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ZusammenfassungIn dieser Arbeit behandele ih die Verbindung von Geometrie und logarithmishkonformen Feldtheorien. Dabei betrahte ih zwei vershiedene geometrisheSituationen: in Teil I das topologishe A-Modell mit Einbettungsabbildung x :

R
1 ×S1 →CP

1 und in Teil II konforme, fermionishe Geister auf dem Torus.Das A-Modell lässt sih in eine Form bringen, in der das Pfadintegral eine
δ-Distribution auf dem Modulraum der Instantonen ist. Integriert man die Ab-hängigkeit von S1 heraus, erhält man eine Morsetheorie auf der universellenÜberlagerung �LCP1 des Loop-Raumes. Deren Zustandsräume lassen sih inden Karten dieser Mannigfaltigkeit störungstheoretish bestimmen und durhDarstellungsräume des hiralen de Rham-Komplexes beshreiben. Unter derAnnahme, dass die Darstellungstheorie der beiden Theorien übereinstimmen,betrahte ih im Folgenden den hiralen de Rham-Komplex. Die Zustandsräumesind lokale, induzierte Darstellungen der Symmetrie, die durh das Gradienten-feld der Morsefunktion erzeugt wird. Ih zeige, dass eine Verallgemeinerungdieser lokalen Darstellungen als Distributionen auf �LCP1 dazu führt, dass derHamiltonoperator durh zusätzlihe Terme korrigiert wird. Shlieÿlih diskutiereih ihre geometrishe Deutung als Kohomologieoperatoren in einem Komplexglobal erweiterter lokaler Darstellungsräume und zeige, dass den zusätzlihenTermen im Hamiltonoperator der Morsetheorie eine logarithmishe Erweiterungdes hiralen de Rham-Komplexes entspriht.Die konformen, fermionishen Geister aus Teil II transformieren sih in irre-duziblen Darstellungen der Monodromiegruppe Z2. Ih zeige, dass die durh siebeshriebene konforme Feldtheorie logarithmish erweitert werden muss, sobaldman zu den Darstellungen der Monodromiegruppe Felder assoziiert, die sih freiauf dem Parameterraum CP

1 \ {0,1,∞} bewegen. Das Tripletmodell stellt eineminimale logarithmishe Erweiterung dieser Theorie dar und bildet die Grund-lage meines letzten Kapitels. Darin werde ih die spektrale Kurve der SU (2)-Seiberg-Witten Theorie durh die Charaktere des Tripletmodelles ausrdrüken,und ebenfalls das Präpotential auf dieses Modell zurükführen, indem ih es alsFunktion des Modulus der spektralen Kurve gewinne.
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AbstractThis thesis is about the relation of geometry and logarithmi onformal �eldtheories. I onsider two di�erent geometri settings: in part I the topologialA-model with embedding x : R1 ×S1 →CP
1, and in part II onformal, fermionighosts on the torus.The A-modell an be transformed suh that the path integral yields a δ dis-tribution on the moduli spae of instantons. Integrating out the dependenyon S1, one obtains Morse theory on the universal over �LCP1 of loop spae. Itsstate spae an be derived perturbatively in the harts of this manifold, and anbe modelled by the representations of the hiral de Rham omplex. Assumingthat the representation theory of the A-model and the hiral de Rham om-plex are idential, I onsider the hiral de Rham omplex in the following. Thestate spaes are loal, indued representations of the symmetry generated by thegradient vetor �eld of the Morse funtion. I prove that the Hamiltonian gainsadditional terms when these loal representations are generalized as distributionson �LCP1, and disuss their geometri signi�ane as ohomology operators in aomplex of globally extended loal representation spaes. Eventually, I showthat a logarithmi extension of the hiral de Rham omplex orresponds theadditional terms in the Hamiltonian.The onformal, fermioni ghosts of part II transform in irreduible representa-tions of the monodromy group Z2. I show that the onformal �eld theory of these�elds has to be logarithmially extended as soon as the representations of themonodromy goup are allowed to move freely on the parameter spae CP1\{0,1,∞}of the torus. The triplet model onstitutes a minimal logarithmi extension ofthis theory and is fundamental for my last hapter. Therein, I obtain the spe-tral urve of SU (2) Seiberg-Witten theory in terms of haraters of the tripletmodel. Further, I trae bak the prepotential to that model by expressing it asa funtion of the torus modulus of the spetral urve.
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Introduction 1This thesis was initiated by my interest in the relation between geometry andphysis. It was sine I got to know the publiation of V. G. Knizhnik [Kni87℄ thatI wanted to investigate the geometri signi�ane of the aspets whih render aonformal �eld theory logarithmi.Knizhnik onsiders holomorphi di�erential forms on algebrai surfaes whihare branhed overings of CP
1 and have a global Zn monodromy group. Thedi�erential forms an be identi�ed with onformal fermioni ghosts, and themonodromy group has an indued ation on these �elds, whih thus fall into nirreduible representations. In the spirit of onformal �eld theory (CFT), theserepresentations are realized by loating the onformal �elds isomorphi to therespetive highest weight vetors at the branh points. In mathematial terms,this amounts to restriting the di�erential forms to a neighborhood of a branhpoint and to onsidering representation theory thereon.If the algebrai surfae has branh points ei , i ∈ {1, . . . ,2N }, N ≥ 2, one may turnthe surfae into a family of topologially equivalent surfaes by allowing 2N −3branh points to vary over CP1\
⋃2N−3

i=1
{ei }. This helps to extrat further geometriinformation, suh as degeneraies when branh points are fusing, or periods,whih satisfy di�erential equations with respet to the �oating parameters.Although my investigations started with the work of Knizhnik, I will disussthis setting in the seond part of my thesis. There, I will onsider the CFT rea-lization of both, degeneraies and periods for the algebrai surfae being a torus.The di�erential equation for its periods is realized as the nullstate onditionfor the odd representation of the monodromy group Z2. Therefore, the four-point funtion of the so-alled twist �eld orresponding to this representation isproportional to the periods of the torus. In partiular, it ontains logarithmsand the fusion of two branh points, whih is simulated by the operator pro-dut expansion (OPE) of two suh �elds, yields a doublet representation of thesymmetries of the onformal fermioni ghost system. The Hamiltonian is notdiagonalizable on this doublet, whih signi�es that the CFT has to be extendedto a logarithmi onformal �eld theory (LCFT). The minimalisti way to do this
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will lead to the triplet model, as explained by M. Flohr in [Flo98℄.This setting has been the starting point for my publiation with M. Flohr[VF07℄. As the torus is the spetral urve of pure gauge, SU (2) Seiberg-Wittentheory, we wanted to express the prepotential in terms of haraters of thetriplet model. Although we only obtained the prepotential in terms of the torusmodulus, whih equals the ratio of twist �eld four-point funtions, we have beenable to determine the spetral urve by means of suh haraters. This will bethe subjet of hapter 9 in part II.The origin for my seond main projet, desribed in part I of this thesis,is the work of E. Frenkel, A. Losev and N. Nekrasov [FLN06, FLN08℄, whoinvestigated Morse theory and the topologial A-model beyond their topologialsetors. What is implied by those onsiderations?(Cohomologial) topologial �eld theories deal with global geometri objetson manifolds, in partiular with di�eomorphism invariants that are in the oho-mology of some nilpotent operator Q, alled Behi-Rouet-Stora-Tyutin (BRST)harge due to its properties. It has an ation on the �elds and state spaes ofthe theory and the elements in its ohomology lasses omprise what is alledthe topologial setor of a �eld theory.Under ertain irumstanes a �eld theory has in addition to its topologialsetor further �dynamial� states and observables. While the ohomology of Qis invariant under di�eomorphisms, this is not the ase for the dynamial setor.Hene, the dynamial degrees of freedom should in priniple desribe part of theloal geometry of the target or domain manifold.In [FLN06℄, Frenkel, Losev and Nekrasov onsider the situation desribedabove for Morse theory with a �rst order Lagrangian on a Kähler manifold
X with saled metri λg , λ ∈ R

>0. The perturbative spetrum of this theoryinludes topologial as well as dynamial states. If X is supplemented with anadditional struture, these states have their support on the desending manifoldsof the gradient vetor �eld of the Morse funtion. Moreover, the submanifoldsyield a disjoint over of X , and so do the perturbative state spaes.The loal geometry of X an be aessed employing the dynamial states.For λ→∞, the Hamiltonian beomes the Lie derivative in diretion of the gra-dient vetor �eld of the Morse funtion. The perturbative state spaes whihsurvive that limit turn into loally de�ned indued representations of the sym-
2



metry generated by the gradient �eld. This is, metaphorially, what an observerloated on a desending manifold would expet to see. However, Frenkel, Lo-sev and Nekrasov laim that there are nonperturbative e�ets through whih theobserver obtains additional insights into the loal representations of the Hamilto-nian on X . They propose that the nonperturbative state spaes are obtained byextending the perturbative state spaes as distributions to X and their analysisshows that the thus globalized representations are the loal ohomology groupsin a omplex alled the global Grothendiek-Cousin omplex, [Kem78℄. Thisomplex has a ohomology operator, the Grothendiek-Cousin operator (GCO),whih ompounds the loal representation spaes and appears as an additinalterm in the Hamiltonian. The observer is thus onfronted with a Hamiltonianwhih an not be diagonalized on all dynamial states � a situation well knownin the theory of logarithmi CFTs.My initial interest in the work of Frenkel, Losev and Nekrasov [FLN06℄ arosefrom their proposal that the topologial A-model in the large volume limit isan LCFT beyond its topologial setor. In [FLN08℄, they redue the A-modelwith embedding x : R
1×S1 →CP

1 to the Morse theory of [FLN06℄ by integratingout the dependene on S1. In partiular, one an derive the perturbative statespaes and it appears that they an be modelled by representation spaes ofthe onformal supersymmetri ghosts (CSb) with target spae CP
1. It is nowsuggestive to assume that at least the representation theory of the A-model inthe large volume limit equals that of the CSb and the theories an, aordingly,be substituted.Furthermore, Frenkel, Losev and Nekrasov propose the deformation of theHamiltonian, but do not analyze the extension of the representation spaes indetail. Moreover, in order to prove their onjeture that the A-model is anLCFT in the large volume limit and beyond its topologial setor, it is not su�-ient to onsider the underlying Morse theory. A logarithmi deformation of theCSb has to be found, whih yields the orret extensions of the perturbativerepresentation spaes and adds the deformation terms to the Hamiltonian. Itis only then, that the Grothendiek-Cousin operators an be interpreted as thezero modes of the logarithmi improvement terms whih deform the energy mo-mentum tensor. Parts of those onsiderations have been addressed in my seondpubliation with M. Flohr [VF09℄.
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As mentioned above, this thesis has two parts, the �rst treats the logarithmiextension of the CSb underlying the A-model, the seond is about fermionighosts on the torus and their relation to Seiberg-Witten theory. Before I startwith an outline, I will brie�y omment on the appendix, whih serves to supple-ment the main part. In appendix A I summarize and speify the basi ingredientsof a topologial �eld theory [BBRT91, Wit82, Wit88a, Wit88b℄. In appendix B.1I brie�y explain how the topologial A-model is obtained by twisting an N = 2supersymmetri sigma model and note down the supersymmetry of this theory[Mar05℄. The last appendix C is the foundation of another publiation, whereinI study the possibility to generalize the approah of Frenkel, Losev and Nekrasov[FLN08℄, by whih they deform the Hamiltonian of the A-model, to a deforma-tion of the assoiated CSb.
Part I In the following hapter 2, I will start with a disussion of Morse theory.Therein, the geometri origin of the deformation operators is disussed and theonditions on the target spae manifold are �xed. This hapter follows thepubliation of Frenkel, Losev and Nekrasov [FLN06℄, but some subtle pointsare treated in more detail. In partiular this onerns the extension of theperturbative representation spaes. I will propose an alternative ansatz for theextension, whih relies on a priniple by whih I an enlarge the representationspaes. This ansatz is appliable in the ontext of the A-model.In hapter 3, I will introdue the A-model with target spae CP

1 and takethe large volume limit. Reduing the thus obtained theory to Morse theory, Iwill derive the perturbative state spaes and explain why they an be modelledby the CSb. Beause the A-model is de�ned on CP
1, it is neessary to makehart transitions. For the CSb, these transitions are de�ned through the hi-ral de Rham omplex, whih I will also introdue. My method to derive thedeformation of the Hamiltonian di�ers again from that of Frenkel, Losev andNekrasov [FLN08℄. It relies ruially on bosonization, whih I will disuss indetail. It will be important that the holomorphi and anti-holomorphi �halves�of the CSb are onsidered together, not only beause of anomalies ourringbut also beause the GCOs are omposed of both parts. Indeed, I will explainthat this omposition onstrains the representation spaes and the symmetriesof the theory.

4



Having determined the perturbative representation spaes, their extensions,and the Grothendiek-Cousin operators that mediate between them, I will thenmove bak from Morse theory to the onformal �eld theory. In hapter 4, I willuse the method of Fjelstad et al. [FFH+02℄ to deform the CSb logarithmially.I will do that in suh a way that the representation spaes are extended on-sistently and that the GCOs are added to the Hamiltonian. This has an e�eton the operator produt algebra of the �elds, but neither on the supersymmetrynor the onformal symmetry of the CSb.I will onlude this part of the thesis with a brief summary and disussion inhapter 5.
Part II In part two I will onentrate on the fermioni onformal ghosts onbranhed overings of CP1 [Kni87℄. After a brief motivation in hapter 6, I willspeify the algebrai surfaes under onsideration and introdue the onformalghosts in hapter 7. Sine they will have nontrivial operator produt expansionsin a neighborhood of a branh point it is neessary to extend the representationspaes by the representations of the monodromy group.In the the subsequent hapter 8, I will derive by geometri arguments that thefermioni ghosts on the torus neessarily omprise a logarithmi onformal �eldtheory. The minimal version is the triplet model [Flo98℄, whih I will introduein hapter 8.3.In the last hapter 9, I will explain how the spetral torus of pure gaugeSeiberg-Witten theory an be obtained from ertain haraters of the tripletmodel and note down an expression of the prepotential whih is given ompletelyin terms of quantities of this LCFT.The thesis will be onluded with a summary and a disussion of open ques-tions in hapter 10.

5





I

Supersymmetric Ghosts with

Values on the Sphere





Morse Theory 2This hapter has three parts. My starting point will be Morse theory on a generalRiemannian surfae X with saled metri λg .Firstly, I will prepare the topologial setor of this theory by breaking CPTinvariane and by making loalization on the instantons expliit. This amountsto onseutively putting onstraints on X . The onstraints will be suh that theinstanton setors are well de�ned and that the gradient �eld orresponding tothe Morse funtion deomposes X into submanifolds, to eah of whih one anperturbatively assoiate a state spae. Among those, there are exited stateswhih are not saled out in the large volume limit λ→∞.Frenkel et al. proposed [FLN06℄ that the state spaes in the limit λ→∞, whengeneralized as distributions on X , omprise the nonperturbative low energy spe-trum. In setions 2.4 and 2.5 I will disuss some onsequenes of this assumptionfor Morse theory on CP
1, mainly following their publiation but also with an ad-ditional disussion of the ohomology of the superharge, as well as a di�erentmethod for extending the state spaes as distributions. The most important ob-servation will be that observables whih inlude exterior derivatives are no longerdiagonalizable on all states. In partiular, this onerns the Hamiltonian andthus draws a similarity to logarithmi onformal �eld theories. Rather, thoseoperators intermix the state spaes whih formerly have been loated in di�erentharts.Finally, I will disuss the physial and geometrial meaning of this sort ofnon-loality, whih is due to the non-topologial states.This hapter will be onluded with a generalization of the toy model to alass of manifolds X and will be the basis for an understanding and analysisof the Morse theory underlying the topologial A-model. My explanations relymostly on [FLN06, BBRT91, Wit82℄.
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2.1 The Path Integral Point of ViewIn terms of the strutures just introdued, the Morse theory I will onsideronsists of a Riemannian surfae X , a smooth embedding x : Σ ⊆ R → X , itsGrassmann valued superpartner ψ and another Grassmann valued quantity π,whih is the onjugate momentum of ψ. The Eulidean metri g on X is saled bysome parameter λ∈R
≥0 and, without loss of generality, I �x a onnetion D to bethe Levi-Civita onnetion, de�ned with positive sign on ∂

∂xµ : Dν
∂

∂xµ = ∂
∂xλ Γ

λ
νµ.Let f : X → R be Morse, i.e. single valued and with isolated ritial points

xc : d f (xc ) = 0, and denote further by Dtψ
µ = dψµ

dt
+Γ

µ

λσ
dxλ

dt
ψσ the pullbak of Dto Σ and by ∇µ f := gµν∂ν f the gradient of f . In loal oordinates, the ation Iam interested in is

Sλ =
∫

Σ

(1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν∂µ f ∂ν f

+ iπµ∇tψ
µ− iπµ

(
Dα∇µ f

)
ψα+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.1)In the following setions I will extrat its topologial setor, seleting either theinstantons or anti-instantons and by speifying several onditions on X .Sine d f (xc ) = 0, the Hessian H(x)[γ] := Dγ(d f )(x), γ ∈ Tx X does not dependon the hoie of the onnetion at a ritial point xc . In loal oordinates itreads Hµν(xc ) = ∂µ∂ν f (xc ). There exists a basis eµ of tangent vetors at Txc X inwhih it is diagonal with eigenvalues κc µ : H(xc ) eµ = κc µ eµ. The onditionthat the ritial points are isolated is equivalent to the ondition that H(xc ) hasno zero eigenvalues. Sine the Hessian does not depend on the onnetion, it isreasonable to de�ne an index for every ritial point
ind(xc ) = #{µ : κc µ < 0} , (2.1.2)whih is a topologial invariant.In order to see what the lassial solutions are, I will for a moment onentrateon the bosoni part. One an apply the so-alled �Bogomlny trik� to �nd theabsolute minima of the ation:

Sbos =
∫

Σ

(
λ

2

(
dxµ

dt
∓∇µ f

)2

±λ
d f

dt

)
dt . (2.1.3)
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Sine it was positive semi-de�nite before, I obtain a lower bound
Sbos ≥

∣∣∣∣
∫

Σ

d f

∣∣∣∣ , (2.1.4)whih is satis�ed by the gradient trajetories
dxµ

dt
±∇µ f = 0. (2.1.5)These are the lassial bosoni solutions to δS = 0. There are three kinds, de-pending on the boundary onditions. The vauum on�gurations are solutionsof

dxµ

dt
= 0 ∧ ∇µ f (x) = 0, (2.1.6)whih is satis�ed by onstant loops, i.e. the ritial points xc . If there existsmore than one ritial point, say {x+, x−}, there are also instanton (−∇ f ) andanti-instanton on�gurations (+∇ f ) :

dxµ

dt
±∇µ f (x) = 0 , x(±∞) = x± (2.1.7)where w.l.o.g. I �xed some initial and �nal time. From (2.1.4) one an onludethat the instantons satisfy f (x+) > f (x−) and the anti-instantons f (x+) < f (x−).

2.1.1 Making CPT Breaking and Localization ManifestThe anti-instantons an be exluded from the lassial minima by subtrating
λ

∫
d f from the ation (2.1.1). This term does not depend on the metri and ishene topologial. It, however, breaks CPT invariane as one would expet fora theory without anti-instantons.1In order to make the loalization property manifest, I massage the ation

S −λ
∫

d f into a �rst order form, by introduing a Lagrangian multiplier pµ.Viewed as part of the integration kernel exp{−S} in the path integral, I may nowonsider, equivalently to (2.1.1):
Sλ =

∫

Σ

(
− ipµ

(
dxµ

dt
− gµν∂ν f

)
+

1

2λ
gµνpµpν

+ iπµ

(
Dtψ

µ− (Dα∇µ f )ψα
)
+

1

2λ
R
µν

αβ
πµπνψ

αψβ
)
dt .

(2.1.8)

1Though for the model under consideration CPT is really CT, I will follow the terminology of Frenkel,

Losev and Nekrasov [FLN06]. For a more detailed discussion of CPT breaking, c.f. section 2.2.4.
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In the limit λ→∞, the integral kernel turns into a δ distribution on instantonmoduli spae, whih makes loalization expliit. Indeed, for �nite λ, the instan-tons still ontribute with a weight fator e−2λ| f (x+)− f (x−)| to orrelation funtions,but for λ→∞ their ontribution disappears. On the ontrary, the instantonsontribute with a onstant weight fator 1 for any value of λ.Let vµ(x) := ∇µ f (x) be the vetor �eld assoiated with f and p ′
µ := pµ +

Γ
λ
µνψ

νπλ. The ation in the large volume limit an now be written as:
S∞ =−i

∫

Σ

(
p ′
µ

(
dxµ

dt
− vµ

)
−πµ

(
dψµ

dt
−ψα∂αvµ

))
dt . (2.1.9)It is invariant under the following susy transformations

[Q , xµ]=ψµ, [Q ,ψµ]= 0 [Q∗, xµ] = 0, [Q∗,ψµ] = vµ

[Q ,πµ] = p ′
µ, [Q , p ′

µ] = 0 [Q∗,πµ]= 0, [Q∗, p ′
µ]= 0

(2.1.10)and moreover, the Lagrangian is Q-exat, L =−i[Q ,πµ

(
dxµ

dt − vµ
)
] and thus is theHamiltonian.This is roughly the model I am going to onsider. However, I will need somemore informations on the instanton moduli spae, espeially in order to �ndonstraints on the target manifold. There will be serveral obstales whih haveto be resolved and I will list them up, whenever I enounter one. In the followingand for onveniene, I will leave away the prime for p ′

µ.
2.1.2 The Instanton Moduli SpaceThe instanton equation dxµ

dt
= vµ(x) gives rise to a di�eormorphism of X :

φv : X ×Σ→ X x 7→φv (x, t) = x(t) , (2.1.11)where x(t) is an instanton solution and φv (·, t) determines a one parameter groupin t . By means of this �ow equation of v one an try to �nd a partition of Xinto submanifolds whih is generated by the �xed points of v . These will be thedesending Xc and asending manifolds X c :
X (c)

c :=
{

x ∈ X : lim
t→ (+)

− ∞
φv (x, t) = xc

}
. (2.1.12)

12



If xc is a nondegenerate ritial point and φv a di�eormorphism, they are indeedsubmanifolds [AR67, pg. 87f℄ and inherit the tangent spaes de�ned by the �owlines.For the following reason I demand that a deomposition of X into desendingand asending manifolds exists. In setion 2.2.4 I will explain that the statespaes will be loalized around the �xed points of v . A deomposition of Xin terms of, say, desending manifolds is useful beause one an then anoni-ally assoiate to eah suh submanifold a state spae Fα and these over X .Therefore:
❏ The target manifold X has a (Bialyniki-Birula) deomposition

X =⊔
α∈A Xα =⊔

α∈A X α with respet to v .The instanton moduli spaes are de�ned by means of desending and asendingmanifolds
M (α,β) := Xα∪X β , (2.1.13)and under further onditions it is possible to alulate the dimension of thismoduli spae. Let xc be a ritial point, I an hoose loal oordinates suhthat it is loated at the origin. In its neighborhood I an approximate a solutionof the instanton equation by a line element y = xc + x and by making a Taylorexpansion around the ritial point. This yields to lowest order dt xµ−H

µ
ν (0)xν =

0, whith Hessian H evaluated at xc = 0. Thus, loally around the �xed point, thediretions along whih H has positive eigenvalues span the tangent spae of thedesending manifold while the others span the tangent spae of the asendingmanifold. Therefore, at least in a neighborhood of a �xed point xc , T Xc ≃
R

dimX−ind(xc ) or ≃C
dimCX− 1

2 ind(xc ) while for the asending manifold T X c ≃R
ind(xc )or ≃C

1
2 ind(xc ). The generalization of this ondition is as follows:

❏ Let ( f , X ,λg ) allow for Morse-Smale transversality, i.e. ∀ x ∈ M (α,β),

∀ α,β : dim Tx Xα+dim Tx X β−dim X = dim
(
Tx Xα∪Tx X β

).One an now alulate
dimR M (α,β) = ind(β)− ind(α) . (2.1.14)The Morse-Smale ondition yiels a nie desription of the tangent spaes of Xin terms of instanton �ow lines. Espeially the dimensions of the instanton
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moduli spaes are natural numbers inluding zero, restrited by the dimensionof the target manifold, and there are no dimensional degeneraies. Sine it isexpressed by the Morse indees, the dimension of the instanton moduli spaeis a topologial invariant. Morse-Smale transversality does further restrit the�ow lines to move from �xed points with lower to �xed points with higher Morseindex.There is another, physially inspired way to alulate the dimension of theinstanton moduli spae [H+03, se. 10.5.2℄. Consider an instanton solution
x : dt xµ − vµ(x) = 0, xµ(−∞) = x

µ
α, xµ(∞) = x

µ

β
. Again, I will move in the so-lution spae of this di�erential operator to another solution y = x +ηz, where

η> 0 is an in�nitesimally small number. The urve y is an instanton solution ifthe displaement z satis�es D−z := ( dt −H(x(t)) ) z = 0, z(±∞) = 0 to the order
η. For every t I may hoose a basis of eigenvetors of H(x(t)) with eigenvalues
κµ(t) whih spans the tangent spae Tx(t ) X . The operator D− is diagonal in thisbasis and has homogeneous solutions

zµ(t) = eµ exp(

∫t

0
κµ(τ)dτ) , (2.1.15)where eµ diagonalizes D− at t = 0. These solutions have the orret boundaryonditions if κµ(−∞) > 0 and κµ(∞) < 0.There are two possible senarios. The �rst is that the dimension of the solutionspae equals the dimension of the eigenspae of the Hessian. This is the ase ifnone of the eigenvalues κµ(t) hanges its sign from a negative to a positive valuewhen passing from t =−∞ to t =∞. If this is satis�ed, dimRM (α,β) = ind(β)−

ind(α) = #{µ : κµ(−∞) > 0, κµ(∞) < 0} = dimkerD−. In the seond senario thereexist eigenvalues whih hange their signs from negative to positve value. Theybelong to homogeneous solutions of the di�erential operator D+ := dt +H(x(t)).In that general ase, the di�erene ind(β)− ind(α) an be written as
dimRM (α,β) = dimkerD−−dimkerD+ . (2.1.16)The operators D∓ appear in the equations of motion for the fermions ψµ and

πµ, respetively. Under the assumption that the dimension of the instantonmoduli spae equals dimkerD−, it further equals the number of linear indepen-dent solutions of D−ψ0,l = 0, l = 1. . . d , d = dimM (α,β), whereas πµ has no �zeromodes�. This leads to the seletion rule that observables have to ontain a prod-ut ∏d
l=1

ψ0,l , if the orrelation funtion is not to be zero. The reason is that
14



the path integral is a δ distribution on the homogeneous solutions of D− and theinstanton on�gurations x0

〈O〉 =
∫

M (α,β)
dx0

∏

l=1...d

ψ0,l O |M (α,β) . (2.1.17)An integral over Grassmann variables is zero if the integrand is not a volumeform, and in the next setion I will make lear that, indeed, the zero modes of
ψ have a geometri meaning as di�erentials on X . From the disussion above Ionlude that they are physially signifying the presene of instantons, and thenumber of fermioni insertions ounts the dimension of their moduli spae.2
2.2 The Canonical Point of ViewThe Morse ation (2.1.9) has an immediate interpretation in terms of geometriquantities of the target manifold X . The best plae to understand this is theanonial formulation of the theory. Reshu�eling the terms in (2.1.9), I an reado� the lassial Hamiltonian in the large volume limit3

H∞ = vµ (ipµ)+ψα∂α vµ(iπµ) . (2.2.1)Reonsidering (2.1.10), an immediate hoie how to quantize onsists in relatingthe ��eld�-oordinates with geometri quantities in the following way:bosons: fermions:
xµ xµ ψµ dxµ

ipµ ∂µ iπµ ιµ

(2.2.2)

2In the fermionic bc-system, that I will discuss in the next chapter, it will also be necessary to insert

"zero-modes" in correlation functions. These do, however, not represent instantons because they are

mappings between isomorphic representation spaces, cf. section 3.4.1 and section 8.3. On the con-

trary, instantons relate different vacuum configurations (they are highest weight vectors of different

representations).
3This classical Hamiltonian is not bounded from below. However, in section 2.4, I will derive it from the

canonically quantized Hamiltonian withλ 6= 0 by deforming the spectrum in a specific way, cf. [FLN06].

Thereby one obtains states which are not in the closure of Ω•
d

(X ) with respect to the L2 norm, but on

which one can define an orthogonal pairing and whose eigenvalues with respect to the canonically

quantized H∞ are positive semidefinit (when considered perturbatively, c.f. section 2.5). Analogous

will be satisfied for the A-model.
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The Hamiltonian above and the superharges Q and Q∗ an now be rewritten as
Q = d, Q∗ = ιv , H∞ =Lv = {Q ,Q∗} , (2.2.3)and they have a anonial ation on di�erential forms on X . The geometridata satisfy the usual quantization rules [pµ, xν] =−iδνµ, [πµ,ψν] =−iδνµ for thesuperbraket, and in partiular

Q = iψµpµ . (2.2.4)In the following I will reprodue the deformations desribed for the path in-tegral ansatz for the anonial formalism of Morse theory. The idea behind thisis to see what the spetrum of the Hamiltonian in the large volume limit lookslike and to investigate if there remain well de�ned exited states in this limit. Iwill again start with the ation (2.1.1) before taking the large volume limit andthe target manifold (X ,λg ), endowed with an inner produt on di�erential forms
η,χ ∈Ω

•(X )

〈η,χ〉 :=
∫

X
(⋆ η̄)∧χ . (2.2.5)The bar denotes omplex onjugation, if neessary, and ⋆ the Hodge operator.4The Hamiltonian orresponding to the ation (2.1.1) with Morse funtion f isobtained from the superharges

Q = dλ = e−λ f deλ f = d+λ d f ∧ ,

Q† = d†
λ
= eλ f d†e−λ f =

1

λ
d† + ι∇ f ,

(2.2.6)as
H =∆λ =

1

2
{Q ,Q†} =

1

2

(
λ−1

∆+λ‖d f ‖2 +K f

)
, (2.2.7)where, ‖d f ‖2 = ι∇ f d f , K f = L∇ f +L

†
∇ f
, L

†
∇ f

= {d†,d f } and ∆ = {d,d†}. Conju-gation † is de�ned with respet to the inner produt. Let me emphasize, thatup to now CPT is not broken and the two superharges are indeed onjugate.However, in the large volume limit CPT will be violated and this makes thedi�erene between the dagger and the star, for instane for the superharge in(2.2.3).
4On volume elements ⋆ dxµ1 ∧···dxµk =

p
|g |

(dimRX−k)!
ǫ
µ1 ···µk
νk+1 ···νdim X

dxν1∧···dxνk and ǫµ1 ···µdimR X
=+1

for even permutations.
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2.2.1 On the CohomologyAs I explained in the introdution and in appendix A, the topologial states arein the ohomology of the superharge Q. Under ertain onditions on X , thatI will onentrate on in this setion, the ohomology of Q is isomorphi to thekernel of the Hamiltonian.The superharges above are obtained by a similarity transformation of d and
d†, and I an hene arry over the results on the de Rham di�erential to themore general situation in Morse theory, in partiular that H•

dλ
(X ) ≃ H•

d
(X ). If Xis a real manifold whih is moreover ompat, oriented and without boundary,there exists a unique Hodge deomposition

Ω
k
dλ

(X ) = dλΩ
k−1
dλ

(X )⊕d†
λ
Ω

k+1
dλ

(X )⊕Ω
k
∆λ

(X ) , (2.2.8)where Ω
k
∆λ

(X ) denotes the harmoni forms on X with respet to H =∆λ [Nak03℄.If suh a deomposition exists and moreover an inner produt like (2.2.5) one anshow that H•
dλ

(X ) ≃Ω
•
∆λ

(X ).5 Thus, in order to identify the ohomology of thesuperharge with the ground states of the Hamiltonian it would be sensible toinvoke that whenever X is real, it should also be ompat, oriented and withoutboundary.If X is a ompat Kähler manifold there exist unique, orthogonal Hodge de-ompositions for the Dolbeault derivatives ∂λ and ∂̄λ. Notie that in this ase
dλ = ∂λ+ ∂̄λ and similar for the onjugate. Sine ∆dλ

= 2∆∂λ = 2∆∂̄λ
[Nak03℄, one�nds that H

p,q

∂λ
(X ) ≃Ω

p,q

∆dλ

(X ) and the same is true for the onjugate di�erentialforms. Therefore:
❏ Let X be a ompat Kähler manifold or, if real, ompat, oriented andwithout boundary.The next setion will larify that the isomorphy between the ohomology ofthe superharge and the kernel of the Hamiltionian will survive CPT breakingif λ <∞. For λ→∞ this will still be true at least for X = CP

1 and I will provethis in setion 2.4.1.
5Let ω ∈Ω

•
∆λ

(X ), then 〈ω,∆λω〉 = 0 = ‖dλω‖2 +‖d†
λ
ω‖2 and this proves that a harmonic form is closed

under dλ and d†
λ

. The Hodge decomposition is orthogonal and therefore the harmonic forms are not

exact with respect to dλ.
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2.2.2 Implementing CPT Breaking and LocalizationThe transformations I have done on the path integral in setion 2.1.1 an betranslated to the anonial point of view by onsidering orrelation funtions oftopologial observables and states
〈ω, e(tn−t+)H

On e(tn−1−tn )H . . . e(t1−t2)H
O1e(t−−t1)H ·χ〉 =

∫

X×X
[⋆ ω̄(x+)]∧χ(x−)

∫

Σ→X : x(t−)=x− , x(t+)=x+
On (tn)∧·· ·∧O1(t1)e−S .

(2.2.9)Subtrating the term ∫x+
x−

d f = f (x+)− f (x)+ f (x)− f (x−) from the ation musthave an e�et on operators and states, for the topologial setor is supposedto be invariant under this deformation. General expetation values, alulatedwith an Hamiltonian in whih CPT is manifestly broken by this term, is henetaken between states and observables obtained by the following transformationof the old ones6
χ 7→ eλ f χ

⋆ ω̄ 7→ e−λ f
⋆ ω̄

O 7→ eλ f
Oe−λ f

and in partiular Q 7→ d

Q† 7→ Q∗
λ
= 2ιv +λ−1d†

H 7→ Hλ =Lv + 1
2λ∆

(2.2.10)Let me emphasize that all operators transform in the same way and thus itis not a similarity transformation. Therefore, the new Hamiltonian is not self-onjugate any more and I rather put a ∗ than a †. For �nite values of λ, The newHamiltonian has the same spetrum as H beause the states have just gaineda phase. In partiular, the isomorphy between the superharge ohomologyand the ground states is still valid, though the theory is not unitary any moreand the in- and out-states are no longer onneted by an inner produt (I willdisuss the out states in setion 2.2.4). The Morse theory with broken CPTand the one determined by (2.2.7) have the same ohomologies with respet tothe superharge, sine H•
dλ

≃ H•
d
. Moreover, for �nite λ, H•

d
≃Ω

•
∆λ

≃Ω
•
Hλ
, suhthat dimΩ

•
∆λ

= dim Hλ. These dimensions are a topologial invariants and thusshould not be a�eted by taking λ→∞.
6The exponent eλ f := eλ( f (x)− f (x−)) for the “ket” and e−λ f = e−λ( f (x)− f (x+)) for the “bra”.
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2.2.3 The Instanton Moduli Space RevisitedAording to the onsiderations of the last setions, the topologial states areelements of the de Rham ohomology of d. In the following I will onsiderobservables ω̂ whih an be identi�ed with di�erential forms ω on X , substituting
ψµ with dxµ. Integrating out the onjugate momenta, the quantum mehanialGreens funtion between two ritial points x± is

G
(x+,t+)
(x−,t−) [ω̂1 . . . ω̂n]=

∫

M (−,+)
sgn det

(
δ
µ
α

d

dt
−∂αvµ

) ∧

k=1...n

φ∗ v (ωk , tk ) . (2.2.11)By φ∗ v (ωk , tk ) I denote the push forward of the di�eomorphism (2.1.11), evalu-ating ω along the �ow lines, and I assume that these operators are time ordered.
The Partition Function One of the most famous of suh Greens funtions isthe (supersymmetri) partition funtion

Z (T )=
∫

X
δ(x+− x−)δ(ψ+−ψ−)G

(x+,t+)
(x−,t−)

[1] =
∑

c∈A

sgn det
(
−H

µ
ν (xc )

)
. (2.2.12)The set A enompasses the ritial points, T = t+− t− is the time period and theperiodi boundary onditions ause loalization on the �ow lines that are loops,i.e. the vauum on�gurations. The operator d

dt
does not ontribute to the signof the determinant beause of these boundary onditions.7 The supersymmetripartition funtion an also be written in terms of the Hamiltonian, using (2.2.9):

Z (T )= str eHT = tr (−)F eHT , (2.2.13)where (−)F gives a minus sign on fermions (forms with odd degree) and pluson bosons (even degree). Sine the exited eigenstates of H are always boson-fermion pairs due to supersymmetry, the partition funtion ounts the di�erenein the number of fermioni and bosoni ground states Z (T ) = trΩ•
∆λ

(−)F . Thus,if X is suh that the harmoni di�erential forms are isomorphi to the de Rhamohomology,
Z (T )=

∑
n

(−)n dimR H n
Qλ

(X ,R) . (2.2.14)

7This is nicely explained in [BBRT91]. Due to periodic boundary conditions one can make an expansion

in Fourier modes xµ(t ) = x
µ
n eint and the same holds for the other coordinates. For simplicity let X be

one dimensional. The Hessian is diagonal in the tangent basis of flow lines at xc with eigenvalues λc .

Hence, in that basis and at xc , the sign of the determinant is: sgn det
(∏

n∈Z(−in +λc )
)
. Only the zero

mode contributes with a sign for the others square to a positive number.
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A areful reader might have objetions against this derivation, beause it is notobvious how to interpret the trae if CPT is broken. However, for �nite valuesof λ, the in- and out-states are isomorphi and the spetrum of the Hamiltonianis basially the same, suh that the equation above remains orret.
Correlation Functions with Observables To be topologial, more generalorrelation funtions inluding observables have to be zero on Qλ-exat observ-ables. Notie, that Qλ = d and using Stokes formula this implies the ondition

∫

M (−,+)
d φ∗ v (ω, t) = 0. (2.2.15)This an be obtained by demanding that the boundary ∂M (−,+) vanishes. Inthe following I will, however, �x another property of X suh that the integralyields zero.In order to yield non-trivial orrelation funtions, the observables must havea total form degree of dim M (−,+). In partiular, if the dimension of ∂M (−,+)in the equation above was less than the form degree of φ∗ v (ω, t), the orrelationfuntion would also vanish, and this is what I am going to enfore in the following.First, I have to ensure that ∂M (−,+) is a submanifold suh that an integrationof di�erential forms on this spae is de�ned. In order to investigate ∂M (−,+),I take the losure of the desending and asending manifolds X− and X +. Sine

X is ompat these losures are ompat. If the following ondition holds
❏ The Xα and X α are strati�ations of X , i.e. X α =∪β∈A≥α Xβ where A≥α isthe set of ritial points with index greater or equal ind xα and similar

X
α =∪β∈A≤α X β where now A≤α ounts lower indiesthere is a anonial ompati�ation of the instanton moduli spaes

M (−,+) =
(
∪α∈A≥− Xα

)⋂(
∪β∈A≤+ X β

)
(2.2.16)and thus their boundaries will be manifolds [Hut02℄.If X is Kähler, the analysis is immediate. All indies are even valued, as onehas a holomorphi and antiholomorphi part. The superharge is Qλ = ∂+ ∂̄ andraises the total form degree by one. Hene, under the orrelation funtion andafter invoking Stokes formula, the di�erential form has degree (dim M (−,+)−1).
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Beause the ompati�ed instanton moduli spae an be rewritten as
M (−,+) =

⋃

αi∈A>− , β j ∈A<+

M (−,+)×M (−,β j )×M (αi ,β j )×M (β j ,+) , (2.2.17)the boundary must also have even dimension, as it onsists of instanton modulispaes being glued together. Therefore, the orrelation of an exat di�erentialform must be zero in this ase.If X is a real manifold, the situation is more ompliated and I know of nogeneral argument. Due to that lak of knowledge I will restrit to
❏ The manifold X be Kähler.

