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Abstract

In this thesis, a novel approach is proposed to represent bulk wave functions of fractional quan-
tum HALL states in terms of conformal field theory correlators. It starts from the LAUGHLIN

states and their generalization following JAIN ’s picture of composite fermions. These effective
particles are naturally identified within theb/c-spin conformal field theories. The enigmatic phe-
nomenon of fractional statistics is described by twist fields which inherently appear in the spin
systems. A geometrical interpretation is obtained in whichbulk wave functions are understood
as holomorphic functions over a ramified covering of the complex plane. To extend JAIN ’s
main series, the concept of composite fermions that pair to spin singlets is introduced. This is
naturally adopted by the particularb/c-spin system with central chargec=−2 as known for the
HALDANE -REZAYI state with filling fractionν = 5/2. In this way, the new conformal field
theory proposal covers the set of experimentally confirmed fractional quantum HALL states in
the lowest LANDAU level. Concerning their stability with respect to energy gaps of the ground
states, a natural ordering is deduced where unobserved filling fractions are precisely avoided.
The scheme is compatible with classifications in terms of effective CHERN-SIMONS theories.
It leads to severe restrictions of the couplingK-matrices and, in addition, theb/c-spin approach
can be extended to describe non-ABELIAN fractional quantum HALL states imposing physical
constraints on them.

The scientific results underlying this thesis are submittedfor publication to Phys. Rev. B and
can be found in [72].



Zusammenfassung

In dieser Arbeit wird ein neuer Zugang zur Darstellung von Bulk-Wellenfunktionen des fraktio-
nalen Quanten-HALL -Effekts durch Korrelatoren konformer Feldtheorien präsentiert. Begin-
nend mit den LAUGHLIN -Zuständen werden diese und ihre Verallgemeinerung gemäß JAINs
Konzept der Komposit-Fermionen beschrieben. Diese effektiven Teilchen sind auf natürliche
Weise in den konformenb/c-Spin-Feldtheorien eingebettet. Das erstaunliche Auftreten frak-
tionaler Statistik wird in diesem Zugang durch Twist-Felder realisiert, die inhärent in den
Spin-Systemen auftreten. Auf diese Weise wird eine unmittelbare geometrische Interpretati-
on nahegelegt, in der die Bulk-Wellenfunktionen als holomorphe Funktionen, definiert auf ei-
ner verzweigten̈Uberlagerung der kompaktifizierten komplexen Ebene, verstanden sind. JAINs
Hauptserien von Füllfaktoren werden durch die Einführung gepaarter Komposit-Fermion Spin-
Singulett Zustände fortgesetzt, welche in natürlicher Weise durch das spezielleb/c-Spin-System
mit zentraler Ladungc = −2 beschrieben werden, wie aus der Darstellung des HALDANE -
REZAYI Zustandes mit Füllfaktorν = 5/2 bekannt ist. Der somit abgeleitete Zugang durch
konforme Feldtheorien deckt die Menge experimentell best¨atigter fraktionaler Quanten-HALL -
Zustände im niedrigsten LANDAU -Niveau ab. Deren Stabilität in bezug auf Energielücken der
Grundzustände wird in natürlicher Ordnung erfaßt, wohingegen unbeobachtete Füllfaktoren
nicht vorhergesagt werden. Das Schema ist kompatibel im Rahmen der Klassifizierung durch
effektive CHERN-SIMONS-Theorien und führt zu weitgehenden Einschränkungen derzentralen
K-Matrizen, die die Kopplung zwischen verschiedenen LANDAU -Niveaus vermitteln. Ferner
ist es möglich, den Zugang zum fraktionalen Quanten-HALL -Effekt durchb/c-Spin-Systeme
auf die Klasse nicht-ABELscher Zustände auszuweiten und diesen gleichzeitig physikalische
Zwangsbedingungen aufzuerlegen.
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Introduction 1

Introduction

The fractional quantum HALL effect is one of the most fascinating and striking phenomenain
condensed matter physics [1]. Certain numbers, the filling fractionsν ∈ Q , can be observed
with an extremely high precision in terms of the HALL conductivityσH = ν in natural units.
These numbers are extensively independent of many physicaldetails, e.g., the geometry of the
sample, its purity, the temperature. The enigmatic and intriguing aspect of this phenomenon is
that only a certain set of these fractional numbersν can be observed in experiments: despite
ongoing attempts in varying the purity (or disorder), the external magnetic field, and various
other parameters, the set of observed fractions has not changed considerably over the last few
years [2, 3, 4, 5].

It was realized quite early that the fractional quantum HALL effect shows all signs of univer-
sality and large scale behavior [6, 7]. Independence of the geometrical details of the probe and
of its size hint towards an effective and purely topologicalfield theory description. Indeed,
since the quantum HALL effect is essentially a (2+1)-dimensional problem, the effective theory
is regarded to be dominated by the topological CHERN-SIMONS term a ∧ da instead of the
MAXWELL termtr

[
F 2
]
. Suitable reviews on the theory of the fractional quantum HALL effect

are [8, 9, 10, 11].

However, it is ultimately interesting to deduce a microscopic description of the fractional quan-
tum HALL effect. The task may start from finding eigenstates of an exact microscopic HAMIL -
TONIAN. Unfortunately, this can merely be realized for a small number of electrons. The great
achievement of LAUGHLIN was to conceive how a many-particle wave function has to looklike
if it should respect a few reasonable symmetry constraints [12]:

ΨLaughlin(z1, . . . , zN ) =
∏

1≤i<j≤N

(zi − zj)
2p+1 exp

(
−

1

4

∑

1≤i≤N

|zi|
2

)
. (1)

It is known that LAUGHLIN ’s wave functions which describe fractional quantum HALL droplets
with filling fractionsν = 1/(2p + 1) (p ∈ Z+) are extremely good approximations to the true
ground states. Furthermore, they are exact solutions for HAMILTONIANS with certain short-
range electron-electron interactions. Soon after, various hierarchical schemes were developed
yielding ground state wave functions for other rational filling factors [13, 14, 15, 16, 17]. It is
important to note here that the ground state eigenfunctionsare time-independent up to a trivial
global phase. Thus, they might be regarded as solutions of a (2+0)-dimensional problem. In
principle, this is the main idea behind all attempts to describe the bulk wave functions in terms
of conformal field theory correlators.

The LAUGHLIN wave functions describe special incompressible quantum states of the electrons,
i.e., quantum droplets. Incompressibility is connected tothe existence of energy gapless excita-
tions on the border of the quantum state [6, 7, 18, 19, 20, 21, 22, 23]. The latter can successfully
be described in terms of conformal field theories with current algebras as chiral symmetries.
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Furthermore, there is an exact equivalence between the (2+1)-dimensional CHERN-SIMONS

theory in the bulk and the (1+1)-dimensional conformal field theory on the boundary describ-
ing the edge excitations [24]. Naturally, these edge conformal field theories have to be unitary
since they describe the time evolution of spatial one-dimensional waves propagating onS1.

However, LAUGHLIN ’s bulk wave functions in a static (2+0)-dimensional setting show a re-
markable resemblance to correlation functions of a free EUCLIDEAN conformal field theory set
on the compactified complex plane. This resemblance has motivated quite a number of works
trying to find a conformal field theory description of bulk wave functions in the fractional quan-
tum HALL effect, e.g., [25, 26, 27, 28]. Most approaches assumed fromthe beginning that these
“bulk” theories are unitary. However, this assumption is void since the bulk wave functions to be
investigated are time-independent eigenfunctions. Moreover, most approaches represented the
bulk wave functions in terms of building blocks belonging toclasses of conformal field theories
with continuous parameters, e.g., the GAUSSIAN c = 1 systems. The immanent problem with
these approaches is that there exists no principle selecting the wave functions for experimen-
tally observed filling fractions. Therefore, almost all approaches so far easily accommodate
arbitrary rational filling factors. On the other hand, it is not entirely surprising that the bulk
wave function should have something to do with conformal field theory. As indicated above,
the observable quantities of the quantum HALL system are largely independent of the precise
form and size of the sample. Thus, the normalized charge distributions of the electrons should
be invariant under scaling (up to an exponential factor) andarea preserving changes of the shape
of the sample. The first symmetry is linked to conformal invariance, the latter to theW1+∞-
algebra [29, 30]. Furthermore, in the two-dimensional case, global scaling invariance implies
full conformal invariance under certain benign circumstances.

Interestingly, there exists a particularly enigmatic fractional quantum HALL state, i.e., the
HALDANE -REZAYI state withν = 5/2. This is one of the very few experimentally confirmed
states with an even denominator filling. Of course, attemptshave been made to describe pro-
posed bulk wave functions for this state with the help of conformal field theory correlators,
e.g., [21, 25, 31, 32]. In this case, however, it turned out that this can only be achieved if
the corresponding conformal field theory has central chargec = −2. Thus, concerning the
HALDANE -REZAYI state, it is obligatory to use a non-unitary theory. Thisc = −2 theory is the
b/c-spin system of two anti-commuting fields with spins one and zero, respectively. Therefore,
it naturally yields the object expected to be observed in this fractional quantum HALL state,
namely spin singlet states of paired electrons. In addition, thec = −2 conformal field theory
contains aZ2-twisted sector which accurately describes the effect of single flux quanta pierc-
ing the quantum droplet. Thus, this theory successfully characterizes the ground state and its
physically expected excitations with the correct fractional statistics without predicting arbitrary
additional features.

This thesis starts from the successful bulk wave function description of the HALDANE -REZAYI

fractional quantum HALL state via a non-unitary spin system conformal field theory and inves-
tigates how fractional quantum HALL state bulk wave functions can be represented in terms of
conformal field theory correlators. In contrast to other approaches the assumption that these
theories should be unitary will be dropped because there is no physical reason for it. By this,
it is possible to concentrate on a different class of conformal field theories, namely theb/c-
spin systems of two anti-commuting fields of spinsj and(1 − j), respectively. Locality forces
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j ∈ Z/2 so that the conformal field theories are confined to a discreteset. This ansatz will not
only naturally explain all experimentally observed fillingfractions in the range0 ≤ ν ≤ 1, but,
in addition, will not predict new unobserved series.

Besides these convenient features the approach yields a beautiful geometrical picture for the
conformal field theories used to represent the bulk wave functions. Additionally, correlations
of spinj (or spin1 − j) effective particles with flux quanta of precisely the fractional statistics
which are theoretically predicted from first principles areobtained. These statistics, e.g.,1/m,
naturally manifest themselves in the presence ofZm-twists. These in turn have the geometrical
meaning of replacing the complex plane by anm-fold ramified covering of itself. Thus, the
bulk wave functions are finally recast in the language of complex analysis, i.e.,j- or (1 − j)-
differentials onZm-symmetric RIEMANN surfaces.

Most of the observed filling fractionsν ∈ Q have an odd denominator. This can be deduced
from the basic fact that the elementary entities in the quantum HALL system are fermions, e.g.,
the composite fermions, effective particles that were conceived by JAIN . These allow to natu-
rally link the integer and the fractional quantum HALL effect and can be successfully described
by b/c systems with spinj ∈ N/2. An essential part of this work is to propose a new hierar-
chical scheme in which filling fractions can be derived from others by forming paired singlets
of composite fermions. In this way, JAIN ’s principal series are represented and furthermore
extended to precisely cover all confirmed filling fractions.Within this approach, unobserved
fractions are avoided without problem since they all lie at the far end of the hierarchical series
or are characterized by series of higher order. In contrast to this feature, most other hierarchical
schemes predict certain unobserved fractions, since prominent experimentally confirmed ones
can only be realized at a certain orderk within the hierarchy. The problem is the lack of a
physical reason why the corresponding low order fractionalquantum HALL state does not exist,
but the higher order one derived from it. Thus, the scheme of this thesis seemingly provides a
natural explanation for the completeness of the set of experimentally accessible filling fractions.

