of F to the strong (respe
tively low) 
oupling regime. Fromanother point of view, the a
tion of the se
ond generator ex
hanges the r�les of
aD and a and thus magneti
 and ele
tri
 
harges.For me it was important to note that the partition sum build from the La-grangians Lu is indeed invariant under the ellipti
 modular group

SL(2,Z) = 〈
(

1 1

0 1

)
,

(
0 1

−1 0

)
〉 . (9.1.11)The a
tion of this group is thus well de�ned on the spe
tral torus whi
h 
onse-quently deserves its name.It is now suggestive to reinterpret the family of Lagrangians Lu and substitutethe parameter A(u) by the torus modulus τ(u). Thereby, Lu 7→Lτ and the familyof Lagrangians gets parametrized over the spa
e of inequivalent tori. This wouldbe a �rst step towards a CFT approa
h to Seiberg-Witten theory.

9.2 The Spectral Curve and Triplet CharactersIn the following, I will explain how the family of Lagrangians Lu 
an be refor-mulated in terms of τ. This was one main part in my publi
ation with M. Flohr,[VF07℄. At this time, we sear
hed after an expression of F in terms of 
hara
tersof the triplet model, whi
h was the se
ond main part. This was en
ouraged bysome former work of Flohr on a 
orresponden
e between Seiberg-Witten theoryand the triplet model [Flo04, Flo98℄ and by a publi
ation of W. Nahm [Nah96℄.In his papers, Flohr 
ould express the spe
tral 
urve in terms of 
orrelation fun
-tions of the triplet model. Nahm, on the other hand, proposed that it should be
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possible to 
ombine a and aD into a modular form of weight −1, for whi
h henoted down the following expression in terms of τ:
c(τ) = aD (u(τ))−τa(u(τ))∼

η2( τ
2

)

η4(τ)
. (9.2.1)It is not possible to express c in terms of 
hara
ters of ordinary CFTs, sin
ethey have have modular weight zero. On the other hand, the 
hara
ters χ0 and

χ1 of the triplet model 
ontain both a term η2 whi
h has modular weight one.Therefore, it seemed reasonable to try to obtain c in terms of 
hara
ters of thetriplet model. Indeed, we 
ould determine c in terms of 
hara
ters of the tripletmodel but not the prepotential.I will now explain by whi
h steps c 
ould be arti
ulated solely by means oftriplet 
hara
ters and by whi
h the prepotential F 
ould be determined as afun
tion of τ.
9.2.1 The Spectral Curve in Terms of τThe Moduli spa
e MSW =CP

1 \{∞,±s} of Lu 
onforms with the moduli spa
e ofthe spe
tral torus, as follows from se
tion 9.1.1. Therefore, it is reasonable torelate to the spe
tral torus an algebrai
 
urve of the form
ỹ2 = (z − s)(z + s)(z −u) . (9.2.2)In analogy with the dis
ussion in se
tion 8.1.1, one 
an de�ne a di�erentialone-form

˜̟ (z;u) =
dz

ỹ(z;u)
(9.2.3)with respe
t to the 
urve above, �x two bran
h 
uts [∞···u] and [−1 · · ·1] anda 
hoi
e of 
y
les, and derive the periods integrating over ˜̟ . In order to makeuse of the results of se
tions 8.1.2 and 8.1.3, I substitute z = 2z −1 under the
orresponding integrals. This transforms the algebrai
 
urve above into theLegendre form su
h that

Π̃D (λ) = (2s)−
1
2
∫
α̟(λ)

Π̃(λ) = (2s)−
1
2
∫
β̟(λ)

, λ(u) =
u+ s

2s
, (9.2.4)
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with ̟ as de�ned in (8.1.3). The periods thus obtained 
an be expressed interms of (8.1.17) and de�ne a torus latti
e with moduli parameter
τ(λ) = i

F ( 1
2

, 1
2

;1|1−λ)

F ( 1
2 , 1

2 ;1|λ)
, (9.2.5)wherein λ is a fun
tion of u. Noti
e, that τ 
an dire
tly be related to the tripletmodel and be derived by means of the twist �eld four-point fun
tions (8.2.7).In [E+85, Vol. 2, pg. 354f℄, I have found several 
hoi
es for the inverse λ(τ) of(9.2.5). Sin
e all of them are 
onne
ted by modular (i.e. SL(2,Z)) transforma-tions, I 
hose without loss of generality

λ(τ) =
(
θ3(τ)

θ2(τ)

)4

, (9.2.6)whereby
θ2(τ)= 2

∞∑

n=0

q(τ)
1
2 (n+ 1

2 )2

, θ3(τ) = 1+2
∞∑

n=1

q(τ)
1
2 n2

, θ4(τ) = 1+2
∞∑

n=1

(−)n q
1
2 n2

(9.2.7)are the Ja
obi theta fun
tions and as before q = exp{2πiτ}, 
f. se
tion 8.3.3.This 
hoi
e of λ is in 
on
ordan
e with the publi
ations [HK07, ABK08℄, whi
happeared during the time when M. Flohr and I published our work. Given λ, oneobtains u by means of the relation in (9.2.4) and, after some Maple gymnasti
s,it was possible to express this quantity in terms of the Dedekind η fun
tion[VF07℄
u(τ) =

s

8

((
η( τ

4
)

η(τ)

)8

+8

)
. (9.2.8)Substituting this for u yields a new parametrization of the family of Lagrangians

Lu by τ.
The Periods of the Spectral CurveThe question remains, what a and aD look like in terms of τ. The periods Π̃Dand Π̃ are not identi
al with a and aD , however they are related by means ofthe modulus τ, demanding that it equals the modulus of the spe
tral 
urve

τ=
ΠD

Π

!=
daD

da
⇔ ΠD (u) = ∂u aD (u) , Π(u) = ∂u a(u) . (9.2.9)
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Thus, a and aD 
an be derived from a one-form ̟SW , 
alled the Seiberg-Wittendi�erential, whi
h satis�es ∂u̟SW = ˜̟ (u). Integrating this 
ondition, one endsup with
aD (u) =

∮

α
̟SW (u) , a(u) =

∮

β
̟SW (u) , ̟SW =

(z −u)dz

ỹ
+exa
t . (9.2.10)The solutions to these integrals have been derived in di�erent ways. One isby noting that for �xed 
ontours, the periods aD and a satisfy again someHypergeometri
 di�erential equation whi
h yields [Ler97℄

aD (u) =
i

4

p
s

(
u2

s2
−1

)
F

(
3

4
,

3

4
;2

∣∣∣∣1−
u2

s2

)
,

a(u)=
√

u

2
F

(
−

1

4
,

1

4
;1

∣∣∣∣
s2

u2

)
.