2.2.4 The Out-StatesThe in- and out-states are related by a CPT transformation: F
∓
out = CPT ·F±

in
,where + denotes partiles and − anti-partiles. Formally, an in-state an bewritten as

ωin =
∫

x(t ): (−∞,0], x(−∞)=x− , x(0)=x

∏

i

O(ti ) e−Sλ , (2.2.18)where the boundary ondition x− de�nes a vauum on�guration, and CPT atsby onjugation ω 7→⋆ ω̄ and time reversal. Thus, if the theory were unitary theout states would be of the form ωout = ⋆ω̄in. Under that irumstanes, thereexists an hermitian inner produt and the out-states an be identi�ed with thein-states. However, in the ase under onsideration and due to the additionalterm, CPT ats non-trivially on the Lagrangian Lλ(t) = L(t)−λ dt f (x(t)), (2.1.8),
Lλ(t) 7→ Lλ(−t)+2λ dt f (x(−t)) , (2.2.19)and the extra term indiates that the theory is not unitary.When deomposing the thus transformed Lagrangian in analogy with setion2.2.2, the out-states obtain a phase fator e−2λ f and thus

ωout = e−2λ f
⋆ ω̄in . (2.2.20)For �nite values of λ, the out-states are still isomorphi to the in-states, but inthe limit λ→∞, this is not anonially valid.
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The In-States in the Vicinity of a Critical PointIn setion 2.1.2 I wrote that the states are loalized around the ritial pointsof f . This is de�nitely the ase for the topologial states. To see this I onsider(2.2.7) and undertake the semilassial analysis in analogy to Witten [Wit82℄.Taking into aount that the onjugate derivative in real oordinates and foran even dimensional manifold X is d† =−ιµ∇µ, the operator K f an be writtenin a simpler way:
H =

1

2

(
λ−1

∆+λ‖d f ‖2 +Hν
µ (x) [dxµ, ιν]

)
. (2.2.21)If λ→∞, the potential energy will grow, and this enfores the low energy statesto loalize around the ritial points. In this ase one may undertake a Taylorexpansion around a ritial point to study the low energy spetrum. Thus, Ihoose loal oordinates x, in whih the ritial point xc is at the origin xc = 0,the metri is approximately Eulidean, i.e. gµν = δµν and ∂λgµν(0) = 0, and theHessian is diagonal, H

µ
ν (0) = δ

µ
ν κµ. The Hamiltonian an now be approximatedas

2H (pert) =
∑
µ

(
−λ−1

(
∂µ

)2 +λ(κµxµ)2 +κµ[dxµ, ιµ]
)
+O(x3)

≃
∑
µ

(
2λ−1H

µ

bos
−κµ(−)Fµ

)
.

(2.2.22)The operator Fµ equals one if the di�erential form ontains dxµ and zero, else.The bosoni part is just a sum over independent harmoni osillators, and sine
[H

µ

bos
, (−)Fµ] = 0 these operators an be diagonalized simultaneously. From theeigenvalues

E =
∑
µ

(
|κµ|(2nµ+1)−κµ(−)Fµ

)
, nµ ∈N∪ {0} (2.2.23)one an onlude that the vauum on�gurations are unique and the form degreemust equal the index of xc . Namely, κµ 6= 0 sine f is Morse, and nµ = 0 forvauum on�gurations.Let me onlude with some remarks. Firstly, for the lass of target manifoldsunder onsideration, the perturbative ground states equal the atual groundstates. The reason is as follows: In general, the perturbative ground states mightget lifted to massive states due to nonperturbative e�ets. However, there is apairing of massive fermions and bosons due to supersymmetry. On a Kähler
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manifold, all ground states have an even form degree and a lift to an exitedstate would yield bosons, only. This does not onform with supersymmetry, suhthat on a Kähler manifold the number of ritial points must equal the numberof ground states. This does not mean that nonperturbative e�ets an not beobserved on exited states.Further, I would like to emphasize that due to the saling of the metri with λ,there remain �nite energy ontributions in the large volume limit. These exitedstates do also loalize on the asending and desending manifolds. Namely, thein-states take the form (2.2.18), and when λ 7→∞ they loalize on the gradienttrajetories. Sine x(−∞) must be a ritial point xc , these states have theirsupport on the desending manifolds Xc . Therefore, the in-states are assoiatedto the desending manifolds that over X . By the same argument the exitedout-states are supported on the asending manifolds.The ground states, extended by those exited states, will be foused on inthe following. Before, I will brie�y summarize the onstraints on X that I haveobtained.
2.3 Summary of the Constraints on XIn the last two setions, I have transformed a general Morse theory in suh away that the main ingredients whih make a topologial theory integrable aremanifest: breaking of CPT invariane and loalization. I have disussed therelation between the anonial and path integral point of view. I had to putseveral onstraints on the target manifold X in order to ahieve that there existsa topologial setor. Now I would like to add a last onstraint.I always assumed that f is Morse and derived a vetor �eld v =∇ f as a gradientof this funtion. In the situation of the A-model it will be important to reversethe logi and start from a given vetor �eld v . For the transformations (2.2.10),the existene of suh a potential is essential. It is in general not guaranteed that
v an be expressed in terms of a gradient of a unique potential f . However, if
X is ompat and simply onneted, one an invoke de Rham duality H 1(X ) ≃
H1(X ) = 0 and onlude that ω := ιv g is an exat one-form ω= d f . Consequently,for every vetor �eld v there exists a unique and single-valued funtion f suhthat v =∇ f .
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❏ Let X be ompat and simply onneted.I have been as unrestritive as possible and at the end of my disussions itappears that I had to put the same onstraints as those used by Frenkel, Losevand Nekrasov [FLN06℄. Here is the summary of the onditions:
➀ The target manifold X is a ompat, simply onneted, oriented Kählermanifold with Eulidean metri λg .
➁ There is a Morse funtion f : M → R suh that M has a Bialyniki-Biruladeomposition by means of the desending and asending manifolds.
➂ The desending and asending manifolds are Morse-Smale transversal.
➃ The desending and asending manifolds are strati�ations of X .The main side-e�et of the transformations is that the theory is no longer unitaryand therefore the out- and in-states are not related by an inner produt. The in-states are supported on the desending manifolds Xc and for the vauum statesI used the argument of [Wit82℄ in order to see that their form degree equals theindex of the �xed point xc .

2.4 Morse Theory on X =CP
1In this setion I am going to review the toy model onsidered in [FLN06℄. Manyfeatures of the Morse theory underlying the topologial A-model an already bestudied by this example. The most important aspet will be that the Hamilto-nian will be non-diagonal on the exited states in the low energy spetrum.The toy model is de�ned on X = CP

1 with inhomogeneous oordinates z, z̄,endowed with the Fubini-Study metri λg = λ dzdz̄
1+|z|2 and a Morse funtion f =

1
4
|z|2−1
|z|2+1

. The assoiated vetor �eld is a generator of the C
× symmetry of X , v =

z∂z + z̄∂z̄ .8 It has �xed points {0,∞} and the orresponding desending manifoldsare obtained from the �ow equation dz(t )
dt

= ζ[z(t)], ζ = z∂z . The point {0} isrepulsive with ind(0) = 0 and has an assoiated desending manifold X0 = C0,where C0 = CP
1 \ {∞}. The other �xed point {∞} is attrative with ind(∞) = 2

8The Lie algebra of C× is generated by v = z∂z + z̄∂z̄ and u = i(z∂z − z̄∂z̄ ). The group elements are eφv

and eφu with φ ∈R.
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and desending manifold C∞ = {∞}. The Hamiltonian before the transformationsreads
H =−

2

λ
(1+|z|)2∂z∂z̄ +

λ

2

|z|2

(1+|z|)2
+

1−|z|2

1+|z|2
(Fz +Fz̄ −1) . (2.4.1)Beause the low energy states I am interested in are loalized around theritial points for �nite λ, it is suggestive to start with onsidering the situationloally in the harts C0 and C∞ := CP

1 \ {0}. Even if these states might get�smeared out� in the large volume limit, they remain supported on the desendingmanifolds, and loal in this respet. Therefore, I will now turn to a perturbativeanalysis of Morse theory. The thus obtained ground states are the exat groundstates for the global theory due to the argument given in setion 2.2.4.In order to treat the situation in the harts around {0} and {∞} at the sametime, I introdue a onstant k ∈ {±1} that distinguishes if the the �xed pointis attrative or repulsive. The respetive Morse potential and its gradient are
v = k(z∂z+z̄∂z̄ ), f = 1

2 k|z|2 for both harts, where k =+1 simulates the �xed point
{0} and k =−1 the �xed point {∞}. Notie that I negleted the onstant in theTaylor expansion of f beause it is irrelevant for the analysis of the spetrum ofthe Hamiltonian, the Morse potential does only enter the Hamiltonian in termsof ∇ f . The energy momentum tensor is perturbatively given by (2.2.22)

H (pert) =−
2

λ
∂z∂z̄ +

λ

2
k2|z|2 +k(Fz +Fz̄ −1) . (2.4.2)For the moment I forget about the fermions dz and dz̄, the bosoni eigenfun-tions are then Laguerre Polynomials

Ψn,m =
(
π(λk)(n+m−1)n!m!

)− 1
2 e

1
2λ|k |zz̄∂m

z ∂n
z̄ e−λ|k |zz̄ , n,m ∈N∪ {0} . (2.4.3)When I apply the transformations (2.2.10) and (2.2.20), the sign of k matters.In analogy with [FLN06℄ I start with k = 1, i.e. {0} is repulsive. The in- andout-states of the transformed theory are now

Ψ
(in,λ)
n,m =

1

λn+m
e−λzz̄ ∂m

z ∂n
z̄ e−λzz̄ ,

Ψ
(out,λ)
n,m =

λ

2π n!m!
∂n

z ∂
m
z̄ e−λzz̄ i

2
dz ∧dz̄

(2.4.4)and the normalization is hosen suh that the limit λ→∞ makes sense.If k =−1 and {0} is attrative, the r�le of the in- and out-states are exhangedand hene, the in-state for an attrative �xed point is just the out-state above.
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Taking the large volume limit, the in-states beome polynomials in z and z̄.The out-states are funtionals on the in-states, and a partial integration makestransparent that the exponential is a representation of the Dira distribution.Therefore, when λ→∞,
Ψ

(in,λ)
n,m → zn z̄m ,

Ψ
(out,λ)
n,m →

1

n!m!
∂n

z ∂
m
z̄ δ(2)(z, z̄)

i

2
dz ∧dz̄ .

(2.4.5)The perturbative situation on X = CP
1 is now as follows: On the desendingmanifold C0, the in-states are given by H0 =F0 ⊗F̄0 , with

F0 =C[[z]]⊗∧[[dz]] ·1|C0 , ∆0 = 1|C0 (2.4.6)and ∆0 is the vauum on�guration. The expression C[[·]] denotes a power seriesand ∧ the exterior produt. The operators ∂z and ιz annihilate the vauum
1|C0 . The in-states assoiated with the desending manifold {∞} are elements of
H∞ =F∞⊗F̄∞ with

H∞ =C[[∂ω,∂ω̄]]⊗∧[[ιω, ιω̄]] ·∆∞ , ∆∞ =
i

2
δ2(ω,ω̄) dω ∧dω̄ . (2.4.7)The loal oordinate ω belongs to the hart C∞ and i

2
δ(2)(ω,ω̄) dω∧dω̄ is anni-hilated by ω and dω.Sine these states are loalized on the desending manifolds, there exist wellde�ned pairings between them. The integral

∫

X
Ψ

(out)
0/∞ ∧Ψ

(in)
0/∞ (2.4.8)has a �nite value, while ∫

X
Ψ

(out)
0/∞ ∧Ψ

(in)
∞/0

= 0. (2.4.9)However, Frenkel et al. [FLN06℄ de�ne an ation of these states on general di�er-ential forms on X , beyond holomorphi or antiholomorphi ones. In partiular,they extend the support of the exited states to X , whih means that the poly-nomials have to be generalized as distributions. The rationale behind that istheir onjeture, or assumption, that this generalization of the exited statesin the perturbative low energy spetrum (2.4.2), yields nonperturbative states[FLN06, pg. 62℄. The onsequene is, that the �globalized� polynomials will bethe soure for the Hamiltonian being non-diagonal. This will be the subjet ofthe following setion.
26



2.4.1 Polynomial distributions on CP
1Let φ be an element of the smooth funtions with bounded support on CP

1, thatis φ ∈ D. In partiular, all smooth funtions on CP
1 are test funtions for CP

1is ompat. I will also use a generalization of test funtions to test forms whihare smooth di�erential forms with ompat support.9 I will denote the spae oftest forms of degree (a,b) by D⊗Λ
a,b .In this setion I will de�ne the polynomial zν z̄µ as a distribution on CP

1, i.e.an element of D
∗ := L(D,C), the linear funtionals on D, for arbitrary ν, µ ∈

C, ν−µ ∈Z. This an be arried over to distribution forms dual to D⊗Λ
a,b . Inpartiular, the vauum state 1C0 an immediately be generalized by de�ning it tobe the distribution form ∆0 ating on di�erential forms η ∈Ω

1,1
d

(CP1) aordingto ∆0(η) =
∫
C0

η.Firstly, I will onentrate on polynomials on C. If the exponents ν and µare negative integers they have poles at z = 0. Therefore, I will explain how toregularize them, suh that they an be de�ned as distributions everywhere on C.That situation will appear for CP1 in the hart around {∞} and I will generalizethe situation to that ase. Thereby, the polynomials with support in the hartaround {0} are extended as distributions on the whole of CP1.Most results of this setion are obtained, using the de�nitions of Gel'fand andShilov [GS64℄. The extension to CP
1 is handmade and the main result of thissetion equals that of [FLN06, pg. 55℄, though I hose a di�erent approah.

The case CLet d2z := i
2

dz ∧dz̄ and denote by ∫ an integration over C with this measure.The expression ∫
zν z̄µφ , φ ∈D , n := ν−µ ∈Z (2.4.10)is analyti in ν, µ and loally integrable if the real part of s := ν+µ is ℜ(s)>−2and thus de�nes a distribution on φ. One an understand this, writing theexpression in angular oordinates

∫
zν z̄µφ=

∫∞

0
r s+1

(∫2π

0
φ(r e iα,r e−iα) e inαdα

)
dr . (2.4.11)

9In the mathematical literature these distribution forms are denoted as “currents” [GH78], I will, how-

ever, not use that terminology in order to avoid confusion with their physical namesakes.
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If ℜ(s) = −2 there might be a logarithmi pole and loal integrability fails in asubset ontaining the origin. For integer values less than −2 there will be polesas explained below. In two steps I will generalize (2.4.10) as a distribution formore general values of ν and µ.
Analytic continuation to ℜ(s) > −2−m , m ∈ N, s ∉ Z In the �rst step it ispossible to ontinue (2.4.10) analytially to ℜ(s) >−2−m, s ∉ Z. Suppose that
ℜ(s) >−2 and add 0 in a nie way in order to extrat the simple poles at negativeinteger values of s :

∫
zν z̄µφ=

∫

|z|≤1
zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l

)

+
∫

|z|>1
zν z̄µφ+2π

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !

δl−k ,n

k + l + s +2
,

(2.4.12)where φ(k ,l )(z, z̄) := ∂k
z ∂

l
z̄φ(z, z̄). The last term is just minus the insertion underthe integral, integrated over in polar oordinates. The equation above is analytiin ν, µ up to simple singularities at s =−l −k −2 ∧ n = l −k or equivalently at

ν=−k −1 ∧ µ=−l −1. Hene, they an be analytially ontinued. If further mis suh that −m −2 <ℜ(s)<−m −1, one an simplify that expression:
∫

zν z̄µφ=
∫

zν z̄µ

(
φ(z, z̄)−

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l

)
. (2.4.13)The point is, that in this ase, the last term in (2.4.12) an be expressed as

−
∫

|z|>1
zν z̄µ

m−1∑

k+l=0

φ(k ,l )(0,0)

k!l !
zk z̄l , (2.4.14)sine k + l + s +2 < 0. In detail that an be seen in polar oordinates. It is nowreasonable to de�ne (2.4.10) as equation (2.4.13) if ℜ(s) <−2 ∧ s ∉Z, as one analways hoose m as above.

Analytic continuation to s ∈Z<−1 The transition to s ∈Z<−1 is done by sub-trating the singular term, say at s = −m −1, and taking the limit s →−m −1with �xed n = l−k or equivalently one an take the limit ν→−k−1 ∧ µ→−l−1.From (2.4.12) one an see, that this pole orresponds to k + l = m −1, whih is
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the highest order term in
∫

z−k−1z̄−l−1φ : = lim
ν→−k −1

µ→−l −1

∫(
zν z̄µ−2π

(−)k+l

k!l !

δ(k ,l )(z, z̄)

m +1+ s

)
φ(z, z̄)

=
∫

z−k−1z̄−l−1

(
φ(z, z̄)−

m−2∑

a+b=0

φ(a,b)(0,0)

a!b!
za z̄b

−
∑

a+b=m−1

φ(a,b)(0,0)

a!b!
za z̄bθ(1−|z|)

)
.

(2.4.15)

This equation follows from (2.4.12) and redoing the steps leading to the �nalexpression (2.4.13), suh that from the sum under the integral the term of highestorder is left and leads to the theta-funtion term above. Here θ(x) = 1 if x ≥ 0, x ∈
R and 0 otherwise.
Differentiating It is important to notie that due to the appearane of thetheta funtion in the ase s ∈Z<−1, di�erentiating is not a trivial task. Using theproperty of the derivative on distributions one obtains

∫(
∂z z−k−1z̄−l−1

)
φ=

∫(
(−k −1)z−k−2z̄−l−1 −

2π(−)k+l

l !(k +1)!
δ(k+1,l )(z, z̄)

)
φ , (2.4.16)and similar for ∂z̄ .

The case CP
1Up to now, (2.4.10) is de�ned on test funtions with bounded support in C. Inpartiular, the support of the polynomial distribution is in C and, if there areany, singularities appear at |z| = 0. However, for the Morse theory on CP

1 I needthe ation on test funtions with bounded support in C∪ {∞} and therefore, Ihave to extend the de�nition of the distributions one more.I hoose two harts C0 and C∞ inluding the points {0} and {∞}, respetively.By this means I an distinguish test funtions with bounded support in eitherand as a anonial notation I introdue D∞ for those whose support ontainsthe point {∞}. Without loss of generality, I let the polynomial distribution bede�ned as before in the situation C0. If I want to apply it to elements of D∞,beause integration is now taken over CP1, the polynomial has to be regularized
29



at {∞}. Let therefore f be an element of D∞, then formally
∫

zν z̄µφ=
∫

|z|<ǫ
zν z̄µφ+

∫

|z|≥ǫ
zν z̄µφ , (2.4.17)where z is the oordinate in C0 and ∫

· =
∫
CP1 ·. Allowing for a oordinate trans-formation to C∞ in the seond integral z 7→ω−1 yields

∫
zν z̄µφ=

∫

|z|<ǫ
zν z̄µφ(z, z̄)+

∫

|ω|≤ǫ−1
ω−ν−2ω̄−µ−2φ(ω−1,ω̄−1) . (2.4.18)The funtion φ̂(ω,ω̄) := φ(ω−1,ω̄−1) is now onsidered in the orret hart, thepoint {∞} is transformed to the point {0} whih is inluded in the support of φ̂suh that I end up with a situation to whih all results that I already obtainedapply. One gets the following generalization in the limit ǫ→ 0 :

∫
zν z̄µφ :=

{ ∫
ω−ν−2ω̄−µ−2φ̂(ω,ω̄) , φ ∈D∞∫
zν z̄µφ(z, z̄) , else . (2.4.19)Again, the integrals on the right hand side are analytially ontinued and regu-larized as before (eqns. (2.4.13) and (2.4.15)) and integration is over C. However,integration on the left hand side is over CP1.

Ket notation I will now introdue another notation in aordane with Frenkel,Losev and Nekrasov [FLN06℄. Let φ be any test funtion on CP
1, i.e. φ ∈ D. Ide�ne the orresponding test form as an element of D ⊗Λ

a,b , suh that φ :=
φ(z, z̄) dza ∧dz̄b in oordinates of C0 and φ = ω−2aω̄−2bφ̂ in oordinates of C∞where φ̂ := φ̂(ω,ω̄) dωa ∧dω̄b and a,b ∈ {0,1}. Let me further denote every poly-nomial distribution (form) of the type (2.4.19) with n,m ∈N by:

|n,m, p, q〉0 ∈D
′⊗Λ

p,q , p, q ∈ {0,1} ,

|n,m, p, q〉0 [φ] :=





i
2

∫
ω−n−2p−2aω̄−m−2q−2b dωp ∧dω̄q ∧ φ̂

i
2

∫
zn z̄m dzp ∧dz̄q ∧φ

0 if n,m < 0, p, q > 1

,
(2.4.20)where in the �rst equation φ ∈ D∞⊗Λ

a,b and in the seond φ ∈ (D/D∞)⊗Λ
a,b.Let me also de�ne an expression

|n,m, p, q〉∞ [φ̂] :=
i

2

(−)m+n

n!m!

∫
δ(m,n)(ω,ω̄) dωp ∧dω̄q ∧ φ̂ . (2.4.21)
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It is de�ned in loal oordinates of C∞, however, sine the support of this distri-bution form is just the point {∞}, it has zero value on all φ 6∈D∞ and thereforeis globally well de�ned.I an now generalize the notion of an exterior derivation on suh distributionforms by means of
∂|n,m, p, q〉0 [φ] := (−)p+q+1|n,m, p, q〉0 [∂φ] . (2.4.22)In order to alulate the derivative of (2.4.20), espeially for the ase φ ∈ D∞,apply ∂= dω∧∂ω (rather than only ∂ω like in the subsetion before). Let φ ∈D∞,then

∂|n,m, p, q〉0 [φ] = (−)p+q+1|n,m, p, q〉0 [∂ωφ̂(ω,ω̄) dωa+1 ∧dω̄b]

= (−)p+q i

2

∫(
∂ωω

−n−2p−2aω̄−m−2q−2b
)

×dωp ∧dω̄q ∧ φ̂(ω,ω̄) dωa+1 ∧dω̄b .

(2.4.23)Without loss of generality, I set p = a = 0 and keep the other degrees of freedom
∂|n,m, p, q〉0 [φ] =

i

2

∫(
∂ωω

−nω̄−m−2q−2b
)
dω∧dω̄q ∧ φ̂

=
2π(−)n+m−1

n!(m +2q +2b −1)!

∫
δ(n,m+2b+2q−1)dω∧dω̄q ∧ φ̂

−n|n−1,m, p +1, q〉0 [φ] .

(2.4.24)For φ 6∈ D∞ one obtains the �rst term on the right but with another sign andthus:
∂|n,m, p, q〉0 =±n|n−1,m, p +1, q〉0 +2π|n,m +2q −1, p +1, q〉∞ , (2.4.25)whereby �−� must be taken for D∞⊗Λ

a,b . Calulating the exterior derivative of(2.4.21) is not so tehnial, it turns out to be
∂|n,m, p, q〉∞ =−(n+1)|n+1,m, p +1, q〉∞ (2.4.26)and the prefator omes from the normalization of the state.Another important operation is the interior produt ιζ with some vetor �eld

ζ= z∂z (loally in C0 ). The point is, that the Hamiltonian is given by the Liederivative on suh polynomial distribution forms. Again, I make use of
ιζ|n,m, p, q〉0 [φ] := (−)p+q+1|n,m, p, q〉0 [ιζφ] . (2.4.27)
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Sine ζ=−ω∂ω in C∞, the ation of the interior produt is
ιζ|n,m, p, q〉0 =±|n+1,m, p −1, q〉0 , �−� on D∞⊗Λ

(a,b) . (2.4.28)The ation on a distribution |n,m, p, q〉∞ is derived analoguousely by means ofsome partial integration (again, I �x the non-trivial values p = 1 = a ):
ιζ|n,m, p, q〉∞ [φ̂]= (−)p+q+1|n,m, p, q〉∞ [−ωφ̂(ω,ω̄) dωa−1 ∧dω̄b]

=
i

2

(−)q

n!m!

∫
δ(ω,ω̄)dωp ∧dω̄q ∧

(
−n ∂n

ω∂
m
ω̄ φ̂(ω,ω̄)+O(ω)

)
dωa−1 ∧dω̄b

=−|n−1,m, p −1, q〉∞ [φ̂] .

(2.4.29)In the alulation above I used the fat that the delta funtion loalizes on ω= 0and therefore the terms proportional to ω vanish. Now I an alulate the Liederivative for f ∈D⊗Λ
a,b

Lζ|n,m, p, q〉0 = (n+p)|n,m, p, q〉0 −2π|n+2p −1,m +2q −1, p, q〉∞ ,

Lζ|n,m, p, q〉∞ = (n+1−p)|n,m, p, q〉∞ .
(2.4.30)Thus, due to the extension as distributions, the operators inluding exterior dif-ferentials are in general not diagonal on |n,m, p, q〉0. These states get mixedwith states |n,m, p, q〉∞ on whih the operators have a one-dimensional repre-sentation. In partiular, the analyti extension of the exited states to X makesit neessary that the spaes of in-states an not be onsidered independently,rather one has to take a diret sum of the extended state spaes H 0 ⊕H ∞.Here, the underline shall denote the spae of states as distributions.

❏ If H is a perturbative state spae related with some desending manifold,I will denote its extension to X as H .In setion 2.5, I will make the di�erene between the unextended and extendedrepresentation spaes and operators more expliit.
Out-States as Dual States As explained in setion 2.4, up to some normal-ization fator, the out-states are de�ned by the right hand sides of (2.4.20) with
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the r�le of the in-states exhanged [FLN06℄
∞〈n,m, p, q| ∼





i
2

∫
z−n−2p−2a z̄−m−2q−2b dzp ∧dz̄q ∧φ

i
2

∫
ωnω̄m dωp ∧dω̄q ∧ φ̂

0 if n,m < 0

,

0〈n,m, p, q| ∼
i

2

(−)m+n

(n)!(m)!

∫
δ(m,n)(z, z̄) dzp ∧dz̄q ∧ φ .

(2.4.31)Thus, |n,m, p, q〉0/∞ are test forms if restrited to C0, and distribution forms ina neighborhood of {∞}, whereas 0/∞〈n,m, p, q| are test forms on C∞ and distri-butions around {0}. For that reason, it makes sense to generalize the pairing forin and out states for distributions, setting
∫

X
Ψ

(out) ∧Ψ
(in) :=

∫

D
Ψ

(out) ∧Ψ
(in) +

∫

X−D
Ψ

(out) ∧Ψ
(in) , (2.4.32)whereby D is the unit disk around {0}, f. [FLN06℄. One an then normalize theout states above suh that

i 〈n,m, p, q|n′,m′, p ′, q ′〉 j = δn,n′δm,m′ ,δp+p′ ,1δq+q ′ ,1δi , j , i , j ∈ {0,∞} . (2.4.33)

Cohomology of the Supercharge I will now �ll in the missing details for myassertion in setion 2.2.2, that the ohomology of the superharge is not a�etedby taking λ→∞, and that it still equals the spae of ground states.The kernel of Q∞ = ∂+∂̄ is generated by {|n,m,1,1〉0/∞, |0,0,0,0〉}. Among those,the states |n,m,1,1〉∞ , n,m ≥ 1 are in the image of Q∞. For m ≥ 0, ∂̄[|n,m,1,0〉0−
2π

n+1
|n,m,1,0〉∞] =±m|n,m−1,1,1〉0 and similar for the holomorphi di�erential.Thus, the ohomology of Q∞ is e�etively restrited to {|0,0,0,0〉0 , |0,0,1,1〉∞},whih are just the ground states. By a diret alulation one �nds, that thesolutions of H∞|n,m, p, q〉0/∞ = 0, H∞ =Lζ+Lζ̄ equal the kernel of Q∞.

2.5 Interpretation of the ExtensionExtending the states assoiated with the desending manifolds to distributionson X was the soure for a sort of non-loality. Some state spaes whih formerlywere restrited to live in di�erent harts, are now intermixed by operators on-taining exterior di�erentials. In this setion, I will speify between what state
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spaes this happens. Moreover, this kind of non-loality an only be seen onthe exited, non-topologial states, and therefore must be analyzed as an e�etof the broken topologial phase. Therefore, ertain aspets of the geometry ofthe target manifold should beome visible. To takle those, I will deouple theintermixing e�et in the operators, extrating the mathematially responsibleparts. My disussion follows Frenkel et al. [FLN06℄, but also inludes my owninterpretations, in partiular that of non-loality as an instanton e�et.
Perturbative States and Naive OperatorsPerturbatively, the state spaes under onsideration are assoiated with the de-sending manifolds and inlude the part of the low lying spetrum whih hasa �nite energy spetrum in the limit λ→∞. I will all these the perturbativespaes of states. They seem to be independent from eah other, in that theyare loally de�ned on the desending manifolds and do not intermix under theation of observables. This hanges for the exited states, as soon as they areextended to X .Besides distinguishing the perturbative states from the extended ones, I willfurther introdue what I all naive operators. They at on the extended statesas if they were ating on the perturbative ones. For instane, the naive Hamil-tonian is diagonal on all extended states, L

(naive)
ζ

|n,m, p, q〉0 = (n+p)|n,m, p, q〉0

∀ n,m, p, q , whereas the full Hamiltonian an now be deomposed Lζ =L
(naive)
ζ

+
g. I will also de�ne a representation of this Hamiltonian on the perturbativestates in the following way. Instead of g, onsider the operator δ := g◦e, wherein
e denotes the extension H i

e→ H i , i ∈ {0,∞}. Consequently, δ ats on H i andthe full Hamiltonian an be represented on the perturbative states by Lζ+δ.
❏ For the rest of my thesis I will �x the following notation. Let O be anoperator ating on the perturbative state spae H . I will denote the sameoperator, ating on the extended state spae H by O = O +gO , whereinreally O = O

(naive). For onveniene I use this abuse of notation, it willalways be possible to onlude from the ontext if O denotes the operatorating on H or O
(naive), ating on H .The additional operator g is supposed to make loal geometri aspets of thetarget spae visible (in ontrast to the global, topologial invariants), and auses

34



that the Hamiltonian is not reduible on all states: non-reduibility of the Hamil-tonian an be viewed as an e�et of the broken topologial phase. More ventured,I am tempted to say that the additional term an be understood as an e�et oftarget spae gravity, sine beyond the topologial phase, invariane under di�eo-morphisms is broken down to invariane under the isometries of some bakgroundmetri.
The Local Geometry behind the Deformation TermIn order to understand what kind of geometry beomes visible in the deformationoperator δ, I will now disuss its proper interpretation as a Grothendiek-Cousinoperator (GCO), .f. [FLN06, Har67, Kem78, Har70℄.The Hamiltonian Lv represents the ation of φv (·, t), indued on di�erentialforms, f. (2.1.11). Therefore, the perturbative state spaes an be interpretedas representations of the symmetry generated by the gradient vetor �eld v =
z∂z + z̄∂z̄ assoiated to the Morse funtion. The target manifold X = CP

1 isthene overed by di�erent representation spaes, eah of whih is supported ona desending (asending) manifold.Frenkel et al. [FLN06℄ had the idea to desribe those loal representations bymeans of sheaves on X .10 Let X be endowed with the Zariski topology, then
X0 = C0 is an open subset while X∞ = X \ X0 is losed. The representation H0an now be desribed as follows. The homogeneous rational funtions OX [n]∞on X that are regular exept for a pole of order n > 0 at {∞} form a sheave on
CP

1. Aording to setion 2.4.1, I an identify
H0 \ {∆0} =

⊕

n,m>0

Γ(X0,OX [n,m]∞) , (2.5.1)whereby OX [n,m]∞ =OX [n]∞⊗ŌX [m]∞ and Γ(U ,OX [n,m]∞) denotes the setionsof those polynomials, restrited to the open subset U ⊂ X .11 In partiular, therestrition to X0 is injetive, and the analysis of setion 2.4.1 implies that thesequene
0 →

⊕

n,m>0

Γ(X ,OX [n,m]∞) →H0 \ {∆0}
δ→H∞ \ {∆∞} → 0 (2.5.2)

10For a definition of sheaves and an introduction, cf. [GH78, Har70, Gat02].
11The sections ofΓ(X0 ,OX [n,m]∞) are polynomials in the inhomogeneous coordinates and thus obey the

equivalence relation C
2 \ {0} ∋ ( f ,g ) ∼ λ( f ,g ), f ∈C\ {< 0} of the homogeneous coordinates. Therefore,

I may take the direct sum.
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is exat. It summarizes the extension of the loal (irreduible) representationsto (non-reduible but indeomposable) representations de�ned globally X .It would be nie, if not only H0 ould be related with the theory of sheaves,but also H∞. Sine the support of H∞ is a losed set but sheaves are de�nedon open sets, some generalization will be neessary. This will lead to the theoryof loal ohomology [Har67℄. Let F be a sheaf on X , Z ⊂ X a losed set and
U ⊂ X an open set suh that Z ⊂U . The support of a setion s ∈ F (U ) := Γ(U ,F )is {p ∈U : sp 6= 0}, where sp is the germ of s in the stalk Fp .12 The setions of
F with support in Z are de�ned to be the subgroup ΓZ (X ,F ) of setions F (U ),whose support is in Z . The setions with support on losed subsets will be atthe heart of the interpretation of H∞.The term �loal ohomology� enters the work of Frenkel et al. [FLN06℄ througha publiation of G. Kempf [Kem78℄, wherein the sequene (2.5.2) appears as anexample in the introdution. A huge part of the paper is dediated to an analysisof the following setting. Given a topologial spae X , �ltered by losed subsets
X = Z0 ⊇ Z1 ⊇ ·· ·Zn ⊃ ; and supplemented with a sheaf F . Kempf derives anexat sequene whih he alls a �global Grothendiek-Cousin omplex�:

0 →Γ(X ,F ) → H 0
Z0/Z1

δ1→ H 1
Z1/Z2

δ2→ H 2
Z2/Z3

δ3→···H n
Zn

→ 0. (2.5.3)Here, I shortened H i
Zi /Zi+1

(X ,F ) = H i
Zi /Zi+1

, H n
Zn /; = H n

Zn
, and the spaes H i

Zi /Zi+1denote (abstrat) ohomology groups, assoiated with the quotient presheaf
ΓZi

(X ,F )/ΓZi+1
(X ,F ). These are the so-alled loal ohomology groups.By omparison, for the toy model on X = CP

1, the orresponding data are
F =

⊕
n,m>0 OX [n,m]∞ and the losed sets X ⊃ {∞} ⊃;. Consequently, H∞ \{∆∞}an be identi�ed with the �rst loal ohomology group H 1

∞(X ,F ). This is themathematial answer to the question what sort of loal geometry of X gets visibledue to the exited states. Beause the omplex above is alled Grothendiek-Cousin omplex,
❏ the operator δ is alled the Grothendiek-Cousin operator (GCO). I willalso denote the operator g in δ = g ◦ e as Grothendiek-Cousin operator,whih I am onsidering will always be evident from the ontext.

12Let {Ui } denote an open covering of X , a stalk Fp of F at p ∈ X is the set of pairs (Ui ,si ), p ∈ Ui , s j ∈
F (Ui ) modulo si |Ui ∩U j

= s j |Ui ∩U j
. An equivalence class in Fp is called a germ, and I denoted it by sp

[Har70, Gat02].
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Non-locality as an Effect of InstantonsThe additional term δ has besides the geometri a further physial interpreta-tion. It ontains the nonperturbative e�ets due to the presene of instantons.Instantons, onsidered as tunneling solutions, an be viewed as non-loal �eldon�gurations that proure some of the struture of the theory as de�ned in thehart around the repulsive �xed point {∞} to the one de�ned in the other hartaround the attrative �xed point {0}. Sine there are no anti-instantons this doesnot apply the other way around. This makes it obvious that one might onsiderthe following: The Grothendiek-Cousin operator δ mixes the state spae H0 with
H∞, but not the other way around, and in that sense it mimis the instantons.
Mixing of Holomorphic and Antiholomorphic PartsA further speiality of the Grothendiek-Cousin operator is that it mixes theholomorphi and antiholomorphi parts. In partiular, it ontributes only onstates whih are not purely holomorphi or antiholomorphi. From (2.4.30)follows that kerδ= {|n,0, p,0〉0 , |0,m,0, q〉0 : n,m ≥ 0, p, q ∈ {0,1}}. For that reason,as soon as the exited spetrum is onsidered, the theory an not be dividedinto an holomorphi and antiholomorphi �half �. Just as the existene of non-diagonalizable operators, this is a typial harateristi of logarithmi onformal�eld theories [DF08℄.
2.6 Generalization to General Target ManifoldsIn the following setions I will generalize the disussion to a larger lass ofmanifolds X , again relying on [FLN06℄. For onveniene I will restrit my on-siderations to the in-states. Furthermore, I will restrit to Morse funtions withthe property that their gradient vetor �eld equals v = xa∂a + x ā∂ā , where xaand x ā are loal oordinates on X .
2.6.1 The Perturbative state spacesThe perturbative state spaes loalize on the desending manifolds, thus I will�rst start with a generalization of those.
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Let Xα be a desending manifold with ritial point xα whih has an index
ind(xa) = dimCX −nα. By oordinates along Xα I understand (holomorphi) o-ordinates x1, . . . , xnα suh that Xα is the hyperplane de�ned by the zero set of theomplementary, transversal oordinates xnα+1, . . . , xdimCX . In the toy model, thereexists one holomorphi oordinate z along X0 ≃C and no transversal oordinate,whereas X∞ = {∞} is zero dimensional and has just a transversal oordinate z.Now the perturbative state spaes an be generalized. In the toy model, thevauum assoiated with X0 was the harateristi funtion in the oordinatealong X0, whereas the vauum assoiated with X∞ was a Dira distribution.This an be generalized as follows:

❏ A ground state ∆α is a distribution form de�ned by ∫
X ∆α∧η=

∫
Xα

η|Xα ondi�erential forms η.Again, in the toy model, the exited states on X0 are polynomials in theoordinates along Xα multiplied with the exterior algebra again along X0. Theexited states assoiated with X∞ whih has only transversal oordinates, arepolynomials in interior derivatives and simple derivatives along the transversaloordinates. This is also anonially generalized:
❏ The exited states assoiated with Xα are given by

(C[[xa ]]⊗∧[[dxa ]])a=1,...,nα
⊗ (C[[∂a ]]⊗∧[[ιa ]])a=nα+1,...,dimC X ·∆α.