The outline of this thesis is as follows: Chapter 1 presents an introduction to the theory of the
quantum HALL effect. Starting from the integer effect in the first sectionthe basic ideas of
LAUGHLIN are reviewed in the second part leading to his seminal trial wave functions. Con-
secutively, the appropriate generalization of them withinthe picture of JAIN is provided which
allows to describe a wide class of fractional quantum HALL states in terms of an integer quan-
tum HALL effect of effective particles, i.e., the composite fermions. JAIN ’s idea is favored
since the composite fermions are naturally identified with fields of the conformal field theory
approach of this work. Moreover, his picture has the advantage to realize most of the promi-
nently observed filling fractions within the first level of its hierarchical scheme. The last part
of this introductory chapter deals with more general LAUGHLIN type trial wave functions in
the lowest LANDAU level representing multilayer states. These are conceptually deduced from
effective CHERN-SIMONS theory which is believed to adopt many general principles ofthe
quantum HALL effect, e.g., topological order. The central part of this formalism is a certain
matrixK encoding the interactions of the layers, i.e., of differentquantum fluids. Within this
scheme, JAIN ’s main series of composite fermions are consistently reconsidered.

Assuming basic knowledge on the topic Chapter 2 introduces all relevant conformal field theory
features and methods in terms of the scope of this work. Theseare exemplified for theb/c-spin
systems. Starting from the principal structures of the fields living on the compactified complex
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plane in the first section their setting is naturally extended toZn-symmetric RIEMANN surfaces.

The third chapter is the core of this work and develops the novel conformal field theory approach
to the fractional quantum HALL effect viab/c-spin systems. Motivated by geometrical features
and following the concepts and structures of the LAUGHLIN states and their natural extension,
i.e., JAIN ’s main series, a new hierarchical scheme is deduced. It naturally links the composite
fermion picture to the classification of effective CHERN-SIMONS theory. TheK-matrices of
the CHERN-SIMONS formalism which encode the essential information on fractional quantum
HALL states, e.g., topological order and filling fraction, satisfy severe constraints demanded
by evident physical properties. These constraints nicely coincide with the ones derived for the
b/c-spin systems. The scheme starts from JAIN ’s main series which naturally generalize the
LAUGHLIN states. While avoiding the principle of particle-hole duality which is not confirmed
well by experiments all other observed filling fractions areconsecutively obtained by pairing
of composite fermions to spin singlet states. Step by step, states which include more extensive
pairing structures are deduced leading to the new hierarchy. As another important consequence,
the pairing scheme which is represented by tensoring the spin conformal field theories with
additionalb/c-spin singlet systems of central chargec = −2 demands additional restraints
concerning the CHERN-SIMONS K-matrices, i.e., essentially restricting them to block form.
The approach turns out to provide all filling fractions confirmed by experimental data in one-
to-one correspondence with their order of stability while ruling out controversial fractions and
others which seemingly violate principles of stability. Predictions for future experiments, e.g.,
quasi-particle statistics of higher order states, conclude this chapter.

Chapter 4 extends the conformal field theory approach to the class of non-ABELIAN fractional
quantum HALL states restricting it to discrete series. It is argued that this set reveals to possess
a rather small energy gap. Therefore, proposals are made that future experimental research
on non-ABELIAN statistics shall concentrate on special fractional quantum HALL states which
solely exist in the non-ABELIAN form.

The fifth chapter summarizes the results and, motivated by the completeness of the approach
provided in this work, tries to put them into context. Unsolved problems are stressed and some
directions for possible research in the future are proposed.
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CHAPTER 1

The Quantum Hall Effect

The quantum HALL effect is an incredibly intriguing as well as amazing phenomenon in the
field of condensed matter physics and led to a strong interestin two-dimensional electron sys-
tems. In the last two decades, a lot of concepts have been developed in nearly all domains of
modern theoretical research. The scope ranges from microscopic HAMILTONIAN theories to
topological and conformal field theories. This chapter provides a short access to both the in-
teger and the fractional quantum HALL effect. Starting from basic quantum mechanics in the
first section, the integer phenomenon is discussed as a one-electron system involving disorder.
The fundamental differences of the fractional effect as a strongly correlated electron system are
enlightened in the second section where both phenomena are linked via JAIN ’s effective com-
posite fermion model while the concluding section relates them to aspects of CHERN-SIMONS

theory and introduces the concept of multi-layer states. Suitable introductions to the theory of
the quantum HALL effect are provided by [8, 9, 10, 11, 35].

1.1 The Integer Quantum Hall Effect

The integer quantum HALL effect was discovered by KLAUS V. KLITZING in 1980 [36]. He
studied the charge-transport behavior of high mobility two-dimensional electron gases at very
low temperatures and strong magnetic fields. VON KLITZING found that — for certain values of
the magnetic fieldB — the longitudinal resistance of the semiconductor sample becomes very
small while the plot of the transverse, i.e., the HALL conductanceσH overB exhibits plateaus.
These plateaus turned out to be centered around integer multiples of the natural unite2/h.
This quantization is observed with amazing precision (up to10−8). Due to experimental cir-
cumstances, e.g., macroscopic sizes and shapes of the probes, disorder, and finite temperature
effects, this is even more surprising and leads to the fact that fundamental quantum physical
properties are revealed. In 1985,VON KLITZING was honored with the NOBEL prize for his
discovery, and the accuracy of the quantum HALL effect made it the etalon of electric resistance.

In order to understand the effect in a proper way, it is convenient to start from LANDAU ’s anal-
ysis of the quantum dynamics of an electron moving in a perpendicular and uniform magnetic
field. The HAMILTONIAN reads

H =
1

2m

(
~p−

e

c
~A(~r)

)2

, (1.1)

wherem ande are the electron’s mass and charge,c is the speed of light, and the vector potential
~A(~r) is chosen in the LANDAU gauge

~A(~r) =
(
−By, 0, 0

)
. (1.2)
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The electron is restricted to move in the x/y-plane and[H, px] = 0. Therefore, the natural
ansatzΨ(~r) = exp( i

~
pxx)ψ(y) inserted in the SCHRÖDINGER equation yields the differential

equation of a one-dimensional harmonic oscillator

ψ′′(y) +
2m

~2

[
ε−

m

2
ω2

c (y − y0)
2
]
ψ(y) = 0 , (1.3)

whereωc = eB
mc

is the cyclotron frequency andy0 = c~kx

eB
is the centre of the cyclotron orbit in

classical terms. The solution is given by

Ψn(y − y0) = exp
[
−
mωc

2~
(y − y0)

2
]
Hn

(√
mωc

~
(y − y0)

)
, εn = ~ωc(n+

1

2
) . (1.4)

Here,Hn are the HERMITE polynomials. The energy levelsεn are called LANDAU levels and
are highly degenerate due toy0. Their degeneracyN(n) is related to the total magnetic fluxΦ
perpendicularly piercing the electron gas and is derived to

N(n) =
Φ

Φ0

=
Φ

hc/e
. (1.5)

Thus, the degeneracy is a constant with respect to the LANDAU levels. It depends linearly on
B, and is measured in units of the magnetic flux quantumΦ0.

If it is assumed that electron-electron interactions can beneglected, the above results can be
extended to a system ofn electrons. To classify this system properly, it is reasonable to define
the filling fractionν

ν =
number of electrons

number of LANDAU sites
=
hc

eB
ne , (1.6)

wherene is the surface density of the electrons. In order to calculate the HALL conductance
σH, an electric field~E(~r) = (0, E, 0) has to be added to (1.1). Its effect is a shift iny0 and the
energyεn:

y0 −→ y′0 = y0 +
eE

mω2
c

, εn −→ ε′n = εn + eEy0 +
m

2

(cE
B

)2

. (1.7)

Deducing the expectation value〈vx〉 from the wave functions (1.4) by using (1.7) yields:

σH = −
nee〈vx〉

E
= −

nece

B
= −ν

e2

h
. (1.8)

This dependence ofσH on the electron densityne and the filling fractionν, respectively, has
to be analyzed in detail. If the FERMI energyεF of the system is continuously varied,ne

remains constant until the next LANDAU level is reached. Exceedingεn fills the whole level.
Since each electron state of the system contributes to the HALL current,σH shows the same
behavior. The graphs are illustrated in figure 1.1. If combined, they yield the linear dependence
(1.8) and no quantum HALL effect is expected. This is resolved if disorder of the system is
taken into account. Impurities lift the degeneracy of the LANDAU levels which broaden into
bands. These bands consist of localized states bound by defects of the probe and extended
states carrying the HALL current. It is assumed and can be shown for several types of potentials
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FIGURE 1.1: HALL conductance and electron density over FERMI energy

ε0 ε1 ε2
εF ε0 ε1 ε2

εF

ne σH

that these latter states exist in the quantum HALL regime and that they are located around
the centre of the LANDAU band [18, 37]. Thus, by varying the FERMI energy, the electron
density is continuously increased while in the region of localized states (separating the extended
ones)σH remains constant. In addition, as it was first shown by PRANGE [38] for the case
of impurities represented byδ-functional potentials, the total current carried by a LANDAU

level is unchanged, since an extended state exactly compensates for the loss due to localization
effects. As a consequence, (1.8) remains valid in the domainof a plateau. The behavior ofσH is
indicated in figure 1.2. The HALL conductance shows plateaus with centers located at integral

FIGURE 1.2: HALL conductance over electron density
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filling fractionsν and is quantized in units ofe2/h. In principle, this explains the results of the
experiments, but is not capable of describing the amazing accuracy of the effect. As indicated
above, the quantization ofσH remains exact. This even holds up to macroscopic length scales
and more complicated types of disorder. The issue is resolved by relating the conductance
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to gauge covariance, first proposed by LAUGHLIN [39] and later on extended by HALPERIN

[18]. It is shown thatσH is a topological invariant if the FERMI level lies in a (mobility) gap,
i.e., the domain of localized states. By this, it is assumed that quantum HALL states have
to be incompressible. This is well supported by perturbative methods and numerical research.
Therefore, the quantization ofσH (1.8) is based on fundamental physical principles independent
of experimental circumstances and devices.

The discussion on topological invariance of the HALL conductance exceeds the scope of this
work, a detailed access is provided in the first chapter of [10] which reviews diverse approaches
[40, 41] in a closed context.

There is a certainty even if a microscopic theory has not beendiscovered so far: the integer
quantum HALL effect is to be understood as a one-electron effect involving disorder where
electron-electron interactions can be neglected. The corresponding ground states have to be
incompressible quantum liquids involving a non-trivial geometrical setting. This yields integer
quantization if and only if the ground state is non-degenerate.

1.2 The Fractional Quantum Hall Effect

In 1982, three years before KLAUS V. KLITZING was awarded the NOBEL prize, theoretical
physicists believed they understood the quantization of the HALL conductance in natural units.
Therefore, it was rather surprising when TSUI, STÖRMER and GOSSARD discovered a plateau
of the HALL conductanceσH at ν = 1/3 and indications for another one atν = 2/3 [1]. This
‘anomalous’ behavior of quantization was inconsistent with respect to the theory of the integer
effect. It soon became obvious that fractional HALL states cannot be described by single-
electron quantum mechanics. Since the FERMI energy resides within a LANDAU level, the
energy gap necessary to establish a plateau is due to a strongly correlated electron movement
reducing the COULOMB interaction. Therefore, the corresponding states are expected to be of
completely different geometrical and topological nature.