(9.2.11)Substituting the result for u(τ), this gives the spe
tral 
urve in terms of τ.
The Spectral Curve in Terms of Triplet CharactersThe se
ond main result of [VF07℄ was the modular one-form c, 
f. (9.2.1), ex-pressed by 
hara
ters of the triplet model. It is already 
lear that the denomi-nator of this quantity must 
ontain χ1 −χ0, sin
e it is a modular form of weightone. After some trials and errors with series expansions in Maple, I 
ould provethat

c(τ) =
i
p

s

π

(χ− 1
8
−χ 3

8

χ1 −χ0

)
(9.2.12)with the 
hara
ters as in (8.3.8). This expression equals the one proposed byNahm, 
f. (9.2.1) and [Nah96℄. Thus, up to the expli
it parameter τ, I haveobtained a and aD in terms of 
hara
ters, namely

a(τ)=−
dc(τ)

dτ
, aD (τ) =

(
1−τ

d

dτ

)
c(τ) . (9.2.13)Below, I will argue that the full prepotential 
an now be written as a fun
tionof τ.

The Prepotential in Terms of τM. Matone derived in [Mat95℄ the relation:
F (u) =

1

2
a(u)aD (u)− iπu . (9.2.14)
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This works as follows. The periods of the spe
tral 
urve (9.1.3) 
an be trans-formed under SL(2,Z), whi
h leads to
a AD +b A = ÃD =

dF̃

dA

dA

dÃ
. (9.2.15)Integrating this expression, I �nd that

F̃ =
1

2
ac A2

D +
1

2
bd A2 +bc A AD +F . (9.2.16)The 
ombination

F (a)−
1

2
aaD (9.2.17)is invariant under the monodromy group of the spe
tral 
urve, whi
h is generatedby

M∞ =
(
−1 2

0 −1

)
, Ms =

(
1 0

−2 1

)
, M−s = M−1

s ·M∞ . (9.2.18)This group 
an be determined by expanding (9.2.11) around u0 ∈ {∞,±s} andby letting u en
ir
le ea
h of these points, i.e. u −u0 7→ exp{2πi}(u −u0), [Bil96,SW94, DP99, Ler97℄. Sin
e (9.2.17) is invariant under the monodromy group,it 
an be identi�ed with u, whi
h parametrizes the equivalen
e 
lass of periods
a, aD under this group.Inserting the results on a and aD above and that on u, (9.2.8), I end up with

F (τ) =
1

2

[
τ

(
dc(τ)

dτ

)2

−c(τ)
dc(τ)

dτ

]
−

iπs

8

[(
η( τ4 )

η(τ)

)8

+8

]
. (9.2.19)Thus, in our paper [VF07℄, Flohr and I obtained all basi
 quantities of SU (2)Seiberg-Witten theory, in
luding the instanton 
ontributions, in terms of τ. Inparti
ular, we determined the spe
tral 
urve by means of 
hara
ters of the tripletmodel.

g
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Conclusion 10In this thesis, I have been 
on
erning myself with geometry as a sour
e for alogarithmi
 deformation of 
onformal �eld theories. In this 
ontext I have beeninvestigating two di�erent geometri
 s
enarios.The �rst has been the 
onformal supersymmetri
 bc-system on R
1 ×S1 withtarget manifold CP

1. The sour
e for its logarithmi
 deformation is the extensionof its lo
al representation spa
es to spa
es of distribution forms on CP
1. Inparti
ular, the bosons had to be logarithmi
ally deformed, be
ause it turned outthat they des
ribe the di�erent va
uum se
tors whi
h are 
ompounded by theinstantons.The se
ond has been the purely fermioni
 
onformal bc-system, with domainon a bran
hed 
overing of CP1 and with global monodromy group. This time,the target spa
e is C and the sour
e for the logarithmi
 deformation 
onsists inthe twisted representations of the monodromy group.In order to 
on
lude my work, I will now bundle the questions whi
h remainedopen and deserve further investigation from my point of view.

Bosons on Branched Coverings It would be interesting, also with an eyetowards the supersymmetri
 
onformal bc-system, to study bosoni
 ghosts onbran
hed 
overings. The representations of the monodromy group are analogousto those of the fermions, and the operator produ
t algebra is also quite similar.If the algebrai
 surfa
e is again a torus, it might be the 
ase that the four-pointfun
tion of the bosoni
 twist �elds also reveals information about its periodsfor the following reason. It would be valuable, if there was a way to not onlybosonize the bosoni
 ghosts but also the bosoni
 twist �elds. Sin
e the bosonizedghosts must be extended by an auxiliary fermioni
 system, I 
ould imagine thatsimilar works for the twist �elds, su
h that the situation might again be redu
edto 
onsiderations of fermioni
 ghosts on the torus.
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Holomorphic Mappings between Compact Riemannian Surfaces Thetwo s
enarios that I have 
onsidered might be related by another publi
ation ofFrenkel and Losev [FL07℄. There, the authors 
onsider the CSb
 with domainand target manifold CP
1. In general, the holomorphi
 fun
tions (i.e. solutionsto the instanton equation) 
an be 
lassi�ed in three types: 
onstant fun
tions,meromorphi
 fun
tions and fun
tions with higher rami�
ations.Frenkel and Losev 
laim that the transition from the 
onformal CSb
 withtarget C

× to the 
onformal CSb
 with target CP
1 must be a

ompanied by anin
lusion of meromorphi
 fun
tions. Therefore, the solutions to the instantonequation must ex
eed the subspa
e of 
onstant va
uum 
on�gurations. Conse-quently, Frenkel and Losev interpret the additional meromorphi
 fun
tions asinstanton e�e
ts.They further propose that the CSb
 on CP