2.6.2 The Grothendieck-Cousin OperatorsIn order to determine the Grothendiek-Cousin operators for the more generalase I will use two properties of δ as determined before.The �rst property is that the Grothendiek-Cousin operator is a mapping be-tween di�erent representation spaes whih are loally de�ned in harts of X ,and that it appears in an exat sequene of the kind (2.5.3). This is, however,too general. In the situation of the toy model, the GCO is a mapping betweentwo state spaes of relative odimension one, i.e. {∞} ≺ C0 = codim({∞},Cc
0) = 1,where the upperase c denotes taking the losure. In order to preserve this pro-perty, one must further onstrain X and the sheaf F . I will not artiulate thoseonditions and refer the reader to the publiation of [Th04℄. Thus, I assumethat X and F are suh that the Grothendiek-Cousin operators are mappings
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between representation spaes on desending manifolds with relative odimen-sion one, (Zi \Zi+1) ≺ (Zi−1 \Zi ) = 1. This restrits the state spaes between whihGrothendiek-Cousin operators exist:
❏ The GCOs are mapping between perturbative state spaes whose desen-ding manifolds have relative odimension one.

∃ δi : H i−1
Zi−1/Zi

→ H i
Zi /Zi+1

⇔ (Zi \ Zi+1) ≺ (Zi−1 \ Zi ) . (2.6.1)The seond property does not follow from a geometri analysis as above and ismore heuristi. The situation of the topologial A-model I am going to introduein the next hapter, will turn into an analysis of an in�nite dimensional manifold.Thus, I do not know how to transfer the results above from its roots. When itomes to determine the GCOs, I will rather searh after an adequate extension
e of the perturbative representation spaes, suh that I �nd operators g whihhave the properties of ohomology operators on the extended omplex. Thus, inorder to determine the extension, I will make use of the following observation:For simpliity, I will neglet the exterior produt part. If the perturbativestate spae H0 is restrited to the overlap C

×, it may be identi�ed with thepolynomials ωnω̄m in oordinates of C∞. The extension e an now be viewed asto allow suh polynomials to have negative exponents, f. setion 2.4.19. Due tothe polynomials with negative exponents, the naive Hamiltonian is now degen-erate. Therefore, the analyti extension e means e�etively that the spetrum
H0 ≃ C[[ω,ω̄]] is enlarged by the missing degenerate, �dual part�, of the naiveHamiltonian, H

∗
0 ≃ C[[ω−1,ω̄−1]]. The mapping g is then a mapping from thisdual part onto the loal ohomology group at {∞} :

❏ The GCOs at non-trivially on the �dual part� of the spetrum of the naiveHamiltonian, obtained by an extension of the state spae
HXα

e→ H Xα
=HXα ⊕H

∗
Xα

g→HXβ
→ 0, (2.6.2)where Xβ ≺ Xα and HXα denotes the states on whih the symmetries of thetheory beome degenerate.Instead of determining the Grothendiek-Cousin omplex I will make use of thisheuristi reipe.
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From the A-Model to Morse Theory 3This hapter has again three parts. I will suessively reprodue the situationof the last hapter for the topologial A-model, reformulating it as an in�nitesum of Morse theories of the kind just onsidered. Thereby, I will obtain itsperturbative representation spaes. It will be possible to identify them withrepresentations of onformal supersymmetri ghosts, whih I will further sub-stitute for the A-model. Bosonization of the onformal theory will enable meto derive the Grothendiek-Cousin operators and propose the extension of theperturbative state spaes. Due to the properties of the Grothendiek-Cousinoperators it is then evident that if the topologial A-model is a onformal �eldtheory, it must be a logarithmi onformal �eld theory beyond its topologialsetor. The main referene of this hapter is the publiation of Frenkel et al.[FLN08℄.In the �rst part, I will massage the topologial A-model, [Wit88b, Mar05,DVV91℄, into a �rst order form suh that in the large volume limit, it yields a
δ distribution on the instantons. The ation thus obtained is that of a super-symmetri bc-system, and I will all it the topologial supersymmetri bc-system(Tb).In the seond part, 3.2 - 3.6, I will reverse the diretion of analysis of [Wit88b℄and derive the super quantum mehanis assoiated with the Tb, as was doneby Frenkel et al. [FLN08℄. The result will be a theory that is not yet Morse anddemands two further steps to reprodue the situation of the last hapter. I willdisuss how to do that in setion 3.2 and afterwards restrit my onsiderations tothe target manifold X =CP

1, .f. setion 3.3. I will then derive the perturbativestate spaes assoiated with the desending manifolds orresponding to the �xedpoints {0,∞} ∈ CP
1. They an be modeled by some onformal supersymmetrighost system (CSb) that I introdue in 3.4. In order to formulate the CSb on

CP
1, it is neessary to implement hart transitions. Therefore, I have to furtherintrodue the hiral de Rham omplex, invented by Malikov et al. [MSV99℄, f.setion 3.5.1.That the representation spaes of the Morse theory behind the Tb an be
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modeled by a onformal �eld theory raises the question whether this ould betrue for the A-model itself. I will only touh lightly on that question, pg. 62f,and otherwise assume that the CSb will simulate all aspets relevant for theperturbative low energy spetrum of Morse theory behind the A-model.In the last part, starting with 3.6, I will extend the perturbative represen-tations to the nonperturbative spetrum and introdue the in�nite dimensionalanalogues of the Grothendiek-Cousin operators. This analysis is done for theCSb, and I again assume that it generalizes to the A-model. The most impor-tant step will be to bosonize the CSb. To do that, I will use and generalize themethods desribed in [FMS86, Fri85, FF91, FF90℄, f. 3.6.2. This will enable meto analyze the algebrai properties of the representation theory for the pertur-bative and nonperturbative states of the Morse theory underlying the A-model.Some parts of that investigation have been published in [VF09℄. My approahdi�ers from that of Frenkel et al. [FLN08℄, who relied on a publiation of Malikov[Bor01℄. Motivated by a prior work of Frenkel and Losev [FL07℄, they proposedthat the Grothendiek-Cousin operator is the zero mode of a partiular �eld,whih is part of a vertex algebra onstituted by the CSb after rewriting it inlogarithmi oordinates and extending it by additional �eld zero modes. Myapproah will make use of the bosonized CSb and of the method of logarithmideformation invented by Fjelstad et al. [FFH+02℄. I will disuss the approah ofFrenkel, Losev and Nekrasov and its relation to the method I have hosen in anappendix C.
3.1 Massaging the A-modelThe A-model is a two dimensional �eld theory with an N = 2 (N = (2,2)) world-sheet supersymmetry [Mar05℄, f. appendix B.1. I will start with preparing thetopologial setor of this model and with the transformation of its integrationkernel in the path integral to a delta distribution. For this purpose, let Σ=CP

1with loal metri h = dz ⊗dz̄ and volume form d2z := i
2

dz ∧dz̄, as before. Theindies µ, ν will denote loal oordinates σµ : σ1 = t , σ2 = σ on Σ onsideredas a real manifold. The omplex oordinates are z = t + iσ, z̄ = t − iσ. Further,I will need the epsilon symbol ǫz̄z = −ǫzz̄ = 2i, as de�ned by 1
2
ωµνdxµ ∧dxν =:

1
2ωµνǫ

µν ·d2z. The target manifold X be a simply onneted, onneted, om-
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pat Kähler manifold with metri λg . I denote its loal holomorphi oordinatesas xa with small latin letters a = 1, . . . ,dimC X and similarly the anti-holomorphioordinates as x ā .The A-model, without auxiliary �elds, has the ation
S =

∫

Σ

d2z
{
λgab̄(∂z xa∂z̄ xb̄ +∂z̄ xa∂z xb̄ + iπaDzψ

b̄ + iπb̄Dz̄ψ
a )

−
1

2λ
Rab̄cd̄ πaπb̄ψcψd̄

}
,

(3.1.1)where the embedding x is a Grassmann even and ψ a Grassmann odd salar,
πa ∈ Γ(Σ,Ω1,0(Σ)⊗ x∗(Ω1,0(X ))) and similar for πā .1 The ovariant derivative, forinstane on ψa , is given by Dz̄ψ

a = ∂z̄ψ
a +Γ

a
bc
∂z̄ xbψc . I will all the Grassmannodd �elds fermions, though they have the wrong statistis.Among others (f. appendix B.1), this theory has a symmetry generated by

δ=κ++Q+++κ−−Q−− :
δxa = κ++ψa , δx ā =κ−−ψā ,
δψa = 0 , δψā = 0 ,
δπa = 2iκ−− ∂z̄ xa +κ++

Γ
a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ .

(3.1.2)From the transformation of the fermions one an onlude that the holomorphiembeddings ∂z̄ xa = 0 = ∂z x ā are �xed points of that symmetry. These are alledinstantons, whereas the antiholomorphi ones, whih are �xed points of anothersymmetry generator, are alled anti-instantons. The nilpotent generator Q0 =
Q+++Q−− is independent of the geometry of the domain manifold in the sensethat [Pµ,Q0] = 0, as an be derived from the relation [Q0,Gµ] = Pµ, where Gµ isanother supersymmetry generator, f. appendix B.1.The ation above has more than just instantons as �xed points. In the follow-ing I will make loalization on instanton on�guration spae manifest, in orderto satisfy ➄ of the introdution. Therefore, I will again apply the Bogomolnytrik and add a term whih exludes the anti-instantons (i.e. antiholomorphiembeddings) from the global minima of the ation. When I write the Lagrangian

1The reader who is puzzled by the presence of λ−1 in the last term in (3.1.1) might consider the fol-

lowing. Take the usual action with metric g and not λg . Call the fermionic one form ρā , its indices

are lowered with gab̄ . Now introduce λg and identify πā = ρā , where πā is the corresponding field

lowered by λgab̄ . Then Ra
bc̄d

ρaρ
bψc̄ψd ≃ λ−1R̃a

bc̄d
πaπ

bψc̄ψd because ρa = λ−1(λgab̄π
b̄ ), whereas

R̃a
bc̄d

=Ra
bc̄d

and I omitted the tilde in the action.
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in �rst order form and integrate over the S1 oordinate, the ation will have thesame shape as the Morse theory of the last hapter.
Excluding the Anti-InstantonsConsider the bosoni part of the ation, it an alternatively be written as

∫

Σ

d2z
(
2|∂z xa |2 − x∗(ωK )

) or ∫

Σ

d2z
(
2|∂z̄ xa |2 + x∗(ωK )

)
, (3.1.3)where ωK = i

2
λgab̄ dxa ∧dxb̄ is the Kähler form. Obviously, the ation has bothsorts of instantons as global minima. In order to exlude the anti-instantons Isubtrat ∫

Σ
x∗(ωK ) from the ation above. The transformed ation

Sλ =
∫

Σ

d2z

(
2λgab̄ ∂z̄ xa∂z xb̄ + iπa Dz̄ψ

a + iπb̄Dzψ
b̄ −

1

2λ
Rab̄cd̄ πaπb̄ψcψd

)

(3.1.4)does not have the full supersymmetry of the former one but still the symmetrygenerated by Q++ and Q−− .The pullbak x∗(ωK ) of the Kähler form is a volume form on Σ and henetopologial with respet to the domain manifold. However, it is de�ned withrespet to the target spae metri λg and the question remains if it hanges thetopologial setor of the theory. Sine the Kähler form is losed, the integral∫
Σ

x∗(ωK ) =
∫

x∗(Σ)ωK does only depend on the ohomology lass of β := x∗(Σ) ∈
H2(X ,Z). Therefore, it is invariant under a smooth hange of the Kähler form,respetively the metri. Consequently, the topologial setor is not hangedwhen the anti-instantons are exluded.By the hoie of β, the instanton on�guration spaes an be distinguished.A familiar way to make that visible in the ation is to introdue the analogueof a theta angle. Instead of subtrating ∫

Σ
x∗(ωK ) from (3.1.1), one adds alosed, omplex two form with real part proportional to the Kähler form B =

Bab̄ d xa ∧d xb̄ := τ−ωK on X , τ= τab̄dxa ∧dxb̄ . With this de�nition
Sτ,τ̄ = Sλ+

∫

Σ

x∗(τ) (3.1.5)and the last term yields the �theta angle�. Sine τ is a losed di�erential form on
X , the integral again depends only on the homology lass β. In order to preserve
τ, the limit λ→∞ is reformulated as the ondition that τ̄ab̄ := Bab̄−

iλ
2

gab̄ →−i∞,whilst τ= const. . In the following, I will not make use of the theta angle τ.
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First Order Formalism and the Supersymmetric bc-systemTo make loalization expliit, I introdue a Lagrangian multiplier p = pa dzdxa+
p ā dz̄dx ā and rewrite the ation in �rst order form

Sλ =
∫

Σ

d2z
[
− ipa∂z̄ xa − ip ā∂z x ā + iπaDz̄ψ

a + iπā Dzψ
ā

+
1

2λ

(
g ab̄ pa pb̄ −Rab̄cd̄ πaπb̄ψcψd̄

) ]
.

(3.1.6)In the large volume limit λ→∞, the exponential of the ation beomes a deltafuntion on the instanton moduli spaes while the ation itself beomes what isalled a supersymmetri ghost or b-system
S∞ =

∫

Σ

d2z
(
−ipa∂z̄ xa − ip ā∂z x ā + iπa∂z̄ψ

a + iπā∂zψ
ā
)

, (3.1.7)where I rede�ned p ′
a := pa +Γ

b
ac ψcπb and already left the prime away in theformula above. The supersymmetry takes the simple form

[Q0, xa ]=ψa , [Q0, x ā ] =ψā ,
[Q0, p ā] = 0 , [Q0, pa ]= 0 ,
[Q0,πā] = p ā , [Q0,πa ]= pa , (3.1.8)in analogy with (2.1.10), and Q0 plays the r�le of the BRST operator. In setion3.5.1 it will beome lear in what respet Q0 an be identi�ed with the de Rhamdi�erential. The ation S∞ is Q0-exat

S∞ =
∫

Σ

d2z [Q0,−i(πa∂z̄ xa +πā∂z x ā )] , (3.1.9)and I will all it the topologial bc-system (Tb). It will be the main haraterin the following.
Remark: Let me onlude the large volume limit with a remark on the symme-tries of the Tb. The ation (3.1.7) has an additional bosoni axial symmetry inanalogy with (B.0.4), that the original ation did not have. Therefore, it seemsthat in the large volume limit, the theory aquires an additional anomaly. Insetion 4.2 I will prove, that the bosoni axial symmetry will be broken by theGrothendiek-Cousin operators.
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3.2 The Morse Theory behind the A-modelIn analogy with Frenkel et al. [FLN08℄, I will now reverse the analysis of Witten[Wit88b℄ to obtain the super quantum mehanis (SQM) underlying the Tb. Itwill di�er in two aspets from the model of hapter 2. The target manifold willnot be simply onneted and the ritial manifold of the Morse funtion will notbe zero-dimensional, suh that additional steps have to be taken to redue thesuper quantum mehanis derived from the Tb to the Morse theory disussedin the last hapter. Afterwards, I will restrit to the ase X =CP
1 in setion 3.3.To extrat the Morse theory, let Σ = R×S1 with loal oordinates z = t + iσ.For a �xed value of t , the embedding xa |t (σ) is an element of loop spae LX :={

γ∈C∞(S1, X ) : γ is ontratible} and an be represented by a Fourier series
xa |t (σ)=

∑

n∈Z
xa

n e−inσ . (3.2.1)Similar holds for the other �elds, for instane pa |t (σ) =
∑

n∈Z paneinσ. The modes
xa

n are loal oordinates on LX and one an reformulate the Tb as a SQM on
LX by integrating out the dependene on S1. Up to irrelevant prefators, theholomorphi part of the ation yields

S∞(t ,σ) 7→ S∞(t)=−i

∫
dt

(
pa,−n [∂t xa

n − v a
n (x)]−πa,−n [∂tψ

a
n −ψb

n∂b v a(x)]
)

(3.2.2)and similar holds for the antiholomorphi one. Summation over n is understoodand v a
n (x)∂an :=−nxa

n
∂

∂xa
n
. The Lagrangian an be understood as an in�nite sumLagrangians of the kind (2.1.9), if the vn are interpreted as the gradient �eldsof a Morse funtions.The gradient �elds are assoiated with the generator of loop rotations ∂σ.It is represented on the loops x by means of the vetor �eld v(x) =−i∂σxa∂a +

i∂σx ā∂ā , ∂a := ∂
∂xa and on the oordinates of LX by integrating over the parameter

σ, ∫
S1 v a(x)∂a =

∑
n v a

n∂an . Therefore, the �xed points of v are the onstant loops,i.e. points on X . These are the zero modes xa
0 . Consequently, the �xed pointsof the gradient �eld are not isolated but omprise what is alled a �ritialmanifold�, whih in the situation above is X ⊂ LX .Another way to see this is by analyzing the spetrum of the Hessian Haa n =

−n. The oordinates xa
n with n > 0 belong to negative eigenvalues and thus

46



are oordinates on the asending manifold, oordinates with n < 0 belong tothe desending manifolds while the zero modes xa
0 are oordinates at whih theHessian is indi�erent.The instanton equation an be written as the �ow equation generated by thevetor �eld v :

∂t xa − v a(x) = ∂t xa + i∂σxa = 0, (3.2.3)whih is nothing else but the ondition of holomorphiity ∂z̄ xa = 0. In loaloordinates of LX the instanton equation is
∂t xa

n − v a
n (x) = 0, v a

n (x) =−nxa
n . (3.2.4)However, the SQM above di�ers in two aspets from the one of the last hapter.Firstly, the ritial points are not isolated and seondly, the target manifold LX isonneted but not simply onneted. This latter observation raises the questionwhether there exists a funtion f suh that d f = ιv gγ. Here, gγ is the induedKähler metri gγ(η1,η2) :=

∫
S1 λg |γ(η1(σ),η2(σ)), η1/2 ∈ Γ(TγLX ), TγLX := γ∗T Xare vetor �elds along the loop γ, and the ontration is understood as ιv gγ[η] =∫

S1 λg |γ(v(σ),η(σ)). In the next setion I will introdue a potential suh that thevetor �eld v an be obtained as its gradient. The potential will, however, notbe single-valued on loop spae.
3.2.1 The PotentialOn a simply onneted, sympleti manifold, every sympletomorphism an beexpressed as a gradient of some potential.2 The universal over of loop spae
L̃X := {(γ, γ̃) | γ ∈ LX , γ̃ : D → X s.t. γ= γ̃|∂D }/ ∼, where ∼ means equivaleneunder homotopy and D is the omplex unit disk, is a simply onneted andsympleti manifold (with the indued Kähler metri).In the situation of the last hapter, I subtrated a term −λ

∫
d f to get rid ofthe anti-instantons. It trivially determines the Morse funtion. This motivatesto try

fγ(γ̃) :=−
∫

D
γ̃∗(ωK ) (3.2.5)

2A symplectomorphism is a vector field v s.t. Lv ωK = d ιv ωK = 0, with ωK the symplectic form. If the

manifold is simply connected, a closed one form is already exact and ιvωK = d f for some f .
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as a andidate for the Morse funtion on L̃X . Indeed, taking the exterior deriva-tive and evaluating it in the diretion of a smooth vetor �eld η ∈ TγLX , oneobtains an appropriate one form on the boundary d fγ(γ̃)[η] = −
∫

S1 ωK (∂σγ,η) =
ιv gγ[η], while the orthogonal, radial diretion does not ontribute. However, thepotential is only single-valued on L̃X but multi-valued on LX , namely

fγ(γ̃) = fγ(γ̃′)−
∫

S2
(γ̃• γ̃′)∗(ωK ) (3.2.6)when two disks γ̃ and γ̃′ with the same boundary γ are glued together (whihI denoted by the • ). The sphere S2 is the generator of H2(X ,Z) and ountsthe omponents of u−1(X ), X ⊂ LX in the universal over u : L̃X → LX . Moreillustrative, in the ase X = CP

1 it ounts the number of times the disks arewrapped around X .That the potential is multi-valued on loop spae has an impat on the spaeof states and I will disuss that in setion 3.3.1. For the time being, let menote that under the mapping u, LX fans out into leaves in L̃X , distinguishedby H2(X ,Z). Aording to Frenkel et al. [FLN08℄, I will denote these leaves as
L̃X n , n ∈ H2(X ,Z).
3.2.2 Isolating the Fixed PointsI will now approah the seond problem and isolate the �xed points. This is doneby deforming the instanton �ow equation. The deformation will be suh thatthe �xed point set is redued to the points {0,∞} ∈ X . Frenkel et al. do ahievethis by introduing an additional target spae symmetry into the ation, whihfor the ase X =CP

1 will be a generator of the C
× symmetry of X [FLN08℄.The starting point is the supersymmetri bc-system (3.1.7) whih I generalizein analogy to the Morse theory ation (2.1.9)

S :=
∫

Σ

d2z
(
−ipa [∂z̄ xa +µV a(x)]+ iπa [∂z̄ψ

a +µ∂bV a (x)ψb]+c.c.
)

, (3.2.7)where µ ∈ R. This step an be understood as a deformation of the vetor �eld
v(x) =−i∂σxa∂a+i∂σx ā∂ā aording to v(x) 7→ V (x) = v(x)−µ V (x). The instantonequation is hanged to

∂z̄ xa +µV a(x) = ∂t xa −V
a(x) = 0 (3.2.8)
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and its �xed points are solutions of V
a(x) = 0.In order to approah the situation of the last hapter, it would be nie ifin the situation X = CP

1 these were again {0,∞} ∈ X . This an be ahieved byhoosing the additional vetor �eld to be V (x) = xa∂a+x ā∂ā , whih is a generatorof the C
× symmetry of CP

1. Assumed that the omposite vetor �eld V (x) isnot degenerate, the ritial manifold redues to the intersetion of the ritialmanifolds of V and v , whih onsists of the points {0} and {∞} ∈CP
1.A deformation of the gradient vetor �eld must be followed by a rede�nitionof the Morse funtion f

fγ(γ̃) 7→ −
∫

D
γ̃∗(ωK )− iµ

∫

S1
HV (γ,σ)dσ , (3.2.9)where HV is the solution of dHV (γ,σ)[η] =ωK (V ,η), η ∈ TγLX . The deformationterm only depends on the boundary γ and, hene, does not ontribute with anadditional term to (3.2.6).

The Deformation as “Gauging” the TheoryIn the ase of the symmetry I have just implemented, the ation further simpli�esto
S =

∫

Σ

d2z
(
−ipa(∂z̄ +µ)xa + iπa(∂z̄ +µ)ψa +c.c.

)
, (3.2.10)where µ now looks like a gauge onnetion. Frenkel et al. give this interpretationa meaning by reonsidering the original ation as a quantum mehanial system[FLN08℄. I will follow their disussion for the bosoni part whih thus takes theform

Sbos =−i

∫

R

[∫

S1
(pa∂t xa +p ā∂t x ā)dt ∧dσ−dt H(x, p)

]
, (3.2.11)with H(x, p) = p[v], p[v] =

∫
S1

(
pa(−i∂σxa )+p ā(i∂σx ā )

)
dσ. The Hamiltonian

H(x, p) ouples to the one form dt on R and one might be tempted to on-sider the more general situation where it is a representation of some Lie algebraoupling to a gauge potential A(t)dt = AL(t)H L(x, p)dt with [H L , H M ]= f LM
N

H N .3In order to interpret the deformation as a sort of gauging, I let X = CP
1and hoose H 1 := p[V ], H 2 := p[U ] where U (x) = i(xa∂a − x ā∂ā) is the U (1) =

3The idea behind this is that exp{
∫

A(t )Hdt } can either be considered as a propagator, A = 1, or the

holonomy of a gauge field.
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R/2πZ generator on X and V = xa∂a + x ā∂ā . These Hamiltonians are indeedrepresentations of the Lie algebra of C× with [H 1, H 2] = 0. The deformation of theation an then be interpreted as a deformation of the Hamiltonian H(x, p)dt 7→
H(x, p)dt − AL(t)H Ldt with A1 = µ and A2 = ρ. The form of the ation (3.2.7),now inluding fermions, is reprodued when de�ning A z̄ :=µ+ iρ, µ,ρ ∈R

S =
∫

Σ

d2z
(
− ipa [∂z̄ xa + A z̄ V a(x)]− ip ā [∂z x ā + Az V ā(x)]

+ iπa[∂z̄ψ
a + A z̄ ∂bV a (x)ψb]+ iπā[∂zψ

ā + Az ∂b̄V ā (x)ψb̄]
)

.

(3.2.12)and spei�ally, for the disussion above, when setting ρ = 0. For �nite timeevolutions, the holonomy of A is invariant under the U (1) gauge transformation
ρ 7→ ρ+ 2πn

T , µ 7→µ. However, the gauge �eld is not quantized and I will only usethe name �gauged�, if I want to expliitely distinguish the ation (3.2.10), fromnow on alled the �gauged� Tb, from the ation (3.1.7).
3.3 Perturbative Morse Description of the A-ModelFrom now on I will restrit my onsiderations to the ase X =CP

1. Furthermore,I will write x for the homolorphi and x̄ the anti-holomorphi target spae om-ponents and similar for the other �elds. I assume that these oordinates are theinhomogeneous oordinates on CP
1. The ation I am going to onsider is thedeformed one (3.2.10) with µ ∈ (−1,0).4In the onseutive setion I will determine the perturbative state spaes of theunderlying Morse theory. After I will start with some general disussion of thein-state spaes and then determine the state spae loated on the desendingmanifold with �xed point {0} ∈ CP

1 in setion 3.3.2. In order to derive theperturbative state spae on the desending manifold with �xed point {∞} ∈CP
1,it is neessary to make a hart transition, and I will explain how this works insetion 3.3.3.

4The gauge field component µ is not allowed to be an integer since otherwise V would be degenerate.

This will become evident in equation (3.3.5).
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3.3.1 The Perturbative State SpacesIn the last hapter and partiularly setion 2.6, the perturbative state spaesassoiated with a desending manifold Xc have been obtained as
(
C[[xµ]]⊗∧[[dxµ]]

)
µ=1,...,nc

⊗
(
C[[∂µ]]⊗∧[[ιµ]]

)
µ=nc+1,...,dimR X

·∆c ,wherein dxµ are di�erential forms on and xµ are the oordinates along Xc whihhas dimR Xc = nc , while the derivatives are in the transversal diretions. Thevauum state ∆c was the volume form on Xc , extended in the transversal dire-tions as a distribution.This situation arries over to the Morse theory behind the supersymmetri bc-system up to a peuliarity. Sine LX is not simply onneted, the perturbativestate spaes and also the desending manifolds will be branhed. On every leaf,the situation is however the same as in the toy model of the last hapter.
Branching of the State SpacesIn the Morse theory of hapter 2, the perturbative states orresponding to adesending manifold Xc have been obtained by solving H (pert)

Ψ= EΨ, and takingthe large volume limit of eλ f
Ψ, f. 2.4. These states should be related with thoseof the Morse theory behind the A-model with ation Sλ = S −

∫
Σ

x∗(ωK ).Inluding the points {±∞} ∈ R suh that Σ ≃ S2, I an split the integral∫
S2 x∗(ωK ) =

∫
D γ̃− ∗ (ωK )−

∫
D γ̃+ ∗

(ωK ). Here, (γ̃−• γ̃+)∗ = x∗, γ̃− overs the hemi-sphere of CP2 inluding a repulsive �xed point and γ̃+ overs the other hemi-sphere of X , inluding an attrative �xed point. Therefore, the ket states of thesuper quantum mehanis on loop spae and assoiated with some desendingmanifold LXc , are of the form
Ψ0 = e

∫
D γ̃− ∗(ωK )

Ψ (3.3.1)with Ψ a di�erential form on LX . Sine the integrand is not a total derivative, Ψ0depends on the integration �path�. In partiular, from the disussion in setion3.2.1 follows that the states are homotopially distinguished by H2(X ,Z), whihmeasures how often Σ is wrapped around X . Consequently, one an distinguisha stak of Hilbert spaes by the winding number n via the relation
Ψn := e

∫
n∈H2 (X ,Z) γ̃

− ∗(ωK )
Ψ0 , Ψn+m = e

∫
n∈H2 (X ,Z) γ̃

− ∗(ωK )
Ψm . (3.3.2)
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The full state spae of in-states, orresponding to some ritial point xc ∈ LX , isthe tensor produt of the state spaes with a spei� wrapping number,
H

in
c :=

⊗

n∈H2(X ,Z)

H
in
c ,n . (3.3.3)However, sine all states are isomorphi by a multipliation with

qn := e
∫

n∈H2(X ,Z) γ̃
− ∗(ωK )

, (3.3.4)I will restrit my disussion to H
in
c ,0.5

3.3.2 The Perturbative State Space on L̃X 0,kThe operator q may serve to distinguish not only the leaves of the state spaesbut also the instanton setors (f. pg. 44) and the leaves L̃X k . Therefore, I willassoiate the kth instanton setor with the kth branh and the kth setor of thestate spae. Every leaf L̃X k ontains Xk ≃ X and the preimages of the ritialpoints with respet to u : L̃X → LX . Due to (3.3.2), the instanton equation looksthe same on all leaves, and I will denote the desending manifolds orrespondingto some preimage xc ,k ∈ Xk of a ritial point xc ∈ X by L̃X c ,k . The perturbativestate spaes will be assoiated with these desending manifolds.The perturbative state spaes follow from the knowledge of the oordinateson the desending manifolds, .f. setion 2.6. Therefore, I onsider the instantonequation (3.2.4) for the gauged Tb in a neighborhood of {0} ∈ X0,k

dt xn − (−n−µ)xn = 0, µ ∈ (−1,0) , (3.3.5)wherein the xn are oordinates of L̃X k for an arbitrary k. By means of theHessian Hn = −(n +µ) one an distinguish the diretions of the tangent spaealong the desending manifold L̃X 0,k . They belong to positive eigenvalues andare thus the {xn }n≤0, inluding the ritial point x0 = 0. The di�erential formson L̃X 0,k are the modes {ψn}n≤0, and ψ0 an be identi�ed with the usual holo-morphi di�erential form dx0 on the zero mode part X0,k ⊂ L̃X 0,k , X0,k ⊂ Xk ofthe desending manifold:
xn ≃ xn , ψn ≃ dxn . (3.3.6)

5Frenkel et al. considered a different operator q with τ in the exponent, cf. section 3.1 and [FLN08].
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The momenta, onjugate to xn and ψn , n ≤ 0 are also oordinates along thedesending manifold. These are the modes ip−n and iπ−n with n ≥ 0, and theymay be identi�ed with geometri data aording to
ip−n ≃ ∂n , iπ−n ≃ ιn . (3.3.7)These oordinates satisfy the onditions for a anonial quantization [pn , xm ] =

−iδn,−m and [πn ,ψm ] =−iδn,−m . Consequently, the perturbative state spae on
L̃X 0,k , k = 0, now inluding the antiholomorphi part, must ontain the span

H
in
0,0 =C[xn , x̄n ,ψn ,ψ̄n ]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 ·∆0 , (3.3.8)where

∆0 = ΞL̃X 0,0
(ψ1ψ2 · · · )(ψ̄1ψ̄2 · · · ) ,

ΞL̃X 0,0
∼

∏

n>0,m≥0

δ(2)(xn , x̄n )δ(2)(ψn ,ψ̄n )δ(2)(pm , p̄m)δ(2)(πm , π̄m)
(3.3.9)ats like a harateristi funtion along L̃X 0,0 and a distribution in the otheroordinates. I have been arful with stating that the state spae ontains (3.3.8)and not with laiming that it equals this spae. The reason is that I want to relatethe perturbative state spaes of Morse theory to a onformal �eld theory. If inthe spirit of Morse theory the �eld modes are interpreted as simple oordinatesor di�erentials, it makes sense to allow for Taylor expansions and thus for powerseries. However, the representations of CFTs are usually spanned by polynomials[KR87℄. Yet, if this related CFT will be formulated on CP

1 this ondition mustbe relaxed for the zero modes, f. setion 3.5.1.An alternative way to identify the desending manifolds is to onsider theinstanton �ow equation (3.2.3) for x(z) in the gauged Tb and after a hange toradial oordintates ω= t + iσ 7→ exp ω ∈C×

(
∂z̄ +

µ

z̄

)
x(z) = 0. (3.3.10)To derive this, it is neessary to remember that A = Aωdω+ Aω̄dω̄ and Aω̄ = µtransforms like a one form, A z̄ = Aω̄

∂ω̄
∂z̄
. In partiular, if I add the point {0} to

C
× and onsider the instanton �ow equation of the Morse theory to the vauumon�guration {0} ∈ X when z 7→ 0 (⇔ t 7→ −∞), i.e. invoking x(0) = 0, the solutions

x(z) = |z|−2µ
∑

n≤0

xn z−n , x(0) = 0, µ ∈ (−1,0) (3.3.11)
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reprodue the �ow lines along the desending manifold and thus along the statespae (3.3.8).6 In the equation above I have saled x with the �homogeneity�
|z|2µ. It would have been su�ient to multiply z̄µ, however, the solution x wouldthen have been multi-valued. Single-valuedness of the �elds and of orrelationfuntions is a property demanded by onformal �eld theories, and I antiipatedthis in the solution above.
3.3.3 The Perturbative State Space on L̃X ∞,kIn order to derive the state spae on L̃X ∞,0, it is at suggestive to make a oor-dinate transition for x ∈ LX

x(σ) 7→ x̃(σ) = x̃n e−inσ := [x(σ)]−1 , (3.3.12)where I de�ne x(σ)−1 = x−1
0

∑∞
n=0(−)n x−n

0 ∆x(σ)n by a Taylor expansion and with
∆x(σ) =

∑
k 6=0 xk e−ikσ. For the only mode being inverted one has to assumethat x0 6= 0. Notie, that the inverse [x(σ)]−1 is well de�ned beause x0 has themeaning as a simple oordinate on CP

1.Under this oordinate transition, the instanton �ow equation (3.2.8) is hangedto
∂t x̃n − (−n+µ)x̃n = 0, (3.3.13)or alternatively in radial oordinates z = exp t + iσ for x̃(z) to

(
∂z̄ −

µ

z̄

)
x̃(z) = 0. (3.3.14)This mirrors, that the ation (3.2.10) is not invariant under oordinate hanges.7In analogy to the disussion in the last setion, I an now add the point {∞} =

{x̃0 = 0} ∈ X∞,0 to C
× and solve the instanton equation with boundary ondi-tion x̃(0) = 0 (z → 0 ⇔ t → −∞), in order to extrat the oordinates along thedesending manifold L̃X ∞,0. The single-valued solution for x̃ reads

x̃(z)= |z|2µ
∑

n<0

x̃n z−n , (3.3.15)

6The solutions ascending to {0} ∈ X0,0 require a different boundary condition: x(∞) = 0. Notice further,

that closing C
× to the disk C

× ∪ {0} ≃ D and demanding x(0) = 0 identifies x ∈ LX with an element in

L̃X .
7The composition x 7→ x−1, µ 7→−µ is a symmetry of the action.
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and similar holds for ψ̃. The other �eld modes along L̃X ∞,0 an now indiretly beobtained as the modes onjugate to those of x̃ and ψ̃. Therefore, the perturbativestate spae on L̃X ∞,0 equals
H

in
∞,0 =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn ]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn]n≤0 ·∆∞ , (3.3.16)with

∆∞ =ΞL̃X∞,0
(ψ0ψ1 · · · )(ψ̄0ψ̄1 · · · ) ,

ΞL̃X∞,0
∼

∏

n≥0,m>0

δ(2)(xn , x̄n )δ(2)(ψn ,ψ̄n )δ(2)(pm , p̄m)δ(2)(πm, π̄m ) .
(3.3.17)This �ts with an analysis of the eigenvalues of the Hessian H̃n =−n+µ.

3.4 Relation to Conformal Supersymmetric GhostsOn a �rst sight, these state spaes equal partiular representations of the on-formal supersymmetri bc-system (CSb) with domain manifold C
× and targetspae C. I will �rst give a brief introdution to the CSb whih should larify thisrelation. Afterwards, I am going to explain why I am areful with identifyingthe CSb and the Tb, though I will argue that the perturbative state spaes ofthe Morse theory underlying the gauged Tb an be modelled by the CSb.I assume that the reader has a basi knowledge of CFTs, otherwise she or hemay onsult [Fri85, Gin88, Gab00℄.

3.4.1 The Conformal Supersymmetric bc-SystemAs long as it is not logarithmially extended [DF08℄, the CSb is assumed tosplit into (equivalent) holomorphi and antiholomorphi halves. For the momentI will start with the holomorphi part.
Representation TheoryLet the domain manifold be C× with oordinates z = et+iσ and the target spae be
C. The CSb onsists of bosoni �elds x(z)=∑

n∈Z xn z−n and p(z)=∑
n∈Z pn z−n−1,whose modes de�ne a Heisenberg algebra [pn , xm ] = −iδn,−m , and of the super-partners ψ(z) =

∑
n∈Zψn z−n , and πn =

∑
n∈Zπn z−n−1 whih omprises a Cli�ord
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algebra [πn ,ψm ]=−iδn,−m .8 There exists a whole stak of �harged� representa-tions
xn |p〉− = 0 =ψn |p〉+ , n >−p , pn |p〉− = 0 =πn |p〉+ , n ≥ p (3.4.1)with p ∈Z [FF91, Fri85℄. In the ase of the fermions, these representation spaesare equivalent beause all highest weight states are related by

|p〉+ =ψ−p+1 · · ·ψ0|0〉+ , p ≥ 0,

|p〉+ = ip πpπp+1 · · ·π−1|0〉+ , p < 0.
(3.4.2)This does not hold for the bosoni representation spaes, as I am going to disussin setion 3.6.2. This observation will be of ruial importane for the existeneof the Grothendiek-Cousin operators.The representation spaes are graded by some bosoni and fermioni U (1)urrents j−(z) =−i : x(z)p(z) : and j+(z)=−i :ψ(z)π(z) :, where normal ordering isde�ned in the |0〉± vauum.9 Under that ondition, |p〉ǫ has harge −ǫp, where

ǫ = +1 for fermions and −1 for the bosons. The �eld modes satisfy [ j−n , xm ] =
−xn+m , [ j−n , pm ] = pn+m , [ j+n ,ψm ] = −ψn+m , [ j+n ,πm] = πn+m and the urrentsomprise Lie Heisenberg algebras [ j ǫn , j ǫm] = ǫnδn,−m . Aording to Feigin andFrenkel [FF91℄, I will denote the thus graded representation spaes as Mǫ(p) =
⊕

l∈Z Mǫ(p)l , where l is the U (1) harge.To the algebra of the �eld modes orresponds the operator produt algebraof the �elds. It is represented on the p vaua by means of the operator produtexpansions (OPEs)
x(z)p(ω)=

i

z −ω

( z

ω

)p
, ψ(z)π(ω)=

−i

z −ω

( z

ω

)p
,

p(z)x(ω)=
−i

z −ω

(ω
z

)p
, π(z)ψ(ω)=

−i

z −ω

(ω
z

)p
.

(3.4.3)The Virasoro algebra is represented on these spaes by the energy momentumtensor
T (z) = i : p(z)∂z x(z)−π(z)∂zψ(z) : , T (z)=

∑

n∈Z
Tn z−n−2 . (3.4.4)

8Remember, that [·, ·] denotes the superbracket.
9I use : · : as a C-linear mapping such that λ : a +b :=: λa +λb :,λ ∈C.