To begin the analysis of the fractional quantum HALL effect and study its topological features
it is advisable to complexify the theory introduced in the first chapter byz = x + iy and its
complex conjugatēz, yielding

x =
1

2
(z + z̄) , y =

1

2i
(z − z̄) ,

∂z =
1

2
(∂x − i∂y) , ∂z̄ =

1

2
(∂x + i∂y) . (1.9)

Using the symmetric gauge

~A(~r) =
(
−

1

2
By,

1

2
Bx, 0

)
, (1.10)

the HAMILTONIAN (1.1) becomes

H = −
2~2

m

(
∂z −

1

4l2
z̄
)(
∂z̄ +

1

4l2
z
)

+
~

2
ωc . (1.11)
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wherel =
√

~c/eB is the magnetic length unit.1 Since~ωc/2 is the ground state energy of
(1.1), it follows from (1.11) that any wave functionsΨ(z, z̄) satisfying

(
∂z̄ +

1

4
z
)
Ψ(z, z̄) = 0 , (1.12)

describe a lowest LANDAU level state. They are derived as

Ψ(z, z̄) = f(z) exp
(
−

1

4
|z|2

)
. (1.13)

In fact, the space of lowest LANDAU level wave functions is equivalent to the space of analytic
functions with inner product

〈f(z, z̄)|g(z, z̄)〉 =

∫
d2z f̄(z, z̄)g(z, z̄) exp

(
−

1

2
|z|2

)
, (1.14)

namely, the BARGMAN space [42].

1.2.1 Laughlin States

The first big step forward in order to solve the puzzle of the geometric structure of fractional
quantum HALL states was conducted by LAUGHLIN by presenting his trial wave functions [12]:

ΨLaughlin(z1, . . . , zn) = N
n∏

k<l

(zk − zl)
2p+1 exp

(
−

1

4

n∑

i

|zi|
2
)
, (1.15)

wherep ∈ N , zi is the position of thei-th electron in unified complex coordinates (1.9), and
N is a normalization factor. They were conceived as the variational ground state wave functions
for the model HAMILTONIAN

H =
n∑

k

[
1

2m

(
~

i
∇k −

e

c
~A(~rk)

)2

+ Vbg(~rk)

]
+

n∑

k<l

e2

|~rk − ~rl|
, (1.16)

with the vector potential taken in the symmetric gauge (1.10). Here,Vbg is a potential of a back-
ground charge distribution that neutralizes the electrons’ COULOMB repulsion. This guarantees
the stability of the system. Despite their simple structure, LAUGHLIN ’s wave functions include
amazing features. Firstly, referring to (1.13), they are anelement of the BARGMAN space and
thus describe a state in the lowest LANDAU level. Secondly, sincep ∈ N , they are completely
anti-symmetric satisfying the PAULI principle, and thirdly, due to the zeroes in the polynomial
factor, the electrons are widely separated from each other.This is a crucial condition for the
stability of the state with respect to electron-electron interactions in strongly correlated systems.
Additionally, they are exact ground states of various shortrangedδ-potential HAMILTONIANS .
For further investigation it is important to realize that the modulus squared of the wave function
is equivalent to the BOLTZMANN distribution of a two-dimensional one-component plasma.

|Ψ|2 = exp(−βΦ) , β =
1

2p+ 1
,

Φ = −2(2p+ 1)2
n∑

k<l

ln |zk − zl| +
2p+ 1

2

n∑

k

|zk|
2 . (1.17)

1In the following,l ≡ 1 for reasons of simplicity.
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Even if the analysis is far from being easy, the main advantage of this identification is to inves-
tigate the thermodynamic limit. It turns out that with respect to charge neutrality the electron
density corresponds to filling fractionsν = 1/(2p + 1). Sincep ∈ N , the PAULI principle is
directly related to odd-denominator fractions. Furthermore, the thermodynamic behavior for
smallp reveals that the system is an incompressible liquid rather than a WIGNER crystal. This
property yields the existence of plateaus in the HALL conductanceσH. Finally, numerical cal-
culations for systems of finite size show an excellent overlap with (1.15) of more than 99.5%.
The LAUGHLIN ground state can be extended with respect to quasi-hole excitations by intro-
ducing a simple polynomial factor

Ψexc. = N (ζi)
∏

k,l

(zk − ζl)
∏

r<s

(zr − zs)
2p+1 exp

(
−

1

4

∑

i

|zi|
2
)
. (1.18)

Here, theζi denote the positions of the quasi-hole excitations. With respect to (1.17) the excited
states, in contrast to the ground states, have a non-uniformcharge distribution. In comparison
with the two-dimensional plasma picture, a charge deficit ofe/(2p+ 1) is found at the pointζi,
which shows that the quasi-holes are fractionally charged.
In order to analyze the quasi-hole statistics more carefully, the BERRY connection has to be
derived from the normalization factor. This was first statedby AROVAS et al. [43] (a detailed
comment on the derivation is provided in [10], chapter 2):

Ψexc = N
∏

k,l

(zk − ζl)
∏

r<s

(zr − zs)
2p+1(ζr − ζs)

1
2p+1 exp (−F (zi, ζi)) , (1.19)

F (zi, ζi) =
1

4

∑

i

(
|zi|

2 +
1

2p+ 1
|ζi|

2
)
.

If a quasi-particle atζi encircles another one atζj

(ζi − ζj) −→ (ζi − ζj) exp(2πi) ,

a phase of2π/(2p + 1) is picked up. This mapping is equivalent to exchanging them twice.
Thus, they obey fractional statistics

θ =
π

2p+ 1
. (1.20)

To stress another important feature: the non-holomorphic factors in (1.19) describing quasi-
particle interactions lead to multi-valued wave functionsand give rise to the complex geometry
the LAUGHLIN states are built on. Despite its fundamental importance this one-to-one corre-
spondence between statistics and analyticity is often omitted in the discussion of the fractional
quantum HALL effect. However, in a suitable field theoretical description it has to be considered
precisely.

1.2.2 Beyond Laughlin

A strongly correlated electron system underlies the fractional quantum HALL effect. In such
systems interactions dominate the physics and long range effects take place. Well known exam-
ples are superconductivity and the HUBBARD model which can be described in terms of effec-
tive theories. A common feature of these theories is the demand for the existence of effective
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FIGURE 1.3: Four flux composite fermion
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particles in the system, e.g., COOPERpairs (superconductivity) or spinons and holons (HUB-
BARD model). Concerning the fractional quantum HALL effect one widely accepted effective
theory with direct correspondence to experimental facts was developed by JAIN [16, 44, 45].
He explained the fractional effect by proposing the composite fermion model. A composite
fermion consists of one electron with a number of pairs of fluxquanta of the magnetic field
attached to it, e.g., as in figure 1.3. JAIN showed that the fractional quantum HALL effect can
be expressed in terms of an effective integer quantum HALL effect for the composite fermions.

In order to explain this in a proper way, the results of section 1.1 have to be reconsidered. Using
the symmetric gauge (1.10) the single-electron ground state wave functions (1.4) expressed in
unified complex coordinateszi are classified by two suitable quantum numbers:n, m ∈ N0

labelling the LANDAU level and the angular momentum, respectively. This leads to:

Ψn, m N exp
(
+ 1

4
|z|2

)
∂n

z z
m exp

(
− 1

2
|z|2

)
,

e.g., Ψ0, m N0 z
m exp

(
− 1

4
|z|2

)
,

Ψ1, m N1 z
m−1(2m− |z|2) exp

(
− 1

4
|z|2

)
. (1.21)

The integer effect wave functionΨI (filling fraction νI = I ∈ N) is obtained by taking the
SLATER determinant of(ΨI, 0, . . . , ΨI, N−1) whereN is the degeneracy of the LANDAU level,
e.g.,

Ψ1 =

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN
...

...
. . .

...
zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣
exp

(
− 1

4

N∑

i=1

|zi|
2 )

=
N∏

k<l

(zk − zl) exp
(
− 1

4

N∑

i=1

|zi|
2 ) . (1.22)

The composite fermion trial wave functionsΨCF are obtained by multiplying the integer quan-
tum HALL effect wave function, e.g., (1.22) with a polynomial JASTROW factor which analyti-
cally corresponds to the attachment ofp pairs of flux quanta to the electron:

ΨCF =

N∏

i<j

(zi − zj)
2pΨI . (1.23)
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The filling fraction of the CF state is derived as

νCF =
νI

2pνI + 1
. (1.24)

Here,νI = I corresponds to the integer quantum HALL stateΨI. It can be shown that this
procedure neither destroys the correlations of the system nor the incompressibility of the state.
LAUGHLIN ’s wave functions are the simplest examples of this scheme. Starting from aν = 1
integer quantum HALL state (1.22),p pairs of flux quanta are attached. This yields:

ΨLaughlin = N
N∏

i<j

(zi − zj)
2p

N∏

i<j

(zi − zj) exp
(
− 1

4

∑

i

|zi|
2
)

︸ ︷︷ ︸
Ψ1

, ν =
1

2p+ 1
. (1.25)

With respect to states beyond the main LAUGHLIN series, the crucial point in JAIN ’s approach
is that higher LANDAU levels contribute to states withν ≤ 1. This might seem confusing and
has to be investigated in more detail. It is obvious from (1.21) that higher LANDAU level wave
functions depend explicitly on̄z. This makes them more complicated to deal with since a lot of
numerical results and field theoretical approaches reveal to be valid solely in the lowest LAN-
DAU level approximation. Apart from this it is naturally expected that aν ≤ 1 state is dominated
by its overlap with the lowest level. Following these considerations, the wave functions (1.23)
have to be mapped for further analysis using the lowest LANDAU level projector:

P̂LLL =

∞∑

k=0

1

4π4kk!
zk exp

(
− 1

4
|z|2

) ∫
d2z′ (z̄′)k . . . , P̂2

LLL = P̂LLL . (1.26)

Wave functions withI > 1 consist of monomials of the form

ρ(z) = zn(z̄)m exp
(
− 1

4
|z|2

)
. (1.27)

These are projected to

P̂LLL

[
ρ(z)

]
= 4m

(
n

m

)
m! zn−m exp

(
− 1

4
|z|2

)
. (1.28)

It is obvious from (1.28) that monomials withm > n are identically mapped to zero.

JAIN showed that the wave functions (1.23) have a large overlap with the lowest LANDAU level
for a small number of electrons, but in comparison with the LAUGHLIN series there exists no
analogue that carries this argument to the thermodynamic limit. The question according to the
injectivity of the projection (1.26) is even more difficult to answer. However, numerical and
conceptual analyses show that purely analytic wave functions describe lowest LANDAU level
states more accurately.

1.2.3 Jain’s hierarchical scheme

In principle, it is possible to get any rational numberν ∈ Q as filling fraction by applying JAIN ’s
construction repeatedly. This forms the so-called hierarchical scheme of JAIN . Thus, instead
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of starting with an integer quantum HALL state, a fractional quantum HALL state obtained
from JAIN ’s construction is taken, and new composite fermions are formed out of the old ones
by attaching additional pairs of flux quanta. The new filling fractions are obtained by (1.24).
Instead ofΨI the composite fermion state withνCF is taken to obtain a new fillingν ′CF. In this
way, arbitrarily continued fractions of the form

ν = [2p1, 2p2, . . . , 2pn, νI] =
1

2p1 +
1

2p2 +
1

.. .
2pn +

1

νI

(1.29)

can be constructed, and thus arbitrary positive rational numbersν < 1. However, this hierarchi-
cal scheme shares with all other hierarchical schemes the feature of producing way too many
unobserved filling fractions. Moreover, it is necessary to invoke the principle of particle-hole
duality in order to obtain some of the experimentally confirmed filling fractions within the first
few levels of the hierarchy. Unfortunately, the set of all experimentally observed fractional
quantum HALL states does not support particle-hole duality very well andis thus avoided in
our approach.