1 
an be modelled by the CSb
 on
C
×, if the a
tion of the latter is enlarged by additional operators. These operatorswould then mimi
 the extension of the va
uum 
on�gurations to meromorphi
fun
tions. In [FLN08℄, the same authors proposed that those deformation termsin the a
tion are identi
al to the Grothendie
k-Cousin �elds.In appendix C, I have tried to prove that the approa
h of Frenkel and Losev[FL07℄ to the CSb
 on CP

1 is isomorphi
 to my approa
h in part one of thisthesis. This was only su

essful for the Grothendie
k-Cousin operator and therepresentation spa
es. In parti
ular, I 
ould not determine an isomorphy betweenthe respe
tive Grothendie
k-Cousin �elds.It would be favorable if the isomorphy did exist and 
ould be proven. If thiswas possible, it would question the assumption that the extension of the re-presentation spa
es of the CSb
 on CP
1 to distribution forms already 
overs allnonperturbative e�e
ts. One would have to give good reasons why the fun
tionswith higher rami�
ations should not as well imply a nonperturbative 
ontri-bution to the representation theory. What I �nd appealing is that this would
orrespond to a perturbation theory in the nonperturbative 
orre
tions and, atthe same time, in geometry. Similar to summing up 
ompa
t Riemannian sur-fa
es of di�erent genus in string theory, one would have to take into a

ount allpossible deformations of the �eld theory due to rami�
ation. The answer 
ouldbe approa
hed by an analysis similar to the one I have 
onsidered in part two ofthis thesis.
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Moving in Moduli Space as Perturbation Theory This question is takenfrom [FLN06, pg. 89f℄. If the extended representation spa
es of the theories
onsidered are the nonperturbative spa
es of states, a new kind of perturbationtheory would be possible. It 
onsists in varying the s
aling paramter λ of themetri
. Perturbation theory would then mean a movement in the moduli spa
eof metri
s. Frenkel, Losev and Nekrasov suggest that one 
ould 
he
k if thenon-diagonal representations of the Hamiltonian disappear for �nite values of λ.
The Prepotential of Seiberg-Witten Theory Maybe I was wrong and, afterall, it is possible to express the moduli parameter u, 
f. (9.2.8), of pure gauge
SU (2) Seiberg-Witten theory in terms of 
hara
ters of the triplet model. At least,I did not prove the 
ontrary. One should look for 
ombinations of the 
hara
tersthat are invariant under the monodromy group (9.2.18) of the spe
tral torus.
The Partition Function of Seiberg-Witten Theory It would be ni
e if the par-tition fun
tion of pure gauge SU (2) Seiberg-Witten theory 
ould be written interms of 
hara
ters of some CFT. In [NO03℄, N. Nekrasov and A. Okounkov 
laimthat the dual partition fun
tion equals a 
orrelation fun
tion of free fermions,and possibly the 
orresponding CFT 
an be spe
i�ed.
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Topological Field Theories AIn this 
hapter, I will spe
ify what I understand under the topologi
al se
tor of a�eld theory. This short summary is along the lines of [BBRT91, Wit82, Wit88a,Wit88b℄.Let (X , g ) be a symple
ti
, oriented Riemannian manifold with Eu
lidean met-ri
 g , (Σ,h) another su
h manifold and x : Σ→ X an embedding. The �elds willbe se
tions of some Z2 graded ve
tor bundle over Σ, and I assume that thereexists an a
tion for the �eld theory. The ingredients of the topologi
al se
torare:
➀ An operator Q, the BRST 
harge, wi
h is odd graded and globally de�nedon X and Σ. The BRST 
harge has a nilpotent a
tion on the �elds andstate spa
es.
➁ Topologi
al state spa
es and topologi
al observables in the 
ohomology ofthe BRST 
harge. Furthermore, I assume that the state spa
es have dualve
tor spa
es and a well de�ned pairing. The 
ohomology of Q is invariantunder smooth variations of the metri
s g and h.
➂ Even graded and Q-exa
t �elds Tg and Th, the stress tensors with respe
tto X and Σ. In other words, the Lagrangian must be a 
ombination ofterms that are Q-exa
t or metri
 independent.
➃ Correlation fun
tions whi
h 
an be obtained from a path integral. Theyvanish if one plugs into them a Q-exa
t observable and Q-
losed �elds.
➄ A transformation of the a
tion into a �rst order form by whi
h the toplo-gi
al se
tor lo
alizes on the va
uum 
on�gurations and ex
lusively on theinstantons.What 
onsequen
es follow from these attributes? If Σ ⊆ R× M, there existsa generator of time translations H =

∫
M Th 00. This operator is Q-exa
t and all
orrelation fun
tions of Q-
losed �elds vanish if it is inserted. Consequently, thetopologi
al se
tor does not 
ontain dynami
al �elds.For the same reason, if a topologi
al and a Q-exa
t observable is insertedinto the 
orrelation fun
tion and one varies it with respe
t to the metri
s h or
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g , the variation vanishes. Therefore, the values of the 
orrelation fun
tions inthe topologi
al se
tor do not depend on the metri
s de�ned on Σ and X . Inphysi
s, su
h di�eomorphism invariants are 
alled �topolgi
al invariants�, andthe topologi
al se
tor of a �eld theory is said to be generally 
ovariant. In thisthesis, I use the term topologi
al in this sense.Provided that the a
tion is Q-exa
t, the topologi
al se
tor is invariant un-der global s
ale transformations of h and g , namely for any set of topologi
alobservables the variation of the path integral in the s
aling parameter yields a
orrelation fun
tion of a Q-exa
t operator. Theories with Q-exa
t a
tions are
alled 
ohomologi
al, and I will only deal with this 
lass. Due to invarian
e underglobal s
ale transformations, the 
orrelation fun
tions lo
alize on the 
lassi
alsolutions, and the topologi
al se
tor is semi
lassi
ally exa
t.Invarian
e under global s
alings does not signify that the theory is 
onformallyinvariant. This additionally requires invarian
e under analyti
 lo
al res
alings ofthe respe
tive metri
.
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From the Sigma to the A-Model BIn this se
tion I want to note down the symmetries of the N = (2,2) supersym-metri
 sigma model and explain how the A-model is derived by the twistingpro
edure, 
f. [Mar05℄. Let the 
onventions be as in 
hapter 3. The topologi
alA-model and the sigma model with N = (2,2) worldsheet supersymmetry di�erin the spin of the fermioni
 �elds and otherwise have the same a
tion (3.1.1).The supersymmetry is generated by QαI , where I = +,− are the inde
es of theR-
harge and α=+,− the Lorentz inde
es of the U (1) Lorentz symmetry:
[Qα+,Qβ−] = γ