56



It an be obtained from the �elds
G (z)= i :π(z)∂z x(z) : and Q(z)= i : p(z)ψ(z) : (3.4.5)by T (z) = [Q0,G (z)], where Q0 =

∮
0 Q(z). These �elds together with the fermioni

U (1) harge de�ne a twisted N = 2 superonformal algebra [DVV91℄. Sine thebosoni and fermioni parts ontribute with opposite entral harges cǫ = −2ǫ,the omposite system has entral harge zero.The basi �elds have onformal weights
∆T (x) = 0 =∆T (ψ) and ∆T (p)= 1 =∆T (π) (3.4.6)and the ommutation relations with the Virasoro generators are [Tn , xm ] =−(m+

n)xm+n , [Tn , pm ]=−mpn+m and analogously for the fermions. In partiular, onehas [ j ǫ0 ,T0] = 0 and the Hamiltonian respets the grading of the representationspaes Mǫ(p)l .
The Antiholomorphic PartThe antiholomorphi urrents neessarily have to be taken into aount, whenthe CSb gets related to the Tb. Two reasons are that the Tb has an anomalyfree vetorial urrent and the entral harge is zero. These e�ets an be ahievedfor the CSb, only if the holomorphi and antiholomorphi parts are both on-sidered.I de�ne the antiholomorphi urrents to be

j̄+(z̄) =+i : ψ̄(z̄)π̄(z̄) : , j̄−(z̄) =+i : x̄(z̄)p̄(z̄) : , (3.4.7)with representation spaes just as before. Aording to my hoie of sign inthat de�nition, the grading is, however, di�erent, namely M̄ǫ(p̄) =
⊕

l∈Z M̄ǫ(p̄)l ,
j̄ ǫ0 |p̄〉ǫ = ǫp̄ |p̄〉ǫ. Sine

j ǫV (z, z̄) = j ǫ(z)+ j̄ ǫ(z̄) ,

j ǫA(z, z̄) = j ǫ(z)− j̄ ǫ(z̄)
(3.4.8)are the vetorial and axial urrents, respetively, the hoie above invokes thatthe holomorphi-antiholomorphi representation spaes Mǫ(p, p̄) =

⊕
l ,s∈Z Mǫ(p)l⊗

M̄ǫ(p̄)s are graded with respet to the vetorial urrents. At this stage, this
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hoie is a question of onveniene, however, when the CSb is logarithmiallydeformed, the bosoni axial symmetry will be broken, whih I am going to ex-plain in setion 4.2.Conerning the other �elds in the antiholomorphi half, they are de�ned inomplete analogy with the holomorphi senario. The full Virasoro algebra atson Mǫ(p, p̄) by means of
T −(z, z̄) = i : ∂z x(z)p(z)+∂z̄ x̄(z̄)p̄(z̄) : ,

T +(z, z̄) = i : ∂zψ(z)π(z)+∂z̄ψ̄(z̄)π̄(z̄) :
(3.4.9)under whih the state |p, p̄〉ǫ := |p〉ǫ⊗|p̄〉ǫ has onformal weight

∆T ǫ (|p, p̄〉ǫ) =
1

2
ǫ[p(p −1)+ p̄(p̄ −1)] , (3.4.10)as follows from alulating (T ǫ

0+T̄ ǫ
0 )|p, p̄〉. Together with the superhargesQ(z, z̄) =

i : p(z)ψ(z)+p̄(z̄)ψ̄(z̄) : and G(z, z̄) = i : π(z)∂z x(z)+π̄(z̄)∂z̄ x̄(z̄) :, the omplete CSbdetermines a twisted N = (2,2) superonformal algebra.
Ground StatesThe full, supersymmetri theory has several states with weight zero, i.e. allombinations of |0〉± and |1〉±. However, only one of them, |0,0〉 := |0,0〉−⊗|0,0〉+,is a onformally invariant ground state. This an be seen by applying T±1. Forinstane, the state |1,1〉, whereby

|p, p̄〉 := |p, p̄〉−⊗|p, p̄〉+ , (3.4.11)has weight zero but is not invariant under T±1. A omputation shows that
T−1|1,1〉 = i(x−1p0 +ψ−1π0)|1,1〉 6= 0, and similar for the antiholomorphi part.
Correlation Functions and UnitarityLike the Tb, the CSb is not unitary. I will now disuss, how that an beunderstood as an e�et of the anomaly q of the urrents

T (z) j ǫ(ω) =
q

(z −ω)3
+

j ǫ(z)

(z −ω)2

[Tn , j ǫm ] =−m j ǫn+m +
q

2
n(n+1)δn,−m

, q= ǫ . (3.4.12)
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Similar holds for the antiholomorphi part with q̄=−ǫ. The appearane of theanomaly for T1 means that j ǫ(z) is not invariant under SL(2,C)/Z2 transforma-tions. Under a holomorphi transformation z 7→ f (z), the urrents aquire anadditional term
j ǫ(z)= j ǫ( f (z))∂z f +

q

2

∂2
z f

∂z f
. (3.4.13)The quantities that make non-unitarity manifest are the orrelation funtions.These are C-bilinear mappings (|q〉,φ(z)|p〉)= q 〈φ(z)〉p ∈C, whereby φ is an arbi-trary ombination of quasi-primary �elds and their �eld modes. This pairing isde�ned suh, that the adjoint of φ(z) is obtained by the transformation z 7→ z−1,whih maps an inoming to an outgoing �eld.10 Moreover, it shall be SL(2,C)invariant and respet the operator produt algebra (OPA) in the sense that

q 〈b(z)c(ω)〉p = b(z)c(ω) for appropriate q, p.11 What is meant by �appropriate�will be lari�ed below.The adjoint urrents, in the sense above, are given by
j ǫ † (ω) = z−2 j ǫ(z−1) , j̄ ǫ

†
(ω) = z̄−2 j̄ ǫ(z̄−1) ,

j ǫ †
k

= −q δk ,0 − j ǫ−k
, j̄ ǫ

†
k = −q̄ δk ,0 − j̄ ǫ−k

.
(3.4.14)Due to the di�erent sign of q= ǫ and q̄=−ǫ, the adjoint of the vetorial urrentremains anomaly free. If, however, the holomorphi part is onsidered separately,the anomalies due to z 7→ z−1 have to be ompensated, if the orrelation funtionsare supposed to be SL(2,C) invariant. Therefore, they have to satisfy

(|q〉, j ǫ(z)φ(ω)|p〉)= ( j ǫ
†

(ω)|q〉,φ(ω)|p〉) . (3.4.15)In partiular, for the zero mode that means ( j ǫ0
† |q〉, |p〉) = ([−q+ q]|q〉, |p〉) !=

(|q〉,−p|p〉)= (|q〉, j ǫ0|p〉), and the state dual to |p〉 is given by (|−p +q〉, ·). In thefollowing I will use the notation 〈p| = (|q〉, ·), suh that
〈q|p〉 = δq,−p+q . (3.4.16)

10This conjugation shall not be confused with the definition of the dual states I have used in (2.2.5). The

adjoint fields here are different, for they are not the antiholomorphic counter parts.
11Usually, one also demands that correlation functions be single valued. This can be achieved by in-

cluding the anti-holomorphic half, and the way how to do that is restricted by the demand to build a

single-valued quantity.
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The same line of arguments holds if any ombination of �elds is inserted, andthe non-trivial orrelation funtions are subjet toCorr(q, p) =
{

q 〈φ(z)〉p : J (φ)= q +p −q
}

, (3.4.17)whereby J (φ) denotes the total harge of that ombination. The harge q isalled a bakground harge, it auses that the dual �bra� and �ket� states aredetermine a pairing but not a salar produt.
3.4.2 Identifying the State SpacesThe Fok spae of the CSb in the representation on |0,0〉 equals

H0 =C[xn , x̄n ,ψn ,ψ̄n ]n≤0 ⊗C[pn , p̄n ,πn , π̄n]n<0 · |0,0〉 , (3.4.18)whih seems to be idential with the perturbative state spae (3.3.8) on L̃X 0,0,when the �eld modes are related and under ∆0 ≃ |0,0〉. This is further promotedby the observation that upon anonial quantization, the loop spae oordinatesand �eld modes satisfy the same ommutation relations, f. pg. 53. However,the identi�ation fails to be exat with respet to the quantum numbers of the�eldmodes and states.Moreover, aording to (3.4.1) and if the CSb were onsidered on the hartof CP1 inluding the point {∞}, the representation
H∞ =C[x̃n , ¯̃xn ,ψ̃n , ¯̃ψn ]n<0 ⊗C[p̃n , ¯̃pn , π̃n , ¯̃πn ]n≤0 · �|1,1〉 (3.4.19)should struturally be identi�ed with the perturbative state spae of Morse the-ory (3.3.16), putting H

in
∞,0 ≃H∞ and ∆∞ ≃ �|1,1〉. It is, however, not yet lear howto de�ne the CSb on CP

1 and, in partiular, how to implement hart transitions.This has been takled by Malikov, Shehtman and Vaintrob [MSV99℄, and willbe the subjet of setion 3.5.1. Before I disuss this topi, I will extend theCSb by introduing the homogeneities, appropriate to aomodate the quan-tum numbers. Moreover, I will brie�y disuss the onsequenes it would haveif one related the CSb without homogeneity to the ungauged Tb. This willtouh the question if the Tb an be identi�ed with a CFT.
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The CSbc with HomogeneityFor onveniene, I will restrit my onsiderations to the hart around 0 ∈ CP
1.The Hamiltonian of the Morse desription of the topologial bc-system (3.2.10)is

H =−i
∑

n∈Z
(µ+n)(xn p−n +ψnπ−n + x̄n p̄−n + ψ̄n π̄−n)

=
∑

n∈Z
(LVn +L

V̄n
) , Vn =−(µ+n)xn∂n , V̄n = (Vn)

(3.4.20)and due to the shift by µ di�ers from T0 = T +
0 + T̄ +

0 +T −
0 + T̄ −

0 . One an overomethis mismath of energies by rede�ning the �elds of the CSb:
x(z) =

∑

n∈Z.

xn z−n |z|−2µ , p(z)=
∑

n∈Z
pn z−n−1|z|2µ , (3.4.21)and similar for the fermions [FLN08℄. As has been the ase for the Morse theory,the �elds are not holomorphi any more. Indeed, the equation of motion for theonformal �eld x with homogeneity µ equals the instanton equation of Morsetheory (

∂z̄ + µ
z̄

)
x(z) = 0. Furthermore, the boundary ondition whih seleted thedesending manifold for Morse theory has been x(0) = 0 and led to the expansion(3.3.11). In ase of the CSb, this boundary ondition is realized by plugging inthe representation |0,0〉 and onsidering the on-shell expansion of x(z), i.e.

x(z)|0,0〉− = |z|−2µ
∑

n≤0

xn z−n |0,0〉 . (3.4.22)The �eld rede�nitions introdue tadpoles due to the inhomogeneity. Calu-lating T (z)T (ω), one �nds that the stress tensor should be orreted
T ǫ(z) 7→T ǫ(z)+

ǫµ(µ+1)

2z2
, T̄ ǫ(z̄) 7→ T̄ ǫ(z̄)−

ǫµ(µ+1)

2z̄2
, (3.4.23)where T ǫ, T̄ ǫ are de�ned as before but with the rede�ned �elds. However, thefull stress tensor has no tadpoles and its zero mode equals the Hamiltonian ofthe Morse theory, T0 = H . Indeed, [T0, xn ] = (−µ−n)xn , [T0, pn ] = (µ−n)pn andsimilar for the other �eld modes. The highest weight states obtain new onformalweights of value ∆T ǫ (|p〉ǫ) = ǫ

2 (p −µ)(p −µ−1), while the entral harges for thebosons and the fermions are still the same. The U (1) harges are also orretedby tadpoles,
j ǫ(z) 7→ j ǫ(z)+

ǫµ

z
, j̄ ǫ(z̄) 7→ j̄ ǫ(z̄)−

ǫµ

z̄
, (3.4.24)
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while the harge anomalies are not a�eted. Thus, the states |p〉ǫ and |p̄〉ǫ have
U (1) harges of value −ǫ(p−µ) and ǫ(p̄−µ), while the harges of the �eld modesare insensitive to µ.Let me onlude that for the CSb with homogeneity one may identify

H
in
0,0 ≃H0 , ∆0 ≃ |0,0〉 , (3.4.25)and the �eld modes and states have the orret quantum numbers.

3.4.3 What if the Gauge Field is Absent?Having stated a orrespondene between the low energy spetrum of the gaugedMorse theory on the desending manifold L̃X 0,0 and the CSb with homogeneity,one might now ask, if the CSb with µ= 0 were the appropriate theory to desribethe Morse theory of the Tb without gauge �eld? The Hamiltonians are identialand the �eld modes have the same energies. I will now argue, that suh a relationfails, beause the Tb without gauge �eld has more topologial states than theordinary CSb.
The Topological States of Morse Theory without HomogeneitySine the Hessian is inde�nite on the zero modes, these oordinates are nei-ther transversal oordinates nor oordinates along the desending manifold.Moreover, they have zero energy and in priniple may ontribute to the groundstates. Thus, there are not suh strong onstraints on the ground states as inthe situation with gauge �eld.A �rst onsequene is that the ground states are smooth di�erential formson X = CP

1 with respet to the de Rham di�erential d, i.e. elements of Ω•
d

(X )[FLN08℄. To omprise ground states in the sense of topologial states, this spaemust be further restrited by the BRST ondition Q0∆0 = 0. In analogy with(2.2.4) and in oordinates of loop spae, the BRST harge for the Morse theoryequals
Q0 = i

∑

n∈Z
(ψn p−n + ψ̄n p̄−n) . (3.4.26)In partiular, its zero mode part an be identi�ed with the usual de Rham deriva-tive d = ∂+ ∂̄ on X . Sine CP

1 has Betti numbers dim H 0
d

(X ,R) = dim H 2
d

(X ,R) = 1
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and dim H 1
d

(X ,R) = 0, all losed di�erential forms must have an even form de-gree, i.e. an even number of ψ0, ψ̄0. Consequently, the topologial states areeven graded di�erential forms on X .In ontrast, if µ ∈ (−1,0), the zero modes have non-vanishing energy and arenot subjet to the restrition via Q0. In partiular, this signi�es that the theorywith gauge �eld inludes di�erential forms with odd numbers of ψ0,ψ̄0.
The Ungauged Morse Theory is not Canonically Related to the CSbcThe representation spae for the CSb onsists of polynomials in the zero modesand not of smooth di�erential forms. However, in my oppinion this is not themain aspet whih makes the di�erene to the Morse theory with µ = 0, aslaimed by Frenkel et al. in [FLN08, pg. 32℄. As already mentioned on pg. 53,the zero modes will be allowed to appear in power series, when the CSb is ge-neralized to the hiral de Rham omplex [MSV99℄. Rather, the di�erene lies inthe following observation. The ground states in the Morse type theory do notneessarily fatorize into holomorphi and antiholomorphi (target spae) oor-dinates, in general there do not exist holomorphi and antiholomorhpi funtions
h and h̄ suh that f (x0, x̄0)ψpψ̄q = [h(x0)ψp ] · [h̄(x̄0)ψ̄q ]. In ordinary onformal�eld theories this is, however, the ase beause the Virasoro algebra fatorizes.Therefore, the vauum setor of the CSb is smaller than that of the Tb when
µ= 0.That the holomorphi and antiholomorphi parts do not fatorize is a propertywhih is also typial for logarithmi onformal �eld theories. However to thebest of my knowledge, this is still untypial for the ground states. At leastit indiates that if the Tb without gauge �eld is onformal, it an not be anordinary onformal �eld theory.
3.5 Conformal Supersymmetric Ghosts on CP

1In the last setion I have obtained the perturbative state spaes of the Morsetheory underlying the Tb. The most important observation has been that theyan be modelled by representations of the onformal supersymmetri bc-system(CSb). However, this relation had the drawbak that the CSb is not globally
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de�ned on CP
1, suh that I ould not reprodue the hart transition of the Morsetheory on the level of the CSb.I will now larify how the CSb an be formulated globally on CP

1 and in-trodue the hiral de Rham omplex [MSV99℄. This setion will onlude theanalysis of the perturbative representation theory of the Morse theory underlyingthe Tb.
3.5.1 The Chiral de Rham ComplexThe hiral de Rham omplex generalizes the usual de Rham omplex on X toa larger omplex Ω

•
Q0

(X ), de�ned on a sheaf of vertex algebras on X . In theontext of the A-model, it will be the Dolbeault omplex with is generalizedby the ohomology operator Q0 = ∂+D, [∂,D] = 0, Q
2
0 = 0. Hereby, ∂ denotesthe holomorphi (Dolbeault) di�erential on X , and the vertex algebra underonsideration is the holomorphi CSb with homogeneity, f. setion 3.4.1. Itssuperharge Q0 = i

∑
n∈Zψn p−n will play the r�le of the generalized exterior dif-ferential.

Local Vertex Algebra of the CSbcConsider the holomorphi CSb with homogeneity and embedding x : Σ→ C0 ⊂
X = CP

1. For onveniene, I hoose the representation to be Mǫ(0) on |0〉 =
|0〉+⊗|0〉−.The state spae an be identi�ed with the polynomials in the modes

P0 =C[xn ,ψn , ]n≤0 ⊗C[pn ,πn]n<0 (3.5.1)and one an de�ne a so-alled vertex operator, onstituting an isomorphy be-tween �elds and states
Y (x0, z) = x(z) , Y (x−n , z) =

1

n!
∂n

z x(z) , n < 0,

Y (p−1, z) = p(z) , Y (p−n , z) =
1

n!
∂n

z p(z) , n <−1,

(3.5.2)and similar for the other �elds. For any monomial y1 · · · yk built by elements
yi ∈ {xn , pm ,ψn ,πm }n≤0,m<0 the vertex operator is generalized by means of

Y (y1 · · · yk , z) =: Y (y1, z) · · ·Y (yk , z) : , (3.5.3)
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and this further extends to polynomials. In order to simplify notations, I willequivalently write Y (y1 · · · yk , z) = y1 · · · yk (z).Due to their transformation property under Q0 and their onformal weights,at least for µ = 0, the zero modes an be identi�ed with the geometri data on
X , as has already been done for the Morse theory, f. (3.3.6) and (3.3.7). Onthat grounds, it would be nie to extend the de�nition of the vertex algebra topower series in the zero modes. I will adopt the approah of [MSV99, pg. 449f℄to the situation µ 6= 0. Let f (x0) be a power series and de�ne Y ( f (x0), z) by theTaylor expansion

Y ( f (x0), z) :=
∞∑

n=0

∆x(z)n 1

n!
∂n
|z|−2µx0

f (|z|−2µx0) , ∆x(z) = |z|−2µ
∑

k 6=0

xk z−k . (3.5.4)One an write ∆x(z)n =
∑

k∈Z ck (|z|)z−k , wherein ck (|z|) is an in�nite sum of mono-mials in {|z|−2µxn }n 6=0. On any |v〉 ∈ C[xn , pn ,ψn ,πn ]n<0 ⊗C[[x0,ψ0]] · |0〉, ck (|z|)breaks down to a �nite sum and thus Y ( f (x0), z) is a well de�ned endomorphismon that spae. The thus generalized �elds an be multiplied by any polynomial�eld g (y)(z), y ∈ {xn , pm ,ψn ,πm}n≤0,m<0

Y (g (y) f (x0), z) =: Y (g (y), z)Y ( f (x0), z) : . (3.5.5)The inverse operation, to obtain a state given a �eld, works by
f (y)= Y ( f (y), z)|µ=0 · |0〉

∣∣
z=0

, (3.5.6)where Y ( f (y), z) is an arbitrary �eld. Thus, Y de�nes an isomorphism betweenstates and �elds.
Local Extension of the de Rham ComplexSine the zero modes an be identi�ed geometri data on X , the superharge Q0takes the required form Q0 = ∂+d−+d+, d− :=

∑
n<0 p−nψn and d+ =

∑
n>0 p−nψnon P0. Malikov et al. [MSV99℄ prove, that there is a quasiisomorphism (Ω,∂) →

(P0,Q0), whereΩ=C[x0,ψ0]. That means, ∂ does only at on the subsetor of thezero modes and ommutes with d± and the ohomologies are the same H•
∂

(Ω) ≃
H•

Q0
(P0). The proof is made by suessively alulating the ohomologies of d+and d− and an be generalized to Ω= C[[x0,ψ0]] and P0 =C[xn , pn ,ψn ,πn]n<0 ⊗

C[[x0,ψ0]], f. [MSV99, pg. 448℄. Thus, loally, the de Rham omplex generalizesto a omplex of vertex algebras under Q0.
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Chart TransitionsIn order to extend the loal setting to CP
1, it is espeially important to give themapping X0,0 \ {0} ≃C

× ∋ x0 7→ x−1
0 a meaning on the level of �elds.Firstly, on the level of �eld zero modes p0 ats as a derivative and thus aommutation with x−1

0 an be de�ned as [p0, x−1
0 ]=−[p0, x0]x−2

0 . Now, in analogywith (3.5.4), the �eld orresponding to x−1
0 an be delared to equal

Y (x−1
0 , z) = |z|2µx−1

0

∞∑

n=0

(−)n |z|2nµx−n
0 ∆x(z)n , (3.5.7)where I de�ne Ỹ (x̃0, z) = Y (x−1

0 , z). For onveniene, I will also use the nota-tion Ỹ (x̃0, z) = x̃(z) = |z|2µ
∑

n∈Z x̃n z−n . Notie, that in analogy with (3.4.2), thetransformed �eld x̃ satis�es the equation of motion (∂z̄ −
µ
z̄ )x̃(z) = 0.In the same spirit as above, Malikov et al. generalize hart transitions of theother zero modes to hart transitions of �elds. Let f : x0 7→ φx = f (x0) be aninvertible oordinate transformation with f ∈ C[[x0]]. Sine they an be relatedto geometri quantities on X , the other �eld zero modes transform aording to

φx = f (x0) , φψ =
∂ f

∂x0
ψ0 ,

φp =
∂ f −1

∂φx
p0 +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ0π0 , φπ =

∂ f −1

∂φx
π0 .

(3.5.8)Here, Malikov et al. assume that the ation orresponding to the CSb equals(3.1.7), where pa is rather p ′
a = pa + Γ

b
acψ

cπb . The transformation of Γ 7→(
∂ f −1

∂φx

)2 ∂ f
∂x0

Γ+ ∂2 f −1

∂φ2
x

∂ f
∂x explains why p0 above does not transform homogeneousely.The �elds orresponding to the power series above are now de�ned to be

φx (z) = f (x0)(z) , φψ(z)=:
∂ f

∂x0
(z)ψ(z) : ,

φp (z)=:
∂ f −1

∂φx
(z)p(z)+

∂2 f −1

∂φ2
x

∂ f

∂x0
(z)ψ(z)π(z) : , φπ(z)=:

∂ f −1

∂φx
(z)π(z) : .

(3.5.9)This de�nition is not obtained by simply using the vertex operator on the �eldmodes above. The reason is twofold. Firstly, Y is not de�ned on π0 and p0 sinethey are not part of P0. Seondly, the de�nition is suh that the transformed�elds are again primary �elds.
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In a next step, that I will not reprodue, the authors verify that the trans-formed �elds preserve the ommutation rules (3.4.3). The ambitioned readermay hek this for the following example, making use of the relation
f (x)(z)p(ω)=

∂ f

∂x0
(ω) x(z)p(ω) (3.5.10)and similar for p(z) f (x)(ω). In terms of the �eld modes, this amounts to [p0, f (x0)]=

[p0, x0]∂x0 f (x0).
Example in Logarithmic Coordinates A partiular example that I will makeuse of in C is the CSb in logarithmi oordinates x0 7→ exp x0. The thus trans-formed �elds are

φx (z)=: ex(z) : , φp (z)=: e−x(z)
[
p(z)−ψ(z)π(z)

]
: ,

φψ(z) =: ex(z)ψ(z) : , φπ(z) =: e−x(z)π(z) : .
(3.5.11)A oordinate transition φx 7→φ−1

x hanges the sign of the �elds {x, p,ψ,π} above.
The Vertex Operator Algebra in the New Fields The vertex algebra in termsof the �elds in (3.5.9) is obtained in analogy to (3.5.2) and (3.5.3). The questionis indeed not how the �elds are onstituted, but how to get bak the �eld modesin the new oordinates. This is obtained by (3.5.6). In partiular, for a monomial
y1

n1
· · · y N

nN
, where yk

n is a �eld mode among P0, one an speify the orrespondingstates in the new oordinates aording to
φy1

n1
···y N

nN
|0〉 = [φy1

n1
(z)]n1 · · · [φy N

nN
(z)]nN · |0〉 , (3.5.12)where [φy (z)]n denotes the �eld mode (φy )n in the �eld expansion φy (z) =

|z|2µ
∑

n∈Z(φy )n z−n−∆.Important examples are the omposite �elds Q(z), T (z), G (z) and j±(z). Take,for instane, φQ(z) = i : φp (z)φψ(z) :, aording to the disussion above this �eldis obtained as φQ(z) = Y (iφp−1φψ0 , z). Is it possible to further express the �eldmodes (state) in terms of the original ones and thereby obtain a formulation interms of the original �elds? In the new oordinates, the state orresponding to
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the superharge reads
φQ|0〉 = i

(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψπ

)

−1

(z)

(
∂ f

∂x0
ψ

)

0

(z) · |0〉 =

i

[(
∂ f −1

∂φx

)

0

p−1

][(
∂ f

∂x0

)

0

ψ0

]
· |0〉 +

i

[(
∂ f −1

∂φx

)

−1

p0 +
(
∂ f −1

∂φx
p +

∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

π0

](
∂ f

∂x0

)

0

ψ0 · |0〉 ,where I noted down all modes that potentially ontribute non-trivially. To nor-mal order the expression above, I ommute them to the right suh that
i(φp )−1(φψ)0 · |0〉 = ip−1ψ0 · |0〉 +

[(
∂2 f

∂x2
0

)

0

(
∂ f −1

∂φx

)

−1

ψ0 +
(
∂2 f −1

∂φ2
x

∂ f

∂x0
ψ

)

−1

(
∂ f

∂x0

)

0

]
· |0〉 .Here, I used (3.5.10) in order to alulate the ommutator [p0, x0]. Now, thefat that (

∂2 f

∂x2
0

)

0

= −
(
∂ f

∂x0

)3

0

(
∂2 f −1

∂φ2
x

)
0
, and (

∂ f −1

∂φx

)
−1

(
∂ f

∂x0

)
0
= −

(
∂ f

∂x0

)
−1

(
∂ f −1

∂φx

)
0
allowsto simplify the expression above, and one ends up with

φQ(z)=Q(z)+∂z

[
∂φx

(
log

∂ f −1

∂φx

)
φψ(z)

]
. (3.5.13)In partiular, sine the �orretion� to Q is only a derivative in z, the zero modeis invariant under a oordinate hange, i.e. Q0 = φQ 0, the ohomology harge ofthe hiral de Rham system must already globally de�ned on X .This observation holds for the zero modes of the fermioni urrent, and alsothe stress tensor T (z) is globally de�ned on X , as follows from:

φ j+(z)= j+(z)+∂z log

(
∂ f

∂x0

)
, φG (z) =G (z) (3.5.14)and T (z)= [Q0,G (z)]. Consequently, the j+0 operator, that measures the fermioniharge, and the BRST operator are well de�ned on the hiral de Rham omplexand j+0 determines a grading of the sheaf. The bosoni U (1) urrent does nottransform in a partiular nie way, as the reader might want to hek. In loga-rithmi oordinates one gets

φ j−(z)=− j+(z)− ip(z) , ( with φx (z) = ex (z) ) . (3.5.15)
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The CSbc on CP
1The outome of the former setions is that I an loally write down the CSband apply hart transitions. In order to formulate the theory globally on CP

1,the loal vertex algebras have to be glued together.Let
F0 :=C[[x0,ψ0]]⊗C[xn ,ψn ]n<0 ⊗C[pn ,πn]n<0 · |0〉 . (3.5.16)together with Y be the CSb on C0 and
F∞ =C[[x̃0,ψ̃0]]⊗C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n ]n<0 · |0̃〉 (3.5.17)with Ỹ another CSb on C∞. To both, I an apply x0 7→ x−1

0 = x̃0, x̃0 7→ x̃−1
0 = x0and formulate the theories on the overlap C

×. By means of (3.5.9), Y 7→ Ỹ andvie versa, and the vertex algebras an be glued together
F

× =C[[x−1
0 ,ψ0]]⊗C[xn ,ψn ]n<0 ⊗C[pn ,πn ]n<0 ⊗·|0〉

≃C[[x̃−1
0 ,ψ̃0]]⊗C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n ]n<0 ⊗·|0̃〉 .

(3.5.18)This heuristially onludes the interpretation of the CSb as a sheaf on CP
1.12

Sheaves with Support In order to disuss the hiral de Rham omplex assoi-ated to the topologial A-model it is neessary to extend the analysis to setionswith support in losed or loally losed subsets.13 In partiular, the perturbativestate spae on L̃X ∞,0 are modeled by
F

1
∞ =C[x̃n ,ψ̃n ]n<0 ⊗C[p̃n , π̃n]n≤0 · |1̃〉 , (3.5.19)whih is the holomorphi part of (3.4.19), and not by F∞.While the fermionipart of that spae an be identi�ed with the one in F∞, beause all these repre-sentations are isomorphi (3.4.2), this is not true for the bosons.I will not attempt to enlarge the analysis of the Chiral de Rham omplex to(loally) losed subsets. I will rather assume that this an be done and that F0and F

1
∞ are part of a sequene similar to (2.5.3) or (2.6.2).

12For a rigorous prove that the CSbc on CP
1 and more general manifolds X constitutes a sheaf, cf.

[MSV99].
13A locally closed set is a set which is an intersection of an open with a closed set.
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3.6 Beyond the Perturbative RepresentationsIn the last setions, I have desribed the perturbative state spaes of the A-modelon target spae X =CP
1. While the ground states are already globally and non-perturbatively de�ned on X , the exited states may be sensitive to nonperturba-tive orretions whih destroy their loal harater, 2.5. One distinguished plaewhere these orretions appear is the Hamiltonian, and the main task in the fol-lowing setions will be to determine the analogues of the Grothendiek-Cousinoperators of hapter 2. Throughout my thesis, I will denote these analogousoperators as �Grothendiek-Cousin operators�, though the term may not be or-ret for the in�nite dimensional setting.In order to determine the Grothendiek-Cousin operators, I will bosonize theCSb in the spirit of Feigin and Frenkel [FF90, FF91℄ and of Friedan, Martineand Shenker [FMS86, Fri85℄. Thereby, I obtain the GCOs in a spei� formula-tion of the vertex algebra of the CSb. As already mentioned, this desriptiondi�ers from the one used by Frenkel et al. [FLN08℄, and extends the analysis of[FF90, FF91, FMS86, Fri85℄.Moreover, I will disuss the interpretation of the GCOs as ohomology opera-tors. In the bosonized desription of the vertex algebras de�ned by (3.5.16) and(3.5.19), it will beome transparent that the GCOs are the bosoni analogues ofthe sreening operator for the purely fermioni bc-system, f. [FFH+02℄.

3.6.1 Existence of Grothendieck-Cousin OperatorsThe Grothendiek-Cousin operators δ are mappings between the perturbativestate spaes H0/∞,n subjet to the ondition (2.6.1):
∃ δ : H in

∞/0,n →H
in
0/∞,k ⇔ L̃X 0/∞,n ≺ L̃X ∞/0,k . (3.6.1)Therefore, one has to larify whih desending manifolds satisfy L̃X 0/∞,n ≺ L̃X ∞/0,k .I owe Edward Frenkel a nie proof of the fat that L̃X ∞,n ≺ L̃X 0,n and L̃X 0,n+1 ≺

L̃X ∞,n .The proof starts with reonsidering the situation of Morse theory on CP
1in setion 2.4. The target manifold is de�ned as CP

1 := (C2 \ {0})/C×, where
C

2 \ {0} ∋ ( f , g ) ∼ λ( f , g ), λ ∈ C
× are the homogeneous oordinates.14 In terms of

14In the former sections I have considered the descending manifolds X0 ≃ C and X∞ ≃ {∞} always in

70



homogeneous oordinates, when identifying the vetors (0,1) with {0} ∈CP
1 and

(1,0) with {∞} ∈ CP
1, one an desribe now X0 as the C

× orbit of ( f ,1) and X∞as the C
× orbit of (1,0). These reprodue the inhomogeneous oordinates for X0by z = f ∈ C, whereas for X∞ it is ω= 0 and X∞ ≃ {∞}. One an now proof that

X∞ ≺ X0 by letting f 6= 0 and ( f ,1) ∼ (1, f −1)
f →∞−→ (1,0).The spae �LCP1 an analogously be de�ned by (C[[z]]×C[[z]]− {0})/C×[[z]]with vetors C[[z]]×C[[z]] ∋ ( f (z), g (z))∼λ(z)( f (z), g (z)), λ ∈C

×[[z]]. Here, C[[z]]denotes the spae of power series in z with f (z) =∑
n≤0 fn z−n, where z ∈ D, andsimilar holds for g (z).In the situation under disussion µ ∈ (−1,0), and the desending manifolds

L̃X 0/∞,n orrespond to solutions of the instanton equation with boundary on-dition x(0) = 0. As disussed in 3.4.2, in a neighborhood of {0} ∈ CP
1 they read

x(z) = |z|−2µ∑
n≥0 x−n zn and L̃X 0,k has inhomogeneous oordinates {xn }n≤0. In aneighborhood around {∞} one has solutions x̃(z) = |z|2µ

∑
n≥1 x−n zn and inhomo-geneous oordinates {x̃n }n≤−1 on L̃X ∞,k , f. setion 3.3.3.The desending manifold L̃X 0,k an now be desribed as the orbit of ( f (z), g (z))under C

×[[z]], whereby
f (z) ∈ zk |z|−µC[[z]] , g (z)= (1+O(z))zk |z|µ ∈ zk |z|µC[[z]] .Analogously, L̃X ∞,k is obtained as the orbit of ( f (z), g (z)) with

g (z) ∈ zk+1|z|µ ·C[[z]] , f (z) = (1+O(z))zk |z|−µ ∈ zk |z|−µC[[z]] ,and g is proportional to an additional fator of z in order to yield the orretexpansion index in x̃(z)= |z|2µ
∑

n≥1 x−n zn . Moreover, I have assumed that z 6= 0and saled the power series by zk in order to distinguish the index by H2(X ,Z).Without loss of generality I set µ= 0 and prove below that ➊ L̃X ∞,k ≺ L̃X 0,k and
➋ L̃X 0,k+1 ≺ L̃X ∞,k .

➊ Let ( f (z), g (z)) = zk ( fk +O(z),1+O(z)) be an element of L̃X 0,k with fk 6= 0,then ( f (z), g (z)) ∼ zk (1+O(z), f −1
k

+O(z))
gk→∞−→ zk (1+O(z), zh(z)) with h ∈ C[[z]],and this is an element of L̃X ∞,k .

➋ Let ( f (z), g (z))= zk (1+O(z), gk+1z+O(z2)) be in ∈ L̃X ∞,k with gk+1 6= 0, then
( f (z), g (z)) ∼ zk (g−1

k+1
+O(z), z +O(z2))

gk+1→∞−→ zk+1(h(z),1 +O(z)), where h(z) ∈
C[[z]], and this is an element of L̃X 0,k+1.

inhomogeneous coordinates.
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To onlude, in the situation that X =CP
1 and the gauge �eld is determinedby µ ∈ (−1,0), there exist two sorts of Grothendiek-Cousin operators

δ1 : H
in
∞,n →H

in
0,n ,

δ2 : H
in
0,n+1 →H

in
∞,n .

(3.6.2)

3.6.2 Chiral BosonizationThe method of hiral bosonization goes bak to Friedan, Martine and Shenker[FMS86℄ and starts with the holomorphi (or antiholomorphi) part of the CSb.In the following, I will generalize this approah to the CSb with homogeneity
µ. In order to treat the bosons and fermions in one and the same formalism, Iresale the �elds of the CSb in 3.4.1

ǫ=− : x 7→ b− , ip 7→ c− ,

ǫ=+ : ψ 7→ b+ , iπ 7→ c+ ,
(3.6.3)whereby the index ǫ disriminates bosons, ǫ=−, from fermions, ǫ=+. The basiidea of hiral bosonization is to express the Heisenberg and Cli�ord algebras andtheir representations in terms of Heisenberg Lie algebras A

ǫ(h) :
[J ǫn , J ǫm] = ǫnδn,−m (3.6.4)with representation

J ǫnν
ǫ
h = hδn,0 ·νǫh , n ≥ 0, h ∈C , (3.6.5)and equally for the antiholomorphi part. I de�ne the �elds orresponding to J ǫas

J ǫµ(z) = J ǫ(z)+
ǫµ

z
, J ǫ(z)J ǫ(ω) =

ǫ

(z −ω)2
,

J̄ ǫµ(z̄) = J̄ ǫ(z̄)−
ǫµ

z̄
, J̄ ǫ(z̄) J̄ ǫ(ω̄) =

ǫ

(z̄ − ω̄)2
.

(3.6.6)The di�erent signs for the holomorphi and antiholomorphi �elds will be under-standable when it omes to math the Heisenberg Lie algebras with the CSb.The ation of the Virasoro algebra on these representations is given by
TJǫ(z) = ǫ :

1

2
J ǫµ(z)2 +α0∂z J ǫµ(z) : , T̄ J̄ǫ (z̄) = ǫ :

1

2
J̄ ǫµ(z̄)2 + ᾱ0∂z̄ J̄ ǫµ(z̄) : . (3.6.7)
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Taking the OPE between TJǫ and J ǫµ yields
TJǫ(z)J ǫµ(ω) =

−2α0

(z −ω)3
+

J ǫµ(z)

(z −ω)2
, (3.6.8)and similar for the antiholomorphi situation. Thus, I set α0 = − 1

2ǫ, ᾱ0 = 1
2ǫ,in order to obtain the same bakground harges as for the CSb, f. (3.4.12).Notie, that now

TJǫ(z) =
ǫ

2
(J ǫ(z)2 −ǫ∂z J ǫ(z))+

µ

z
J ǫ(z)+

ǫ

2

µ(µ+1)

z2
,

T̄Jǫ(z̄) =
ǫ

2
( J̄ ǫ(z̄)2 +ǫ∂z̄ J̄ ǫ(z̄))−

µ

z̄
J̄ ǫ(z̄)+

ǫ

2

µ(µ+1)

z̄2
.