1.3 Chern-Simons Theory and Multilayer States

The amazingly accurate quantization of the HALL conductance in the integer and, especially, the
fractional quantum HALL effect is deeply linked to topological principles. The corresponding
states — so-called quantum liquids — satisfy statistics which are directly related to complex
geometrical structures. It is therefore crucial to characterize the fractional quantum HALL states
by suitable quantum numbers in the context of an effective theory. This yields the classification
in terms of universality classes and topological order. Very detailed approaches to this topic are
given by [35, 46].

It is well-known that quantum electrodynamics in (2+1) dimensions consists of a MAXWELL

part and a topological CHERN-SIMONS term. It is true that the latter is neglectable compared
to the first one in many cases, but it was shown rigorously thatthe CHERN-SIMONS term dom-
inates the fractional quantum HALL regime [7]. Therefore, this regime can be described in
terms of an effective CHERN-SIMONS theory. A fractional quantum HALL system can consist
of several quantum fluids which may be coupled to each other. Each fluidi in the effective field
theory is described by a vector potentialaµ

i with couplingsκi in addition to the external field
Aµ. The general form of the LAGRANGIAN reads

L = −
1

4π
aiµKijǫ

µνλ∂νajλ −
e

2π
κiAµǫ

µνλ∂νaiλ + . . . , (1.30)

where possible other terms such as the contribution of the quasi-hole current are neglected. The
complete LAGRANGIAN contains various couplings and sources which exceed the framework
of this introductory section. The only important conclusion within the scope of this work is that
the internal structure of a so-calledm-layer fractional quantum HALL state is encoded in the
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invertiblem×m matrixKij describing the couplings of different layers or quantum fluids with
each other. This matrix contains various information of thefractional quantum HALL state, e.g.,
the filling fraction, the topological order, the ground state degeneracy, and the structure of the
trial wave functions. This classification may seem quite ambiguous due to gauge symmetries
and the variety of fields in (1.30), but it turns out that diverse approaches leading to different
K-matrices can be identified with the same universality classof quantum HALL fluids. This
allows a suitable ordering and classification of fractionalHALL states in the unifying scheme of
K-matrices based on general principles. As a result, for an electron system,Kij has to satisfy
the following conditions:2

Kij =

{
odd integer i = j
integer i 6= j

. (1.31)

The filling fraction is derived as

νK =
m∑

i,j

K−1
ij , (1.32)

and the trial wave functions read:

ΨK =

N∏

i<j

m∏

µ

(z
(µ)
i − z

(µ)
j )Kµµ

N∏

i,j

m∏

µ<λ

(z
(µ)
i − z

(λ)
j )Kµλ exp

(
− 1

4

∑

i, µ

∣∣z(µ)
i

∣∣2) . (1.33)

These lie entirely in the lowest LANDAU level, but are not completely antisymmetrized among
different layers. In the following, this is investigated inmore detail.

In theK-matrix formalism integer quantum HALL effect states with filling fractionνI = I are
identified by anI × I identity matrix, e.g.,

Kij =

(
1 0
0 1

)
, ν = 2 . (1.34)

The two layers do not interact and the corresponding wave functionΨ2 is naively obtained as a
direct product of two functions withν = 1:

Ψ2 =

N∏

i<j

(z
(1)
i − z

(1)
j )

N∏

k<l

(z
(2)
k − z

(2)
l ) exp

(
− 1

4

∑

i, µ

∣∣z(µ)
i

∣∣2) . (1.35)

Obviously, (1.35) is not suitable to describe the two-layerstate in a meaningful way. The
structure of (1.33) reveals thatΨK has to be understood as the lowest LANDAU level projection
of the true wave function where particles of different layers, i.e., LANDAU levels, have to be
distinguished. This issue is resolved by following JAIN ’s composite fermion picture. Starting
from (1.34) the attachment ofp pairs of flux quanta to all electrons is realized by adding2p to
each entry of (1.31):

KCF
ij =

(
2p+ 1 2p

2p 2p+ 1

)
, ν =

2

4p+ 1
. (1.36)

2Throughout the work,Kij is represented in the symmetric electron basis of CHERN-SIMONS theory.



1.3. Chern-Simons Theory and Multilayer States 15

The corresponding wave functionΨCF reads:

ΨCF =
N∏

i<j

2∏

µ=1

(z
(µ)
i − z

(µ)
j )2p+1

N∏

i,j

2∏

µ<λ

(z
(µ)
i − z

(λ)
j )2p exp

(
− 1

4

∑

i, µ

∣∣z(µ)
i

∣∣2) . (1.37)

The flux quanta introduce interactions between different layers. Hence, the layers can be in-
terpreted as composite fermion LANDAU levels. The fractional effect for electrons is based on
a non-interacting integer effect for composite fermions which is described by a diagonalK-
matrix, e.g., (1.34). In order to derive a suitable lowest LANDAU level projected wave function
the composite fermions of different LANDAU levels labelled by(µ) have to be distinguished
between. The resulting wave function is anti-symmetric only within each LANDAU level, anti-
symmetrization over different LANDAU levels is unphysical and would yield a vanishingΨK in
most cases. Furthermore, the trial wave functions (1.33) for the series (1.39) show an excellent
overlap with numerical results.

The example for two layers can be directly generalized to thecase ofm layers. Them × m
K-matrices read:

Kij =




2p+ 1 2p · · · · · · 2p

2p 2p+ 1
. . .

...

...
. . . . . . . . .

...

...
. . . 2p+ 1 2p

2p · · · · · · 2p 2p+ 1




, νp =
m

2mp + 1
. (1.38)

This implies the following sequences of filling fractions, i.e., JAIN ’s main series:3

ν1 =
1

3
,

2

5
,

3

7
,

4

9
,

5

11
,

6

13
,

7

15
,

8

17
,

9

19
,

10

21
, . . .

ν2 =
1

5
,

2

9
,

3

13
,

4

17
,

5

21
,

6

25
, . . .

ν3 =
1

7
,

2

13
,

3

19
, . . . (1.39)

ν4 =
1

9
,

2

17
, . . .

...

These are limited by the WIGNER crystal regime forν → 0 depending on the quality of the
sample. Therefore, the series forp ≥ 5 were still not observed. On the other hand we have a
cutoff if m, the number of LANDAU levels of composite fermions building the state, is increased.
In terms of an effective integer quantum HALL effect this corresponds to the classical limit
Beff → 0.

3Solely experimentally confirmed states are indicated. Up todate experimental data is provided by [5].
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CHAPTER 2

Conformal Field Theory

During the last decades two-dimensional conformal field theory has become a very powerful
tool of modern theoretical physics [47]. Its origin can be traced back to string theory on the
one hand and to statistical mechanics on the other. This chapter provides a short introduction
to the conformal field theory of theb/c-spin systems. It is expected that the reader has basic
knowledge of conformal field theory in two dimensions. Suitable introductions are found in
various books, lecture notes and reviews, e.g., [33, 34, 48,49, 50].

2.1 The b/c-Spin Systems

The chiral theories of theb/c-spin systems were analyzed in detail in 1986 by KNIZHNIK [51].
They are known to play an important role in string theory and conformal field theory due to their
geometrical characteristics. Exactly these features makethem the candidate to describe the bulk
wave functions of the fractional quantum HALL effect in a natural way. The spin theories are
described by the action

S =
1

2π

∫
d2z b(z, z̄)∂̄c(z, z̄) + h.c. (2.1)

Here,b(z, z̄) andc(z, z̄) are anti-commuting conformal fields of weightj ∈ Z/2 and1 − j,
respectively, wherez, z̄ are coordinates in the complex plane.1 Therefore, under conformal
transformationsz −→ w(z) they behave as:

b(z) = b(w)

(
dw

dz

)j

, c(z) = c(w)

(
dw

dz

)1−j

. (2.2)

In mathematical terms, the fieldsb(z) andc(z) describej- and1 − j-differentials. Thus, they
are directly related to the cohomology of the topological space they live on, i.e., the complex
plane. For a general field theory, the expectation value of anarbitrary functionalF [Φ] is defined
by the path integral

〈F [Φ]〉 =

∫
(DΦ) exp (−S [Φ])F [Φ] . (2.3)

1Since these theories are chiral conformal field theories, the holomorphic and the anti-holomorphic part can be
treated independently. The dependence of the fields onz̄ is suppressed in the following.
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The operator valued equations of motion are obtained from the variationδ〈F [Φ]〉 = 0:

∂̄b(z) = ∂̄c(z) = 0

(∂̄b(z))b(z′) = (∂̄c(z))c(z′) = 0

(∂̄c(z))b(z′) = (∂̄b(z))c(z′) = 2πδ2(z − z′, z̄ − z̄′) . (2.4)

In classical terms the fields are expected to satisfy

(∂̄c(z))b(z′) = (∂̄b(z))c(z′) = 0 . (2.5)

The normal-ordered product of the two fields is defined by the requirement (2.5). Sincē∂(1/z) =
2πδ2(z, z̄), it is derived to

:b(z)c(z′) : = b(z)c(z′) −
1

z − z′
. (2.6)

In two-dimensional conformal field theory a product of localchiral operators can be expanded
in an operator valued LAURENT series with meromorphic functions as coefficients. In the eval-
uation of correlators these so-called operator product expansions play an important role. The
operator product expansions of the two fieldsb(z) andc(z′) can be read off directly from (2.6):

b(z)c(z′) ∼
1

z − z′
, c(z)b(z′) ∼

1

z − z′
. (2.7)

Here, ‘∼’ denotes ‘equivalent up to regular terms’. These regular terms vanish if evaluated in a
correlator.
The energy-momentum tensorT (z) of the theory can be derived by varying the actionS with
respect to the induced metric. This yields

T (z) = (1 − j): (∂b(z))c(z) : − j:b(z)(∂c(z)) : . (2.8)

In principle, there are just a few facts necessary to know about a general conformal field theory:
the central chargec and the set of conformal weights{hi} of its primary fields are two of them.
They can be derived by operator product expansions involving the energy-momentum tensor
using WICK ’s theorem:

T (z)b(w) = :T (z)b(w) : + (1 − j)c(z)b(w) ∂b(z) − j(∂c(z))b(w) b(z)

∼
1 − j

z − w
∂b(w) +

j

(z − w)2
(b(w) + (z − w)∂b(w)︸ ︷︷ ︸

b(z)

)

∼
j

(z − w)2
b(w) +

1

z − w
∂b(w) . (2.9)

This calculation can be done analogously forc(w) andT (w):

T (z)c(w) ∼
1 − j

(z − w)2
c(w) +

1

z − w
∂c(w) , (2.10)

T (z)T (w) ∼
1
2
(−12j2 + 12j − 2)

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) . (2.11)
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Equations (2.9) and (2.10) can be understood as the definition of a primary conformal field,
the numerator of the first term of the operator product expansion yields its conformal weighth.
Equation (2.11) contains a so-called anomalous term that isnot proportional to the field itself
or its derivatives. This term is due to the existence of a central extension of the algebra of
conformal symmetries, i.e., the central chargec of the theory. In fact, in all conformal field
theories the operator product expansion ofT (z) with itself reads

T (z)T (w) ∼
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w) . (2.12)

Comparing (2.11) and (2.12), the central chargecb/c−spin can be read off directly:

cb/c−spin = −2(6j2 − 6j + 1) . (2.13)

For j 6= 1
2

it is negative (asj ∈ Z/2). Therefore, theb/c-spin systems used in this work(j ≥ 1)
are non-unitary. This may seem disturbing since the spin systems are proposed to describe the
bulk regime of the fractional quantum HALL effect in a natural way. This issue is discussed in
more detail in appendix A.2

In addition to the full set of conformal symmetries there exists another symmetry. Under the
simultaneous transformation

b(z) −→ b(z) exp(iα) and c(z) −→ c(z) exp(−iα) (2.14)

the action (2.1) remains unchanged. The corresponding conserved spin currentJ(z) reads

J(z) = −:b(z)c(z) : (2.15)

and the conserved NOETHER charge is

Q(iα),J =
1

2πi

∮

0

dz (iα)J(z) . (2.16)

Evaluating the operator product expansion ofj(w) with the energy-momentum tensorT (z)
yields

T (z)J(w) ∼
1 − 2j

(z − w)3
+

1

(z − w)2
J(w) +

1

z − w
∂J(w) . (2.17)

Therefore,J(z) is not a primary conformal field forj 6= 1
2
. In fact, j = 1

2
leads to the only

unitary spin system(c = 1). It can be identified with two copies of the two-dimensional ISING

model.