µ

αβ
Pµ , [J (e),Q±I ] =±

1

2
Q±I . (B.0.1)The bra
ket is a super
ommutator and J (e) is the generator of Lorentz trans-formations. The gamma matri
es are γ1

αβ
= δαβ and γ2

αβ
= diag(i,−i), and thesuper�elds transform under δ = καI QαI (καI is a Grassmann valued 
onstant),
f. [Mar05, pg 73℄:

δxa =κ++ ψa +κ−+ πa , δx ā = κ−− ψā +κ+− πā ,
δψa = 2iκ+− ∂z xa −κ−+

Γ
a
bc
πbψc , δψā = 2iκ−+ ∂z̄ x ā −κ+−

Γ
ā

b̄c̄
πb̄ψc̄ ,

δπa = 2iκ−− ∂z̄ xa +κ++
Γ

a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (B.0.2)These are the supersymmetries of the sigma model.The internal R-symmetry allows for an axial and a non-anomalous ve
torialfermioni
 U (1) 
urrent:

J (v)
z =−iλ : gab̄π

b̄ψa : , J (v)
z̄ =+iλ : gab̄π

aψb̄ : ,

J (a)
z =−iλ : gab̄π

b̄ψa : , J (a)
z̄ =−iλ : gab̄π

aψb̄ : .
(B.0.3)They generate rotations of the fermionsve
t: (πā ,ψa ) 7→ eiθ(πā ,ψa ) , (πa ,ψā ) 7→ e−iθ(πa ,ψā )axial: (ψa ,ψā ) 7→ eiθ(ψa ,ψā ) , (πa ,πā) 7→ e−iθ(πa ,πā) .
(B.0.4)The super
harges transform a

ording to these symmetries as

[ J (v)
z 0 ,Q+±]=±Q+± , [ J (v)

z̄ 0
,Q−±]=∓Q−± ,

[ J (a)
z 0 ,Q+±]=±Q+± , [ J (a)

z̄ 0
,Q−±]=±Q−± ,

(B.0.5)
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su
h that in parti
ular [J (a)
0 ,Q] = Q and the 
ohomology of Q is graded by theaxial 
harge. In general, the axial U (1) symmetry is (partially) broken.

B.1 Twisting/Gauging the Sigma ModelI will now spe
ify the �elds for the sigma model, the A-model 
an then beobtained by a rede�nition of the Lorentz generatorJ (e). This pro
edure is 
alledtwisting or gauging.To make the transformation properties of the fermioni
 �elds under Lorentztransformations expli
it, I will introdu
e the spin-
onne
tion ω, pretending that
Σ is not �at. The fermions have now the properties πa

z̄ , ψa ∈ Γ(Σ,S±⊗ x∗(T X ))and πā
z , ψā ∈ Γ(Σ,S±⊗ x∗(T X̄ )). The bar over the latter tangent bundle denotesa se
tion into the anti-holomorphi
 part, S± are the spinor bundles of positiveand negative 
hirality and Γ means a se
tion. The �elds ψa and πā

z have spin
+ 1

2
and the other fermions have spin − 1

2
. The 
onne
tion on S±⊗x∗(T X ) →Σ isobtained by D = D(S) ⊗1x∗(T X ) +1S ⊗ x∗(D(T X )), for instan
e

Dz̄ψ
a = ∂z̄χ

a +
i

2
ωz̄ψ

a +Γ
a
bc∂z̄ xbψc . (B.1.1)Under the ve
torial symmetry, ψa and πa

z̄ transform with weight + 1
2
while theothers have weight − 1

2
and the bosons are invariant. The transformation prop-erties of the super
harges are listed below, and I in
luded already the e�e
t ofrede�ning the Lorentz group:

Ue (1)×Uv (1) Ue′ (1)×Uv (1)

Q++ (+ 1
2 ,+1) (0,+1)

Q−+ (− 1
2

,+1) (1,+1)

Q+− (+ 1
2 ,−1) (−1,−1)

Q−− (− 1
2

,−1) (0,−1)

(B.1.2)This rede�nition is a

ording to J (e′) := J (e) − 1
2 J (v).1 Sin
e it is not possible todis
riminate either of the U (1) symmetries, this rede�nition is an equivalen
e re-lation of the theory in 
ase Σ is �at. One then still has the full supersymmetry.

1The choice of sign is for convenience and follows [Mar05, Wit88b].
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However, when passing to non-�at domain manifolds, only the s
alar super-
harges survive, for they do not depend on the metri
 or any related quantitiessu
h as the Levi-Civita 
onne
tion.After twisting it is reasonable to de�ne new symmetry 
harges, a s
alar anda one form on Σ, as follows:
Q :=Q+++Q−− , Gz :=Q+− , G z̄ :=Q−+ . (B.1.3)They are subje
t to the propery Q2 = 0, [Q ,Gµ] = Pµ and de�ne the topologi
alalgebra of the thus obtained A-model with BRST 
harge Q. The fermions have anew spin with respe
t to J (e′). The �eld ψ is a Grassman valued s
alar �eld while

π= πza dzdxa +πz̄ ā dz̄dx ā is a selfdual one-form. This explains why twisting isthe same as 
oupling the theory to the Uv (1) 
urrent (i.e. �gauging� the theory)a

ording to S 7→ S + 1
4

∫
Σ

hµνωµ J (v)
ν . With respe
t to Q, the �elds now transformwith δ := κQ , κ−− =κ= κ++, k±∓ = 0 and the rest 
an be read o� tabular B.0.2:

δxa =κχa δx ā = κψā

δψa = 0 δψā = 0

δπa
z̄ = 2iκ ∂z̄ xa +κ Γ

a
bc
πb

z̄ψ
c δπā

z = 2iκ ∂z x ā +κ Γ
ā

b̄c̄
πb̄

zψ
c̄

(B.1.4)From that tabular one also �nds that there is a fermioni
 �xed point on theholomorphi
 ∂z̄ xa = ∂z x ā = 0 embeddings. These are 
alled instantons.2

2For J (e ′) = J (e) + 1
2 J (v), the BRST charge would be Q = Q+− +Q−+ and localization is on the anti-

instantons ∂z xa = ∂z̄ x ā = 0.
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The Toric CSbc - Unfinished CFrenkel et al. [FLN08℄ use a di�erent representation of the CSb
 in order to derivethe Grothendie
k-Cousin operators. It goes ba
k to a publi
ation of Borisov[Bor01℄ and has two promising features. Firstly, the �elds in the CSb
 are notbosonized and the assumed Grothendie
k-Cousin �eld is also expressed in termsof the original �elds. Se
ondly, it is linked to another work of Frenkel with Losev[FL07℄, in whi
h they already proposed that the Tb
 on CP
1, 
onsidered as aCSb
, should be deformed beyond its topologi
al se
tor.In [VF09℄ I used Frenkels and Losevs formalism in addition to the one de-s
ribed in se
tions 3.6.2 and 3.6.3. Thereby, I wanted to mat
h my results withthose of Frenkel et al. in [FLN08, FL07℄. Be
ause it 
on
erned my own inves-tigations, I will brie�y dis
uss the question if both approa
hes are isomorphi
.Unfortunately, I 
ould not identify the Grothendie
k-Cousin �elds, whereas Imight have found a positive result for their zero modes, the Grothendie
k-Cousinoperators.

C.1 Deformation by Holomorphic CompletionThere exists another paper of Frenkel with Losev [FL07℄, wherein the authors
onsider the Tb
 without �gauge� �eld. One of the subje
ts was the question,how to ta
kle that theory if formulated on nontrivial target spa
es. The idea ofthe authors was as follows.Frenkel and Losev started with the assumption that if Σ=CP
1 and X =C/2πiZ,the Tb
 is an ordinary CSb
. Sin
e Σ is 
ompa
t, the solutions of the instantonequation ∂z̄ x = 0 are the 
onstant embeddings, whi
h they interpret as va
uum
on�gurations. Thus, this s
enario only allows to take insight into the topologi
alse
tor.If, however, X was 
ompa
ti�ed to CP

1, there appear further nontrivial holo-morphi
 mappings, 
f. [Jos02℄, whi
h Frenkel and Losev 
onsequently interpretas instanton solutions beyond the topologi
al regime. It is not 
lear if the Tb
with target CP
1 is 
onformal. However, Frenkel and Losev they assumed that
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this is the 
ase if the target spa
e is C/2πZ. Therefore, they sear
hed after amethod whi
h allows to redu
e the situation of X = CP
1 to the free CSb
 on

C/2πiZ, however, now deformed by additional operators. These operators sup-posedly give an insight into the dynami
al se
tor of the Tb
 and, hen
e, mustinherit some information about the lo
al geometry of the Tb
 on CP
1.By taking out of Σ sets of pairs of zeros and poles ω±

k
, Frenkel and Losevsupplemented the 
onstant holomorphi
 by meromorphi
 embeddings, 
onstantas CP1 \{ω±

k
} →C/2πiZ and with simple poles and zeros at ω±

k
, k ∈N. Thus, theyend up with a sta
k of 
overings x : CP

1 → CP
1, distinguished by the number

k of singular points of x. Noti
e, however, that the 
overings are not bran
hedsin
e Frenkel and Losev did negle
t the embeddings with higher rami�
ation.Frenkel and Losev interpreted the meromorphi
 fun
tions as a generalizationof the CSb
 by an in
lusion of instantons, whereby the degree k measures theinstanton se
tor. Sin
e the singularities of those fun
tions should appear in theirva
uum expe
tation values, Frenkel and Losev 
on
luded that the a
tion of theCSb
 with target C/2πiZ must be deformed. In order to analyze that, they madea 
hart transition to logarithmi
 
oordinates as des
ribed in se
tion 3.5.1. This isalso reasonable be
ause the equivalen
e 
lasses C/2πiZ are naturally expressedby means of the exponential. The va
uum expe
tation value of an instantonsolution should now yield
〈φx (z)〉S+δS = c +

n∑

i=1

[log(z −ω+
i )− log(z −ω−

i )] , (C.1.1)where S+δS is the deformed CSb
 a
tion. Frenkel and Losev proposed that this
hange in the a
tion is 
aused by an additional term
δL(z, z̄) =−λ[Ψ+(z, z̄)+Ψ−(z, z̄)]π(z)π̄(z̄) , λ= 1, (C.1.2)with Ψ±(z, z̄) = Ψ±(z)Ψ̄±(z̄), Ψ±(z) = exp{±i

∫z
p(ω)dω} and, similar, Ψ̄±(z̄) =

exp{±i
∫z̄

p̄(ω̄)dω̄}. Be
ause λ is dimensionless, this deformation 
an be inter-preted as a movement in the moduli spa
e of 
onformal theories.By means of a method of Zamolod
hikov [Zam89℄, Frenkel and Losev 
al
u-lated the impa
t of these deformations on general �elds F (z) of the CSb
. This
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amounts to applying the Stokes-Green theorem (integral of motion) to1
∂z̄ Fδ(z, z̄) =

∮

z
dζ δL(ζ, z̄)F (z). (C.1.3)Of parti
ular interest are the deformations of the stress tensor and the super-
harge. A 
al
ulation reveals that the stress tensor is not deformed, whereas theintegral of motion for the super
harge yields