(3.6.9)The entral harge for the holomorphi as well as the antiholomorphi partis given by c Jǫ = (1− 3ǫ) and νǫ
h,h̄

:= νǫ
h
⊗ νǫ

h̄
is a highest weight vetor withonformal weight ∆TJǫ+T̄ J̄ǫ

(νǫ
h,h̄

) = 1
2ǫ[h(h + ǫ)+ h̄(h̄ − ǫ)+2µ(µ+1)]+µ(h − h̄ ) andharges h + ǫµ, h̄ − ǫµ. Sine the zero modes of the urrents ommute withthe Hamiltonians, one may grade the representation spaes by the U (1) harges

A
ǫ

− 1
2 ǫ

(h) =
⊕

l∈ZA
ǫ

− 1
2 ǫ

(h + l) and Ā
ǫ
1
2 ǫ

(h̄) =
⊕

l∈Z Ā
ǫ
1
2 ǫ

(h̄ + l), where l distinguishessetors of di�erent U (1) harges, measured by J ǫ0 and J̄ ǫ0.Bosonization means to de�ne an ation of the Cli�ord and Heisenberg algebrason these spaes. To do that, one introdues the operators
V ǫ(r, z) =: exp

(
rφǫ(z)

)
:= eǫrφǫ

0 |z|2rµzǫr Jǫ0
∑

n∈Z
V ǫ

n (r )z−n

= eǫrφ0 |z|2rµzǫr Jǫ0 e−ǫr
∑

n<0
Jǫn
n z−n

e−ǫr
∑

n>0
Jǫn
n z−n

, r ∈C\ {0}

(3.6.10)and similar operators for the antiholomorphi �eld, whereby the bosoni salar�elds are
φǫ(z)=µ log z̄ +ǫ

∫z

J ǫµ(ω)dω =µ log |z|2 +ǫ

(
φǫ

0 + J ǫ0 log z −
∑

n 6=0

J ǫn

n
z−n

)
,

φ̄ǫ(z̄) =µ log z +ǫ

∫z̄

J̄ ǫµ(ω̄)dω̄=−µ log |z̄|2 +ǫ

(
φ̄ǫ

0 + J̄ ǫ0 log z̄ −
∑

n 6=0

J̄ ǫn

n
z̄−n

) (3.6.11)with [φ0, J ǫn] = −ǫδn,0 = [φ̄0, J̄ ǫn ]. The vertex algebra is de�ned by taking deriva-tives and produts of the operators V ǫ, just as for the CSb. The OPE of two
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�elds V ǫ in the vauum νǫ
h
is

V ǫ(r, z)V ǫ(s,ω) = (z −ω)ǫr s |z|2rµ|ω|2sµzǫr hωǫsh : V ǫ(r, z)V ǫ(s,ω) : ,

V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) = (z̄ − ω̄)ǫr s |z|−2rµ|ω|−2sµ z̄ǫr hω̄ǫsh : V̄ ǫ(r, z̄)V̄ ǫ(s,ω̄) :
(3.6.12)the harge of V ǫ an be read o� from

J ǫ(z)V ǫ(r,ω) =
r

z −ω
V ǫ(r,ω)+

ǫ

r
∂ωV ǫ(r,ω) (3.6.13)to be of the value r for the holomorphi and also for the antiholomorphi �eld.Taking the OPE with the energy momentum tensors, their onformal weightsread

∆TJǫ
(V ǫ(r, z)) =

1

2
ǫ r (r +ǫ) , ∆T̄ J̄ǫ

(V̄ ǫ(r, z̄)) =
1

2
ǫ r (r −ǫ) . (3.6.14)In partiular, the operator

eǫrφ0 : A
ǫ

− 1
2 ǫ

(h) →A
ǫ

− 1
2 ǫ

(h+ r ) , νǫh 7→ νǫh+r , (3.6.15)and therefore also V ǫ(r, z) are mappings between di�erent representations. Itsonformal weight in the representation νǫ
h
equals [(TJǫ)0, eǫrφ0 ]·νǫ

h
= ( 1

2ǫ r (r +ǫ)+
ǫr h) ·eǫrφ0νǫ

h
, and similar for the antiholomorphi operator.

Bosonizing FermionsIn the fermioni ase, the ation of the Cli�ord algebra of the bc-system isgenerated by
c+(z)≃V +(+, z) , c̄+(z̄) ≃ V̄ +(−, z̄) ,

b+(z) ≃V +(−, z) , b̄+(z̄) ≃ V̄ −(+, z̄) ,
(3.6.16)in other words A

+
− 1

2

(−p + l) ≃ M+(p)l and Ā
+
1
2

(p̄ + l) ≃ M̄+(p̄)l [FF91℄.Namely, these �elds have the orret OPEs (3.4.3) inluding the homogeneityand, when I further identify
j+(z)+

µ

z
≃ J+µ (z) , j̄+(z̄)−

µ

z̄
≃ J̄+µ (z̄) ,

T +(z)≃ TJ+ (z) , T̄ +(z̄) ≃ T̄ J̄+ (z̄) ,

(3.6.17)
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also the orret harges and onformal weights. In partiular, the vertex oper-ators above at on ν+−p,p̄ like the original �elds b+ and c+ on |p, p̄〉+. The �eldmodes an be determined by the Fourier expansions, for instane for V +(−, z),
V +(−, z)ν−p = |z|−2µzp e−φ0

∑

n≤0

V +
n (−)z−nν−p

= |z|−2µ
∑

m≤−p
e−φ0V +

m+p (−)z−mν−p

(3.6.18)in analogy with b+(z)|p〉+ = |z|−2µ∑
n≤−p b+

n z−n |p〉+, and similar holds for theother �eld mode V +(+, z). The �eld modes inherit the orret ommutationrelations from the OPEs. Moreover,
|p, p̄〉+ ≃ ν+−p,p̄ (3.6.19)and these states have the same onformal weight and axial and vetorial harges.

Bosonizing BosonsIn the bosoni ase [FF91, FF90℄ one has to inlude an auxiliary fermioni bc-system beause of the wrong entral harge. Thus, I introdue fermioni salars
ξ(z), ξ̄(z̄) and fermioni �elds of weight one η(z), η̄(z̄) (all these �elds do nothave a homogeneity). The urrents and the stress tensor are de�ned as before,see setion 3.4.1.The operators

c−(z)≃V −(+, z)⊗η(z), c̄−(z̄) ≃V −(−, z̄)⊗ η̄(z̄) ,

b−(z)≃V −(−, z)⊗∂zξ(z) , b̄−(z̄) ≃V −(+, z̄)⊗∂z̄ ξ̄(z̄)
(3.6.20)have the orret OPE to de�ne an ation of the Heisenberg algebra on a subspaeof

N (p, p̄) =
(
⊕

l∈Z
A

−
1
2

(p + l)⊗A
+
ηξ,− 1

2

(l)

)
⊗

(
⊕

s∈Z
Ā

−
− 1

2

(−p̄ + s)⊗ Ā
+
ηξ,+ 1

2

(s)

)
, (3.6.21)where I impliitly assumed that the auxiliary part may be bosonized as before.The adequate subspae will be determined in the next setion. For onveniene,whenever I onsider the (anti)holomorphi part alone, I will use the notation(N̄ (p)) N (p̄) in the following. The spae N (p) ollets all possible representationsof (3.6.20) on the vetors . . . , ν−p+1|−1〉ηξ, ν−p |0〉ηξ, ν−p−1|1〉ηξ, . . . .
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In order to prove that the spaes above respet the OPE of the bosoni ghosts,on has to take into aount that the bosonized �elds are tensored and hene,
c−(z)b−(ω) ≃V −(+, z)∂zξ(z)V −(−,ω)η(ω) . Moreover, sine the auxiliary part andthe �elds V − have the same U (1) harges in (3.6.20), the vertex algebra is gradedwith the same harges for the ηξ-system and the vertex operators as above, whihexplains the summation indies. For the same reason I may identify

j−(z)−
µ

z
≃ J−(z)=

1

2

(
J−µ (z)+ jηξ(z)

)
, j̄−(z̄)+

µ

z̄
≃ J̄−(z̄) =

1

2

(
J̄−µ (z̄)+ j̄ηξ(z̄)

)
.

(3.6.22)These urrents measure the harge of the representation spaes. In setion 4.2I will argue, that the oupling of the auxiliary urrent with J− auses that thebosons do not introdue an additional anomaly into the theory. Similarly, thestress tensor of the bc-system ats like a sum of the stress tensors of the partsof the bosonized system
T −(z)≃ TJ− (z) − : ∂zξ(z)η(z) : , T̄ −(z̄) ≃ T̄ J̄−(z̄) − : ∂z̄ ξ̄(z̄)η̄(z̄) : . (3.6.23)The �elds in (3.6.20) have the orret onformal weights and harges underthese identi�ations and they omprise the relations (3.4.1) on ν−p,−p̄ ⊗ |0,0〉ηξ.However, only if the bosoni axial symmetry was broken, one an determinestates that have the same bosoni vetorial harge as the orresponding statesof the non bosonized CSb. Sine the axial symmetry will be broken due tothe GCOs, I will now assume this to be true. Under these irumstanes andfor p = p̄, the state |p, p〉− has the same quantum numbers as ν−p,−p ⊗ |0,0〉ηξ.Therefore, I will identify

|p, p〉− ≃ ν−p,−p ⊗|0,0〉ηξ . (3.6.24)Notie, that only the diagonal (p = p̄) representation spaes N (p, p) will berelevant for an analysis of the A-model.
Grading of N (p, p) The spaes N (p, p̄) are graded by the zero modes of

JN (z, z̄)=
1

2

{
[J−(z)− jηξ(z)]− [ J̄−(z̄)− j̄ηξ(z̄)]

}
, (3.6.25)whih further respet the grading by onformal weight and the fermion number.The urrent JN generates a third symmetry besides the vetorial and axial sym-metries, whih is due to the extension of the bosons by the auxiliary fermions.
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Due to the ombination of the urrents J− and jηξ, JN is anomaly free. Still, alsothis symmetry will be broken due to the Grothendiek-Cousin operators, whihensures that JN does not enter the theory as an additional symmetry.
Possible Vacuum Representations The ondition of zero onformal weightis satis�ed by the states that onsist of all possible ombinations of ν−p,q |s, t〉ηξwith p, s, t ∈ {0,1} and q ∈ {0,−1}. Here is the olletion of suh states in therepresentation N (1,1), that will beome important in the following setions

ν−1,0|0,1〉ηξ
ν−1,−1|0,0〉ηξ ν−0,0|1,1〉ηξ

ν−0,−1|1,0〉ηξ
. (3.6.26)The states in the middle have zero vetorial harge and omprise a doubletwithin N (1,1). The state on the top has a vetorial harge of value 1, and thelowest state has harge −1. However, only the state ν−1,−1|0,0〉ηξ is an element ofthe representation spae of the bosonized bosons, as I will explain below. Thestate ν−0,0|1,1〉ηξ will later obtain the interpretation as the logarithmi partner of

ν−0,0|0,0〉ηξ ∈ N (0,0).A further remark has to be made. If JN gets broken as a symmetry of thetheory, there is no reason why ν−0,0|0,0〉ηξ should be in a di�erent multiplet than
ν−0,0|1,1〉ηξ. Indeed, only then, those two states an be logarithmi partners,beause there is no way to further deompose the two-dimensional representationof the Hamiltonian on these states by means of an additional symmetry.
Restriction of N (p, p̄) The representation spae N (p, p̄) above is not yet theorret representation of the Heisenberg algebra de�ned by b− and c−. Due tothe absene of the zero modes ξ0 and ξ̄0, the vertex algebras must be ontainedin the intersetion of the kernels of η0 and η̄0 and the spae N (p, p̄) is too large.In addition, from Feigin's and Frenkel's analysis in [FF91℄ it follows that theorret representation spae for the holomorphi part (without loss of generality)oinides with the kernel of η0 : The kernel of η0 is obtained by applying ( jηξ)n ,
ηn with n ∈Z and ξn , n 6= 0 to |0〉ηξ. Consequently, the representation spae ofthe bosonized bosons equals the kernel of η0 if η, ∂zξ and jηξ an be expressedin terms of the �elds b, c and V −. This is possible by means of jηξ(z) =−∂zφ(z),
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∂zξ(z) = 1
2∂z b−(z)⊗V −(+, z) and η(z) = ∂z c−(z)⊗V −(−, z). The same holds for theantiholomorphi �elds.Therefore, M−(p, p) ≃ N (p, p), whereby the overline denotes the intersetionof the equivalene lasses N (p) and N̄ (p) of �eld operators modulo η0 and η̄0,respetively.This result yields a nie heuristi interpretation why the instanton e�ets aresupposed to be found within the bosoni part of the CSb and not within thefermioni. Due to the presene of c+0 and b+

0 in the �eld operator algebra, therepresentations of the fermioni ghosts on ν+0 and ν+−1 are isomorphi. For thefermions, there exists only one fundamental vauum, namely ν+0 sine it hasthe highest symmetry.15 On the other hand, the bosoni representations on
ν−0 ⊗ |0〉ηξ and ν−1 ⊗ |0〉ηξ are di�erent, for ξ0 is absent as a dynamial degreeof freedom and η0 is e�etively set to zero in the operator algebra, as arguedabove. The bosoni ghosts an thus be onsidered to omprise dynamial degreesof freedom in the presene of di�erent bakground vaua. For these reasons, theharged representations of the bosons may serve as a soure for instantons, tobe introdued additionally to the bosoni ghosts, interpolating between thosebakgrounds. These explanations will obtain an exat mathematial sense interms of the Grothendiek-Cousin operators.
Summary of the Main FactaIn order to desribe the perturbative state spaes of the gauged topologial A-model in terms of bosonized bosons, it is su�ient to restrit the representationspae to the diagonal situation p = p̄. As a result, M−(p, p)l ,s ≃ N(p, p)l ,s andthe highest weight vetor is now uniquely determined by |p, p〉 ≃ νp,−p ⊗|0,0〉ηξ.In partiular, only the state ν−1,−1|0,0〉 in the diamond (3.6.26) is an element of
N (1,1).The perturbative state spaes for the A-model on CP

1 an now be identi�edwith the bosonized representation spaes
H

in
0,0 =F0 ⊗F̄0 ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗ Ā
+
1
2

(s′)]⊗N (0,0) ,

H
in
∞,0 =F

1
∞⊗F̄

1
∞ ≃ [

⊕

s,s ′
A

+
− 1

2

(s)⊗ Ā
+
1
2

(s′)]⊗N (1,1) ,
(3.6.27)

15I will discuss the representation theory of the conformal ghost systems more detailed in section 8.3.
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where I used that all fermioni representation spaes are equivalent (.f. (3.4.2)),and onsequently ⊕
s A

+
− 1

2

(s +p)≃
⊕

s A
+
− 1

2

(s).The stress tensor and fundamental �elds are derived above. The superharge,must also be omposed by bosoni and fermioni �elds. An immediate alula-tion proves that the �elds
Q(z)=V +(−, z)⊗η(z)⊗V −(+, z) , Q̄(z̄) = V̄ +(+, z̄)⊗ η̄(z̄)⊗ V̄ −(−, z̄) (3.6.28)have the orret OPEs with the bosonized �elds to be identi�ed with the super-harge Q(z, z̄) =Q(z)+Q̄(z̄).I will now approah the question what operators may serve to de�ne theGrothendiek-Cousin operators.

3.6.3 The GCOs and the Cohomology InterpretationBy (3.6.15), the nilpotent operator c+0 ≃ eφ
+
0 is a ohomology operator

· · · →A
+
− 1

2

(−p)
e
φ+

0−→A
+
− 1

2

(−p +1) →··· , (3.6.29)f. [FFH+02℄. However, sine it onnets isomorphi representation spaes, thisoperator an not be the GCO mapping between F0 and F
1
∞. As just ex-plained, the di�erene between the perturbative state spaes must be rootedin the bosoni setor.The extension of N(p, p̄) to N (p, p) by means of eφ

−
0 ξ0 and e−φ̄

−
0 ξ̄0 permits anontrivial ation of η0 and η̄0. Thereby, one obtains a omplex for the bosonisetor in analogy to the fermioni one, above. The r�le of c0 for the purelyfermioni bc-system is now played by the nilpotent operator η0η̄0 : N (p, p̄) →

N (p−1, p̄−1). Therefore [FF91℄, it an be interpreted as a ohomology operatorfor the omplex
· · · → N (p, p̄)

η0η̄0−→ N (p −1, p̄ −1) →··· , (3.6.30)whose grading is measured by JN , sine [ JN 0 + J̄N 0 ,η0η̄0] =−η0η̄0. Notie, thatin priniple I ould de�ne di�erent omplexes using other ombinations of η0and η̄0 ating on N (p, p̄), for instane η0 + η̄0. However, for the representationspaes of the gauged A-model the relation p = p̄ has neessarilty to be satis�edand this restrits the hoie to η0η̄0 up to a prefator.
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To speify the ohomology of η0η̄0, I will now determine the image of thisoperator. Consider the omplement N (p, p)/N(p, p) of N (p, p) in N (p, p). Sine
N (p, p) denotes the intersetion of the kernels of η0 and η̄0 onsidered indepen-dently, this spae must not be equal to the kernel of η0η̄0. Indeed, it is justa subspae. For instane, N(1,1) does not inlude the states ν−1,0 ⊗ |0,1〉ηξ and
ν−0,−1|1,0〉ηξ whih are sent to zero by η0η̄0. I will all the expression

NL(p, p) =
∑

k≥1

(
⊕

l ,s∈Z
A

−
1
2

(l)⊗A
+
ηξ,− 1

2

(l)⊗ Ā
−
− 1

2

(s)⊗ Ā
+
ηξ, 1

2

(s)

)

η0,η̄0=0

ν−p−k ,−p+k |k,k〉

(3.6.31)the �logarithmi extension� of N (p−1, p−1). With this de�nition I an now split
N (p, p)= NL(p, p)⊕N (p, p)⊕R(p, p) ,

R(p, p) =
(
N (p)⊗ N̄L(p)

)
⊕

(
NL(p)⊗ N̄(p)

)
,

(3.6.32)wherein NL(p) and N̄L(p) signify the holomorphi respetively antiholomorphihalf of (3.6.31). One an now extrat the image of η0η̄0, namely
imη0η̄0 (NL(p, p)) = N(p −1, p −1) . (3.6.33)Therefore, the pth ohomology lass of η0η̄0 is

H
p
η0η̄0

= R(p, p) . (3.6.34)This result di�ers from the situation where only the holomorphi or antiholo-morphi parts are onsidered. In the ase when η0 is taken for the ohomologyoperator, the ohomology of this operator is trivial.As a onsequene of the following disussion, the loal ohomology spaesin the analogue of the Grothendiek-Cousin omplex will, however, not be theohomology spaes of η0η̄0.
The First GCO δ1In setion 2.6.2, I made two formal assumptions on the Grothendiek-Cousinoperators. The �rst was, that it is a mapping between the perturbative spaesof states if the desending manifolds have relative odimension one. The seondwas the observation, that the Grothendiek-Cousin operator is basially ating
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on the �dual part� of the eigenstates of the naive Hamiltonian. In the Morsetheory on CP
1 this was obtained by extending its spetrum by the missing stateswith the same quantum numbers. I will make use of this in order to proposethat N (1,1) is the appropriate extension, f. 39

0 →H
in
∞,0

e−→H
in
∞,0 = M+(0,0)⊗N (1,1)

g1−→H
in
0,0 → 0. (3.6.35)I will restrit my onsideration to the holomorphi part. The representation

N (1) is generated by the ation of N = {η−ne−φ
−
0 , ξ−neφ

−
0 , J−

−n}n<0 on ν−1 ⊗|0〉ηξ.The spetrum an in analogy with the fermioni bc-system [FFH+02℄ be framedby the extremal states
ν−0 |1〉ηξ× •ν

−
1 |0〉ηξ

ν−−1|2〉ηξ× .................... •ν−2 |−1〉ηξ

ν−−2|3〉ηξ× ............................... •ν
−
3 |−2〉ηξ

ν−−3|4〉ηξ× ..................................... •ν−4 |−3〉ηξ
... ...................................... ...The horizontal axis is saled by the U (1) harge of J−(z), while the vertial axisdistinguishes the onformal weights. The states denoted by × are not ontainedin N(1), and I will now explain that they appear due to an extension by the�dual� states. Generalizing the reipe of setion 2.6.2, those have to be hosensuh that they have the same quantum numbers as have the extremal states in

N (1).An extremal state ν−r |s〉ηξ ∈ N(p), r, s ∈ Z must be subjet to the ondition
r + s = p. Moreover, it has onformal weight − 1

2
r (r −1)+ 1

2
s(s−1). The onformalweight is invariant under r 7→ −r + 1 and/or s 7→ −s + 1, while the grading isin general not invariant under those transformations. The ases in whih thegrading is preserved are values of r and s that solve r + s = 1. Therefore, dualstates in that sense only exist in the representation N(1). I will argue below,that this already overs the situation of the gauged A-model. Thus, for p = 1the dual states are exatly those, whih extend N (1) to N (1).The ohomology operator η0η̄0 for (3.6.30) has now the desired properties tobe identi�ed with g1. Thus, up to a prefator, whih is hosen to �t with theresults of the following hapter 4, I set

δ1 = 2 η0η̄0 ◦e , g1 = 2η0η̄0 , (3.6.36)
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whereby e denotes the extension N (1,1) → N (1,1).
The Second GCO δ2The seond GCO already follows from the disussion above. This an be seenby a method that I owe Edward Frenkel.In setion 2.5, I promoted the idea to interpret the GCOs as operators thatmimi the instantons. Consequently, an observer on the hart L̃X 0,0 and al-ulating with states H

in
0,0 gets some insight into the perturbative state spaesaround {∞} ∈ X . Beause there are no anti-instantons, no states of H

in
0,0 willappear to an observer on L̃X ∞,0.16In order to �see� the instantons that �ow from {0} to {∞}, the observer has tomove to the other hemisphere and onsider the states H

in
∞,0, where the instantonsintrodue states of H

in
0,1, f. (3.6.2). This movement should not hange thephysis, and thus is invoked by the omposite mapping x 7→ x̃, µ 7→ −µ, whihleaves the ation (3.2.10) invariant. Also the �ow equation remains struturallythe same and turns into (∂z̄ + µ

z̄
)x̃ = 0.There is an additional e�et on the state spaes whih an not be seen fromthe ation. Considering x 7→ x−1, µ 7→ −µ and the instanton �ow equations,one ould onlude that F

1
∞ → F∞, F0 → F

1
0 , where the states are de�nedas in equations (3.5.16) and (3.5.19), respetively (in adequate oordinates).However, one has to take are of the fat that the state spaes are weighted by

qn = exp{
∫

D γ̃− ∗ (ωK )}, f. (3.3.2). Intuitively, a oordinate transformation hasto move the disk D to the other hemisphere, whih an be done by wrappingit one around CP
1. Therefore, x 7→ x−1, µ 7→ −µ should be aompanied by thetransformation ∫

D γ̃∗(ωK ) 7→
∫

D γ̃∗(ωK )+
∫

S2 x̃∗(ωK ), and this adds to the operator
qn 7→ qn+1. The theory is then rather invariant under x 7→ x̃, µ 7→ −µ and anadditional multipliation of the transformed spaes of in-states with q−1.17The seond GCO an now be derived from δ1. The reason is that if the theoryis invariant under x 7→ x̃, µ 7→ −µ and a multipliation of the states with q−1,the globally de�ned Hamiltonian must also be invariant under this mapping.Therefore, under this transition, δ1 7→ δ2 suh that

δ2 = 2 η̃0 ˜̄η0 ◦e , g2 = 2η̃0 ˜̄η0 . (3.6.37)

16These would be mimicked by the presence of ξ0ξ̄0 in the Hamiltonian.
17Because of (2.2.9), the operators are not affected by this transformation of q.
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In that way, δ2 is ating on q−1
H

in
0,1 ≃H

in
0,0. Beause the GCOs are struturallythe same, it is su�ient to restrit my investigations to δ1, whih I will do inthe rest of my thesis.

3.6.4 ConclusionIn (3.6.27) I have summarized the perturbative state spaes that will serve as theCFT model for the representations of the Tb with gauge �eld. The �ground�states of the A-model are identi�ed with
∆0 ≃ ν+0,0 ⊗ν−0,0|0,0〉ηξ , ∆∞ ≃ ν+−1,1 ⊗ν−1,−1|0,0〉ηξ (3.6.38)The Grothendiek-Cousin operators appear in an extension of the perturbativestate spaes that is analoguousely to that of pg. 39. If have noted down thatextension for δ1 in (3.6.35).The Grothendiek-Cousin operators add to the Hamiltonian, that has an a-tion on the nonperturbative representations aording to pg. 34 :

H = H +g1 +g2 ≃ T 0 = T0 + T̄0 +g1 +g2 . (3.6.39)With these data, I onlude my analysis of the low-energy, nonperturbativeMorse theory behind the gauged A-model. In the following hapter, I will extendthe fous on the quantum mehanial operators to the �elds. I will prove that aspei� logarithmi transformation of the CSb on CP
1 adds the Grothendiek-Cousin operators to the Hamiltonian and further deforms the stress tensor and�elds. The following analysis again shifts the attention bak from Morse theory[FLN06, FLN08℄, to �eld theory [VF09℄.
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The A-Model beyond Topology 4In the last hapter I have onsidered the Morse theory underlying the A-modelin the large volume limit (Tb). Using the reipe of hapter 2, I have derived itsnonperturbative state spaes and the Grothendiek-Cousin operators mappingbetween them. The representation spaes have been modelled by a onformalsupersymmetri bc-system (CSb).One of the main proposals of Frenkel et al. was that, if there orrespondsa onformal �eld theory to the �gauged� Tb, beyond the topologial setor itmust be a logarithmi onformal �eld theory [FLN06, FLN08℄. However, theydid not push forward their proposal and introdue the logarithmi CFT. Thiswill be the subjet in the following and onlude part one of my thesis. Thehapter is grounded on and also extends my publiation with M. Flohr, [VF09℄.Firstly, I will aommodate a method by Fjelstad et al. [FFH+02℄, whihallows for a logarithmi extension of onformal �eld theories. The extension willbe suh that the Virasoro algebra as well as supersymmetry are preserved andthe Grothendiek-Cousin operators of setion 4.2 are added to the Hamiltonian.The logarithmi deformation a�ets not only the Hamiltonian but also the o-perator produt algebra (OPA) of the �elds and the other modes of the stresstensor. I will disuss those e�ets and onlude the hapter with a proof thatthe logarithmi extension implies the extension of the perturbative state spaes
H

in
0,0 and H

in
∞,0 as desribed in setion 3.6.3.

4.1 The Method of Logarithmic DeformationFjelstad et al. invented a onstrutive method to deform CFTs to logarithmiCFTs [FFH+02℄. The main idea is to enlarge the representation spae of anyhiral (antihiral) CFT systematially, by introduing additional �eld modes andtensoring their representation spae to the one of the CFT. Thereby, the stresstensor gains an additional term whih ats on the tensored vetor spae suhthat some of the Virasoro generators yield higher-dimensional, non-reduiblerepresentations.
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4.1.1 Extension of the FieldsLet C denote some hiral algebra of onformal �elds and F the orrespondingrepresentation spae with onformally invariant highest weight vetor |0〉F . Iwill further require that there exists a fermioni �eld E (z)∈C of weight one suhthat E0|0〉F = 0 and E (z)E (ω) = 0. Fjelstad et al. deform the �elds f (z) ∈ C byintroduing an odd graded vetor spae K with operators ǫ and ρ and a vetor
|0〉K ∈ K , suh that [ǫ,ρ] = 1K and ρ|0〉K = 0 [FFH+02℄. In order to have anisomorphism between �elds and states, they de�ne a new �eld e(z)

e(z)= 1F ⊗ǫ−
∫z

E (ω)dω⊗1K ,

∫z

E (ω)dω= E0 log z −
∑

n 6=0

En

n
z−n

(4.1.1)orresponding to |0〉F ⊗ ǫ|0〉K . This �extension �eld� determines a deformationmap on f ∈C

f (z) 7→ f (z) = : exp{−ρe(0)} : f (z) , (4.1.2)whih extends the algebra of �eld modes by the additional zero modes ǫ and ρ.The ation of e on a �eld F (z)= f (z)⊗σ, σ ∈ End(K ), is de�ned by means of theOPE
e(z)F (ω)=

(
−[E , f ]1 log(ω− z)+

∑

n≥1

1

n

[E , f ]n+1

(z −ω)n

)
⊗σ , (4.1.3)wherein [E , f ]n denotes the ontribution with pole of order n in the OPE of Ewith f , i.e. E (z) f (ω) =

∑
n≥0

[E , f ]n (ω)

(z−ω)n . In partiular, the energy momentum tensorgets deformed to
T (z) 7→ T (z)= T (z)+

ρ

z
E (z) . (4.1.4)In my opinion, further extensions of the �elds generating the symmetries of thetheory should be made, whih Fjelstad et al. did not take into aount. Namely,for e to make sense as a �eld, ǫ should have the same quantum numbers as E ,whih imposes further onditions on ǫ and ρ. Suppose, for instane, that thereexists a urrent j aording to whih E has some harge qE . Only if this urrentis extended by an additional zero mode

j (z) 7→ j (z)⊗1K +1F ⊗qE
ρ

z
, (4.1.5)the �eld e has a well de�ned harge. From the ommutation relation of ǫ with ρthen follows that ρ must have harge −qE . These additional extensions are notan integral part in the deformation by the extension �eld e, however, in the aseof the CSb this will be the ase, f. 4.2.
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4.1.2 Extension of the Representation TheoryDue to the additional term, the Virasoro algebra has two-dimensional represen-tations on ertain omposite �elds
Ψ f (z)=− : e(z) f (z) : . (4.1.6)Their OPE with the stress tensor yields1

T (z)Ψ f (ω)=
∑

m≥3

[E , f ]m−1

(z −ω)m
+
∆T ( f )Ψ f + [E , f ]1

(z −ω)2
+
∂ωΨ f

z −ω
, (4.1.7)whih means for the state spae that the ground state has now a logarithmipartner E∗

0 ǫ · |0〉F ⊗|0〉K , due to [ǫ,ρ] = 1K . Here, E∗
0 is de�ned by [E0,E∗

0 ] = 1.Indeed, this kind of logarithmi deformation auses an extension of the statespaes. Let |0〉 := |0〉F ⊗ |0〉K and denote by F
′ the Fok representation of Con that vetor. Obviously F ≃ F

′. However, by the onstrution above, thereis a new state ǫ|0〉 orresponding to the extension �eld e, and a representation
F

′′ of C thereon. The extended representation spae an be identi�ed with
F :=F

′⊕F
′′ and the deformed �elds mix F

′ and F
′′. In setion 4.2.5, the spae

F
′′ will take the r�le of the �dual part� that extends the perturbative state spaeof the Morse theory behind the A-model.

4.1.3 The Fermionic bc-SystemAs a ruial example for the A-model, I will now onsider the auxiliary ηξ-systemof setion 3.6.2 and apply to it the method of Fjelstad et al. [FFH+02℄.The �elds onstituting the vertex algebra are deformed to
ξ(z) 7→ ξ(z) = ξ(z)+ρ log z ,

η(z) 7→ η(z) = η(z) ,

Tηξ(z) 7→ T ηξ(z)= Tηξ(z)+ρ η(z)z−1 ,

jηξ(z) 7→ jηξ(z)+ρz−1 −ρ η(z) log z ,

(4.1.8)and extended by the new �eld
e(z) = ǫ−

∫z

η(ω)dω . (4.1.9)

1I thank J. Fuchs who pointed out to me that I have to use the definition of normal ordering and contrac-

tion for interacting fields, (i.e. fields that have not just one singular term proportional to the identity in

the OPE): a(z) : bc : (ω) =
∮
ω

dζ
ω−ζ (a(z)b(ζ)c(ω)+ (−)Fa Fb b(ζ)a(z)c(ω)) , cf. [DFMS97].
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The additional �eld modes ρ and ǫ satisfy [ǫ,ρ] = 1K and ρ|0〉K = 0 for some
|0〉K ∈ K , whereby K is an odd graded Vetor spae. They extend the statespae of the original fermioni bc-system M+

ηξ
(0) → M+

ηξ
(0)⊗K , |0〉ηξ 7→ |0〉ηξ⊗

|0〉K . The CFT de�ned by the �elds above exhibits logarithms in the OPE anda non-degenerate stress tensor
ξ(z)e(ω)= log(z −ω) ,

T ηξ(z)Ψξ(ω) =
0 ·Ψξ(ω)+1

(z −ω)2
+
∂ωΨξ(ω)

z −ω
,

(4.1.10)wherein Ψξ(z) =− : e(z)ξ(z) : is the logarithmi partner of the identity operatoron M+
ηξ

(0)⊗K . In partiular, the extra term in the Hamiltonian
T ηξ 0

= Tηξ 0
+ρ η0 (4.1.11)looks similar to the GCOs if ρ was adjusted to be η̄0 and the ηξ-system wasidenti�ed with the auxiliary fermions of setion 3.6.2. Before I adapt the defor-mation to this situation in the next setion, a omment on the the OPE of ξwith e is indispensable.Due to the logarithm, the orrelator of ξ with η yields a multi-valued funtion.This an be resolved by inluding the antiholomorphi setor and restriting thevariable z̄, usually onsidered to be independent from z, to be the omplexonjugate. Thus, the observation in the last hapter, that the GCOs mix upthe holomorphi and antiholomorphi parts of the CSb, �ts with a typialsituation in a CFT whih exhibits logarithms in OPEs. The deformed fermioni

bc-system anonially demands that the holomorphi and antiholomorphi partsare onsidered together. Still, for onveniene I will often restrit my disussionto the holomorphi �half�.Moreover, the logarithm in the OPE of e with ξ auses that Möbius ovari-ane is broken. Indeed, under (z,ω) 7→ eλ(z,ω), λ 6= 0, I �nd that ξ(z)e(ω) 7→
log (eλ(z −ω)) 6= ξ(z)e(ω). This signi�es that e an not enter the onformal �eldtheory as an additional dynamial �eld. It just serves to deform the �eld algebraand to extend the representation spaes.
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4.2 Introducing the GCOsI will now disuss, how the bosons of the CSb an be logarithmially extended ina way, suh that the Hamiltonian and extended representation spaes over thesituation of the Morse theory behind the A-model, f. hapter 3. From setion3.6.2 it is already lear that the deformation has to be applied to the bosons ofthe CSb. Above, I have further motivated that the auxiliary fermions will bethe main haraters.In the following setion, I will propose a spei� logarithmi extension e andanalyze its e�ets on the �eld algebra. The Hamiltonian will turn out niely,and I will �ll in the missing argument why the logarithmi deformation breaksthe bosoni axial symmetry and the symmetry generated by JN , f. (3.6.25).Setion 4.2.5 onludes this analysis. Therein, I will explain that the �eld edoes not only deform the �eld algebra but also extends the representation spaein a way, suh that the results of the last hapter are reprodued.
4.2.1 Extension of the FieldsIn order to introdue the Grothendiek-Cousin operator g1, I �x the representa-tion of the bosoni bc-system to be N (1,1). The seond GCO an be obtainedafter a hart transition of the CSb to the other hemisphere and just in the samemanner as desribed below.The GCOs are mixing holomorphi and anti-holomorphi (target-spae) o-ordinates. Therefore, I set K = M̄+

ηξ
(0), K̄ = M+

ηξ
(0) and de�ne the additional�elds

e(z)=e−φ̄
−
0

(
1M+

ηξ
⊗ ξ̄0 −

∫z

η(ω)dω⊗1M̄+
ηξ

)
,

ē(z̄) =eφ
−
0

(
ξ0 ⊗1M̄+

ηξ
−1M+

ηξ
⊗

∫z̄

η̄(ω̄)dω̄

)
.

(4.2.1)By this means, the holomorphi part is extended by the antiholomorphi partand vie versa. Having introdued the �eld modes eφ
−
0 and e−φ̄

−
0 does not onlyextend N(1,1) in the desired way, but it is also neessary beause it is now abosoni system to whih I apply the deformation.De�ning the �eld transformations as

f (z, z̄) 7→ f (z, z̄) =: exp
[
−e(0) ·eφ̄

−
0 η̄0 −e−φ

−
0 η0 · ē(0)

]
: f (z, z̄) , (4.2.2)
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the stress tensor of the ηξ-system is deformed to
T ηξ(z, z̄) =

(
Tηξ(z)+

1

z
η(z)η̄0

)
+

(
T̄ηξ(z̄)+

1

z̄
η0η̄(z̄)

)
. (4.2.3)The deformation further implies

T ηξ n
+ T̄ ηξ n

= Tηξ n
+ T̄ηξ n

+ηn η̄0 +η0η̄n (4.2.4)on the �eld modes and leads to the desired result (3.6.39). As I have alreadymentioned, not only the Hamiltonian but also the other modes of the Virasorogenerator are deformed. This e�et is invisible in the Morse theory desrip-tion, and I will therefore disuss some onsequenes at the end of this hapter.In the following, I will refer to the deformation terms in the stress tensor as�Grothendiek-Cousin �elds�, whih I will denote by
g1(z) =

1

z
η(z)η̄0 , ḡ1(z̄) =

1

z̄
η0η̄(z̄) . (4.2.5)In addition, the transformation a�ets the bosoni �elds in N (1,1)

b−(z) =V −(−, z)⊗
(
∂zξ(z)− η̄0z−1

)
, b̄

−
(z̄)= V̄ −(+, z̄)⊗

(
∂z̄ ξ̄(z̄)+η0 z̄−1

)

c−(z) =V −(+, z)⊗η(z) , c̄−(z̄) = V̄ −(−, z̄)⊗ η̄(z̄)
(4.2.6)and

T −(z) = T −(z)+g1(z) , T̄
−

(z̄) = T̄ −(z̄)+ ḡ1(z̄) ,

j
ηξ

(z) = jηξ(z)− log z η(z)η̄0 , j̄
ηξ

(z̄) = j̄ηξ(z̄)+ log z̄ η0η̄(z̄) ,

J−(z, z̄) = J−(z, z̄) , Q(z, z̄) =Q(z, z̄) ,

(4.2.7)whereas the superharge is not deformed, Q(z, z̄) = Q(z)+ Q̄(z̄) with Q(z) =
V +(−, z)⊗η(z)V −(+, z), f. eqn. (3.6.28). Hene, the topologial setor of thetheory is insensible to this proedure.In addition, the zero mode of the vetorial urrent J−

V
= (J−+ J̄−)+ ( j

ηξ
+ j̄

ηξ
)is not orreted, whih means that it still measures the same quantum numbersas the undeformed one. This is not only an inidental remark, there is anotherreason why the vetorial urrent is preferential. As explained before, for e and

ē to have well de�ned harges, the holomorphi and antiholomorphi urrentshave to be generalized. Consider the a�eted holomorphi auxiliary urrent jηξ.The harge of ξ̄0 is measured by j̄ηξ and yields the same value as the harge of
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η under jηξ. Therefore, it must be ompleted by the antiholomorphi urrentin suh a way, that the total auxiliary urrent is vetorial. Sine the auxiliaryurrent is oupled to J− via (3.6.22), this is inherited by J−. This explains mylaim that for the partiular deformation above, the extension of the symmetrygenerating �elds and the extension by e, ē is the same.In order to further speify my omments on the symmetries of the deformedtheory, I will now disuss how the logarithmi deformation indeed breaks all sym-metries whose generators ontain the axial urrent of the auxiliary ηξ-system.Moreover, I will onsider if supersymmetry and the Virasoro algebra are a�eted.
4.2.2 Notes on the SymmetriesThe axial symmetry of the auxiliary system is broken by the presene of thedeformation term in the Hamiltonian. To see this, I alulate the ommutator

∮
dz [η0η̄0, j

ηξ
(z)]±

∮
dz̄ [η0η̄0, j̄

ηξ
(z̄)]=−η0η̄0 ±η0η̄0 . (4.2.8)Therefore, only the zero mode of the vetorial urrent ommutes with the de-formed Hamiltonian, whereas this fails for the axial symmetry. This onludesthe proof that the urrents JN of eqn. (3.6.25) and J−− J̄− of eqn. (3.6.22) donot omprise symmetries of the logarithmially deformed CSb.On the other hand, this is not true for supersymmetry and onformal symme-try. The reason is that besides in the expression j

ηξ
, only derivatives of the �eld

ξ enter the extended �eld algebra. Sine all deformation terms are proportionalto zero modes of η(z) and η̄(z̄), the logarithmi extension does not spoil theommutation relations and, hene, preserve supersymmetry and the Virasoroalgebra.The absene of ξ has two further onsequenes that I will now disuss.
4.2.3 Exceptional Logarithmic PartnersA �rst onsequene is that the �eld Ψb−(z) = − : e(z)b−(z) : has no logarithmipartner,2

T −(z)Ψb−(ω) =
e−φ̄

−
0 V −(−,ω)

(z −ω)3
+
∂ωΨb− (ω)

z −ω
. (4.2.9)

2Due to the anomaly of the holomorphic current jηξ, (4.1.7) does not apply and one has to derive the

OPE by hand.
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On the other hand,Ψ jηξ (z)=− : e(z) jηξ(z) :, and other ombinations : φ(z)Ψ jηξ(z) :,
φ a �eld in the CSb, have logarithmi partners. In partiular,

T (z)Ψ jηξ(ω) =
−e(ω)

(z −ω)3
+
Ψ jηξ(ω)+∂ωe(ω)

(z −ω)2
+
∂ωΨ jηξ (ω)

z −ω
. (4.2.10)This turns the logarithmially deformed CSb into an exeptional ase amonglogarithmi onformal �eld theories. Namely, its U (1) urrent breaks the SL(2,C)symmetry and therefore, the logarithmially deformed CSb is an example foran LCFT whose basi Jordan blok is not a primary �eld [Flo03, pg. 4516℄.