2.2 b/c-Spin Systems on Riemann Surfaces

One of the most striking results in the study of the fractional quantum HALL effect was the
discovery of quasi-particles with fractional statisticsπ/(2m + 1) (m ∈ N). A field theory
describing this effect in a proper way has to be incorporatedin a suitable geometrical setting.

2It is indicated how the space of states of theb/c-spin theories appropriately coincides with the HILBERT space
of the (1+1)-dimensional theories describing the edge excitations.
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This section briefly demonstrates the features ofb/c-spin systems living on RIEMANN surfaces
with global Zn-symmetry following the lines of KNIZHNIK [52]. Zn-symmetry means that
every branch point of the manifold is of ordern and that all monodromy matrices can be di-
agonalized simultaneously, e.g., a torus is a RIEMANN surface with a globalZ2-symmetry and
two branch cuts. Since this work focuses on the structure of correlators, it is sufficient to do
the calculation locally for a single branch point atz0. The results can be directly extended tom
branch points. AZn-symmetric RIEMANN surfaceMn can be locally represented by a branched

covering of the compactified complex plane
(

Ĉ = C ∪ {∞}
)

with the following map:

z : Mn −→ Ĉ , z(y) = z0 + yn . (2.18)

The RIEMANN surface is locally identified byn sheets of̂C via the inverse map of (2.18). The
b/c-spin fields living on the manifold are therefore represented by ann-dimensional vector of
identical copies of theb/c-fieldsb(l)(z) andc(l)(z) on the complex plane with boundary condi-
tions

Π̂z0b
(l)(z) = b(l+1)(z) , l = 0, . . . , n− 1 , b(n)(z) = b(0)(z) ,

Π̂z0c
(l)(z) = c(l+1)(z) , l = 0, . . . , n− 1 , c(n)(z) = c(0)(z) , (2.19)

whereΠ̂z0 is the map of analytic continuation

Π̂z0 : (z − z0) −→ (z − z0) exp(2πi) . (2.20)

For further investigation it is suitable to introduce the FOURIER basis:

bk(z) =

n−1∑

l=0

exp

(
−2πi(k + j(1 − n))l

n

)
b(l)(z) ,

ck(z) =

n−1∑

l=0

exp

(
+2πi(k + j(1 − n))l

n

)
c(l)(z) , (2.21)

with k ∈ {0, . . . , n− 1}. This basis diagonalizeŝΠz0 :

Π̂z0bk(z) = exp

(
+2πi(k + j(1 − n))

n

)
bk(z) ,

Π̂z0ck(z) = exp

(
−2πi(k + j(1 − n))

n

)
ck(z) . (2.22)

The conserved spin currentsJk become single-valued in the vicinity of the branch point. In
geometrical terms this implies:

Jk(z) ∼
αk

z − z0
, where αk =

1

2πi

∮

z0

dz Jk(z) . (2.23)

To verify (2.23), the operator product expansion ofbk(z) with cl(w) has to be considered in the
vicinity of the branch point located atz0. The transformation law (2.2) and the operator product
expansion of the spin fields on the complex plane (2.7) yield

b(r)(z)c(s)(w) =
1

n(z − w)

n−1∑

p=0

( y(r)(z)

y(s)(w)

)p+j(1−n)

. (2.24)
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The operator product expansion is obtained by inserting (2.24) in (2.21):

bk(z)cl(w) = δk, l

( 1

z − w
+
k + j(1 − n)

n(z − z0)︸ ︷︷ ︸
−Jk(z)

)
+ O(z − w) . (2.25)

Therefore, the corresponding charge vectorαk identified with the branch pointz0 is

αk = −
k + j(1 − n)

n
, k ∈ {0, . . . , n− 1} . (2.26)

Aiming towards the analysis of the conformal structure of the geometrical features represented
by the spin fields, the theory is bosonized. This means to expressbk(z) andck(z) in terms of
exponentials of analytic scalar bosonic fieldsΦk(z)

bk(z) = :exp (+iΦk(z)) : ,

ck(z) = :exp (−iΦk(z)) : . (2.27)

The fieldsΦk(z) have conformal weightshk = 0 and their operator product expansions read:

Φk(z)Φm(w) ∼ −δk, m ln(z − w) . (2.28)

The spin currentsJk are deduced from (2.27) using (2.28):

Jk(z) = i∂Φk(z) . (2.29)

Finally, the bosonized energy-momentum tensor is given by

T (z) =

n−1∑

k=0

Tk(z) ,

Tk(z) = −
1

2
:∂Φk(z)∂Φ(z) : + iβ0∂

2Φk(z) , (2.30)

whereβ0 is a background charge placed at infinity. This charge has to be introduced to keep the
conformal structure of the spin system which by itself cannot be identified with a purely free
bosonic theory. The operator product expansions involvingthe energy-momentum tensorTk(z)
read:

Tk(z)Tk(w) ∼
1
2
(1 − 12β2

0)

(z − w)4
+

2

(z − w)2
Tk(w) +

1

z − w
∂Tk(w) , (2.31)

Tk(z)∂Φk(w) ∼
2iβ0

(z − w)3
+

1

(z − w)2
∂Φk(w) +

1

z − w
∂2Φk(w) . (2.32)

Comparing (2.31) and (2.13), the background charge for a correctly bosonizedb/c-spin system
is derived to

β0 =
1

2
− j . (2.33)
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It follows from (2.32) that∂Φk(z) is not a primary conformal field unless the background charge
vanishes. EvenΦk(z) itself is not primary, as it is expected from (2.28) due to thelogarithmic
term. The remaining candidates for a primary field can thus beidentified by a generalization of
(2.27). They are called vertex operators and are defined by

Vk, ℓ(z) = :exp (iℓΦk(z)) : . (2.34)

Indeed, they satisfy

Tk(z)Vk, ℓ(w) ∼
∞∑

m=0

(iℓ)m

m!

(
−

1

2
:∂Φk(z)∂Φk(z) : + iβ0∂

2Φk(z)

)
:Φk(w)m :

∼ −
1

2

∞∑

m=0

(iℓ)m

(m− 2)!

:Φk(w)m−2 :

(z − w)2
+

∞∑

m=0

(iℓ)m

(m− 1)!

:∂Φk(w)Φk(w)m−1 :

(z − w)

+iβ0

∞∑

m=0

(iℓ)m

(m− 1)!

:Φk(w)m−1 :

(z − w)2

∼
ℓ2/2 − β0ℓ

(z − w)2
Vk, ℓ(w) +

1

z − w
∂Vk, ℓ(w) . (2.35)

Thus,Vk, ℓ(z) is primary with conformal weighthk = ℓ2/2 + (j − 1/2)ℓ. In correspondence
to (2.26) the branch point of theZn-symmetric RIEMANN surface is represented by the vertex
operator

V~α(z0) = :exp

(
− i

n−1∑

k=0

αkΦk

)
: , (2.36)

with weight

h~α =
n−1∑

k=0

hαk
=

n−1∑

k=0

(
1

2
α2

k + (j −
1

2
)αk

)
. (2.37)

The central chargecRS of theb/c-spin system living on the RIEMANN surface reads:

cRS =
n−1∑

k=0

cb/c−spin = −2n(6j2 − 6j + 1) . (2.38)

From (2.26) it is apparent that the charge vector of the vertex operator is dominated by theZn-
symmetry of the RIEMANN surface: the spinj provides an offset which is just visible in the
conformal weights of the fields since the phase is determinedby αk mod 1. In addition, two
different types of fields have to be distinguished. First, there exist twist fields containing the
full information of the branch point. Therefore, the chargevector~α has to keep track of analytic
continuation. For example, on aZ3-symmetric RIEMANN surface and forj = 3/2, the charge
vector reads

~αn=3,j=3/2 = ( 1 , 2/3 , 1/3 ) . (2.39)
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Secondly, there are projective fields. Their non-zero charge components are identical as if the
branched structure was projected to ann-fold copy ofĈ . This yields charge vectors

~αp
1 = . . . = ~αp

m ∈

{
0,

1

n
,

2

n
, . . . , 1

}
, m ≤ n and ~αp

k = 0 , k > m . (2.40)

The role of~α is crucial. Besides local chiral fields having integer valued charge vector entries
only, fractional ones (2.40) are included. The effect of thecorresponding vertex operators is the
action of a branch point of ramification numbern. This is expected precisely from the fractional
statistics of the quasi-particles. Thus, these statisticsare incorporated into a geometrical setting,
where the complex plane is replaced by ann-fold ramified covering of itself, created by flux
quanta piercing it.

Naturally, the projective fields are assumed to describe fractional quantum HALL states in the
lowest LANDAU level (LLL) projection. Since the bosonsΦk(z) are free fields, the correlators
of the corresponding vertex operators read

〈Ω |V~α1(z1) · . . . · V~αn
(zn)| 0 〉 =

n∏

i<j

(zi − zj)
~αi·~αj , (2.41)

where〈Ω | is an out-state related to the background chargeβ0 at infinity. Since charge neutrality
in a correlator must be guaranteed, conformally neutral screening operatorsΩ−, Ω+ have to be
introduced. These form the state|Ω 〉 by acting on the highest weight vacuum| 0 〉:

|Ω 〉 = Ωm
+Ωn

− | 0 〉 , m, n ∈ N . (2.42)

The set of equations (2.40) and (2.41) including their geometrical features is the main result of
this chapter.
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CHAPTER 3

Conformal Field Theory Approach

The fractional quantum HALL effect reveals a large variety of physical features. Strongly corre-
lated movement of electrons, fractional charges and statistics of quasi-particles corresponding
to complex geometrical aspects, and topological order are some of them. Gauge covariance ar-
guments, hierarchical schemes, e.g., JAIN ’s concept of composite fermions, and effective topo-
logical theories, e.g., the CHERN-SIMONS K-matrix formalism, have been developed to adapt
these features and explain them by fundamental physical principles. This chapter deals with
a novel approach based on the conjecture of the correspondence between fractional quantum
HALL state wave functions and correlators of conformal field theories. Motivated by geometri-
cal aspects bulk wave functions are proposed and a new hierarchical scheme following JAIN ’s
composite fermion model is presented. The first section starts from the LAUGHLIN states and
proceeds to their natural continuation, i.e., JAIN ’s main series. In the second section fractional
quantum HALL states built from paired composite fermions are presented which complete the
scheme and order the set of experimentally confirmed filling fractions in the regime0 ≤ ν ≤ 1
by stability in a suitable way. Up to date experimental data can be found in [2, 3, 4, 5].

3.1 Jain’s Main Series

During the last two decades a multi-faceted set of lowest LANDAU level trial wave functions
has been proposed which has been investigated numerically and by using methods of mean field
approximation. In this connection, it often remained unconsidered to what extend the analytic
structure of a certain set of wave functions fits in a unifyingand natural picture. Field theoretical
approaches usually follow a purely constructive principlewithout presenting reasonable restric-
tions. Reconsidering the results of section 1.3, the matrixstructure (1.31) allows to construct
fractional quantum HALL states with arbitrary filling fractions. Certainly, several restraints can
be implemented, but often lack physical argumentation. On the other hand, even if JAIN ’s ef-
fective composite fermion model shows excellent correspondence with experimental data, his
wave functions adopt no definite geometrical structure in their lowest LANDAU level projected
form leaving theK-matrix trial wave functions (1.33) as the more reasonable candidates. The
challenge is to find a scheme which naturally suits the geometrical features of the fractional
quantum HALL effect and, furthermore, predicts series of states in agreement with the exper-
imentally observed order of stability and the topological considerations from the viewpoint of
effective CHERN-SIMONS theory.