Q̃ =
∮{

dz Qδ(z, z̄)+dz̄ [Ψ+(z, z̄)−Ψ−(z, z̄)] π̄(z̄)
}

, (C.1.4)whi
h is similar to the expression in [FL07, pg. 67℄.Frenkel et al. refer to these results in their later work [FLN08, pg. 97℄. Theypropose that the zero modes of the operators in (C.1.2)
iπ(z)Ψ−(z) , − iπ̃(z)Ψ̃+(z) , (C.1.5)are identi
al with the 
ohomology operators η0η̄0 in the 
ontext of 
hiral bosoniza-tion, and moreover with the Grothendie
k-Cousin operators [FLN08, pg. 93f℄.They 
on
lude that the super
harge in the 
ontext of their later work is deformedjust the same way as in (C.1.4), [FLN08, pg. 97℄.Sin
e the integral of motion (C.1.3) does not introdu
e the Grothendie
k-Cousin operators, I looked for another CFT method that would deform the stresstensor in the appropriate way and also the super
harge a

ording to (C.1.4). Thiswas the method by Fjelstad et al. [FFH+02℄, that I used in 
hapter 4. By thatmeans, I derived a deformation of the stress tensor and of the super
harge whi
hwas similar to [FL07, FLN08℄, 
f. [VF09℄. In the same publi
ation I 
ould alsoargue, that the 
ohomology of the deformed super
harge on the state spa
e isnot 
hanged by the deformation. Thus, everything seemed to be ni
e.However, I did not 
he
k if the assumed Grothendie
k-Cousin �eld of (C.1.2)is well de�ned on the 
harged representation spa
es, whi
h is mandatory. Nordid I really extend Borisovs vertex algebra to 
harged representations and thenprove isomorphism to the representations I have 
onsidered in 
hapter 3. Somesteps into that dire
tion I have done, however only super�
ially, in [VF09℄, andin this 
hapter I wanted to 
omplete them. However, I 
ould not determine

1This integral of motion is the first order correction (in λ) to ∂z̄ F = 0 [Zam89]. In principle, since λ is

dimensionless, one has to include corrections to all orders.
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either the representation spa
es 
orre
tly, or the �elds in (C.1.2) 
an not be theGrothendie
k-Cousin �elds, though their zero modes satisfy the properties of theGrothendie
k-Cousin operators.
C.2 The Cohomology Operators in Logarithmic

CoordinatesIn order to simplify my dis
ussion, I will set the homogeneity µ to zero.The CSb
 in logarithmi
 
oordinates, 
f. se
tion 3.5.1, does not 
over thesituation of the CSb
 on C/2πiZ. Sin
e the exponential is invariant under 2πiZ,the �eld algebra should be extended by some winding number operator Ω and its
onjugate Ω
∗ : [Ω,Ω∗] = 1. This yields Borisovs' vertex algebra [Bor01℄, whi
his 
onstituted by

φx (z)=: eW (z) : , φip (z)=: e−W (z)[−∂zU (z)+ j+(z)] : ,

φψ(z) =: eW (z)ψ(z) : , φiπ(z)= i : e−W (z)π(z) : ,
(C.2.1)and the symmetrie �elds

φ j+(z) = j+(z)+∂zW (z) , φ j−(z)=− j+(z)+∂zU (z) ,

φG (z)= i :π(z)∂zW (z) : , φQ(z)=Q(z)+∂zψ(z) ,

φT (z) =− : ∂zW (z)∂zU (z)+ i∂zψ(z)π(z) : .

(C.2.2)Above I used Q(z) =−i : ∂zU (z)ψ(z) : and
U (z)=Ω

∗− i

∫′ z

p(ω)dω , W (z) =Ω log z + x(z) , (C.2.3)and the prime at the integral means that no additional �integration 
onstant�should be introdu
ed.Borisov interprets U and W as the s
alar �elds related to 
ertain �
urrents� ofbosons on a two dimensional latti
e, su
h that in analogy with (3.6.11) W (z) =
−

∫z
J (1)(ω)dω and U (z)=−

∫z
J (2)(ω)dω, with J (1)(z)=−Ωz−1−∂z x(z) and J (2)(z)=

ip(z). The Heisenberg Lie 
ommutation relations are only satis�ed between J (1)and J (2), [J (1)
n , J (2)

m ] = −nδn,−m . Further, [U0, J (1)
0 ] = −[Ω∗,Ω] = 1, as is expe
tedfor �bosoni
� 
urrents, while [W0, J (2)

0 ] = [x0, ip0] = −1. A

ording to the idea tointerpret the 
urrents as two 
omponents on a latti
e, it is now reasonable to
onsider �elds V (l , s, z) =: elW (z)+sU (ω) : , l , s ∈Z.
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I will 
all the vertex algebra de�ned by (C.2.1), (C.2.2) and extended by
V (0, s, z) as the tori
 CSb
.
Remark In the 
ontext of the 
hiral de Rham 
omplex, the introdu
tion of
V (0, s, z) means that one has to generalize the state spa
e further to power seriesin the zero modes p0. This is a �rst instan
e wherein Borisovs' 
onstru
tionexeeds the usual CSb
.
Representation SpacesIn order to in
lude 
harged representations, I de�ne |p, q|l , s〉 ∈ F (p, q|l , s) :=
F (p|l , s)⊗M+(q) and try the Ansatz

xn |p, q|l , s〉 = 0, n >−p , n 6= 0 , pn |p, q|l , s〉 = 0, n ≥ p , n 6= 0 ,
ip0 |p, q|l , s〉 = l |p, q|l , s〉 , Ω |p, q|l , s〉 = s |p, q|l , s〉 ,
ψn |p, q|l , s〉 = 0, n >−q , πn |p, q|l , s〉 = 0, n ≥ q . (C.2.4)This ex
eeds the dis
ussion of Borisov [Bor01℄ who 
onsidered the situation

p = q = 0. It will now be ne
essary to see if the operator produ
t algebra is wellde�ned on the representations above.Firstly, the representation spa
es for the tori
 CSb
 must in
lude states thatare isomorphi
 to V (l , s, z). This isomorphism is obtained by exp
{

l ′x0

}
|p, q|l , s〉 =

|p, q|l + l ′, s〉 and exp
{

s′Ω∗}
|p, q|l , s〉 = |p, q|l , s + s′〉. In the language of vertexoperators,

Y
(
|0,0|l ,0〉, z

)
= exp{lW (z)} , Y

(
|0,0|0, s〉, z

)
= exp{sU (z)} . (C.2.5)This makes expli
it that the vertex algebra de�ned by (C.2.1) does not lead outof a spe
i�
 representation with a �xed value of s, sin
e it does not in
lude Ω