4.2.4 On the Necessity to Deform the FermionsIn setion 4.1 I have onsidered the ηξ-system in its own right and argued thatthe extension �eld e should not be part of the dynamial �elds beause it breaksMöbius ovariane. Sine ξ is not a �eld in the vertex algebra of the bosonizedbosons, I an not exlude e and ē from the dynamial �elds by this argument.However, if I treated them as additional dynamial �elds in the CSb, I wouldexpet that I also have to logarithmially deform the fermioni setor, in orderto supply the extension �elds with their supersymmetri partners. I denote thefermions as in the last hapter by b+ and c+, an extension as desribed in setion4.1.3 an be performed
e+(z) = b̄+

0 −
∫z

c+(ω)dω , ē+(z̄) = b+
0 −

∫z̄

c̄+(ω̄)dω̄ ,

f +(z, z̄) 7→ f +(z, z̄) =: exp
[
−e+(0)c̄0 −c+0 ē+(0)

]
: f +(z, z̄)

(4.2.11)and the zero modes of the bosoni and fermioni extension �elds are related bysupersymmetry
[Q0,eφ

−
0 ξ0] = e−φ

+
0 ≃ b+

0 , [Q0,e−φ
+
0 ]= eφ

−
0 ξ0 . (4.2.12)However, eqn. (4.1.10) forbids that e+ and ē+ an be onsidered as a dynamial�elds in the fermioni setor. Therefore, it is again impossible to interpret e and

ē as dynamial �elds in the CSb.Sine supersymmetry was already preserved without deforming the fermions,it is not demandatory that the fermions are logarithmially extended. On theother hand, to the best of my knowledge there is nothing to be said against it,
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and I will argue below that, if the reader wishes to logarithmially extend thefermions, this will not a�et the representation theory of the CSb and thus theresults of hapter 3.
4.2.5 Extension of the State spaceAlthough ξ(z), ξ̄(z̄) are not part of the dynamial �elds, the zero modes ξ0 and
ξ̄0 are introdued by the extension �elds e, ē and thus extend the state spae. Iwill now prove that the extension is as in equations (2.6.2) and (3.6.35):

N(1,1)
e,ē−→ N (1,1)

g1−→ N (0,0) . (4.2.13)Firstly, I will restrit my onsiderations to the auxiliary ηξ-system in orderto illustrate two aspets. As stated above, this will show that a logarithmideformation of the fermions in the CSb does not interfere with the extensionof the representation spaes. Furthermore, the essential r�le of the ouplingbetween the bosonized bosons and the auxiliary fermions will beome evident.Seondly, I will explain how the logarithmi extension indeed leads to (4.2.13).By an expliit alulation of the ation of the Grothendiek-Cousin �elds on thatextended spae, I will substantiate the impat of the additional �eld modes thatare invisible in the Morse theory desription.Aording to the deformation rule (4.2.2), the �elds e, ē and their omposite
eē extend the ground state |0,0〉ηξ of the ηξ-system by the new states ξ0|0,0〉ηξ,
ξ̄0|0,0〉ηξ and ξ0ξ̄0|0,0〉ηξ. This extends the representation spae as desribed insetion 4.1,
⊕

l ,r

A
+
− 1

2

(l)⊗Ā
+
1
2

(r )→
(
⊕

l ,s

A
+
− 1

2

(l)⊕A
+
− 1

2

(s −1)

)
⊗

(
⊕
r,m

Ā
+
1
2

(r )⊕ Ā
+
1
2

(m +1)

)
. (4.2.14)In partiular, the logarithmi partners are modelled on the representation spaewith highest weight state ξ0ξ̄0|0,0〉ηξ,

T ηξ 0
|1,1〉ηξ = 0 · |1,1〉− |0,0〉ηξ , (4.2.15)while T ηξ 0

is diagonal on the other representations. Therefore, one wouldnaively assume that the logarithmi extension of the original state spae equals
M+

ηξ L
(1,1) =

⊕
l ,s A

+
− 1

2

(l − 1)⊗ Ā
+
1
2

(s + 1), in analogy with the bosonized bosons
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eqn. (3.6.31). This state spae is, however, isomorphi to the one de�ned bythe partner �elds, ⊕
l ,s A

+
− 1

2

(l)⊗ Ā
+
1
2

(s), beause ξ0 and ξ̄0 are part of the �eldalgebra. This is the reason, why the ηξ-system alone is not apable of explainingthe di�erent nature of H
in
0,0 and H

in
∞,0 .Fortunately, the extension of the state spae of the full supersymmetri bc-system is more ompliated beause the algebra of the auxiliary fermioni �elddoes not fatorize. The new highest weight states, introdued by e and ē, arerather

eφ
−
0 ξ0

e−φ̄
−
0 ξ̄0

eφ
−
0 −φ̄

−
0 ξ0ξ̄0





·ν−1,−1 ⊗|0,0〉ηξ =





ν−0,−1 ⊗|1,0〉ηξ
ν−1,0 ⊗|0,1〉ηξ
ν−0,0 ⊗|1,1〉ηξ

, (4.2.16)and the extension �elds �ll in the missing states in the diamond (3.6.26). Thealgebra of �eld modes
⊕

l ,s∈Z
A

−
1
2

(l)⊗A
+
ηξ,− 1

2

(l)⊗ Ā
−
− 1

2

(s)⊗ Ā
+
ηξ, 1

2

(s)

∣∣∣∣∣
η0,η̄0=0

(4.2.17)is now represented on those states, and
N (1,1)

e,ē−→ [N (1)⊕NL(1)]⊗ [N̄ (1)⊕ N̄L(1)] = N (1,1) , (4.2.18)wherein the logarithmi extension NL(1,1) of N (0,0) appears, f. eqn. (3.6.31).
The Action of the Grothendieck-Cousin OperatorI an now substantiate the ation of T ηξ on NL(1,1)⊗R(1,1), f. setion 3.6.2.Therefore, I onsider the states

χ(l )
0 :=O(J−)ηr1 · · ·ηri

ξk1
· · ·ξk j

·νi− j+1|0〉ηξ ,

χ(l )
1 :=O(J−)ηr1 · · ·ηri

ξk1
· · ·ξk j

·νi− j |1〉ηξ ,

r1 < ·· · < ri < 0, k1 < ·· · < ki < 0, l = i − j ,

(4.2.19)wherein O(J−) is a monomial in J−
−n , n > 0. They are elements of the Virasoromodule with �xed harge l + 1

2
, measured by J−

0 .3 I will denote these modules
3The value of 1

2 is due to the fact that I consider solely the holomorphic part.
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by N (1)l and NL(1)l , respetively, whih immediately generalizes to the ompo-sitions N (1,1)l ,l̄ , NL(1,1)l ,l̄ and R(1,1)l ,l̄ by means of
χ(l ,l̄ )

s,s̄ :=χ(l )
s ⊗ χ̄(l̄ )

s̄ , s, s̄ ∈ {0,1} . (4.2.20)The ation of T ηξ n
= Tηξ n

+ηn η̄0 on suh states is as follows.For the zero mode, whih is the Grothendiek-Cousin operator, I obtain
T ηξ 0

·χ(l ,l̄ )
s,s̄ = Eχ ·χ(l ,l̄ )

s,s̄ −N N̄ χ(l ,l̄ )
0,0 , (4.2.21)where I used N := (−)i+ī+ j+ j̄δs,∞ and N̄ := (−)i+ī+ j+ j̄δs̄,∞. The deformed Hamil-tonian is non-diagonal only on the states in NL(1,1), as I have already disussedin setion 3.6.3.For the other modes of the stress tensor with n 6= 0, I �nd

T ηξ n
·χ(l ,l̄ )

s,s̄
= Tηξ n

·χ(l ,l̄ )
s,s̄

+ (−)s
N̄ ηn ·χ(l ,l̄ )

s,0 , (4.2.22)and T ηξ n
is in general not diagonal if the states are in R(1,1)⊕NL (1,1).For all modes of the Virasoro �eld it is true that the �ground� state ν−1,−1|0,0〉ηξis not sensible for the logarithmi extension, as it is annihilated by all modes ofthe Grothendiek-Cousin �eld.

4.2.6 ConclusionI have logarithmially deformed the CSb in suh a way that it inludes thesituation of the Morse theory behind the A-model in the large volume limit.Thereby, also the �elds and their OPA was deformed, and I have disussed thee�ets on the symmetries of the CSb. In partiular, the stress tensor obtainedimprovement terms
T (z, z̄) = T (z, z̄)+g1(z, z̄)+g2(z, z̄) ,

g1(z, z̄) = η(z)η̄0 +η0η̄(z̄) , g2(z, z̄) = η̃(z) ¯̃η0 + η̃0 ˜̄η(z̄) ,
(4.2.23)whih I alled Grothendiek-Cousin �elds. Above, I inluded the seond of these�elds that is determined by a hart transition. The Grothendiek-Cousin ope-rators break the bosoni axial symmetry, as well as the symmetry JN whih dis-tinguishes the hains in the omplex of extended bosoni representation spaes,f. setion 3.6.3. For this reason, the states in NL(1,1) and the orresponding�elds an be interpreted as the logarithmi partners of the states and �elds inthe representation N(0,0).
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Summary and Conclusion 5In my �rst part of this thesis I have investigated the geometri signi�ane of theimprovement terms in the Hamiltonian of the logarithmi onformal bc-systemwith target X = CP
1. Taking the perspetive of its underlying Morse theory onloop spae, I may now onlude the following.The zero modes of the improvement terms are the in�nite dimensional ana-logues of loal ohomology operators (Grothendiek-Cousin operators � GCOs)in a omplex of extended representation spaes of the Hamiltonian, wherebyextension means that the representation spaes are extended by their missingdual part in the sense disussed in setion 2.6.2. Therefore, the logarithmionformal bc-system on CP

1 is a �eld theoreti appliation of the Grothendiek-Cousin omplex as onsidered by G. Kempf [Kem78℄, an interpretation alreadydisussed by Frenkel, Losev and Nekrasov in [FLN08℄.The same authors interpreted the extension as the transition from perturbativeto nonperturbative state spaes, by whih the zero modes of the improvementterms gain a seond interpretation. They mimi the instantons beoming visiblein the dynamial setor of the theory. This interpretation is in addition pro-moted by the fat that the GCOs are mappings in a spei� diretion, whihis determined by a �ltration of the loal representation spaes. This diretiononforms with the diretion into whih the instantons �ow with growing time.I will now brie�y summarize the steps I have taken.
Morse Theory and Induced Representations In hapter 2, I have onsi-dered Morse theory on a ompat Kähler manifold X , f. [FLN06℄. It was ne-essary to onstrain X in order to guarantee that a non-empty topologial setorwould exist. After several transformations whih left the topologial setor in-variant, I ould massage the ation into a �rst order form, suh that the pathintegral would manifestly loalize on the instantons. In partiular, this spoiledCPT invariane and the transformed theory lost its former unitarity.The speiality of this Morse theory has been that the metri was saled withsome positive, real-valued parameter λ, and that, hene, it got possible to move
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in the moduli spae of the theory. Two phases of Morse theory have been ofspeial importane, the phase when λ 6= ∞ and the large volume limit λ→∞.For �nite λ, the representation spaes of the Hamiltonian are isomorphi to therepresentation spaes of the unitary theory. In the large volume limit it is notpossible to make suh a statement in general, besides for the topologial setor,whih is insensitive to the value of λ.The most important impat of the saled metri was that the perturbativespetrum of the Hamiltonian inluded apart from the topologial further dy-namial states. For the situation that the target manifold is X = CP
1, theseperturbative state spaes survived the large volume limit and beame induedrepresentations of the symmetry generated by the gradient �eld of the Morsefuntion.The perturbative representation spaes were de�ned loally on the so-alleddesending manifolds. These are the submanifolds into whih X is deomposedby means of the gradient vetor �eld. Frenkel et al. laimed that if the loal re-presentation spaes were extended as distributions to X , they did omprise thenonperturbative low energy spetrum of the theory, f. [FLN08℄. I have extendedthe perturbative spetrum in a manner whih di�ers from that used by Frenkelet al. [FLN06℄. The Hamiltonian turned out to be no longer diagonal on the thusobtained representation spaes. I did then deompose it into a trivial part and anoperator whih is responsible for that e�et. The thus obtained operator entang-led the extended representation spaes and, by omparison, ould be identi�edwith the loal ohomology operator (GCO) of a partiular Grothendiek-Cousinomplex [Kem78℄. Therefore, the GCO makes it possible to take an insight intothe struture of the indued representations of the symmetry generated by thegradient �eld of the Morse funtion. In partiular, this is an insight into theexited spetrum of the Morse theory and thus an e�et beyond the topologialsetor.Due to the GCO the Hamiltonian is indeomposable on ertain dynamialstates and also mixes the holomorphi and antiholomorphi target spae oordi-nates. These aspets are typial for logarithmi onformal �eld theories and itis, hene, reasonable to generalize this onept to two-dimensional �eld theories,[FLN08℄.
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A Field Theory Application In hapter 3 I have onsidered the A-model withdomain manifold Σ=R×S1 and target spae X =CP
1. The target spae was againsupplemented with a metri saled by λ, f. [FLN08℄. Sine many physiists andmathematiians assume that there exists a point in the moduli spae of thistheory where it is onformal [FL07, MSV99, DVV91℄, it was a good startingpoint for generalizing the disussion of the last hapter to a �eld theory and,additionally, for analyzing the meaning of the Grothendiek-Cousin operators ina onformal �eld theory.As in the situation of Morse theory, I transformed the A-model into a �rst or-der shape by breaking CPT invariane and taking the large volume limit. Underthis treatment, the A-model took the form of a supersymmetri bc-system whihI alled the �topologial bc-system� (Tb). Struturally, it looks like the onfor-mal supersymmetri bc-system (CSb), and I assumed that the representationtheory for both systems is the same.Having integrated out the dependene of S1, the Tb turns into an in�nitesum of super quantum mehanial theories on loop spae LX , whih look similarto the Morse theory onsidered before. In order to attain the full analogy, it wasneessary to add another vetor �eld to the gradient vetor �eld, whih ensuredthat the ritial manifold redued to singular points. Like Frenkel, Losev andNekrasov [FLN08℄, I have alled this proedure as �gauging� and denoted thethus obtained Tb as the gauged Tb. Moreover, in order to obtain a Morsefuntion for the gradient vetor �eld it was neessary to lift the theory from loopspae to its universal over.The Morse funtion thus obtained was multi-valued on loop spae. Therefore,the preimages of LX in its universal over fanned out into in�nitely many leaves,distinguished by homology lasses in H2(X ,Z). In the same manner, the pertur-bative state spaes and the desending manifolds were distinguished. However,the state spaes were isomorphi, and I ould restrit my onsideration to oneof those setors.Analyzing the Hessian of the Morse funtion, I ould determine the oordinatesof the desending manifolds in this setor. Beause of the analogy to the Morsetheory of hapter 2, I then ould note down the perturbative representationspaes whih loalize on these submanifolds. It turned out that they ould bemodeled by representation spaes of the CSb.
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In order to de�ne the CSb on X =CP
1 it was neessary to explain how harttransitions work, and I introdued the hiral de Rham omplex [MSV99℄ to losethis gap.To determine the Grothendiek-Cousin operators, I had to �nd the loal rep-resentation spaes between whih suh operators intermediate. As it turned out,there exist two suh operators whih, however, are related by a hart transitionomposed with a rede�nition of the additional vetor �eld I had used to reduethe ritial manifold to isolated points. Therefore, it was su�ient to disussonly one Grothendiek-Cousin operator.In order to obtain this GCO, I assumed that I may substitute the CSb for theA-model. Having adjusted and generalized the method of hiral bosonization[FMS86℄, I ould derive a ohomology operator in a long exat sequene ofpartiular state spaes. The perturbative state spaes of the Tb are part ofthis sequene, and I ould extend them in suh a way that the GCOs havebeen extrated as the ohomology operators in the short exat sequenes ofperturbative state spaes. Thise GCOs deform the Hamiltonian of the CSband are non-diagonalizable on a subspae of dynamial state spaes.In the last hapter I disussed the question whih deformation of the CSborresponds to the deformation of the Hamiltonian by the Grothendiek-Cousinoperator [VF09℄.

Logarithmic Deformation of the Chiral de Rham Complex The GCOsmade it neessary to reonsider the hiral de Rham omplex. I looked for alogarithmi extension of this theory whih would produe the GCOs within theHamiltonian and extend the state spaes in the appropriate way. For this pur-pose, I have suessfully aommodated the method of logarithmi deformationinvented by Fjelstad et al. [FFH+02℄.The deformation revealed additional interesting aspets.Sine it must be applied to the bosoni subsetor of the CSb, this raisedthe question if, due to supersymmetry, it was not neessary to further deformthe fermioni part. I have argued that supersymmetry did not demand this.Nevertheless, if the fermioni part is in addition logarithmially deformed, thisdoes not a�et the representation theory of the CSb.Moreover, the logarithmi deformation did neither destroy the Virasoro alge-
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bra nor supersymmetry. Yet, it spoiled all anomalous symmetries by whih theTb exeeded the A-model with �nite values of λ. I onsider this as an additionalon�rmation that the logarithmi deformation of the hiral de Rham omplexmight be neessary, if the dynamial setor of the Tb is taken into aount.Another interesting aspet has been that the basi Jordan bloks in the dou-blets of logarithmi partners are always omprised by �elds whih are not pri-mary. In this respet, the theory is exeptional among logarithmi onformal�eld theories [Flo03℄.
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II

Conformal Fermionic Ghosts

on the Torus





Motivation 6In the last part of my thesis I have investigated the onformal supersymmetri
bc-system with target manifold CP

1. Under the assumptions that this theorydesribes the topologial A-model in the large volume limit and that it has apartiular nonperturbative spetrum on the desending manifolds of its underly-ing Morse theory, it beame neessary to logarithmially deform this CFT. Theimprovement terms in the stress tensor thereby inherited an interpretation asloal ohomology operators and of instanton ontributions.This time I will onsider a di�erent geometri setting, whih again gives riseto a logarithmi extension, now of the fermioni onformal bc-system.1 In thissetting, the CFT has target spae C, whereas the domain manifold is an algebraisurfae T
n,m with global monodromy group Zn as a branhed overing of CP1.This situation has been disussed by V. Knizhnik [Kni87℄ for the non-logarithmisituation, and extended to the triplet model, in ase that T

n,m is the torus, byM. Flohr [Flo98℄. The triplet model [Kau95, GK96, Gab03℄, is not the sameLCFT as the one I have disussed in the ontext of the A-model. It inludesthe situation of the last hapter but also exeeds it, in partiular it ontainsadditional twisted representations whih mimi the branh points.In the following hapters I will disuss two topis related with this setting.Firstly, I will argue from a purely geometri point of view that a logarithmiextension of the bc-system on the torus is unavoidable. Seondly, sine thetorus is the spetral urve of pure gauge, SU (2) Seiberg-Witten (SW) theory[SW94℄, I will redue the prepotential and the spetral urve of this theory toquantities in the triplet model [VF07℄.In hapter 7 I will introdue the bc-system on the algebrai surfaes Tn,m alongthe lines of [Kni87℄. The monodromy group will be responsible for additional,twisted representations whih mimi the branh points.In the following hapter 8, I will restrit my onsiderations to the ase thatthe algebrai surfae is a torus. Sine the twisted representations mimi thebranh points, there will exist a geometri argument why the bc-system must
1Since I will only treat this theory in the following, I will often refer to it as “the bc-system”.
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be logarithmi. This works by relating the Legendre family, whih is a oneparameter family of tori, to the nullvetor ondition of the twist �elds. Theminimal logarithmi CFT ontaining these representations is the triplet modelwhih I will brie�y introdue.The last hapter 9 will be on pure gauge, SU (2) Seiberg-Witten theory. Aftersome introdutionary remarks, I will explain how its spetral urve an be ex-pressed in terms of triplet haraters and how the prepotential an be obtainedas a funtion of the torus modulus. Sine this modulus equals the ratio of thefour-point funtions of the twist �elds it is possible to determine the prepoten-tial, and therefore this partiular Seiberg-Witten theory, by means of quantitiesof the triplet model.
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Fermionic Ghosts on Algebraic Curves 7In this hapter I will summarize how Knizhnik formulates the onformal fermioni
bc-system on a spei� lass of algebrai surfaes whih are branhed overingsof CP1, [Kni87℄. Their monodromy group ats on the �elds whih thereby fallinto irreduible representations. The highest weight vetors of those representa-tions an again be related with onformal (twist) �elds that simulate the e�etsof the branh points.
7.1 The Algebraic SurfacesEvery ompat Riemannian surfae an be obtained from a zero set of some poly-nomial in two variables by an inlusion of �nitely many points [Fre09℄. There-fore, I will trade suh algebrai surfaes for ompat Riemannian surfaes in thefollowing. Partiularly, I am interested in the lass of polynomials

T
n,m =

{
(y, x) ∈C× (CP1 \ {ei }) : P (y, x) = yn −

nm∏

i=1

(x −ei ) = 0

}
, n,m ∈N , (7.1.1)with ei 6= e j , ∀i 6= j , and in those desribing ellipti urves, subjet to the re-strition n = 2 and m = 2. I am partiularly interested in the ellipti urves,beause they beome tori when ompati�ed and the spetral urve of puregauge Seiberg-Witten theory with SU (2) gauge group is a torus.The projetion p : (y, x) 7→ x, yields a overing (loally biholomorphi mapping)of Σ=CP

1\{ei } by T
n,m , and the Monodromy group has a global representation ondi�erential forms on Σ due to the global Zn symmetry. In an open neighborhood

U (e) of a branh point e ∈ Σ, there exists an open set V (e) ⊂ p−1(U (e)) andbiholomorphi mappings φV and φ̃U , suh that the following diagram ommutes,[Fre09℄
T

n,m : V (e)
φV→ D∗ z

p ↓ ↓ p̃ ↓

Σ : U (e)
φ̃U→ D∗ zn

. (7.1.2)
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Hereby, D∗ denotes the unit disk without the point e, whih I set to 0 withoutloss of generality. Therefore, in a neighborhood of a branh point e, the overinglooks like p̃(z)= e + zn with inverse
p̃−1(z)= (z −e)1/n . (7.1.3)By (z − e)1/n I denote the whole stak of the n solutions to this equation, andwhih I label by l mod n, l ∈N. Whenever I want to distinguish a speial root,I will denote it by (z − e)1/n|Vl
. When ompatifying the algebrai urve, themapping φV is analytially extended to the symbol p−1(e) by setting φV (p−1(e))=

0. For this reason, though it is not quite orret, I will all (V (e),φV ) a hartaround p−1(e).In the following I will desribe how Knizhnik introdues the fermioni bc-system on the leaves of the overing and how the branh points introdue astak of loal representations of the theory on additional bakground �elds.
7.2 The Fermionic bc-System on T

n,mKnizhnik de�nes a fermioni bc-system on the algebrai surfae Tn,m . It onsistsof a salar �elds b and a one-form c whih he onsiders in the representation on
|0〉, f. setion 3.4.1. These �elds desribe the purely holomorphi (and purelyantiholomorphi) di�erential forms on the surfae.1 Due to the loal biholo-morphism, one an onsider these �elds on the di�erent sheets l and in loaloordinates z on Σ. For instane b(l )(z) = b◦p−1|Vl

(z), where Vl is an open subsetof the l th sheet, not inluding a branh point.2 Similar holds for the one-form
c. These �elds have an ation whih due to the loal biholomorphisms an beformulated on Σ

S(l ) =
∫

Σ

d2z c(l )(z)∂z̄ b(l )(z) . (7.2.1)Aordingly, the total state spae is a tensor produt of n equivalent highestweight states, in partiular
|0〉 =

n−1⊗

l=0

|0〉l . (7.2.2)

1I will only consider fermionic fields b and c in this part of my thesis. Therefore, I will omit the index +
used in section 3.4.1.

2In a chart I will allow myself the abuse of notation to equivalently denote by z a local coordinate on Σ or

its preimage on T
n,m .
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On every sheet, the stress tensor is de�ned as in setion 3.4.1 and the same holdsfor the �elds. In partiular, their operator produt expansion yields
b(l )(z)c(l ′)(z ′) =

δl ,l ′

z − z ′ . (7.2.3)

7.2.1 Around the Branch PointsSine analyti transitions between all sheets are possible in a hart around abranh point, this situation is more deliate. To visualize this, I depited theRiemannian surfae of pz, below. Let U (e) be a neighborhood of a branhpoint e. The di�erent paths betweenthe sheets, along whih funtions on
T

n,m an be analytially ontinued, anbe lassi�ed by means of the mon-odromy group related to e. It is de�nedas follows.Let γ ∈ π1(U (e), z0) be a losed path starting and ending at z0 and enlosing atmost the branh point e, and denote by γ̃l the (unique) lift of γ starting on the
lth sheet at ql , p̃(ql ) = z0.3 The monodromy group permutes the elements ofthe �ber p−1(z0) = {q0, · · · , qn−1} and is de�ned by the ation

µγ ·ql = γ̃l (1) . (7.2.4)It is isomorphi to the group of roots de�ned by ql 7→ q(l+k) mod n = e
2πik

n ql , k ∈
Zn , and thus to Zn .The monodromy group indues a representation on the �elds by means of

µ̂γ ·b(ql ) = b(γ̃l (1)) , (7.2.5)and similar for c. In a hart without branh point, the points ql an again beprojeted on Σ suh that this relation holds for �elds b(l ) and c(l ).
3Composing such loops defined with respect to different branch points, one can generate all possible

loops enclosing one or several branch points. Therefore, and due to the global Zn symmetry, it is

sufficient that I restrict my discussion to one branch point.
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Sine T
n,m is globally Zn symmetri, the representation of the monodromygroup an be diagonalized simultaneously for every branh point. This is ob-tained by the Fourier transformations

bk (z)=
n−1∑

l=0

ek+1−n(l)b(l )(z)

ck (z)=
n−1∑

l=0

ēk+1−n(l)c(l )(z)

, em(l) = e2πil m
n , k = 0, . . . ,n−1. (7.2.6)The monodromy group now introdues the boundary onditions

µ̂ : bk (z) 7→ e−2πi k+1−n
n bk (z) , ck (z) 7→ e+2πi k+1−n

n ck (z) , (7.2.7)and the n di�erent Fourier transformations distinguish n di�erent irreduiblerepresentations of this group. The domain of bk and ck is p−1(U ) =⊔
l∈{0,...,n−1} Vl ,where U does not ontain a branh point. While before it was reasonable toseparate the �elds together with the di�erent sheets, the idea to entangle them inone equation is natural in a neighborhood of a branh point. The most importantonsequene is that the urrents an now be de�ned also in a neighborhood of abranh point and as the single-valued �elds

jk (z)=− : bk (z)ck (z) : . (7.2.8)

Operator Product Expansions Sine the sheets of the algebrai surfae areoverlapping in a neighborhood of a branh point, the �elds may have nontrivialOPEs in this region. To see this, Knizhnik starts with two loal �elds b(l )(z) and
c(l ′)(ω), z ∈ p−1(U )|Vl

, ω ∈ p−1(U )|Vl ′ , whih are loated lose to a branh point
e. Applying a hart transition to a neighborhood of e, z 7→ y = (z−e)1/n|Vl (e) and
ω 7→ y ′ = (ω−e)1/n|Vl ′ (e) one ends up with

b(l )(z)c(l ′)(ω)=
n−1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

. (7.2.9)Here, I used that in the presene of a branh point b(l )(y)c(l ′)(y ′) = (y−y ′)−1, evenif l 6= l ′. In order to apply this to the �elds in the Fourier expansion, I will usethat the basis elements em(l) de�ne a salar produt
em · ēs =

n−1∑

l=0

em−s(l) =
{

n if ∃ t ∈Z : tn = m − s

0 else (7.2.10)

110



whih an be applied to bk and ck . Combining it with the OPEs above, oneends up with
bk (z) ·ck ′(ω)= δk ,k ′

1

z −ω

n−1∑

r=0

(
y ′

y

)r+1−n

(7.2.11)This quantity has to respet the transformation (7.2.7), in partiular letting zenirle e, this must result in a phase shift of bk . Indeed, the produt aboveyields a fator (yn)−
r+1−n

n 7→ e−2πi r+1−n
n (yn)−

r+1−n
n , whih restrits r to r

!= k, andthe sum ollapses to this single term. Extending yn around y ′ n , one obtains
bk (z) ·ck ′(ω) =

(
1

z −ω
−

k+1−n
n

ω−e
+ : bk (ω)ck (ω) : +O(z −ω)

)
. (7.2.12)For k = k ′, this result should be ompared with the de�nition of the urrent

jk (ω) = lim
z→ω

[−bk (z)ck(ω)+ (z −ω)−1] . (7.2.13)Therefore, Knizhnik onludes that the additional term due to the branh pointindiates the presene of some bakground �eld, serving as a soure for theadditional harge qk

jqk
(z) = jk (z)+

qk

z −e
, qk =

k +1−n

n
, k = 1, . . . ,n−1. (7.2.14)

7.2.2 The Twisted RepresentationsMotivated by the disussion above, I will now extend the representation theoryof setion 3.4.1 to harges with values in the rational numbers, suh that
bk (z)ck(ω)|qk〉 = (z −ω)−1

(ω
z

)qk

|qk〉 . (7.2.15)Here, I assume that normal ordering is again de�ned with respet to |0〉 and
bk n |qk 〉 = 0 , n > 0, ck n |qk 〉 = 0 , ≥ 0. This representation is meant to existloally in a hart around a branh point e whih I have set to e = 0.Due to the monodromy, the �elds in the di�erent setors are supposed to havea new series expansion in this representation

bk (z)=
∑

n∈Z
bk n z−n−qk , ck (z) =

∑

n∈Z
ck n z−n+qk−1 , (7.2.16)
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whih must have an impat on the omposite �elds. Take for instane the thestress tensor. Firstly, it aquires additional terms
Tqk

(z)= Tk (z)+
1

2

qk (qk +1)

z2
(7.2.17)due to the OPE above. Seondly, it is build from bk and ck whih are now in therepresentation (7.2.16) on |qk 〉. Therefore, the modes gain a shift by the harge

qk

Tqk m
=

∑

n∈Z
(n−qk ) : bk −n ck n+m : +

1

2
qk (qk +1)δm,0 . (7.2.18)and the �eld modes have new onformal weights [ Tqk 0

, bk n] = (−n − qk ) bk nand [ Tqk 0
, ck n] = (−n + qk ) ck n . On the other hand, [ jqk 0

, bk n] = − bk n and
[ jqk 0

, ck n]= ck n , as before, and the U (1) harges are not a�eted. The state |qk 〉has harge qk , onforming with the disussion in the last setion, and onformalweight 1
2 qk (qk +1), also f. setion 3.4.2.To onlude this setion on the representation theory of the bc-system on

|qk 〉, notie that the U (1) urrent behaves under Möbius transformations as inequation (3.4.13). Therefore, the representation on |qk〉 is not unitary and itinherits the bakground harge q= 1 already obtained in setion 3.4.1.
Twist FieldsFrom the CFT point of view there should orrespond a unique �eld to thisrepresentation whih has the same quantum numbers and whih is �xed at theposition of the branh point. Formally, I will denote this isomorphism by themapping ∗ : µqk

(0)∗ |0〉 = |qk〉 wherein µqk
(0) is the �eld orresponding to |qk 〉and |0〉 =

⊗n−1
l=0

|0〉l . For onveniene, I will omit the ∗ in a orrelator and write
· · ·µqk

(0)∗ |0〉 = ·· ·µqk
(0)〉0, f. setion 3.4.1.In order to represent a branh point, µqk

(0) should respet the monodromyproperty of the �elds bk and ck , i.e.
bk (e2πiz)µqk

(0) = e−2πiqk bk (z)µqk
(0) ,

ck (e2πiz)µqk
(0) = e2πiqk ck (z)µqk

(0) .
(7.2.19)Consequently, the boundary onditions (7.2.7) are represented on the bc-systemby means of these �elds. If the indued boundary onditions are non-trivial, i.e.
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qk 6∈Z, it is ommon to all µqk
a �twist �eld� [Gin88℄ and the representation ofthe bc-system on the respetive state |qk〉 a �twisted representation�.The monodromy ondition imposed on the �eld µqk

allows for a whole stak oftwist �elds with harge qk +n , n ∈Z, alled �exited twist �elds�. For instanethe operator
µqk−1(0) = µqk

(0) bk 0 (7.2.20)de�nes a �eld of harge qk −1 and with onformal weight 1
2 qk (qk +1)− qk . Si-milarly, other exited twist �elds an be generated by an ation of the modesof bk and ck . However, beause they are in the same representation of themonodromy group, all these exited twist �elds belong to the same representationon |qk 〉. The operator µqk

(0) bk 0 is speial sine it formally an be identi�ed with
µqk

(0)|1〉, whereby |1〉 is the seond possible, however not onformally invariant,vauum representation in the CSb. It played the r�le of the logarithmi partnerof |0〉 in setion 4.1.3. This time, however, the onformal weights of µqk
(0) and

µqk
(0) bk 0 are not the same and both �elds an not be logarithmi partners.

7.2.3 ConclusionDue to the ation of the monodromy group and in addition to the representationon the onformally invariant state |0〉, the fermioni bc-system on T
n,m fallsinto n representations, eah of whih is omprised by the �elds bk and ck , k ∈

{0, . . . ,n − 1}, with the �eld algebra desribed by (7.2.15) and represented on
µqk

(e) respetively |µqk
〉. These representations are loally de�ned in the sensethat the �elds µqk

(e) are �xed at a branh point e and the operator produtalgebra (7.2.15) is de�ned in a neighborhood of this point. However, sine themonodromy group is Zn for every branh point, it is su�ient to onsider therepresentation theory in a hart inluding a single branh point. The urrents jkde�ned by the �elds in these representations are single-valued on Σ and yield thesame quantum numbers for any value of k. This is not true for the stress tensor,whih measures di�erent weights depending on the partiular representation.
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On Twist Fields and Torus Periods 8It is the ahievement of M. Flohr to have related the twisted bc-system on
T

2,2 to SU (2) SW theory, [Flo98, Flo04℄. Thereby, he took three ruial steps.Firstly, Flohr �released� the twist �elds and onsidered the branh points asdynamial degrees of freedom on CP
1. As a onsequene, the question arisedhow the operator produt algebra gets enlarged when OPEs between these �eldsare taken into aount and whih �elds must be added in order to lose thisalgebra. The answer to this question was the seond step Flohr had taken, heproposed that the bc-system on the torus should be identi�ed with the so-alledtriplet model [GK96, Roh96, Kau95℄. Finally, he argued that if the bc-systemon the torus is identi�ed with the triplet model it is possible to desribe themain data of SU (2) SW in terms of orrelation funtions of this theory.In this hapter I will motivate the hoie of the triplet model but take a moregeometri approah than that of Flohr. From this will follow that it is neessaryto release the twist �elds in order to desribe the fundamental parameters of thetorus (its periods and their ratio). As a onsequene I will then further deduethat the bc-system on the torus must be extended to a logarithmi CFT, andthe triplet model will be the minimalisti extension.In the �rst setion, I will release the branh points and transform the algebraiurve T

2,2 into the �Legendre family�. This formulation is anonial in order tostudy small movements in the moduli spae of tori. In partiular, the periods ofthe tori satisfy a hypergeometri di�erential equation in the moduli parameter[CMSP03℄.In the following setion 8.2, I will identify this di�erential equation with thenullvetor ondition on the twist �eld µ− 1
2
[Flo98, Flo04, Flo03, Gab03℄, whihagain relies on the possibility that the branh points may vary. This will explainwhy it is neessary to extend the bc-system to an LCFT.The hapter will be onluded with a brief disussion of the representationtheory of the bc-system and a brief introdution of the triplet model as theminimalisti logarithmi extension inludeing the twist �elds.
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8.1 The Legendre FamilyThe algebrai urve T
2,2 an be transformed into a polynomial of third order

Eλ : y2(z;λ) = z(z −1)(z −λ) , λ ∈CP
1 \ {∞,0,1} (8.1.1)by means of SL(2,C) transformations of z and y .1 Indeed, every ompat Rie-mannian surfae of genus one is the set of zeros of a polynomial of this form forsome λ [Jos02, FB00℄. Therefore, the moduli spaes of the two desriptions oftori are equivalent, T2,2 ≃ Eλ. The branh points are now positioned at {∞,0,1,λ},and Eλ an be onsidered to be parametrized by λ ∈ CP

1 \ {∞,0,1}. This makesthe Legendre family partiularly nie to study variations of the orrespondingequivalene lasses of tori as funtions of λ, or to study the singularities of Eλwhih are evident in terms of λ. I will denote the spae ME = CP
1 \ {∞,0,1} asthe moduli spae of the Legendre family Eλ, with oordinate λ.

8.1.1 Relation to the Lattice TorusIn what sense an a variation in λ evoke a movement between di�erent equiva-lene lasses of tori? The anonial parameter to distinguish or identify equiva-lene lasses of tori is the ratio τ of the periods of a torus in the lattie desription.Below I will argue that eah non-singular member of the Legendre family isequivalent to a lattie torus
C/Lλ−{[0]} , Lλ = { mΠD (λ)+nΠ(λ) , τ(λ) =±

ΠD (λ)

Π(λ)
, ℑ(τ) > 0, m,n ∈Z } , (8.1.2)whereby the hoie of sign in the de�nition of τ is suh as to ustomize ℑ(τ) > 0[FB00℄. Without loss of generality I will assume that after some resaling of theperiods I may hoose the plus sign. The periods of Lλ are desribed in terms ofohomology lasses of Eλ. The di�erential form

̟(z;λ) =
dz

y(z;λ)
(8.1.3)

1Without loss of generality, e4 6= 0. Apply the following transformations and some redefinition of y

z 7→
e4z

z +e−1
4

⇒ y 2 7→ y ′ 2 =
3∏

i=1

(e4 −ei )(z −u1)(z −u2)(z −u3), ui = ei [e4(e4 −ei )]−1 .

The change of variables z 7→ (u1−u2)z+u1 and another appropriate redefinition of y ′ yield the desired

result, whereby λ= u3−u1
u1−u2

.
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is holomorphi and without zeros on Eλ .2 Therefore, it is losed with respetto the de Rham di�erential and has a well de�ned ohomology lass. By meansof de Rham duality, this ohomology lass an be de�ned to be the dual of somehomology lass in H1(Eλ,Z), whih, without loss of generality, is generated bythe yles as depited below,
α β

PSfrag replaements
∞ u10and with intersetion number 1. Denote by α∗ and β∗ the basis for H 1(Eλ,Z)dual to α and β, i.e. ∫

αα
∗ = 1, ∫

αβ
∗ = 0. The ohomology lass of ̟ is given byan expansion in this basis as

[̟]=α∗
∫

α
̟+β∗

∫

β
̟ . (8.1.7)Thus, if [γ] ∈ H1(Eλ,Z), [γ]= mα+nβ , m,n ∈Z one �nds that

∫

[γ]
[̟]= m

∫

α
̟+n

∫

β
̟ . (8.1.8)

2This is most obvious in the Weierstrass formulation of Eλ, [FB00]. Let Lλ be the lattice corresponding

to Eλ. One may again redefine Eλ by z 7→ 41/3z + λ+1
3 which yields the Weierstrass normal form

X (g2,g3 ) : y 2 = 4z3 −g2 z −g3 , y,z ∈C

g2 =
41/3

3
(λ2 −λ+1), g3 =

1

27
(λ+1)(2λ2 −5λ+2).