It is natural to start from the LAUGHLIN states. Despite the simple appearance of their ground
states (1.15), the quasi-particle excited wave functions (1.19) reveal the most important evi-
dence for the non-trivial topological structure of fractional quantum HALL states, i.e., fractional



26 Chapter 3. Conformal Field Theory Approach

statistics. The derivation of the BERRY connection from the complex normalization factor [43]
results in a multivalued wave function. The non-holomorphic factors(ζi−ζj)1/(2p+1) lead to se-
vere consequences for any field theoretical description. Either, they demand the loss of chirality
or the fields naturally possess the topological abilities ofthe (quasi-)particles, i.e., the structure
of a branch point with ramification numbern = 2p + 1. This is exactly what the projective
vertex operators of theb/c-spin systems presented in chapter 2 simulate. They represent par-
ticles with fractional statistics by definition. Furthermore, theb/c-spin systems are a discrete
set of conformal field theories. Thus, compared with other conformal field theory approaches
involving continuous parameters, e.g., GAUSSIAN c = 1 models, avoid arbitrariness from the
beginning.

Due to the unsophisticated correspondence between statistics π/(2p + 1) and the geometrical
setting of theb/c-spin fields, the approach reveals an amazing simplicity. Given a LAUGHLIN

filling fraction ν = 1/(2p + 1), the electrone− and the flux quantumΦ, respectively, are
identified with aZ2p+1-symmetric projective field. The charge vectors (2.40) are related to the
statistics, thus(2p+ 1)-dimensional and take the form

~αe− =
(

1, . . . , 1
)

, ~αΦ =
( 1

2p+ 1
, . . . ,

1

2p+ 1

)
. (3.1)

The correlators (2.41) yield the correct wave functions (1.15) and (1.19) up to the exponential
factor:

ΨLaughlin =
〈
Ω
∣∣V~αe−

(z1) · . . . · V~αe−
(zn)

∣∣ 0
〉

=
n∏

i<l

(zi − zl)
2p+1 ,

Ψexc. =
〈
Ω
∣∣V~αe−

(z1) · . . . · V~αe−
(zn)V~αΦ

(ζ1) · . . . · V~αΦ
(ζk)

∣∣ 0
〉

=

n,k∏

r,s

(zr − ζs)

n∏

i<l

(zi − zl)
2p+1

k∏

p<q

(ζp − ζq)
1

2p+1 . (3.2)

A comment is necessary here: in the scope of this work, the conformal field theory always
lives on a ramified covering of the compactified complex plane, i.e., the RIEMANN sphere. On
the other hand, the fractional quantum HALL system lives on a certain chunk of the plane, the
sample. Thus, in a correct treatment, the wave functions of the fractional quantum HALL system
must be elements of a suitable test space. Reconsidering thederivation yielding to (1.13), this is
the BARGMANN space [42]. The elements of the BARGMANN space forN complex variables
are of the form

ψ({z}) = p(z1, . . . , zN )

N∏

i=1

exp(−ci|zi|
2) .

There are further restrictions on the constantsci and on the multivariate polynomialp({z})
whenever the functionψ({z}) is symmetric or anti-symmetric under certain permutationsof its
arguments. The only effect of the exponential factor is to guarantee a sufficient fast decay of the
modulus squared of the wave function if one or more of its arguments become large. It can be
shown rigorously that this factor is absent if the fractional quantum HALL problem is considered
in a different setting, i.e., on a sphere pierced by the field of a magnetic monopole positioned
in its centre. This idea was first pointed out by HALDANE [15]. Since the sphere is a compact
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space, so is the support of the wave function. When computingbulk wave functions in terms of
conformal field theory correlators, this is executed automatically on the latter setting, i.e., the
compact sphere. Thus, it is natural to expect that the conformal field theory picture reproduces
the bulk wave functions on the sphere rather than on the plane. However, for completeness
it is possible to reproduce the exponential factors within the conformal field theory picture by
explicitly including a homogeneous background charge distribution confining the support of the
wave function as shown by MOORE and READ [25, 53].

As indicated above, theZn-symmetry of the RIEMANN surface the spin fields live on has a one-
to-one correspondence with the statistics and charges of the (quasi-)particles in the LAUGHLIN

states. Furthermore, the scalar products of the charge vectors determine the particles’ interac-
tion, i.e., order of zeros in the polynomial terms of the wavefunctions. Despite the fact that the
electron with elementary chargee obeys simple fermionic statistics — indicated by the integer
valued components of its charge vector (3.1) — the field’s nature has a geometric background
in terms of the topology of the RIEMANN surface it lives on. This becomes more apparent by
investigating JAIN ’s main series.

The complete set of states describing these main sequences of HALL fractions (1.39) is included
in the b/c-spin system approach, (quasi-)particles, their charges and statistics are described in
terms ofZ2mp+1-symmetric projective fields. As before,p labels the number of pairs of flux
quanta attached to the electron andm is the number of filled composite fermion LANDAU

levels. Each layerµ ∈ {1, . . . , m} is connected with a(2mp+ 1)-dimensional charge vector:

~α
(µ)
i =





1 1 ≤ i ≤ 2p
1 i = 2mp+ 2 − µ
0 otherwise

. (3.3)

The scalar products read:

~α(µ) · ~α(λ) = 2p+ δµ, λ . (3.4)

Naively, a(2p+1)m-dimensional charge vector for anm-layer state might have been expected.
However, this would demand that the flux quanta were independent for each layer. Identifying
these or, equivalently, the base spaces of them copies of the ramified complex plane imme-
diately leads to(2p + 1)m − (m − 1) = 2mp + 1 dimensions, the correct dimensionality
of the charge vectors. The correlators (2.41) of the vertex operators given by (3.3) yield the
trial wave functions of theK-matrices (1.38) representing JAIN ’s series in the CHERN-SIMONS

formalism:

Ψp, m(z
(µ)
i ) = 〈Ω |

m∏

µ

V~α(µ)(z
(µ)
1 ) · . . . · V~α(µ)(z

(µ)
N )| 0 〉

=

N∏

i<j

m∏

µ

(z
(µ)
i − z

(µ)
j )2p+1

N∏

i,j

m∏

µ<λ

(z
(µ)
i − z

(λ)
j )2p . (3.5)

Equation (3.5) generalizes the result of (3.2). In this way,JAIN ’s main series (1.39) with filling
fractionsνp = m/(2mp+ 1) are identified.
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3.2 Composite Fermion Pairing

Concerning other filling fractions all known hierarchical schemes, e.g. [13, 15, 45, 54, 55], share
the problem of not being capable to predict fractional quantum HALL states by order of stability.
They produce several unobserved filling fractions at low levels within hierarchy whereas some
popular states are obtained at much higher order or even as descendants of unconfirmed states.
To avoid this deficiency, the principle of particle-hole duality is artificially introduced, relating,
for example the series

ν1 =
1

3
,

2

5
,

3

7
,

4

9
,

5

11
,

6

13
,

7

15
,

8

17
,

9

19
,

10

21
, . . . (3.6)

and

ν
(1)
1 =

2

3
,

3

5
,

4

7
,

5

9
,

6

11
,

7

13
,

8

15
,

9

17
,

10

19
, . . . . (3.7)

Since the complete set of experimentally confirmed states does not support this principle very
well and no obvious physical motivation for its existence isprovided, the scheme of this work
avoids particle-hole duality.

Yet, the series (3.7) withν(1)
p = m/(2mp − 1), are observed and seem to be closely related to

JAIN ’s main seriesνp. From the topological viewpoint of CHERN-SIMONS theory,ν(1)
p can be

represented in terms ofm-layerK-matrices

Kij =

{
2p− 1 i = j
2p i 6= j

. (3.8)

Reconsidering (3.4) then demands the existence of charge vectors~α and ~β corresponding to
different layers with

~α 2 = ~β 2 = 2p− 1 and ~α · ~β = 2p  . (3.9)

This is not possible since it contradicts SCHWARZ’ inequality and indicates that these ‘dual’
series possess completely new physical features. The analytic structure of the wave function
(1.33) forK-matrices (3.8) exhibits that composite fermions living inthe same layer repulse
each other with the power of(2p− 1) while those of different layers repulse themselves by2p.
This suggests the existence of an effectively attractive composite fermion interaction within a
LANDAU level, i.e. pairing. In a conformal field theory approach this is induced by thec = −2
logarithmicb/c-spin system with spinj = 1 as shown for the HALDANE -REZAYI state with
filling fraction ν = 5/2 [21, 25, 31, 32].

In analogy to (2.27) the fieldsb(z) and c(z) can be bosonized on a ramified covering of the
compactified complex plane locally representing theZn-symmetric RIEMANN surface in terms
of vertex operators:

b~γ(z) = :exp
(

+ i~γ~Φ(z)
)
:

c~γ(z) = :exp
(
− i~γ~Φ(z)

)
:

γk ∈ {0 , 1} . (3.10)
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The pairing effect of the composite fermions is described byb(z)∂c(z′). The operator product
expansion

b~γ(z)∂c~γ(z
′) ∼

~γ 2

(z − z′)2
(3.11)

yields the so-called PFAFFIAN form Pf(zi, z
′
i) when the fields (3.11) are evaluated in a correla-

tor:

〈Ω |
(
b~γ(z1)∂z′1

c~γ(z
′
1)
)
· . . . ·

(
b~γ(zN)∂z′

N
c~γ(z

′
N)
)
| 0 〉 = ~γ 2Pf(zi, z

′
i) ,

Pf(zi, z
′
i) ≡

∑

σ∈SN

sgn(σ)

N∏

i=1

1

(zi − z′σ(i))
2
. (3.12)

In this way, theν(1)
p series can be identified by the same fields as the basic JAIN series (3.5) if

additional inner-LANDAU level pairings are included. To find a physical and stable system all
composite fermion LANDAU levels are expected to be paired. To obtain a proper description,
each layerµ ∈ {1, . . . , m} possesses anm-dimensional charge vector:

~γ
(µ)
i = δµ, i ⇒ ~γ(µ) · ~γ(λ) = δµ, λ . (3.13)

The composite fermions themselves correspond to the chargevectors (3.3). Thus, the wave
functions read:

Ψ(1)
p, m(z

(µ)
i ) = 〈Ω |

m∏

µ

V~α(µ)(z
(µ)
1 ) · . . . · V~α(µ)(z

(µ)
2N )| 0 〉

× 〈Ω |
m∏

µ

(
b~γ(µ)(z

(µ)
1 )∂zN+1

c~γ(µ)(z
(µ)
N+1)

)
· . . . ·

(
b~γ(µ)(z

(µ)
N )∂z2N

c~γ(µ)(z
(µ)
2N )
)
| 0 〉

=
m∏

µ

Pf(z
(µ)
i , z

(µ)
N+i)

2N∏

i<j

m∏

µ

(z
(µ)
i − z

(µ)
j )2p+1

︸ ︷︷ ︸
(⋆)

2N∏

i,j

m∏

µ<λ

(z
(µ)
i − z

(λ)
j )2p . (3.14)

It is important to stress that equation (3.14) satisfies the CHERN-SIMONS approach and has to
be identified with theK-matrix (3.8). Only the trial wave functions (1.33) have to be extended,
since they are not capable to realize pairing effects in a proper way. However, the PFAFFIAN

cancels two powers of the paired composite fermion contribution to(⋆). Thus, paired composite
fermions repulse each other by

(
z

(µ)
i −z(µ)

j

)2p−1
in either wave function. Additionally, both yield

the same filling fractions

ν(1)
p, m =

m

2mp− 1
. (3.15)
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The first order paired series related to JAINs main series are identified:1
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, . . .