∗.I will denote by F (p, q|l , s) the vertex algebra of these �elds with �xed value sand Ω
∗ ex
luded. Moreover, I de�ne normal ordering in the �eld modes to betaken with respe
t to |0,0|0,0〉.In the representation F (p, q|l , s), the �elds of (C.2.1) have the OPEs
φx (z)φip (ω)=

−1

z −ω

( z

ω

)p+s
, φψ(z)φiπ(ω) =

−1

z −ω

( z

ω

)q+s
. (C.2.6)
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When a
ting on a highest weight state, the mode expansions of the �elds inheritsthe inhomogeneity in terms of a shift in the index, for instan
e
φx (z)|p, q|l , s〉 = zs

∞∑

n=0

cn (|z|)z−n|p, q|l , s〉

= ex0
∑

n≤−p−s, n 6=0

(φx )n+s z−n |p, q|l , s〉
(C.2.7)and similar for the other �elds. In parti
ular, up to the spe
ial r�le of x0, when

s = 0, the �eld mode expansion equals that for the CSb
. Thus, the CSb
 hasa representation on the representation spa
es above. The OPEs between thesymmetry �elds and the dynami
al �elds (C.2.1) follow a

ordingly.The 
onformal weights and U (1) 
harges of the highest weight states equal
∆φT (|p, q|l , s〉) =−

1

2
p(p −1)+

1

2
q(q −1)+ l s ,

(φ j−)0 |p, q|l , s〉 = q − l , (φ j+)0 |p, q|l , s〉 =−q + s ,

(C.2.8)and the operators measuring these quantum numbers 
ommute with ea
h other.The �eld V (l ′, s′, z) shifts the 
onformal weight of |p, q|l , s〉 by
T0 ·el ′x0+s ′Ω∗

|p, q|l , s〉 = (l s′+ l ′s) |p, q|l + l ′, s + s′〉 , (C.2.9)and has a bosoni
 and fermioni
 U (1) 
harge of value −l ′ and 0, respe
tively.In the subse
tor with s = 0 and Ω
∗ ex
luded, all �elds in (C.2.1) have the same
onformal weights and U (1) 
harges as the �elds of the usual CSb
, wi
h followsfrom the OPEs and se
tion 3.5.1, and there is not operator leading out of thatrepresentation.

OPEs of the Operators V (l , s, z)If I restri
t my dis
ussion to the 
onformal va
uum |0,0|0,0〉, I 
an derive anOPE between the �elds V (l , s, z) :
esU (z)elW (ω) = (z −ω)−l s : esU (z)elW (ω) : , in F (0,0|0,0) . (C.2.10)It turns out, however, that I am not able to ta
kle the OPE in the 
hargedrepresentation spa
es in any reasonable way. Namely, if p 6= 0, I �nd that

exp

[
−i

∫z

p(ζ)x(ω)dζ

]
= exp

[
−

∫z (
ω

ζ

)p dζ

ζ−ω

]
. (C.2.11)
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Remark It seems that the 
harged representations that I have de�ned do notlead to ni
e results for the OPE betweeen elW and esU .
Identification of the CSbcDue to the results above, the CSb
 is a subse
tor of the tori
 CSb
 with s = 0and Ω

∗ ex
luded. I will now identify the bosoni
 and fermioni
 parts of the CSb
within F (p, q|l ,0). Noti
e, that the term �identi�
ation�, signi�ed by �≃�, is onlyappropriate up to the spe
ial r�le played by x0.The representations F (p, q|l ,0) are graded by the bosoni
 and fermioni
 U (1)
harges,
F (p, q|l ,0) =

⊕

n,m∈Z
F (p, q +n|l +n−m,0) , (C.2.12)whereby n and m 
ount the fermioni
 and bosoni
 
harges, respe
tively. I madeno distin
tion between ⊕

n M+(q)n and ⊕
n M+(q −n), sin
e the fermioni
 repre-sentation spa
es are all isomorphi
, 
f. (3.4.2).

The Fermionic Subsector The fermioni
 part of the CSb
 appears in thetori
 CSb
 as the subspa
e F (0, q|q,0) ≃ M+(q). Indeed, φψ and φiπ have the
orre
t OPE on |0, q|q,0〉 and the appropriate quantum numbers with respe
tto T +(z) and φ j+(z). In parti
ular, this holds for |0, q|q,0〉, su
h that I set
|0, q|q,0〉 ≃ |q〉+ ∈ M+(q).
The Bosonic Subsector The bosoni
 subse
tor is given by F (p,0|−p,0) ≃ N (p).Namely, the �elds have the 
orre
t OPE on |p,0|−p,0〉 and the quantum numbersas expe
ted, su
h that I set |p,0|−p,0〉 ≃ ν−p ⊗|0〉ηξ ∈ N (p).
The Grothendieck-Cousin OperatorsIn order to derive the Grothendie
k-Cousin operators, I used the re
ipe to extendthe bosoni
 representation spa
e by the missing degenerate part, 
f. se
tions 2.6.2and 3.6.3. The a�e
ted representation spa
e takes now the form F (1,0|−1,0) andI have to look for a state that has the same quantum numbers as the hightesweight ve
tor |1,0|−1,0〉.The states |p,0| − p,0〉 , | − p +1,0|p −1,0〉 and |p −1,1| − p +1,1〉 do all havethe same 
onformal weight, but only |p,0|−p,0〉 and |p −1,1|−p +1,1〉 have the
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same U (1) 
harges (both with respe
t to the bosoni
 and the fermioni
 
harge).Therefore, the analogue of eφ
−
0 ξ0 : N (1) → N (1) should be the mapping e0 :

|1,0|1,0〉 7→ |1,1|1,1〉. Moreover, I propose that the logarithmi
 extension NL(1) isnow the representation of (C.2.1) on |0,1|0,1〉, and I will denote that by FL(1,0|−
1,0),In analogy with the dis
ussion in se
tion 3.6.3, I am looking for an operator
g, su
h that