(8.1.4)

This curve is called Weierstrass normal form because the Weierstrass function

℘(z) =
1

z2
+

∑

ω∈Lλ\{0}

(
1

(z −ω)2
−

1

ω2

)
, (8.1.5)

satisfies the differential equation

℘′(z)2 = 4℘(z)−g2℘(z)−g3℘(z). (8.1.6)

The Weierstrass function is periodic in Π and ΠD and is defined on C/Lλ. It induces a conformal

equivalence between X (g2,g3) and C/Lλ−{[0]}, via [z] 7→ (℘(z),℘′(z)), whereby [0] is taken out since ℘

has a pole at this point [FB00]. Let γ(t ) be a curve on C/Lλ which does not pass a zero of ℘′. Omitting [·]
for convenience, dγ(t ) = ℘′(γ)

℘′(γ)
dγ= d℘(γ)

℘′(γ)
, and the elliptic integral E(γ) =

∫
γ

d℘

℘′ is formally the inverse

of ℘, mapping X (g2,g3) to C/Lλ. This integrand, restricted to a curve which is not passing a zero of ℘′,

is a holomorphic one form and thus closed. It can be identified with ̟ on Eλ.
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Sine the ellipti integrals like ∫
α̟ take their values on Lλ (f. the explanationin the footnote on pg. 117), I an identify

ΠD (λ) =
∫

α
̟ , Π(λ) =

∫

β
̟ (8.1.9)and interpret (8.1.8) as the representative for [γ] on C/Lλ.

8.1.2 A Differential Equation for the PeriodsThe homotopy lass [̟(λ)] and, if the yles are �xed, also the periods ΠD and
Π, satisfy a hypergeometri di�erential equation

λ(λ−1)
d2̟(λ)

dλ2
+ (2λ−1)

d̟(λ)

dλ
+

1

4
̟(λ) = 0, (8.1.10)whereby ̟ is the representative of [̟] and the di�erential equation is zero up toexat forms.The following nie proof is taken from [CMSP03℄. The quantity [̟(λ)] =

ΠD (λ)α∗+Π(λ)β∗ an be interpreted as a di�erential form on
H 1(E ,Z) :=

⋃

λ∈CP1\{∞,0,1}

H 1(Eλ,Z) . (8.1.11)The derivative ∂λ = d
dλ denotes the the ovariant di�erential on this spae,whereby the onnetion is hosen suh that α∗ and β∗ are (loally) onstant.Then, formally, ∂λ[̟(λ)] = ∂λΠD (λ)α∗ + ∂λΠ(λ)β∗ = [∂λ̟(λ)]. For this relationto make sense, one has to prove that ∂λ̟(λ) is indeed a representative of aohomology lass of E . Take the representative ̟(λ), then

∂λ̟(λ)=
1

2
[z(z −1)(z −λ)3]−

1
2 dz (8.1.12)is a meromorphi one-form. However, its pole has a multipliity greater equal twoat (y, z) = (0,λ) =: P , suh that it nevertheless de�nes a ohomology lass. Namely,in a neighborhood of P , y(z) is invertible and one an write y2 = h(y)

λ(λ−1)
(z(y)−1),whereby h(y) is holomorphi in y and h(0) = 1. Solving for z and expanding

h(y)−1 around y = 0 yields z = λ+O(y2). Now, with y2(z) = p(z) one has ̟ =
2

dy
∂z p(z) , and inserting the approximation for z yields ̟= 2

dy
λ(λ−1) +O(y−2). Thus,plugging in again z −λ=O(y2),

∂λ̟(λ)=
1

2

̟(λ)

z −λ
=

dy

λ(λ−1)(z −λ)
+O(y−2) ∼

dy

λ(λ−1)y2
+O(y−3) . (8.1.13)
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The following remarks onlude the proof. By Stokes theorem, the residuum ofa one-form depends only on the ohomology lass. Therefore, the sequene
0 → H 1(E ,Z)

r estr ict ion−→ H 1(E \ {P },Z)

∮
P→ 0. (8.1.14)is exat and ∂λ̟(λ) is a ohomology lass on E and not just on E \ {P }. Sine

̟ and ∂λ̟ are both ohomology lasses and H 1(E ,Z) has two generators, everyother ohomology lass an be expanded in these two. In partiular
A(λ)∂2

λ̟+B(λ)∂λ̟+C (λ)̟= 0, (8.1.15)modulo an exat form. A alulation reveals that f = [z(z−1)(z−λ)−3]
1
2 satis�es

d f = (z −1)∂λ̟+ z∂λ̟−2z(z −1)∂2
λ
̟. Using z = z −λ+λ in this equation and

(z−λ)∂λ̟= 1
2
̟, (z−λ)∂2

λ
̟= 3

2
∂λ̟ yields the di�erential equation for the periods.

8.1.3 Solutions for the PeriodsThis di�erential equation is a speial ase of the hypergeometri equation
(
λ(λ−1)

d2

dλ2
+ [(a +b +1)λ−c]

d

dλ
+abλ

)
F = 0, (8.1.16)with a = b = 1

2
and c = 1. Its solutions are the hypergeometri funtions F (a,b;c|λ),lassi�ed for instane in [E+85℄. In the ase under onsideration, the solutionspae may be spanned by the funtions

F1(λ) = F ( 1
2 , 1

2 ;1|λ) , F2(λ) = iF ( 1
2 , 1

2 ;1|1−λ) . (8.1.17)Erdelyi de�nes the funtion F ( 1
2

, 1
2

;1|λ) by an integral representation whih yieldsan analyti, single-valued funtion on C \R≥0 [E+85℄. Its loal form in a neigh-borhood of λ= 0 equals
F ( 1

2
, 1

2
;1|λ) =

1

π

∞∑

n=0

(
Γ( 1

2
+n)

Γ( 1
2

)n!

)2

[kn − log(1−λ)](1−λ)n , (8.1.18)whereby |1−λ| < 1 , |arg(1−λ)| <π and
kn = 2ψ(n+1)−2ψ( 1

2 +n) , ψ(λ) = ∂λ logΓ(λ) . (8.1.19)
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In this shape (8.1.18), it is evident that the solutions F1 and F2 of the di�eren-tial equation for the periods have logarithmi singularities at λ = 1 and λ = 0,respetively.Both solutions F1 and F2 get, however, mixed whenever λ passes the branhut between 0 and 1. The results are again taken from [E+85℄, who used therelation
1

2
πF1(λ)−

i

2
log(1−λ)F2(λ) =

1

2

∞∑

n=0

(
Γ( 1

2 +n)

Γ( 1
2

)n!

)2

kn(1−λ)n , (8.1.20)to obtain
µ0 :

(
F1

F2

)
7→

(
1 0

2 1

)(
F1

F2

)
, µ1 :

(
F1

F2

)
7→

(
1 −2

0 1

)(
F1

F2

)
, (8.1.21)whereby µ0 and µ1 denote the operation of enirling the branh points 0 and

1, one. The group generated by the matries above is alled the �global mon-odromy group� of Eλ [CMSP03℄. Due to the monodromy property, the hoie ofthe solutions F1 and F2 has no fundamental meaning. Indeed, given the lattiede�ned by the periods F1, F2, all latties in the orbit of the monodromy groupare idential. For this reason, the periods orresponding to di�erent algebraisurfaes are lassi�ed by the global monodromy groups and vie versa.
8.2 LCFT-fication of the Legendre FamilyThe Legendre family has a �oating branh point, whereas in Knizhniks approahall branh points were �xed. Therefore, in order to �nd a �eld theoreti expres-sion for the periods, I will now reinvestigate the fermioni bc-system on T

2,2and reformulate the branh points as dynamial degrees of freedom. Behind thiswork stands a pile of publiations on the LCFT at c =−2, on my table are stakedup in partiular the referenes [Flo98, Flo03, Flo04, Kau95, Gab03, Gur93℄.Until now, the bc-system on T
2,2 onsists of two di�erent loal representations

|q0/1〉 in every hart whih ontains a branh point, and one globally de�nedrepresentation on |0〉 with support on Σ. The following list summarizes the
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representations and �elds I have disussed in hapter 7:reps. harges J weights ∆ �elds domain
|0〉 0 0 1(z) Σ

|0̃〉 := |q1〉 0 0 1̃(ei ) :=µ0(ei ) {ei }

|µ〉 := |q0〉 − 1
2 − 1

8 µ(ei ) :=µ− 1
2

(ei ) {ei }

|σ〉 := b0 0 |q0〉 − 3
2

3
8 σ(ei ) := b0 0µ− 1

2
(ei ) {ei }

(8.2.1)Only, the latter two rows denote twist �elds, whereas the �rst representationshave trivial monodromy. Notie that the untwisted representations have thesame quantum numbers and might be logarithmi partners, whereas this is nottrue for the twist �elds. The dynamial �elds represented on these spaes arethe �elds b(z) and c(z). I have distinguished their representations by an index
k suh that for instane b(z) denoted the representation on |0〉 and bk (z) therepresentation on |qk〉. For onveniene I will now drop this index.It is neessary to release the �elds representing the branh points in order toreprodue the situation of the Legendre family. The branh point oordinatesand orresponding �elds may then move on CP

1, and the bakground �eldsbeome additional dynamial quantities. In this sense, the orresponding loalrepresentations beome global representations on Σ and by a onformal transfor-mation of the algebrai surfae as desribed in the last setion, one may identify
{ei }i=1,...,4 = {0,1,∞,λ} ∈CP

1, λ∈ME .As soon as twist the �elds related to the branh points are released, the ques-tion arises what the operator produt algebra looks like. In partiular, I wouldlike to be able to alulate orrelation funtions of the kind
{
〈

s∏

l=1

Ol

n∏

i=1

φi (zi )
m∏

j=1

µqk j
(ω j )〉 6= 0,

zi ∈Σ , ω j ∈CP
1

∑
i J (i )+

∑
j J ( j )+

∑
k J (l)] =−1

}
, (8.2.2)whereby φi an be b(z) or c(z) and 〈·〉 = 0〈·〉0, f. setion 3.4.1. The ondition

∑
i J (i )+

∑
j J ( j )+

∑
k J (l) =−1 is neessary to anel the bakground harge q= 1.This is aomplished by the operators Ol , whih denote any non-dynamial quan-tities and whih I will all �sreening operators�, for this reason. For instane,

b0 is a sreening operator in 〈b01(z)〉 = 〈0|1〉 = 1.
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8.2.1 A Hypergeometric Equation for the Twist FieldsFor the moment, I am interested in orrelation funtions inluding the twist �elds
µ− 1

2
. They are promising andidates to simulate the periods of the Legendrefamily beause they introdue some monodromy and, hene, mimi the non-trivial behaviour of the branh points.In order to alulate orrelation funtions, it is helpful to searh for restritionssuh as nullvetor onditions. Indeed, the representation |µ〉 satis�es a nullvetorondition at level 2

(T−2 +2T 2
−1)|µ〉 = 0, (8.2.3)whih signi�es that the four-point funtion has to satisfy a hypergeometri dif-ferential equation [Gur93, Flo03℄,

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉 = λ
1
4 (λ−1)

1
4 F (λ) ,

λ(λ−1)
d2F (λ)

dλ2
+ (2λ−1)

dF (λ)

dλ
+

1

4
F (λ)= 0.

(8.2.4)Thus, up to a prefator, the four-point funtion of the µ �elds reprodues theperiods of the Legendre family and, without loss of generality, I hoose the twosolutions to be F1 and F2 as in (8.1.3). The orresponding four point funtionsnow equals
〈c0 µ(∞)µ(1)µ(0)µ(λ)〉k =λ

1
4 (λ−1)

1
4 Fk (λ) , k ∈ {1,2} , (8.2.5)and should be ompared with

Π(λ) = F ( 1
2

, 1
2

,1|λ) , ΠD (λ) = iF ( 1
2

, 1
2

,1|λ) . (8.2.6)Consequently, the orrelation funtions above and the periods of the Legendrefamily de�ne equivalent tori and their quotient yields the same fundamentalparameter3
τ(λ) =

ΠD (λ)

Π(λ)
=

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉2

〈c0 µ(∞)µ(1)µ(0)µ(λ)〉1
(8.2.7)Applying the monodromy group (8.1.21), I an rede�ne the periods withouthanging the underlying lattie torus. In this respet, the �onformal bloks� inthe orrelation funtions are not uniquely determined.

3Two tori are equivalent, iff their lattices differ by some nonzero complex number L = aL′, a ∈ C \ {0}.

This is more general than saying that two tori are identical, i.e. L = L′. The identical tori are related by

the global monodromy group, cf. section 8.1.
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8.2.2 The Necessity of a Logarithmic ExtensionThe neessity for a logarithmi extension of the bc-system on the torus an nowbe seen from the operator produt expansion between the twist �elds, whih wasoriginally derived by V. Gurarie [Gur93℄. To explain this, I will, however, followa publiation of M. Gaberdiel in [Gab03℄. A general solution of the nullvetorondition equals
F (λ) = A F1(λ)+B [F1(λ) log (λ)+H(λ)] , (8.2.8)whereby F1 and H are regular at z = 0, and I used (8.1.20) as well as λ 7→ 1−λ toreformulate F2(λ) = i
π

(
F1(λ) logλ+H

). In the expression above it is immediatethat the OPE between two �elds µ must ontain logarithms and splits into twoparts. Namely, if two of the �elds in the four-point funtion are shifted to aneighborhood of in�nity and treated as a bakground �eld Ω(∞), the orrelationfuntion still has to respet the OPE by its de�nition. Thus,
µ(z)µ(ω)= (z −ω)

1
4 (φ1(ω)+φ2(ω) log(z −ω)) , (8.2.9)with A = 〈Ω(∞)φ1(0)〉 , B = 〈Ω(∞)φ2(0)〉. Gaberdiel uses a further trik whihallows to determine the �elds φi . He lets λ enirle 0 in the OPE with the othertwist �elds shifted nearby in�nity, whih yields

〈Ω(∞)e2πiT0µ(λ)µ(0)〉 =λ
1
4 (A+2πiB +B log(λ)) . (8.2.10)Thus, with φi |0〉 =: |φi 〉 he obtains

T0|φ2〉 = 0, T0|φ1〉 = |φ2〉 . (8.2.11)I have enountered suh an equation already in (4.1.10) and thus may onludethat the fermioni bc-system on the torus unavoidably has to be logarithmiallyextended, whereby φ2(z) = 1(z) and φ1(z) =Ψb(z), f. hapter 4. The �elds 1(z)and Ψb(z) have the same onformal weights and U (1) harges, as is demandedfor logarithmi partners of the Virasoro algebra. In (8.2.1) already appears a setof �elds and representations subjet to that onstraint. Therefore, I laim thatfor the fermioni bc-system on Eλ,
µ(z)µ(ω) = (z −ω)

1
4 (1̃(ω)+1(ω) log(z −ω)) ,

1̃(z)=Ψb(z) , |0̃〉 = b0|0〉⊗ǫ|0〉K ,
(8.2.12)
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and all �elds in the untwisted setor have to be logarithmially extended inanalogy with hapter 4.
8.3 The Triplet ModelThe triplet model is an LCFT whih ontains the logarithmially extended un-twisted setor as well as the twisted representations [GK96, Roh96, Kau95℄. Tothe best of my knowledge, this model is in addition the LCFT whose opera-tor produt algebra loses on the representations noted down in (8.2.1) with aminimal amount of additional representations added. Its basi ingredient is anadditional symmetry whih restrits and ontrols the possible representations.In order to make this expliit, I will omment on the means whih restrit therepresentation spaes of a onformal �eld theory. Therefore, I will �rstly intro-due what I understand under a physially eligible representation, and thereafterdisuss the impat of the additional symmetries and nullstate onditions whihlead to the triplet model.
8.3.1 Symmetries and RepresentationsThe OPE of the twist �elds ould be reonstruted due to a nullstate onditionwhih made it neessary to extend the representation of the fermioni bc-systemon |µ〉 by |0〉 and |0̃〉. Behind this stands a general feature of CFTs. Sinethe �elds and states are supposed to be isomorphi, obtaining knowledge of theoperator produt algebra of the �elds and studying the possible representationspaes are two sides of the same medal. This knowledge is basially deduedfrom nullstates and symmetries. To explain how this works, I must speify whatI understand under a �physially relevant� representation spae.In setion 3.4.1, I have de�ned a olletion of representations on harged states
|p〉, however, not all of them are �physially� reasonable. In the situation of aCFT for instane, the �physial� representation spaes should be build on stateswhih preserve onformal symmetry. This ondition would have restrited the
bc-system to be build solely on |0〉, whih is the only SL(2,C) invariant stateamong the states |p〉, p ∈ Z. On the other hand, sine the bc-system breaksunitarity, it is not possible to onstrut a thoroughly �physial� theory, anyway,
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and it was neessary to inlude the dual state 〈1| to aount for the bakgroundharge. Therefore, I will restrit the representations as follows:
Restriction by Symmetries:Let C ∪S be some operator produt algebra of holomorphi �elds, whereby Ihave extrated the part S onsisting of the symmetry generators T , for the inte-rior Virasoro symmetry, and Sa(z) , a = 1. . . A for additional exterior symmetries.These symmetries are subjet to [Sa

0 ,T0]= 0, [Sa
0 ,Sb

0 ]= 0, and I assume that thereexists a unique SL(2,C) invariant state |0〉, on whih they are diagonal. In thespirit of the onsequenes a logarithmi deformation along the lines of [FFH+02℄implies, I understand by a physially eligible representation (PER) of C ∪S amultiplet M(φ)K of vetors |φ,k〉 , k = 1, . . . ,K subjet to the following onditions:
➀ REPRESENTATION OF THE OPA: In the representation on M(φ)K , the �eldsin C have a mode expansion

Φ(z) =Φ
(naive)(z)+ Φ̃(z) , Φ

(naive)(z)=
∑

n∈Z
Φn z−n−∆T (Φ)whereby Φ̃ ∈ End(M(φ)K )((z, z−1))[log z]. For all k, |φ,k〉 is annihilated by

Φn , Φ̃n , n > 0.4 The set of states {|φ,k〉 ∈ M(φ)K : Φ̃(z)|φ,k〉 = 0} is notempty. The operator produt algebra of the �elds in C is represented on
|φ,k〉 ∀ k.

➁ INTERIOR SYMMETRY: On every |φ,k〉, the �eld T an be deomposed as
T (z)= T (naive)(z)+g(z) ,suh that the ation of the �eld modes in T (naive) =

∑
n∈Z T (naive)

n z−n−2 on
|φ,k〉 does not lead out of the kth setor, and the zero mode is diagonal.The other �eld g(z) ∈ End(MK )((z, z−1)) permutes the elements of the mul-tiplet. Hene, the eigenvalue ∆φ of T (naive)

0 is a quantum number of M(φ)K .Moreover, I assume that the OPA of T with the �elds in C is preservedand that there exists some |φ,k〉 ∈ {|φ,k〉 ∈ M(φ)K : Φ̃(z)|φ,k〉 = 0} suh that
g(z)|φ,k〉 = 0.

4In order to avoid indices which are not integers, I do not assume that the field modes Φn have conformal

weight −n.
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➂ EXTERIOR SYMMETRY: I assume that the �elds Sa(z) ∈S have expansionsand representations of the kind
Sa(z)= Sa (naive)

(z)+gSa (z) (8.3.1)with ga
S
∈ End(MK )((z, z−1))[log z]. The �elds Sa (naive) and gSa shall enjoyanalogue properties as were demanded for T on any |φ,k〉. The ondi-tions [ Sa (naive)

0 ,T (naive)
0 ] = 0 and [ Sa (naive)

0 , Sb (naive)
0 ] = 0 shall be valid suhthat the eigenvalues of Sa (naive)

0 are quantum numbers of M(φ)K . I do fur-ther assume that there exists some �non-logarithmi� states |φ,k〉 ∈ {|φ,k〉 ∈
M(φ)K : Φ̃(z)|φ,k〉 = 0 = g(z)|φ,k〉} subjet to gSa (z)|φ,k〉 = 0 ∀a.

➃ FIELD-STATE CORRESPONDENCE: There exists an isomorphism ∗ suh that
φk (0)∗ |0〉 = |φ,k〉 ∀ k de�nes an element φk ∈ End(Mk )((z, z−1))[log z]. Iassume that the symmetry generators T (z) and Sa (z) have OPEs with the�elds φk whih take the generi form for the naive �elds and do not lead outof the representation. Consequently, φk has the same quantum numbersas |φ,k〉 with respet to T (naive) and Sa (naive). The OPE of g(z) and gSa (z)with φk , ontains �elds φk ′ , k 6= k ′ or their derivatives, orresponding tothe ation of those operators on a state |φ,k〉.

➄ IRREDUCIBILITY: If there exist isomorphi representations MK ≃ M ′
K
, i.e.the �eld algebra C ontains a bijetive linear mapping between the modulesgenerated from C on these spaes, I treat them as equivalene lasses and�hoose� the set of vetors whih is annihilated by the maximal amount ofsymmetry generators T (naive)

n , S(naive) a
n , n ∈Z as representative.By this means it is lear that the PERs are also representations of ertainsymmetries and an thus be lassi�ed and restrited.

Some Examples The holomorphi- antiholomorphi fermioni bc-system ofhapter 4 has four PERs if the zero modes b, b̄ and c, c̄ are exluded. The states
|0,0〉 and |1,1〉 yield a doublet, the o�-diagonal states |0,1〉 and |1,0〉 singletrepresentations. The representations with higher harge are not PERs, beausethere exist modes in the �eld algebra whih at as isomorphisms. If, as desribedin hapter 4, it is logarithmially extended, the PERs are preserved. The reasonis that even though the modes b0 and b̄0 enter the extension �elds, these an
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not add to the �eld algebra, for it would break Möbius ovariane, f. setion4.1.3.Similar arguments for other senarios lead to the following tabular, wherein�+� denotes the theory with zero modes, �−� the theory without zero modes andall states without tilde or ǫ are non-logarithmi:
bc-system unextended PERs logarithmially extended PERsholo + |0〉

{
|0〉, |0̃〉

}holo − |0〉 , |1〉
{
|0〉, |0̃〉

}
, |0〉⊗ǫ|0〉K , |1〉⊗ |0〉Kholo-anti + |0,0〉 { |0,0〉, |1,1〉 }holo-anti − { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉 { |0,0〉, |1,1〉 } , |0,1〉 , |1,0〉

Restriction by NullstatesThis exampli�es that the ondition of irreduibility puts onstraints on the the-ory. Another example is the twist state |µ〉, whih has a potential subrepresen-tation on a nullstate, f. setion 8.2.1. This state was, however, idential to zero,suh that the submodule generated by it already was exluded. Still, it mayhappen that there are subrepresentations on vetors |N〉 ∈ span
C

{∏
n,i φi ni

|0〉} :

φi ni
∈C ∪S , ni < 0

} whih do not vanish identially. The modules build onsuh vetors must be divided out, whih is e�etively the same as setting |N〉 = 0.This must be aompanied by the ondition that any orrelation funtion whihinludes the �eld N (z) orresponding to |N〉 must vanish, and this is equivalentto requiring that in the representation on any M(φ)K

gN (z)|φ,k〉 = 0, N (naive)
0 |φ,k〉 = 0, ∀k . (8.3.2)If N (naive)

0 is onstituted by the zero modes of ertain symmetry generators,this restrits the possible eigenvalues of those generators and thus the possiblerepresentation spaes.
8.3.2 Realization of the Triplet ModelThe triplet model results from an additional SU (2) symmetry in the logarith-mi fermioni bc-system.5 The additional symmetry introdues new nullstate

5This also works for the non-logarithmic fermionic bc-system without zero modes, which is a special

case.
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onditions and thus restrits the PERs [GK96, Roh96, Kau95℄.The su(2) Lie algebra is realized in terms of the (naive part of the) zero modesof the �eld generators W a
n orresponding to the �elds6

W 1(z)=−∂2
z e(z)∂z e(z) ,

W 2(z)=
1

2

[
∂2

z e(z)∂z b(z)+∂2
z b(z)∂z e(z)

]
,

W 3(z)=−∂2
z b(z)∂zb(z) .

(8.3.3)The �eld modes W a
n extend the Virasoro algebra by

[T m ,T n ]= (m −n)T m+n −
1

6
m(m2 −1)δm,−n ,

[T m ,W a
n ]= (2m −n)W a

m+n ,

[W a
m ,W b

n ]= g ab

(
2(m −n)Λm+n +

1

20
(m −n)(2m2 +2n2 −mn−8)T m+n

−
1

120
m(m2 −1)(m2 −4)δm,−n

)

+ f ab
c

(
5

14
(2m2 +2n2 −3mn−4)W c

m+n +
12

5
V c

m+n

)
,

(8.3.4)

whereby Λ(z) =: T 2(z) : − 3
10
∂2

z T (z) and V a (z) =: T (z)W a(z) : − 3
14
∂2

zW a (z). Themetri is symmetri with g ab = δab and the struture onstants are those of
su(2), namely f ab

c = iǫabc .Gaberdiel and Rhosiepe also note down the nullstates whih are deisive forthe determination of the possible representations. The ondition that the zeromodes of the naive part of the orresponding null�eld on a PER be zero yields
∆

2
φ(8∆φ+1)(8∆φ−3)(∆φ−1) |φ,k〉 = 0 (8.3.5)for arbitrary multiplets M(φ)K , and is aompanied by

[W a
0 ,W b

0 ](naive) |φ,k〉 =
2

5
(6∆φ−1) f ab

c W c (naive)
0 |φ,k〉 . (8.3.6)Consequently, the only allowed PERs fall into representations of su(2) and arestates with highest weights {

0,− 1
8

, 3
8

,1
}. This extends the representations listedin (8.2.1) in a minimalisti way.

6For the logarithmic case, one may set b0 = 0 = c0, ad libitum. If the non-logarithmic situation is consid-

ered, set in addition ǫ= ρ = 0.
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8.3.3 CharactersIn the next hapter I will determine the prepotential of pure gauge, SU (2)Seiberg-Witten in terms of some haraters of the triplet model. Therefore,I will onlude this hapter by quoting the ones relevant for my onsiderations.H. G. Kaush, [Kau95℄, proposed that ertain primary �elds in the Ka table,for instane those in the �augmented� minimal model c6,3 with onformal weights
∆r,s =

1

8
((2r − s)2 −1) , 0< r < 3, 0 < s < 6, (8.3.7)an be identi�ed with the �elds appearing in the non-logarithmi triplet model.Indeed, the �elds in the augmented minimal model have the orret quantumnumbers and the �eld whih by suh is the analogue of µ also has the orretnullstate ondition, f. [Flo03, RRS08℄. By this analogy, Kaush onluded thatthe haraters of the non-logarithmi triplet model are those of the augmentedminimal model

χ− 1
8

(q) =
Θ0,2(q)

η(q)
, χ 3

8
(q) =

Θ2,2(q)

η(q)
,

χ0(q)=
1

2

(
Θ1,2(q)

η(q)
−η2(q)

)
, χ1(q) =

1

2

(
Θ1,2(q)

η(q)
+η2(q)

)
,

(8.3.8)with Jaobi-Riemann theta funtions Θr,s (q) =
∑

n∈Z q
(2kr+s)2

4s , Dedekind η funtion
η(q) = q

1
24

∏
n∈N(1− qn ) and q = e2πiτ. The parameter τ is the modulus of somelattie torus.These haraters were ompleted by [GK96, Flo96℄ to math with the logarith-mially extended triplet model. However, I will not make use of the additionalharaters and refer the interested reader to the literature just ited.Now, I have everything together to relate the triplet model to Seiberg-Wittentheory.
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Relation to Seiberg-Witten Theory 9In this hapter I will determine the spetral torus of pure gauge, SU (2) Seiberg-Witten theory in terms of haraters of the triplet model. Moreover, I will obtainthe prepotential as a funtion of the torus modulus τ, whih an be expressedas the ratio of the four-point funtions of the twist �eld µ in this theory, (8.2.7).It follows, that this spei� Seiberg-Witten theory is ompletely determined bythe triplet model.Firstly, I will start with a brief introdution to Seiberg-Witten theory anddisuss its spetral urve. The relation to the triplet model will be disussed insetion 9.2 and summarizes the results of [VF07℄.
9.1 Some Words on Seiberg-Witten TheoryIn [SW94℄, N. Seiberg and E. Witten derived the full prepotential F (inludinginstantons) of the low energy e�etive ation for N = 2 supersymmetry withgauge group SU (2). In terms of N = 1 �elds, this theory is desribed by a familyof Lagrangians
LA =

1

8π
ℑ

(∫
d4θ Ā AD +

∫
d2θ τ(A)W αWα

)
, AD =

dF (A)

dA
, τ=

d2
F (A)

dA2
. (9.1.1)The spaetime metri has a Minkowskian (mostly minus) signature and, with theexeption that I use another normalization for the Pontrjagin index,

1
8π2

∫
S4 F ∧F ∈ Z [Ber96℄, I stik to the onventions of [Bil96℄. The prepoten-tial F is holomorphi in the expetation value A of the N = 1 hiral multiplet

〈Φ〉 = 1
2 Aσ3.The Lagrangian above has its domain on the e�etive vauum on�gurationswhile the massive Goldstone bosons are integrated out. By the term �e�etivevauum� I mean that for nonvanishing values of 〈Φ〉 the SU (2) gauge symmetryis broken to U (1) and the thus obtained �eld on�gurations do not enjoy thefull symmetry of the theory. Furthermore, as soon as the salar �eld is in ane�etive vauum on�guration, all other partiles have the same property forthey belong to the same N = 2 multiplet.
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In the following I will only motivate the basi geometri fats whih lead tothe spetral urve of this theory and to its interpretation as a torus. The readerinterested in the details, is refered to the literature [Bil96, SW94, DP99, Ler97℄.Afterwards, I will relate the spetral torus to the triplet model.
9.1.1 The Spectral Curve of SW TheoryThere is a remnant of the larger SU (2) symmetry hidden behind the hoie of A,namely under rotations by π around the �rst or seond axis of the gauge group,
A 7→ −A and these are equivalent gauge on�gurations. Thus, rather than 〈Φ〉, itis reasonable to onsider the Casimir 〈tr Φ

2〉 as a gauge invariant parameter. If
φ is the salar �eld in the hiral multiplet Φ, the Casimir yields some u = 〈tr φ2〉.The parameter spae of u ∈C onstitutes the moduli spae of gauge inequivalente�etive vaua MSW , and thus of the family LA(u) =Lu . Formally one an add
{∞} to MSW , whih is a singular point for Lu .In general, the moduli spae MSW has singularities at those values of u atwhih the e�etive ation is not de�ned or inadequate to desribe the masslesssetor. Besides {∞}, these are the points u at whih massive �eld modes whihhave been integrated out turn massless, f. [SW94, Bil96, DP99, Ler97℄.Seiberg and Witten argued [SW94℄ that there should exist two additionalsingular points {s,−s} ∈MSW , suh that

MSW =CP
1 \ {∞, s,−s} . (9.1.2)The parametrization in terms of u = 〈tr φ2〉 seems to make the setting moredi�ult. The reason is that the inverse of 〈φ〉 7→ 〈tr φ2〉 has two roots in terms of

u. Indeed, the analysis of Seiberg and Witten revealed that the paramtetrizationin 〈φ〉 yields a two-sheeted overing of MSW . Therefore, A, AD and in partiular
F are not single-valued in u.The partile spetrum for Seiberg-Witten theory is bound to satisfy the massformula [DP99℄

Z (u)= na(u)+maD (u) , (9.1.3)whereby a and aD are the salar �eld omponents in A and AD , respetively, norresponds to an eletri harge and m to a magneti harge. By this means,the spetrum an be read o� from some lattie torus. In addition, ℑ(τ(u)) > 0 by
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requiring that ℑ(τ) shall serve as a metri on the spae of vauum on�gurations
a and aD [Bil96, SW94℄. The relation above (9.1.3) is the spetral torus desri-bing the massive partiles in Seiberg-Witten theory. The singularities in MSWorrespond to those values of a and aD for whih the torus beomes singular.
9.1.2 Modular TransformationsThe spetral torus does only deserve its name �torus�, if it is possible to provethat the physis behind it is invariant under modular SL(2,Z) transformations.As already mentioned in setion 8.2.1, the orbit of a lattie torus under SL(2,Z)ollets all equivalent tori. Thus, I will in the following explain that the partitionfuntion of Seiberg Witten theory is modular invariant.The Lagrangians

LA =
1

8π



∫

d2θ ℑ
[
τ(A)W αWα

]
+

1

2

∫
dθ4

(
AD

A

)†

I

(
AD

A

)
 , I =

(
0 i

−i 0

)
(9.1.4)are invariant under

(
AD

A

)
7→ M(n)

(
AD

A

)
, M(n) =

(
1 n

0 1

)
, n ∈Z . (9.1.5)While M†I M = I , one obtains a shift of the oupling onstant τ= θ(u)

2π + 4πi
g 2(u)

τ=
dAD

dA
7→ τ+n (9.1.6)whih adds an, however, irrelevant term to the theta angle

τ(u)+n =
θ(u)+2nπ

2π
+

4πi

g 2(u)
. (9.1.7)To see this, I have used the onventions of Bilal, W αWα|θ2 = 1

4
(Fµν − iF̃µν)

(Fµν− iF̃µν)+ . . . [Bil96℄ and the observation that sine 1
8π2

∫
S4 F ∧F ∈Z the shiftdoes not ontribute to the partition funtion1

Z [u] = exp{

∫
d4x iLu } . (9.1.8)

1This is an abuse of denotation. The partition function is rather Z =
∫
MSW

Z [u]du, for some appropriate

measure du on MSW .
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The partition funtion is further invariant under a duality whih inverts thegauge oupling. This is obtained by a Legendre transformation
FD (AD ) =F (A)− A AD , (9.1.9)suh that

τD (AD ) =−
dA

dAD
=−

1

τ(A)
, (9.1.10)whilst the ation looks struturally as before with new onjugate oordinate

∂AD FD =−A. How this transformation is implemented for the N = 1 formulationof the theory is disussed in full detail in [Bil96, SW94℄. Physially, it onstitutesan analyti extension of F to the strong (respetively low) oupling regime. Fromanother point of view, the ation of the seond generator exhanges the r�les of
aD and a and thus magneti and eletri harges.For me it was important to note that the partition sum build from the La-grangians Lu is indeed invariant under the ellipti modular group

SL(2,Z) = 〈
(

1 1

0 1

)
,

(
0 1

−1 0

)
〉 . (9.1.11)The ation of this group is thus well de�ned on the spetral torus whih onse-quently deserves its name.It is now suggestive to reinterpret the family of Lagrangians Lu and substitutethe parameter A(u) by the torus modulus τ(u). Thereby, Lu 7→Lτ and the familyof Lagrangians gets parametrized over the spae of inequivalent tori. This wouldbe a �rst step towards a CFT approah to Seiberg-Witten theory.

9.2 The Spectral Curve and Triplet CharactersIn the following, I will explain how the family of Lagrangians Lu an be refor-mulated in terms of τ. This was one main part in my publiation with M. Flohr,[VF07℄. At this time, we searhed after an expression of F in terms of haratersof the triplet model, whih was the seond main part. This was enouraged bysome former work of Flohr on a orrespondene between Seiberg-Witten theoryand the triplet model [Flo04, Flo98℄ and by a publiation of W. Nahm [Nah96℄.In his papers, Flohr ould express the spetral urve in terms of orrelation fun-tions of the triplet model. Nahm, on the other hand, proposed that it should be
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possible to ombine a and aD into a modular form of weight −1, for whih henoted down the following expression in terms of τ:
c(τ) = aD (u(τ))−τa(u(τ))∼

η2( τ
2

)

η4(τ)
. (9.2.1)It is not possible to express c in terms of haraters of ordinary CFTs, sinethey have have modular weight zero. On the other hand, the haraters χ0 and

χ1 of the triplet model ontain both a term η2 whih has modular weight one.Therefore, it seemed reasonable to try to obtain c in terms of haraters of thetriplet model. Indeed, we ould determine c in terms of haraters of the tripletmodel but not the prepotential.I will now explain by whih steps c ould be artiulated solely by means oftriplet haraters and by whih the prepotential F ould be determined as afuntion of τ.
9.2.1 The Spectral Curve in Terms of τThe Moduli spae MSW =CP

1 \{∞,±s} of Lu onforms with the moduli spae ofthe spetral torus, as follows from setion 9.1.1. Therefore, it is reasonable torelate to the spetral torus an algebrai urve of the form
ỹ2 = (z − s)(z + s)(z −u) . (9.2.2)In analogy with the disussion in setion 8.1.1, one an de�ne a di�erentialone-form

˜̟ (z;u) =
dz

ỹ(z;u)
(9.2.3)with respet to the urve above, �x two branh uts [∞···u] and [−1 · · ·1] anda hoie of yles, and derive the periods integrating over ˜̟ . In order to makeuse of the results of setions 8.1.2 and 8.1.3, I substitute z = 2z −1 under theorresponding integrals. This transforms the algebrai urve above into theLegendre form suh that

Π̃D (λ) = (2s)−
1
2
∫
α̟(λ)

Π̃(λ) = (2s)−
1
2
∫
β̟(λ)

, λ(u) =
u+ s

2s
, (9.2.4)
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with ̟ as de�ned in (8.1.3). The periods thus obtained an be expressed interms of (8.1.17) and de�ne a torus lattie with moduli parameter
τ(λ) = i

F ( 1
2

, 1
2

;1|1−λ)

F ( 1
2 , 1

2 ;1|λ)
, (9.2.5)wherein λ is a funtion of u. Notie, that τ an diretly be related to the tripletmodel and be derived by means of the twist �eld four-point funtions (8.2.7).In [E+85, Vol. 2, pg. 354f℄, I have found several hoies for the inverse λ(τ) of(9.2.5). Sine all of them are onneted by modular (i.e. SL(2,Z)) transforma-tions, I hose without loss of generality

λ(τ) =
(
θ3(τ)

θ2(τ)

)4

, (9.2.6)whereby
θ2(τ)= 2

∞∑

n=0

q(τ)
1
2 (n+ 1

2 )2

, θ3(τ) = 1+2
∞∑

n=1

q(τ)
1
2 n2

, θ4(τ) = 1+2
∞∑

n=1

(−)n q
1
2 n2

(9.2.7)are the Jaobi theta funtions and as before q = exp{2πiτ}, f. setion 8.3.3.This hoie of λ is in onordane with the publiations [HK07, ABK08℄, whihappeared during the time when M. Flohr and I published our work. Given λ, oneobtains u by means of the relation in (9.2.4) and, after some Maple gymnastis,it was possible to express this quantity in terms of the Dedekind η funtion[VF07℄
u(τ) =

s

8

((
η( τ

4
)

η(τ)

)8

+8

)
. (9.2.8)Substituting this for u yields a new parametrization of the family of Lagrangians

Lu by τ.
The Periods of the Spectral CurveThe question remains, what a and aD look like in terms of τ. The periods Π̃Dand Π̃ are not idential with a and aD , however they are related by means ofthe modulus τ, demanding that it equals the modulus of the spetral urve

τ=
ΠD

Π

!=
daD

da
⇔ ΠD (u) = ∂u aD (u) , Π(u) = ∂u a(u) . (9.2.9)
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Thus, a and aD an be derived from a one-form ̟SW , alled the Seiberg-Wittendi�erential, whih satis�es ∂u̟SW = ˜̟ (u). Integrating this ondition, one endsup with
aD (u) =

∮

α
̟SW (u) , a(u) =

∮

β
̟SW (u) , ̟SW =

(z −u)dz

ỹ
+exat . (9.2.10)The solutions to these integrals have been derived in di�erent ways. One isby noting that for �xed ontours, the periods aD and a satisfy again someHypergeometri di�erential equation whih yields [Ler97℄

aD (u) =
i

4

p
s

(
u2

s2
−1

)
F

(
3

4
,

3

4
;2

∣∣∣∣1−
u2

s2

)
,

a(u)=
√

u

2
F

(
−

1

4
,

1

4
;1

∣∣∣∣
s2

u2

)
.