ν
(1)
3 =
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5
,

2

11
,

3

17
, . . . (3.16)

ν
(1)
4 =

1

7
,

2

15
, . . .

...

This proposal can be extended in a natural way imagining thatthe structure of paired composite
fermion singlets is not restricted to be an inner-LANDAU level effect. Two LANDAU levels of
composite fermions that are completely paired among each other can form a new incompressible
quantum liquid and can hence interact with other blocks or single layers of paired droplets.
Therefore, two natural series ofK-matrices(Ke, o)ij appear with an even and an odd number of
layers, respectively:

(Ke, o)ij =





2p− 1 i = j
2p− 2 i 6= j, 2(k − 1) + 1≤ i, j≤ 2k (1 ≤ k ≤ b)

2p otherwise
. (3.17)

Here,b is the number of paired2×2-blocks. The first series, given a2b-layer fractional quantum
HALL state, read:

(Ke)ij =




2p− 1 2p− 2 2p · · · 2p

2p− 2 2p− 1 2p
. . .

...

2p 2p
. . . 2p 2p

...
. . . 2p 2p− 1 2p− 2

2p · · · 2p 2p− 2 2p− 1




, ν(2) e
p =

2b

4bp− 3
. (3.18)

The latter, given a2b+1-layer fractional quantum HALL state, has a remaining solely self-paired
layer and corresponds to filling fractions

ν(2) o
p =

2b+ 3

2p(2b+ 3) − 3
. (3.19)

Together, they yield the second order paired series:2

ν
(2) e
1 =

4

5
,

(
6

9

)
,

8

13
,

10

17
, . . . , ν

(2) o
1 =

5

7
,

7

11
,

(
9

15

)
, . . . ,

ν
(2) e
2 =

2

5
,

4

13
, . . . , ν

(2) o
2 = . . . .

(3.20)

1Solely experimentally confirmed states are indicated.
2Fractions in brackets are not coprime and also appear in other series. This indicates that these states can exist

in different forms of quantum liquids.
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The scheme can be generalized in a natural way to the case ofn× n blocks of paired LANDAU

levels in order to derive then-th order series. There existn − 1 subseries determined by the
numberr of remaining solely self-paired LANDAU levels, e.g.,r = 0 in the even case for second
order andr = 1 in the odd case, respectively. Letb denote the number of fully paired blocks
then them×m-matricesK(n)

p,m, wherem = bn+ r of then-th order paired fractional quantum
HALL states read:

(
K(n)

p, m

)
ij

=





2p− 1 i = j
2p− 2 i 6= j, (k − 1)n + 1≤ i, j≤ kn (1 ≤ k ≤ b)

2p otherwise
. (3.21)

The corresponding filling fractions are derived to

ν
(n) r
p, m =

bn + r(2n− 1)

2p(bn+ r(2n− 1)) − (2n− 1)
. (3.22)

By this, the third order states confirmed by experiment3 are deduced (higher orders do not yield
additional observed fractions):

ν
(3) 0
1 =

[
6

7

]
,

9

13
, . . . ν

(3) 1
1 =

8

11
, . . . ν

(3) 2
1 = . . .

ν
(3) 0
2 =

3

7
, . . . ν

(3) 1
2 = . . . ν

(3) 2
2 = . . .

(3.23)

Having a closer look on (3.21) the question arises to what extent the access to fractional quantum
HALL pairing presented up to this point is too restrictive. More generalK-matrices with band-
like or even more complicated structures could be imagined yielding arbitraryν. For example,
ν = 4/11, a state that was very recently confirmed by experiment [5], could be realized by

Kij =




3 2 2 4
2 3 4 2
2 4 3 2
4 2 2 3


 . (3.24)

ThisK-matrix describes a ring of two second order blocks. Remarkably, the result of a detailed
analysis of equation (3.22) shows that certain fractions donot appear, for example7/9, 10/13,
5/13, and4/11. In agreement, as far as experimental data is provided, there merely exist con-
troversial data concerning the first three, indicating thatif they exist they presumably have to be
another kind of fractional quantum HALL fluid. The same holds forν = 4/11 that is assumed to
belong to the class of non-ABELIAN states which are discussed in more detail in chapter 4. As
exactly these fractions lie beyond the access of the scheme proposed in this work, theb/c-spin
systems motivate a reasonable physical constraint for the CHERN-SIMONS formalism in order
to classify fractional quantum HALL states. This can be directly deduced from the conformal
field theory picture of the fields given by (3.10). If an off-block pairing structure was possible,
there would exist a triplet of fields

b ~γ1(z
(1)
i )∂c ~γ1(z

(1)
j ) , b ~γ2(z

(2)
i )∂c ~γ2(z

(2)
j ) , b ~γ3(z

(3)
i )∂c ~γ3(z

(3)
j ) , (3.25)

3The stateν = 6

7
has not been confirmed so far, since it falls in the domain of attraction of theν = 1 plateau.

However, it is strongly expected.
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with the charge vectors obeying the following set of equations:

~γ1
2 = ~γ2

2 = ~γ3
2 = 1 , ~γ1 · ~γ2 = ~γ1 · ~γ3 = 1 and ~γ2 · ~γ3 = 0 . (3.26)

Since their components are restricted to be either0 or 1, this ends up in a contradiction:

~γ1 = ~γ2 = ~γ3 and ~γ2 6= ~γ3  . (3.27)

As a consequence the most generalK-matrix for a correct description of paired fractional quan-
tum HALL states is restricted to have a block structure:

(
Kb, nb

p, m

)
ij

=





2p− 1 i = j

2p− 2 i 6= j, 1+
k−1∑

l=1

nl ≤ i, j≤
k∑

l=1

nl (1 ≤ k ≤ b)

2p otherwise

. (3.28)

Herein, b denotes the number of blocks andnb the corresponding sizes. Therefore,m =∑b
l=1 nb , if singly paired layers are denoted bynb = 1. It is to stress that the new series of

filling fractionsνb, nb
p obtained from (3.28) are rather unlikely to be seen in experiments as their

K-matrices are by far less symmetric than the ones given in (3.21). Since it is quite difficult to
derive a general formula forνb, nb

p , the only additional fraction that may be seen in the nearer
future is provided:

ν
2, (3,2)
1 =

19

23
. (3.29)

Therefore, the set of matrices (3.21) remains as the naturalcandidate to describe series of paired
fractional quantum HALL states by order of stability. The corresponding bulk wave functions
Ψ

(n)
p,m of the n-th order paired fractional quantum HALL states can be calculated as a direct

generalization of (3.14). Given the matrixK(n)
p, m , anm-dimensional charge vector with respect

to a paired blockB ∈ {1, . . . , b+ r} (eithern×n or a remaining1×1 layer) is identified with
each layerµ :

~γ
(µ)
i = δB(µ), i ⇒ ~γ(µ) · ~γ(λ) = δB(µ), B(λ) . (3.30)

In addition, each layerk possesses a(2mp + 1)-dimensional charge vector for the composite
fermions:

~α
(µ)
i =





1 1 ≤ i ≤ 2p
1 i = 2mp+ 2 − µ
0 otherwise

⇒ ~α(µ) · ~α(λ) = 2p+ δµ, λ . (3.31)

Let I denote the set of paired LANDAU levels, e.g.,I = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)}

describes a triple-layer state withν(2) 1
p, 3 = 5/(10p− 3) where the first two LANDAU levels form
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FIGURE 3.1: Observed HALL fractions in the interval0 ≤ ν ≤ 1. Established fractions are
labelled by ‘2’. The symbol ‘+’ denotes cases that exceed the scheme of this work. The basic
JAIN seriesνp approximate1/2p from below, the corresponding first order paired seriesν(1)

p

from above (both marked by continuous lines) as well as the higher order seriesν(n)
p

(marked
by dashed lines)
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a2 × 2-block while the third is solely self-paired. The wave functions read

Ψ(n)
p, m(z

(µ)
i ) = 〈Ω |

m∏

µ

V~α(µ)(z
(µ)
1 ) · . . . · V~α(µ)(z

(µ)
2N )| 0 〉

×〈Ω |
∏

(µ, λ)∈I

(
b~γ(µ)(z

(µ)
1 )∂zN+1

c~γ(λ)(z
(λ)
N+1)

)
· . . . ·

(
b~γ(µ)(z

(µ)
N )∂z2N

c~γ(λ)(z
(λ)
2N )
)
| 0 〉

=
∏

(µ, λ)∈I

Pf(z
(µ)
i , z

(λ)
N+i)

2N∏

i<j

m∏

µ

(z
(µ)
i − z

(µ)
j )2p+1

2N∏

i,j

m∏

µ<λ

(z
(µ)
i − z

(λ)
j )2p

︸ ︷︷ ︸
Ψp, m(z

(µ)
i

)

, (3.32)

whereΨp, m(z
(µ)
i ) is the bulk wave function of the basic JAIN series (3.5).

Combining equations (1.39), (3.16), (3.20), and (3.23), the complete set4 of experimentally
confirmed filling fractions is obtained by order of stability. A natural cutoff is found if either the
number of participating composite fermion LANDAU levelsm increases or ifν → 0. Series of

4Except forν = 4/11, which is presumably a non-ABELIAN fractional quantum HALL state falling outside the
approach of this work, and controversial fractions likeν = 7/9, ν = 10/13, andν = 5/13.
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TABLE 3.1: Expected Hall fractions

p νp ν(1)
p ν(2)

p ν(3)
p ν(4)

p

1
11

23

11

21

11

19
,

12

21

11

17
,

12

19
,

13

21

8

9
,

11

15
,

18

29

2
7

29

7

27

5

17
,

6

21

6

19
,

8

27

8

25

3
4

25

4

23

4

21
,

5

27

4
3

25

3

23

4

29

more complicated composite fermions (largerp) are less developed, complete pairings (r = 0)
are favored and each series precisely keeps track of the stability of the fractional quantum HALL

states found in experiments whereas no unobserved fractionis predicted.

A comment has to be made on the absence of theν = 7/9 state. If the series

ν =
k

2k − 5
=

6

7
,

7

9
,

8

11
,

9

13
, . . .

was naively assumed,ν = 7/9 would have to be considered to be more likely to appear than
ν = 8/11. Furthermore, it cannot be argued that7/9 is dominated by theν = 1 plateau since
ν = 4/5 exists. This seems rather unusual or even exceptional, but it precisely coincides with
the b/c-spin system approach. Therefore, the series in figure 3.1 simply indicate where new
fractions given by (3.22) will show up. Following the hierarchical scheme of this work, the
subsequent filling fractions are predicted to appear if experimental circumstances are improved
in the future (merely fractions with denominatord ≤ 29 are indicated).