F (1,0|−1,0) ∋ |1,0|−1,0〉 e0→ |0,1|0,1〉 ∈ FL(1,0|−1,0)

↓ g

|0,0|0,0〉 ∈ F (0,0|0,0)

. (C.2.13)The operator
g= iπ0e−Ω

∗
(C.2.14)does the job. Moreover, it satis�es ∮

0 dω [g,φ(ω)] = 0 for all �elds φ in (C.2.1).Therefore, the sequen
e
· · · → F (p,0|−p,0)

g−→ F (p −1,0|−p +1,0) →··· (C.2.15)is exa
t, whereby F (p,0| − p,0) = F (p,0| − p,0)⊕FL (p,0| − p,0) are the extendedrepresentation spa
es.In that respe
t, it is reasonable to identify g with the 
ohomology operator η0in se
tion 3.6.3, and with the Grothendie
k-Cousin operator.
The Grothendieck-Cousin FieldTo generalize the operator above to the Grothendie
k-Cousin �eld, it is at handto try the Ansatz

i :π(z)e−U (z) : . (C.2.16)Indeed, when the �elds φ of (C.2.1) are in the representation F (0,0|0,0), one may
al
ulate the OPEs by means of (C.2.10) and derive that
∮

z
dω i : π(z)e−U (z) : φ(ω)= 0. (C.2.17)For instan
e, use

iπ(z)e−U (z)φip (ω) =−
i :π(ω)e−U (ω)−W (ω) :

(z −ω)2
. (C.2.18)
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This 
al
ulation, however, turns nontrivial if the representation spa
e is 
harged,
f. (C.2.11). For that reason, I 
ould not derive the Grothendie
k-Cousin �eldin terms of Borisovs' vertex algebra.
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Notationsindex D

∗ Field-state-
orresponden
e, 112
1̃(z) The logarithmi
 partner of 1(z), 121
∆T (φ) Conformal weight of φ with respe
t to T

δ Grothendie
k-Cousin operator, 34
[·, ·] , {·, ·} Graded 
ommutator, anti
ommutator
[ f , g ]n (z) Field in the operator produ
t expansion, 86
⊔ Disjoint union
|0̃〉 Logarithmi
 partner of |0〉, 121
|p〉± , |p, p̄〉± , |p, p̄〉 Charged representations of the CSb
, 56, 58, 58
A

ǫ Representation spa
e of the Heisenberg Lie algebra, 72CSb
 Conformal supersymmetri
 bc-system, 55
C0 CP

1 \ {∞}

C∞ CP
1 \ {0}

C
× As a set C

× =C\ {0}, as a symmetry 
f. pg. 24
C[·] Polynomials
C((·)) Formal power series
C[[·]] Power series
D, D∗ Complex unit disk with/without the point {0}

D , D
∗ Test fun
tions, distributions, 27

e, ē Extension of the perturbative representations, 39,extension �eld, 86
Eλ Legendre family, 116
F0 , F∞ , F

1
∞ , F

× Holomorphi
 representations of the CSb
, 69
f (Logarithmi
ally) extended �eld, 34, 86GCO Grothendie
k-Cousin operator
g , gO GCO, nontrivial part of O = O +gO , 34
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H Globally de�ned states, 32
Hλ Non-unitary Hamiltonian, 18
H (pert) Perturbative Hamiltonian, 22
H

in
c ,n , H

in
0,0 , H

in
∞,0 Perturbative spe
trum of the Tb
, 52, 53, 55

H0 � � � Morse theory/CSb
, 26, 60
H∞ � � � , 26, 60Homogeneity r A prefa
tor of |z|r , r ∈R in the �eld expansion, 54, 61i� �if and only if�
j ǫ Currents of the CSb
, 56
j ǫ
V

, j ǫ
A

Ve
torial and axial 
urrents of the CSb
, 57
Jǫµ, Jǫ Currents of the Heisenberg Lie algebras, 72
J− Current of the bosonized bosons, 76
JN Current measuring the grading of N(p, p), 76
J (φ) Charge of the �eld φ, 60
Λ

a,b Basis of exterior forms, 27
LX Loop spa
e of X , 46
L̃X Universal 
over of LX , 47
L̃X n Sheet of LX in L̃X , 48
L̃X c ,n Des
ending manifold with �xed point xc , 52
Mǫ(p) , M̄ǫ(p) , Mǫ(p, p̄) Charged representations of the CSb
, 56, 57
ME Parameter spa
e of the Legendre Family 116
M (α,β) Instanton moduli spa
e, 13
µ ∈ (−1,0) The A-model �gauge�-�eldstrenght, 48
µ In part II, the twist �eld on the torus, 121
νǫ

p,p̄
Highest weight state of the Heisenberg Lie algebra, 72

N(p) , N̄ (p̄) , N(p, p̄ ) Extended representations of the bosonized bosons, 75
N (p), N̄ (p̄) , N (p, p̄) Perturbative representations � � � , 78
NL (p, p̄) Logarithmi
 extension of N (p −1, p −1), 80
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O
(naive) Naive operator, 34OPA Operator Produ
t AlgebraOPE Operator Produ
t ExpansionPER Physi
ally Eligible Representation, 124

P0 Polynomial of the �eld modes in the CSb
, 64
p, p̃ In part II, proje
tion T

n,m →CP
1 \ {ei }, 107

q Ba
kground 
harge, anomaly, 58
Q,Q0 BRST 
harge in Morse theory, 16, in the Tb
, 43, 62
Q(z, z̄) , Q(z) Super
harge�eld, 58, its holomorphi
 part, 57SQM Super quantum me
hani
sTb
 Topologi
al bc-system 45, 49Twist �eld, twisted representation 113
V ǫ(r, z) Fields of the Heisenberg Lie algebra, 73
Xn Subspa
e Xn ≃ X in L̃X n , 52
Xc ,n Xn ∩ L̃X c ,n, 52
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