(9.2.11)Substituting the result for u(τ), this gives the spetral urve in terms of τ.
The Spectral Curve in Terms of Triplet CharactersThe seond main result of [VF07℄ was the modular one-form c, f. (9.2.1), ex-pressed by haraters of the triplet model. It is already lear that the denomi-nator of this quantity must ontain χ1 −χ0, sine it is a modular form of weightone. After some trials and errors with series expansions in Maple, I ould provethat

c(τ) =
i
p

s

π

(χ− 1
8
−χ 3

8

χ1 −χ0

)
(9.2.12)with the haraters as in (8.3.8). This expression equals the one proposed byNahm, f. (9.2.1) and [Nah96℄. Thus, up to the expliit parameter τ, I haveobtained a and aD in terms of haraters, namely

a(τ)=−
dc(τ)

dτ
, aD (τ) =

(
1−τ

d

dτ

)
c(τ) . (9.2.13)Below, I will argue that the full prepotential an now be written as a funtionof τ.

The Prepotential in Terms of τM. Matone derived in [Mat95℄ the relation:
F (u) =

1

2
a(u)aD (u)− iπu . (9.2.14)
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This works as follows. The periods of the spetral urve (9.1.3) an be trans-formed under SL(2,Z), whih leads to
a AD +b A = ÃD =

dF̃

dA

dA

dÃ
. (9.2.15)Integrating this expression, I �nd that

F̃ =
1

2
ac A2

D +
1

2
bd A2 +bc A AD +F . (9.2.16)The ombination

F (a)−
1

2
aaD (9.2.17)is invariant under the monodromy group of the spetral urve, whih is generatedby

M∞ =
(
−1 2

0 −1

)
, Ms =

(
1 0

−2 1

)
, M−s = M−1

s ·M∞ . (9.2.18)This group an be determined by expanding (9.2.11) around u0 ∈ {∞,±s} andby letting u enirle eah of these points, i.e. u −u0 7→ exp{2πi}(u −u0), [Bil96,SW94, DP99, Ler97℄. Sine (9.2.17) is invariant under the monodromy group,it an be identi�ed with u, whih parametrizes the equivalene lass of periods
a, aD under this group.Inserting the results on a and aD above and that on u, (9.2.8), I end up with

F (τ) =
1

2

[
τ

(
dc(τ)

dτ

)2

−c(τ)
dc(τ)

dτ

]
−

iπs

8

[(
η( τ4 )

η(τ)

)8

+8

]
. (9.2.19)Thus, in our paper [VF07℄, Flohr and I obtained all basi quantities of SU (2)Seiberg-Witten theory, inluding the instanton ontributions, in terms of τ. Inpartiular, we determined the spetral urve by means of haraters of the tripletmodel.

g
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Conclusion 10In this thesis, I have been onerning myself with geometry as a soure for alogarithmi deformation of onformal �eld theories. In this ontext I have beeninvestigating two di�erent geometri senarios.The �rst has been the onformal supersymmetri bc-system on R
1 ×S1 withtarget manifold CP

1. The soure for its logarithmi deformation is the extensionof its loal representation spaes to spaes of distribution forms on CP
1. Inpartiular, the bosons had to be logarithmially deformed, beause it turned outthat they desribe the di�erent vauum setors whih are ompounded by theinstantons.The seond has been the purely fermioni onformal bc-system, with domainon a branhed overing of CP1 and with global monodromy group. This time,the target spae is C and the soure for the logarithmi deformation onsists inthe twisted representations of the monodromy group.In order to onlude my work, I will now bundle the questions whih remainedopen and deserve further investigation from my point of view.

Bosons on Branched Coverings It would be interesting, also with an eyetowards the supersymmetri onformal bc-system, to study bosoni ghosts onbranhed overings. The representations of the monodromy group are analogousto those of the fermions, and the operator produt algebra is also quite similar.If the algebrai surfae is again a torus, it might be the ase that the four-pointfuntion of the bosoni twist �elds also reveals information about its periodsfor the following reason. It would be valuable, if there was a way to not onlybosonize the bosoni ghosts but also the bosoni twist �elds. Sine the bosonizedghosts must be extended by an auxiliary fermioni system, I ould imagine thatsimilar works for the twist �elds, suh that the situation might again be reduedto onsiderations of fermioni ghosts on the torus.
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Holomorphic Mappings between Compact Riemannian Surfaces Thetwo senarios that I have onsidered might be related by another publiation ofFrenkel and Losev [FL07℄. There, the authors onsider the CSb with domainand target manifold CP
1. In general, the holomorphi funtions (i.e. solutionsto the instanton equation) an be lassi�ed in three types: onstant funtions,meromorphi funtions and funtions with higher rami�ations.Frenkel and Losev laim that the transition from the onformal CSb withtarget C

× to the onformal CSb with target CP
1 must be aompanied by aninlusion of meromorphi funtions. Therefore, the solutions to the instantonequation must exeed the subspae of onstant vauum on�gurations. Conse-quently, Frenkel and Losev interpret the additional meromorphi funtions asinstanton e�ets.They further propose that the CSb on CP

1 an be modelled by the CSb on
C
×, if the ation of the latter is enlarged by additional operators. These operatorswould then mimi the extension of the vauum on�gurations to meromorphifuntions. In [FLN08℄, the same authors proposed that those deformation termsin the ation are idential to the Grothendiek-Cousin �elds.In appendix C, I have tried to prove that the approah of Frenkel and Losev[FL07℄ to the CSb on CP

1 is isomorphi to my approah in part one of thisthesis. This was only suessful for the Grothendiek-Cousin operator and therepresentation spaes. In partiular, I ould not determine an isomorphy betweenthe respetive Grothendiek-Cousin �elds.It would be favorable if the isomorphy did exist and ould be proven. If thiswas possible, it would question the assumption that the extension of the re-presentation spaes of the CSb on CP
1 to distribution forms already overs allnonperturbative e�ets. One would have to give good reasons why the funtionswith higher rami�ations should not as well imply a nonperturbative ontri-bution to the representation theory. What I �nd appealing is that this wouldorrespond to a perturbation theory in the nonperturbative orretions and, atthe same time, in geometry. Similar to summing up ompat Riemannian sur-faes of di�erent genus in string theory, one would have to take into aount allpossible deformations of the �eld theory due to rami�ation. The answer ouldbe approahed by an analysis similar to the one I have onsidered in part two ofthis thesis.
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Moving in Moduli Space as Perturbation Theory This question is takenfrom [FLN06, pg. 89f℄. If the extended representation spaes of the theoriesonsidered are the nonperturbative spaes of states, a new kind of perturbationtheory would be possible. It onsists in varying the saling paramter λ of themetri. Perturbation theory would then mean a movement in the moduli spaeof metris. Frenkel, Losev and Nekrasov suggest that one ould hek if thenon-diagonal representations of the Hamiltonian disappear for �nite values of λ.
The Prepotential of Seiberg-Witten Theory Maybe I was wrong and, afterall, it is possible to express the moduli parameter u, f. (9.2.8), of pure gauge
SU (2) Seiberg-Witten theory in terms of haraters of the triplet model. At least,I did not prove the ontrary. One should look for ombinations of the haratersthat are invariant under the monodromy group (9.2.18) of the spetral torus.
The Partition Function of Seiberg-Witten Theory It would be nie if the par-tition funtion of pure gauge SU (2) Seiberg-Witten theory ould be written interms of haraters of some CFT. In [NO03℄, N. Nekrasov and A. Okounkov laimthat the dual partition funtion equals a orrelation funtion of free fermions,and possibly the orresponding CFT an be spei�ed.
AcknowledgementsI would like to thank Mihael Flohr for enouraging me to work on my thesis.I had a good time in his researh group, and I am grateful for this possibility.Moreover, I am obliged to Matthias Blau for his support and for numerous,fruitful disussions in Neuhâtel. I am indebted to Edward Frenkel for his pa-tiene and ooperativeness. Without the support of Mihael Flohr, MaximilianKreuzer and Andreas Osterloh I would not have obtained a sholarship at theErwin Shrödinger Institute (ESI) in Vienna. I am furthermore grateful to thepeople at ESI for their hospitality and �nanial support. My gratitude is alsotowards Holger Frahm who never delined the funding by the ITP whenever Iwanted to take part in a onferene. For having agreed to be the o-referee andfor being the hairman in my disputation, I thank Olaf Lehtenfeld and HerbertPfnür.

141





Topological Field Theories AIn this hapter, I will speify what I understand under the topologial setor of a�eld theory. This short summary is along the lines of [BBRT91, Wit82, Wit88a,Wit88b℄.Let (X , g ) be a sympleti, oriented Riemannian manifold with Eulidean met-ri g , (Σ,h) another suh manifold and x : Σ→ X an embedding. The �elds willbe setions of some Z2 graded vetor bundle over Σ, and I assume that thereexists an ation for the �eld theory. The ingredients of the topologial setorare:
➀ An operator Q, the BRST harge, wih is odd graded and globally de�nedon X and Σ. The BRST harge has a nilpotent ation on the �elds andstate spaes.
➁ Topologial state spaes and topologial observables in the ohomology ofthe BRST harge. Furthermore, I assume that the state spaes have dualvetor spaes and a well de�ned pairing. The ohomology of Q is invariantunder smooth variations of the metris g and h.
➂ Even graded and Q-exat �elds Tg and Th, the stress tensors with respetto X and Σ. In other words, the Lagrangian must be a ombination ofterms that are Q-exat or metri independent.
➃ Correlation funtions whih an be obtained from a path integral. Theyvanish if one plugs into them a Q-exat observable and Q-losed �elds.
➄ A transformation of the ation into a �rst order form by whih the toplo-gial setor loalizes on the vauum on�gurations and exlusively on theinstantons.What onsequenes follow from these attributes? If Σ ⊆ R× M, there existsa generator of time translations H =

∫
M Th 00. This operator is Q-exat and allorrelation funtions of Q-losed �elds vanish if it is inserted. Consequently, thetopologial setor does not ontain dynamial �elds.For the same reason, if a topologial and a Q-exat observable is insertedinto the orrelation funtion and one varies it with respet to the metris h or
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g , the variation vanishes. Therefore, the values of the orrelation funtions inthe topologial setor do not depend on the metris de�ned on Σ and X . Inphysis, suh di�eomorphism invariants are alled �topolgial invariants�, andthe topologial setor of a �eld theory is said to be generally ovariant. In thisthesis, I use the term topologial in this sense.Provided that the ation is Q-exat, the topologial setor is invariant un-der global sale transformations of h and g , namely for any set of topologialobservables the variation of the path integral in the saling parameter yields aorrelation funtion of a Q-exat operator. Theories with Q-exat ations arealled ohomologial, and I will only deal with this lass. Due to invariane underglobal sale transformations, the orrelation funtions loalize on the lassialsolutions, and the topologial setor is semilassially exat.Invariane under global salings does not signify that the theory is onformallyinvariant. This additionally requires invariane under analyti loal resalings ofthe respetive metri.
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From the Sigma to the A-Model BIn this setion I want to note down the symmetries of the N = (2,2) supersym-metri sigma model and explain how the A-model is derived by the twistingproedure, f. [Mar05℄. Let the onventions be as in hapter 3. The topologialA-model and the sigma model with N = (2,2) worldsheet supersymmetry di�erin the spin of the fermioni �elds and otherwise have the same ation (3.1.1).The supersymmetry is generated by QαI , where I = +,− are the indees of theR-harge and α=+,− the Lorentz indees of the U (1) Lorentz symmetry:
[Qα+,Qβ−] = γ

µ

αβ
Pµ , [J (e),Q±I ] =±

1

2
Q±I . (B.0.1)The braket is a superommutator and J (e) is the generator of Lorentz trans-formations. The gamma matries are γ1

αβ
= δαβ and γ2

αβ
= diag(i,−i), and thesuper�elds transform under δ = καI QαI (καI is a Grassmann valued onstant),f. [Mar05, pg 73℄:

δxa =κ++ ψa +κ−+ πa , δx ā = κ−− ψā +κ+− πā ,
δψa = 2iκ+− ∂z xa −κ−+

Γ
a
bc
πbψc , δψā = 2iκ−+ ∂z̄ x ā −κ+−

Γ
ā

b̄c̄
πb̄ψc̄ ,

δπa = 2iκ−− ∂z̄ xa +κ++
Γ

a
bc
πbψc , δπā = 2iκ++ ∂z x ā +κ−−

Γ
ā

b̄c̄
πb̄ψc̄ . (B.0.2)These are the supersymmetries of the sigma model.The internal R-symmetry allows for an axial and a non-anomalous vetorialfermioni U (1) urrent:

J (v)
z =−iλ : gab̄π

b̄ψa : , J (v)
z̄ =+iλ : gab̄π

aψb̄ : ,

J (a)
z =−iλ : gab̄π

b̄ψa : , J (a)
z̄ =−iλ : gab̄π

aψb̄ : .
(B.0.3)They generate rotations of the fermionsvet: (πā ,ψa ) 7→ eiθ(πā ,ψa ) , (πa ,ψā ) 7→ e−iθ(πa ,ψā )axial: (ψa ,ψā ) 7→ eiθ(ψa ,ψā ) , (πa ,πā) 7→ e−iθ(πa ,πā) .
(B.0.4)The superharges transform aording to these symmetries as

[ J (v)
z 0 ,Q+±]=±Q+± , [ J (v)

z̄ 0
,Q−±]=∓Q−± ,

[ J (a)
z 0 ,Q+±]=±Q+± , [ J (a)

z̄ 0
,Q−±]=±Q−± ,

(B.0.5)
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suh that in partiular [J (a)
0 ,Q] = Q and the ohomology of Q is graded by theaxial harge. In general, the axial U (1) symmetry is (partially) broken.

B.1 Twisting/Gauging the Sigma ModelI will now speify the �elds for the sigma model, the A-model an then beobtained by a rede�nition of the Lorentz generatorJ (e). This proedure is alledtwisting or gauging.To make the transformation properties of the fermioni �elds under Lorentztransformations expliit, I will introdue the spin-onnetion ω, pretending that
Σ is not �at. The fermions have now the properties πa

z̄ , ψa ∈ Γ(Σ,S±⊗ x∗(T X ))and πā
z , ψā ∈ Γ(Σ,S±⊗ x∗(T X̄ )). The bar over the latter tangent bundle denotesa setion into the anti-holomorphi part, S± are the spinor bundles of positiveand negative hirality and Γ means a setion. The �elds ψa and πā

z have spin
+ 1

2
and the other fermions have spin − 1

2
. The onnetion on S±⊗x∗(T X ) →Σ isobtained by D = D(S) ⊗1x∗(T X ) +1S ⊗ x∗(D(T X )), for instane

Dz̄ψ
a = ∂z̄χ

a +
i

2
ωz̄ψ

a +Γ
a
bc∂z̄ xbψc . (B.1.1)Under the vetorial symmetry, ψa and πa

z̄ transform with weight + 1
2
while theothers have weight − 1

2
and the bosons are invariant. The transformation prop-erties of the superharges are listed below, and I inluded already the e�et ofrede�ning the Lorentz group:

Ue (1)×Uv (1) Ue′ (1)×Uv (1)

Q++ (+ 1
2 ,+1) (0,+1)

Q−+ (− 1
2

,+1) (1,+1)

Q+− (+ 1
2 ,−1) (−1,−1)

Q−− (− 1
2

,−1) (0,−1)

(B.1.2)This rede�nition is aording to J (e′) := J (e) − 1
2 J (v).1 Sine it is not possible todisriminate either of the U (1) symmetries, this rede�nition is an equivalene re-lation of the theory in ase Σ is �at. One then still has the full supersymmetry.

1The choice of sign is for convenience and follows [Mar05, Wit88b].
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However, when passing to non-�at domain manifolds, only the salar super-harges survive, for they do not depend on the metri or any related quantitiessuh as the Levi-Civita onnetion.After twisting it is reasonable to de�ne new symmetry harges, a salar anda one form on Σ, as follows:
Q :=Q+++Q−− , Gz :=Q+− , G z̄ :=Q−+ . (B.1.3)They are subjet to the propery Q2 = 0, [Q ,Gµ] = Pµ and de�ne the topologialalgebra of the thus obtained A-model with BRST harge Q. The fermions have anew spin with respet to J (e′). The �eld ψ is a Grassman valued salar �eld while

π= πza dzdxa +πz̄ ā dz̄dx ā is a selfdual one-form. This explains why twisting isthe same as oupling the theory to the Uv (1) urrent (i.e. �gauging� the theory)aording to S 7→ S + 1
4

∫
Σ

hµνωµ J (v)
ν . With respet to Q, the �elds now transformwith δ := κQ , κ−− =κ= κ++, k±∓ = 0 and the rest an be read o� tabular B.0.2:

δxa =κχa δx ā = κψā

δψa = 0 δψā = 0

δπa
z̄ = 2iκ ∂z̄ xa +κ Γ

a
bc
πb

z̄ψ
c δπā

z = 2iκ ∂z x ā +κ Γ
ā

b̄c̄
πb̄

zψ
c̄

(B.1.4)From that tabular one also �nds that there is a fermioni �xed point on theholomorphi ∂z̄ xa = ∂z x ā = 0 embeddings. These are alled instantons.2

2For J (e ′) = J (e) + 1
2 J (v), the BRST charge would be Q = Q+− +Q−+ and localization is on the anti-

instantons ∂z xa = ∂z̄ x ā = 0.
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The Toric CSbc - Unfinished CFrenkel et al. [FLN08℄ use a di�erent representation of the CSb in order to derivethe Grothendiek-Cousin operators. It goes bak to a publiation of Borisov[Bor01℄ and has two promising features. Firstly, the �elds in the CSb are notbosonized and the assumed Grothendiek-Cousin �eld is also expressed in termsof the original �elds. Seondly, it is linked to another work of Frenkel with Losev[FL07℄, in whih they already proposed that the Tb on CP
1, onsidered as aCSb, should be deformed beyond its topologial setor.In [VF09℄ I used Frenkels and Losevs formalism in addition to the one de-sribed in setions 3.6.2 and 3.6.3. Thereby, I wanted to math my results withthose of Frenkel et al. in [FLN08, FL07℄. Beause it onerned my own inves-tigations, I will brie�y disuss the question if both approahes are isomorphi.Unfortunately, I ould not identify the Grothendiek-Cousin �elds, whereas Imight have found a positive result for their zero modes, the Grothendiek-Cousinoperators.

C.1 Deformation by Holomorphic CompletionThere exists another paper of Frenkel with Losev [FL07℄, wherein the authorsonsider the Tb without �gauge� �eld. One of the subjets was the question,how to takle that theory if formulated on nontrivial target spaes. The idea ofthe authors was as follows.Frenkel and Losev started with the assumption that if Σ=CP
1 and X =C/2πiZ,the Tb is an ordinary CSb. Sine Σ is ompat, the solutions of the instantonequation ∂z̄ x = 0 are the onstant embeddings, whih they interpret as vauumon�gurations. Thus, this senario only allows to take insight into the topologialsetor.If, however, X was ompati�ed to CP

1, there appear further nontrivial holo-morphi mappings, f. [Jos02℄, whih Frenkel and Losev onsequently interpretas instanton solutions beyond the topologial regime. It is not lear if the Tbwith target CP
1 is onformal. However, Frenkel and Losev they assumed that
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this is the ase if the target spae is C/2πZ. Therefore, they searhed after amethod whih allows to redue the situation of X = CP
1 to the free CSb on

C/2πiZ, however, now deformed by additional operators. These operators sup-posedly give an insight into the dynamial setor of the Tb and, hene, mustinherit some information about the loal geometry of the Tb on CP
1.By taking out of Σ sets of pairs of zeros and poles ω±

k
, Frenkel and Losevsupplemented the onstant holomorphi by meromorphi embeddings, onstantas CP1 \{ω±

k
} →C/2πiZ and with simple poles and zeros at ω±

k
, k ∈N. Thus, theyend up with a stak of overings x : CP

1 → CP
1, distinguished by the number

k of singular points of x. Notie, however, that the overings are not branhedsine Frenkel and Losev did neglet the embeddings with higher rami�ation.Frenkel and Losev interpreted the meromorphi funtions as a generalizationof the CSb by an inlusion of instantons, whereby the degree k measures theinstanton setor. Sine the singularities of those funtions should appear in theirvauum expetation values, Frenkel and Losev onluded that the ation of theCSb with target C/2πiZ must be deformed. In order to analyze that, they madea hart transition to logarithmi oordinates as desribed in setion 3.5.1. This isalso reasonable beause the equivalene lasses C/2πiZ are naturally expressedby means of the exponential. The vauum expetation value of an instantonsolution should now yield
〈φx (z)〉S+δS = c +

n∑

i=1

[log(z −ω+
i )− log(z −ω−

i )] , (C.1.1)where S+δS is the deformed CSb ation. Frenkel and Losev proposed that thishange in the ation is aused by an additional term
δL(z, z̄) =−λ[Ψ+(z, z̄)+Ψ−(z, z̄)]π(z)π̄(z̄) , λ= 1, (C.1.2)with Ψ±(z, z̄) = Ψ±(z)Ψ̄±(z̄), Ψ±(z) = exp{±i

∫z
p(ω)dω} and, similar, Ψ̄±(z̄) =

exp{±i
∫z̄

p̄(ω̄)dω̄}. Beause λ is dimensionless, this deformation an be inter-preted as a movement in the moduli spae of onformal theories.By means of a method of Zamolodhikov [Zam89℄, Frenkel and Losev alu-lated the impat of these deformations on general �elds F (z) of the CSb. This
150



amounts to applying the Stokes-Green theorem (integral of motion) to1
∂z̄ Fδ(z, z̄) =

∮

z
dζ δL(ζ, z̄)F (z). (C.1.3)Of partiular interest are the deformations of the stress tensor and the super-harge. A alulation reveals that the stress tensor is not deformed, whereas theintegral of motion for the superharge yields

Q̃ =
∮{

dz Qδ(z, z̄)+dz̄ [Ψ+(z, z̄)−Ψ−(z, z̄)] π̄(z̄)
}

, (C.1.4)whih is similar to the expression in [FL07, pg. 67℄.Frenkel et al. refer to these results in their later work [FLN08, pg. 97℄. Theypropose that the zero modes of the operators in (C.1.2)
iπ(z)Ψ−(z) , − iπ̃(z)Ψ̃+(z) , (C.1.5)are idential with the ohomology operators η0η̄0 in the ontext of hiral bosoniza-tion, and moreover with the Grothendiek-Cousin operators [FLN08, pg. 93f℄.They onlude that the superharge in the ontext of their later work is deformedjust the same way as in (C.1.4), [FLN08, pg. 97℄.Sine the integral of motion (C.1.3) does not introdue the Grothendiek-Cousin operators, I looked for another CFT method that would deform the stresstensor in the appropriate way and also the superharge aording to (C.1.4). Thiswas the method by Fjelstad et al. [FFH+02℄, that I used in hapter 4. By thatmeans, I derived a deformation of the stress tensor and of the superharge whihwas similar to [FL07, FLN08℄, f. [VF09℄. In the same publiation I ould alsoargue, that the ohomology of the deformed superharge on the state spae isnot hanged by the deformation. Thus, everything seemed to be nie.However, I did not hek if the assumed Grothendiek-Cousin �eld of (C.1.2)is well de�ned on the harged representation spaes, whih is mandatory. Nordid I really extend Borisovs vertex algebra to harged representations and thenprove isomorphism to the representations I have onsidered in hapter 3. Somesteps into that diretion I have done, however only super�ially, in [VF09℄, andin this hapter I wanted to omplete them. However, I ould not determine

1This integral of motion is the first order correction (in λ) to ∂z̄ F = 0 [Zam89]. In principle, since λ is

dimensionless, one has to include corrections to all orders.
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either the representation spaes orretly, or the �elds in (C.1.2) an not be theGrothendiek-Cousin �elds, though their zero modes satisfy the properties of theGrothendiek-Cousin operators.
C.2 The Cohomology Operators in Logarithmic

CoordinatesIn order to simplify my disussion, I will set the homogeneity µ to zero.The CSb in logarithmi oordinates, f. setion 3.5.1, does not over thesituation of the CSb on C/2πiZ. Sine the exponential is invariant under 2πiZ,the �eld algebra should be extended by some winding number operator Ω and itsonjugate Ω
∗ : [Ω,Ω∗] = 1. This yields Borisovs' vertex algebra [Bor01℄, whihis onstituted by

φx (z)=: eW (z) : , φip (z)=: e−W (z)[−∂zU (z)+ j+(z)] : ,

φψ(z) =: eW (z)ψ(z) : , φiπ(z)= i : e−W (z)π(z) : ,
(C.2.1)and the symmetrie �elds

φ j+(z) = j+(z)+∂zW (z) , φ j−(z)=− j+(z)+∂zU (z) ,

φG (z)= i :π(z)∂zW (z) : , φQ(z)=Q(z)+∂zψ(z) ,

φT (z) =− : ∂zW (z)∂zU (z)+ i∂zψ(z)π(z) : .

(C.2.2)Above I used Q(z) =−i : ∂zU (z)ψ(z) : and
U (z)=Ω

∗− i

∫′ z

p(ω)dω , W (z) =Ω log z + x(z) , (C.2.3)and the prime at the integral means that no additional �integration onstant�should be introdued.Borisov interprets U and W as the salar �elds related to ertain �urrents� ofbosons on a two dimensional lattie, suh that in analogy with (3.6.11) W (z) =
−

∫z
J (1)(ω)dω and U (z)=−

∫z
J (2)(ω)dω, with J (1)(z)=−Ωz−1−∂z x(z) and J (2)(z)=

ip(z). The Heisenberg Lie ommutation relations are only satis�ed between J (1)and J (2), [J (1)
n , J (2)

m ] = −nδn,−m . Further, [U0, J (1)
0 ] = −[Ω∗,Ω] = 1, as is expetedfor �bosoni� urrents, while [W0, J (2)

0 ] = [x0, ip0] = −1. Aording to the idea tointerpret the urrents as two omponents on a lattie, it is now reasonable toonsider �elds V (l , s, z) =: elW (z)+sU (ω) : , l , s ∈Z.
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I will all the vertex algebra de�ned by (C.2.1), (C.2.2) and extended by
V (0, s, z) as the tori CSb.
Remark In the ontext of the hiral de Rham omplex, the introdution of
V (0, s, z) means that one has to generalize the state spae further to power seriesin the zero modes p0. This is a �rst instane wherein Borisovs' onstrutionexeeds the usual CSb.
Representation SpacesIn order to inlude harged representations, I de�ne |p, q|l , s〉 ∈ F (p, q|l , s) :=
F (p|l , s)⊗M+(q) and try the Ansatz

xn |p, q|l , s〉 = 0, n >−p , n 6= 0 , pn |p, q|l , s〉 = 0, n ≥ p , n 6= 0 ,
ip0 |p, q|l , s〉 = l |p, q|l , s〉 , Ω |p, q|l , s〉 = s |p, q|l , s〉 ,
ψn |p, q|l , s〉 = 0, n >−q , πn |p, q|l , s〉 = 0, n ≥ q . (C.2.4)This exeeds the disussion of Borisov [Bor01℄ who onsidered the situation

p = q = 0. It will now be neessary to see if the operator produt algebra is wellde�ned on the representations above.Firstly, the representation spaes for the tori CSb must inlude states thatare isomorphi to V (l , s, z). This isomorphism is obtained by exp
{

l ′x0

}
|p, q|l , s〉 =

|p, q|l + l ′, s〉 and exp
{

s′Ω∗}
|p, q|l , s〉 = |p, q|l , s + s′〉. In the language of vertexoperators,

Y
(
|0,0|l ,0〉, z

)
= exp{lW (z)} , Y

(
|0,0|0, s〉, z

)
= exp{sU (z)} . (C.2.5)This makes expliit that the vertex algebra de�ned by (C.2.1) does not lead outof a spei� representation with a �xed value of s, sine it does not inlude Ω

∗.I will denote by F (p, q|l , s) the vertex algebra of these �elds with �xed value sand Ω
∗ exluded. Moreover, I de�ne normal ordering in the �eld modes to betaken with respet to |0,0|0,0〉.In the representation F (p, q|l , s), the �elds of (C.2.1) have the OPEs
φx (z)φip (ω)=

−1

z −ω

( z

ω

)p+s
, φψ(z)φiπ(ω) =

−1

z −ω

( z

ω

)q+s
. (C.2.6)
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When ating on a highest weight state, the mode expansions of the �elds inheritsthe inhomogeneity in terms of a shift in the index, for instane
φx (z)|p, q|l , s〉 = zs

∞∑

n=0

cn (|z|)z−n|p, q|l , s〉

= ex0
∑

n≤−p−s, n 6=0

(φx )n+s z−n |p, q|l , s〉
(C.2.7)and similar for the other �elds. In partiular, up to the speial r�le of x0, when

s = 0, the �eld mode expansion equals that for the CSb. Thus, the CSb hasa representation on the representation spaes above. The OPEs between thesymmetry �elds and the dynamial �elds (C.2.1) follow aordingly.The onformal weights and U (1) harges of the highest weight states equal
∆φT (|p, q|l , s〉) =−

1

2
p(p −1)+

1

2
q(q −1)+ l s ,

(φ j−)0 |p, q|l , s〉 = q − l , (φ j+)0 |p, q|l , s〉 =−q + s ,

(C.2.8)and the operators measuring these quantum numbers ommute with eah other.The �eld V (l ′, s′, z) shifts the onformal weight of |p, q|l , s〉 by
T0 ·el ′x0+s ′Ω∗

|p, q|l , s〉 = (l s′+ l ′s) |p, q|l + l ′, s + s′〉 , (C.2.9)and has a bosoni and fermioni U (1) harge of value −l ′ and 0, respetively.In the subsetor with s = 0 and Ω
∗ exluded, all �elds in (C.2.1) have the sameonformal weights and U (1) harges as the �elds of the usual CSb, wih followsfrom the OPEs and setion 3.5.1, and there is not operator leading out of thatrepresentation.

OPEs of the Operators V (l , s, z)If I restrit my disussion to the onformal vauum |0,0|0,0〉, I an derive anOPE between the �elds V (l , s, z) :
esU (z)elW (ω) = (z −ω)−l s : esU (z)elW (ω) : , in F (0,0|0,0) . (C.2.10)It turns out, however, that I am not able to takle the OPE in the hargedrepresentation spaes in any reasonable way. Namely, if p 6= 0, I �nd that

exp

[
−i

∫z

p(ζ)x(ω)dζ

]
= exp

[
−

∫z (
ω

ζ

)p dζ

ζ−ω

]
. (C.2.11)
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Remark It seems that the harged representations that I have de�ned do notlead to nie results for the OPE betweeen elW and esU .
Identification of the CSbcDue to the results above, the CSb is a subsetor of the tori CSb with s = 0and Ω

∗ exluded. I will now identify the bosoni and fermioni parts of the CSbwithin F (p, q|l ,0). Notie, that the term �identi�ation�, signi�ed by �≃�, is onlyappropriate up to the speial r�le played by x0.The representations F (p, q|l ,0) are graded by the bosoni and fermioni U (1)harges,
F (p, q|l ,0) =

⊕

n,m∈Z
F (p, q +n|l +n−m,0) , (C.2.12)whereby n and m ount the fermioni and bosoni harges, respetively. I madeno distintion between ⊕

n M+(q)n and ⊕
n M+(q −n), sine the fermioni repre-sentation spaes are all isomorphi, f. (3.4.2).

The Fermionic Subsector The fermioni part of the CSb appears in thetori CSb as the subspae F (0, q|q,0) ≃ M+(q). Indeed, φψ and φiπ have theorret OPE on |0, q|q,0〉 and the appropriate quantum numbers with respetto T +(z) and φ j+(z). In partiular, this holds for |0, q|q,0〉, suh that I set
|0, q|q,0〉 ≃ |q〉+ ∈ M+(q).
The Bosonic Subsector The bosoni subsetor is given by F (p,0|−p,0) ≃ N (p).Namely, the �elds have the orret OPE on |p,0|−p,0〉 and the quantum numbersas expeted, suh that I set |p,0|−p,0〉 ≃ ν−p ⊗|0〉ηξ ∈ N (p).
The Grothendieck-Cousin OperatorsIn order to derive the Grothendiek-Cousin operators, I used the reipe to extendthe bosoni representation spae by the missing degenerate part, f. setions 2.6.2and 3.6.3. The a�eted representation spae takes now the form F (1,0|−1,0) andI have to look for a state that has the same quantum numbers as the hightesweight vetor |1,0|−1,0〉.The states |p,0| − p,0〉 , | − p +1,0|p −1,0〉 and |p −1,1| − p +1,1〉 do all havethe same onformal weight, but only |p,0|−p,0〉 and |p −1,1|−p +1,1〉 have the
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same U (1) harges (both with respet to the bosoni and the fermioni harge).Therefore, the analogue of eφ
−
0 ξ0 : N (1) → N (1) should be the mapping e0 :

|1,0|1,0〉 7→ |1,1|1,1〉. Moreover, I propose that the logarithmi extension NL(1) isnow the representation of (C.2.1) on |0,1|0,1〉, and I will denote that by FL(1,0|−
1,0),In analogy with the disussion in setion 3.6.3, I am looking for an operator
g, suh that

F (1,0|−1,0) ∋ |1,0|−1,0〉 e0→ |0,1|0,1〉 ∈ FL(1,0|−1,0)

↓ g

|0,0|0,0〉 ∈ F (0,0|0,0)

. (C.2.13)The operator
g= iπ0e−Ω

∗
(C.2.14)does the job. Moreover, it satis�es ∮

0 dω [g,φ(ω)] = 0 for all �elds φ in (C.2.1).Therefore, the sequene
· · · → F (p,0|−p,0)

g−→ F (p −1,0|−p +1,0) →··· (C.2.15)is exat, whereby F (p,0| − p,0) = F (p,0| − p,0)⊕FL (p,0| − p,0) are the extendedrepresentation spaes.In that respet, it is reasonable to identify g with the ohomology operator η0in setion 3.6.3, and with the Grothendiek-Cousin operator.
The Grothendieck-Cousin FieldTo generalize the operator above to the Grothendiek-Cousin �eld, it is at handto try the Ansatz

i :π(z)e−U (z) : . (C.2.16)Indeed, when the �elds φ of (C.2.1) are in the representation F (0,0|0,0), one mayalulate the OPEs by means of (C.2.10) and derive that
∮

z
dω i : π(z)e−U (z) : φ(ω)= 0. (C.2.17)For instane, use

iπ(z)e−U (z)φip (ω) =−
i :π(ω)e−U (ω)−W (ω) :

(z −ω)2
. (C.2.18)
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This alulation, however, turns nontrivial if the representation spae is harged,f. (C.2.11). For that reason, I ould not derive the Grothendiek-Cousin �eldin terms of Borisovs' vertex algebra.
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Notationsindex D

∗ Field-state-orrespondene, 112
1̃(z) The logarithmi partner of 1(z), 121
∆T (φ) Conformal weight of φ with respet to T

δ Grothendiek-Cousin operator, 34
[·, ·] , {·, ·} Graded ommutator, antiommutator
[ f , g ]n (z) Field in the operator produt expansion, 86
⊔ Disjoint union
|0̃〉 Logarithmi partner of |0〉, 121
|p〉± , |p, p̄〉± , |p, p̄〉 Charged representations of the CSb, 56, 58, 58
A

ǫ Representation spae of the Heisenberg Lie algebra, 72CSb Conformal supersymmetri bc-system, 55
C0 CP

1 \ {∞}

C∞ CP
1 \ {0}

C
× As a set C

× =C\ {0}, as a symmetry f. pg. 24
C[·] Polynomials
C((·)) Formal power series
C[[·]] Power series
D, D∗ Complex unit disk with/without the point {0}

D , D
∗ Test funtions, distributions, 27

e, ē Extension of the perturbative representations, 39,extension �eld, 86
Eλ Legendre family, 116
F0 , F∞ , F

1
∞ , F

× Holomorphi representations of the CSb, 69
f (Logarithmially) extended �eld, 34, 86GCO Grothendiek-Cousin operator
g , gO GCO, nontrivial part of O = O +gO , 34
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H Globally de�ned states, 32
Hλ Non-unitary Hamiltonian, 18
H (pert) Perturbative Hamiltonian, 22
H

in
c ,n , H

in
0,0 , H

in
∞,0 Perturbative spetrum of the Tb, 52, 53, 55

H0 � � � Morse theory/CSb, 26, 60
H∞ � � � , 26, 60Homogeneity r A prefator of |z|r , r ∈R in the �eld expansion, 54, 61i� �if and only if�
j ǫ Currents of the CSb, 56
j ǫ
V

, j ǫ
A

Vetorial and axial urrents of the CSb, 57
Jǫµ, Jǫ Currents of the Heisenberg Lie algebras, 72
J− Current of the bosonized bosons, 76
JN Current measuring the grading of N(p, p), 76
J (φ) Charge of the �eld φ, 60
Λ

a,b Basis of exterior forms, 27
LX Loop spae of X , 46
L̃X Universal over of LX , 47
L̃X n Sheet of LX in L̃X , 48
L̃X c ,n Desending manifold with �xed point xc , 52
Mǫ(p) , M̄ǫ(p) , Mǫ(p, p̄) Charged representations of the CSb, 56, 57
ME Parameter spae of the Legendre Family 116
M (α,β) Instanton moduli spae, 13
µ ∈ (−1,0) The A-model �gauge�-�eldstrenght, 48
µ In part II, the twist �eld on the torus, 121
νǫ

p,p̄
Highest weight state of the Heisenberg Lie algebra, 72

N(p) , N̄ (p̄) , N(p, p̄ ) Extended representations of the bosonized bosons, 75
N (p), N̄ (p̄) , N (p, p̄) Perturbative representations � � � , 78
NL (p, p̄) Logarithmi extension of N (p −1, p −1), 80
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O
(naive) Naive operator, 34OPA Operator Produt AlgebraOPE Operator Produt ExpansionPER Physially Eligible Representation, 124

P0 Polynomial of the �eld modes in the CSb, 64
p, p̃ In part II, projetion T

n,m →CP
1 \ {ei }, 107

q Bakground harge, anomaly, 58
Q,Q0 BRST harge in Morse theory, 16, in the Tb, 43, 62
Q(z, z̄) , Q(z) Superharge�eld, 58, its holomorphi part, 57SQM Super quantum mehanisTb Topologial bc-system 45, 49Twist �eld, twisted representation 113
V ǫ(r, z) Fields of the Heisenberg Lie algebra, 73
Xn Subspae Xn ≃ X in L̃X n , 52
Xc ,n Xn ∩ L̃X c ,n, 52
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