3.2.1 Quasi-Particle Excitations

One of the most striking results in the study of the fractional quantum HALL effect was the
discovery of quasi-particles with fractional charges and statistics [12]. Experimentally it has
been proven very difficult to measure them (even for the LAUGHLIN states) and a lot of effort is
spent to investigate them in more detail. The two sets of wavefunctions (3.5) and (3.32) describe
the electron ground state for a given filling fractionν. As already shown for the LAUGHLIN

series the geometric features of excitations responsible for statistics and charges are directly
embedded in theb/c-spin systems and are related to theZn-symmetry of the RIEMANN surface
the fields live on, i.e., the dimension of the composite fermion charge vectors (3.31). However,
an elementary quasi-particle excitation of anm-layer state has to be considered more carefully.
First of all, a quasi-particle is expected to have trivial statistics with respect to the composite
fermions:

~αΦ · ~α(µ)
CF = 1 , (3.33)
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TABLE 3.2: Quasi-particle statistics for confirmed fractional quantum HALL states

Θ ν Θ ν

π
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1

3

π

15
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15
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,

(
9

15
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π
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π
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,

8

13
π
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,
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π

25

6
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where~α(µ)
CF is the charge vector of the composite fermion in theµ-th layer as given by (3.3). The

naive solution

~αΦ =
( 1

2mp+1
, . . . ,

1

2mp+1

)
, (~αΦ)2 =

1

2mp+1
(3.34)

yields the value~αΦ · ~α(µ)
CF = 2p+1

2mp+1
, which is not an integer form > 1. A simple generalized

solution exists, namely

~αΦ,i =
1

2mp+ 1





m 1 ≤ i ≤ 2p
1 2mp+ 2 −m ≤ i ≤ 2mp+ 1
0 otherwise

, (3.35)

which coincide with (3.1) form = 1. By this, the desired result for all layers is obtained.
Furthermore,

~αΦ · ~αΦ =
1

(2mp+ 1)2
(2mp2 +m) =

m

2mp+ 1
. (3.36)

Since each of them layers contributes1/(2mp+ 1) this yields the correct quasi-particle statis-
tics.

Therefore, the quasi-particle excitations of the wave functions Ψp, m andΨ
(n)
p, m are predicted

to carry a phaseΘ ∼ π/(2mp + 1) and have the chargeq ∼ e/(2mp + 1) as it is shown in
Table 3.2. Since several filling fractions belong to more than one series, e.g.,2/5, and thus exist
in different forms of quantum liquids, various types of quasi-particles can be found for these
states. Direct experimental observations are still difficult, and — as far as it is known so far
— good indications solely exist for the LAUGHLIN series. Finally, it has to be noted that the
choice (3.3) for the charge vectors of the composite fermionand (3.35) for the quasi-particles is
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not unique, although physically motivated, particularly simple and symmetric. The ambiguity
is not disturbing since most other solutions are related by achange of basis within the tensor
product of the conformal field theories. The advantage of theapproach of this work is that the
conformal field theories themselves are confined to a discrete series leaving not much space for
arbitrariness.
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CHAPTER 4

Non-Abelian Fractional Quantum Hall States

The conformal field theory approach presented in this work iscapable to describe the complete
set of experimentally observed filling fractions with but a few exceptions. One of these ex-
ceptions isν = 4/11, recently confirmed by PAN et al. [5]. It was named an ‘odd’ quantum
HALL state and is assumed to belong to the class of non-ABELIAN quantum HALL states which
have been analyzed in detail by [56, 57, 58]. In this chapter the scope of theb/c-spin system
formalism in terms of a suitable representation of this new class of states is investigated.

4.1 Non-Abelian Spin Singlet States

The topological order of effective CHERN-SIMONS theory represented in theK-matrix for-
malism classifies JAIN ’s main series and their natural extension, the composite fermion paired
fractional quantum HALL states, both obeying fractional but ABELIAN statistics. These series
are described by theb/c-spin systems in a natural way putting fractional statistics in a geometri-
cal setting and predicting the set of states by experimentalorder of stability. Within the last few
years, a new class of fractional quantum HALL states with non-ABELIAN statistics has been
discussed. These states are special insofar as their trial wave functions for quasi-hole excita-
tions have more than one component. Therefore, braid statistics are represented by matrices
acting on these wave functions if two quasi-particles are exchanged. Since matrices — in gen-
eral — do not commute, the statistics were named ’non-ABELIAN ’. A subset of this class is
the set of non-ABELIAN spin singlet fractional quantum HALL states which are analyzed in the
following.

In 1983, HALPERIN emphasized that fractional quantum HALL states do not always have to
be completely spin polarized since the ZEEMAN energy is dependent on theg factor of the
electrons and seems to be rather small compared to other energy scales of the system [8]. He
proposed spin singlet states with the following trial wave functions:

Ψn+1, n+1, n
Halperin =

N∏

i<j

(z
(↑)
i − z

(↑)
j )n+1(z

(↓)
i − z

(↓)
j )n+1

N∏

i, j

(z
(↑)
i − z

(↓)
j )n exp

(
− 1

4

∑

i, µ

∣∣z(µ)
i

∣∣2) , (4.1)

wheren ∈ N andz(↑)i , z
(↓)
j denote the positions of the electrons with spin up and spin down,

respectively. The filling fraction is derived toν = 2/(2n+1). For oddn a bosonic and for even
n a fermionic state is obtained. The latter resembles the two-layer composite fermion stateΨp, 2

of JAIN ’s main series (3.5) withn = 2p.

In 1998, READ and REZAYI studied a class of spin-polarized non-ABELIAN quantum HALL

statesΨk, M
NA [58] generalizing the PFAFFIAN states which successfully describe composite fer-
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mion liquids withν = 1/(2p) where2p is the number of flux quanta attached to the electrons.
The non-ABELIAN wave functions were proposed to read:

Ψk, M
NA = Ψpara(zi)

∏

i<j

(zi − zj)
M+ 2

k , ν =
k

Mk + 2
. (4.2)

Here,Ψpara represents wave functions deduced from correlators ofZk-parafermionic conformal
field theories.

It turned out that the features of (4.1) and (4.2) can be combined. By this, the class of non-
ABELIAN spin singlet fractional quantum HALL states is conceived [56, 57]. Their wave func-
tions are given by:

Ψk, M
NASS = ΨSU(3)

para (z
(↑)
i , z

(↓)
j )

( N∏

i<j

∏

µ=↑, ↓

(z
(µ)
i − z

(µ)
j )2

N∏

i, j

(z
(↑)
i − z

(↓)
j )

) 1
k

×
N∏

i<j

∏

µ=↑, ↓

(z
(µ)
i − z

(µ)
j )M

N∏

i, j

(z
(↑)
i − z

(↓)
j )M exp

(
− 1

4

∑

i, µ

∣∣z(µ)
i

∣∣2) , (4.3)

whereΨ
SU(3)
para is a wave function derived fromSU(3)k-parafermionic conformal field theory

correlators. Explicit calculations ofΨSU(3)
para reveal to be rather difficult (a detailed analysis is

provided by GEPNER [59]) and even though concreteK-matrices have been calculated for
Ψk,M

NASS in [56], the one-to-one correspondence between the CHERN-SIMONS formalism and
the b/c-spin systems does not hold due to the parafermionic structure. Yet, solely the non-
parafermionic part of (4.3) determines the filling fraction

νk, M
NASS =

2k

2kM + 3
(4.4)

and the geometrical features. Therefore, it can be regardedas a two-layer state with a pseudo
K-matrix

(Kk, M)ij =

(
M + 2

k
M + 1

k

M + 1
k

M + 2
k

)
. (4.5)

It is the characteristics of (4.5) that have to be adopted by theb/c-spin systems. If this is taken
for granted, the full theory is obtained by a tensor product with theSU(3)k-parafermionic con-
formal field theories.

The structure ofKk, M induces the one-component statisticsΘ of the fractional quantum HALL

state. Thus, they are expected to be proportional toπ/(2kM + 3). If these statistics are to be
realized byb/c-spin vertex operators, the appertaining charge vectors~α have to be(2kM + 3)-
dimensional. Due to the additionalZ2-symmetry of the conformal field theory modules, i.e.,
the RAMOND and NEVEU-SCHWARZ sectors, the most general charge entries are restricted to

~αi ∈

{
0,

1

2(2kM + 3)
,

1

2kM + 3
, . . . , 1

}
. (4.6)
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This implies strong restraints on the set of states which canbe represented by the spin systems
since the components of (4.5) are obtained via scalar products of the charge vectors as shown
in chapter 3. More precisely, this demands

22(2kM + 3)2 = nk , k, n ∈ N , M ∈ N0 . (4.7)

This diophantic equation is solved by prime decomposition of k. Since2kM + 3 is odd, the
factor22 on the left hand side of (4.7) has to be absorbed ink or n. From this follows

k = 2p
∏

i

ki , (4.8)

with p ≤ 2 andki odd prime. Restricting tok1 without loss of generality leads to

(2k1M1 + 3)2 = n1k1 , M1 ∈ N0 , n1 ∈ N . (4.9)

Sincek1 is prime

2k1M1 + 3 ∼ k1 ⇒ n2k1 = 3 , n2 ∈ N . (4.10)

Therefore, the only possible prime decomposition remains to be of the formk = 2p · 3q with
p ≤ 2 andq ∈ N . Inserted in (4.7) yields

32(M23
q−1 + 1)2 = n33

q , M2 ∈ N0 , n3 ∈ N . (4.11)

This directly postulatesq ≤ 2 sinceM23
q−1 + 1 is not divisible by3 and the prime decomposi-

tion of k reads:

k = 2p · 3q , p, q ≤ 2 . (4.12)

As a result, the non-ABELIAN fractional quantum HALL statesΨk, M
NASS can only be expressed in

terms ofb/c-spin conformal field theories if 36 is divisible byk.

Reconsidering (4.4), the filling fractions of these states coincide with the ones obtained in the
pureb/c-spin approach in most cases indicating that a certain set offractional quantum HALL

states may exist in different types of quantum liquids. Yet,there are some exceptions:1

ν = 4/11, 4/19, 8/19, and12/25 , (4.13)

which solely exist in the non-ABELIAN form of whom only the firstν = 4/11 has been con-
firmed so far [5] giving rise to the assumption that this type of fractional quantum HALL states
possesses a very small energy gap.

The requirement onk turns out to be sufficient and possible charge vectors of the corresponding
Vertex operators are found to be nicely symmetric as indicated in Table 4.1.

1Only filling fractions with denominatord ≤ 29 are indicated.
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TABLE 4.1: Charge vectors of non-ABELIAN fractional quantum HALL states.~α(1)
M=1 and~α(2)

M=1

denote the charge vectors (M = 1) of the first and the second layer of (4.5), respectively.
~α

(µ)
M→M+1 shows the components which have to be added whileM → M + 1 passes through the

series.

k νk, M
NASS ~α

(1)
M=1, i / ~α

(2)
M=1, i / ~α

(µ)
M→M+1, i

2
4

4M + 3

(1, 1
2
, 1

2
, 1

2
, 1

2
, 0, 0)

(1, 1
2
, 1

2
, 0, 0, 1

2
, 1

2
)

(. . . , 1
2
, 1

2
, 1

2
, 1

2
)

3
2

2M + 1

(2
3
, 2

3
, 2

3
, 1

3
, 1

3
, 1

3
, 0, 0, 0)

(2
3
, 2

3
, 2

3
, 0, 0, 0, 1

3
, 1

3
, 1

3
)

(. . . , 1, 0, 0, 0, 0, 0)

4
8

8M + 3

(1, 1
2
, 0, 1

2
, 0, 0, 0, 0, 0, 0, 0)

(1, 1
2
, 0, 0, 0, 0, 0, 1

2
, 0, 0, 0)

(. . . , 1
2
, 1

2
, 0, 0, 1

2
, 1

2
, 0, 0)

6
4

4M + 1

(5
6
, 2

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

3
, 1

3
, 1

3
, 0, 0, 0)

(5
6
, 2

6
, 1

6
, 1

3
, 1

3
, 1

3
, 0, 0, 0, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
)

(. . . , 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

...
...

...

(4.14)

As mentioned in the concluding section of chapter 3, the choice of the charge vectors is not
completely fixed — not even up to a change of basis. Therefore,a more detailed analysis
of non-ABELIAN statistics remains an unsolved problem and has to be investigated from an
experimental as well as a theoretical point of view. Yet, thevectors in Table 4.1 are chosen in
the most symmetric form in terms of geometrical aspects.
Reconsidering the results of this section, theb/c-spin approach motivates severe constraints for
the set of observable non-ABELIAN spin singlet fractional quantum HALL states which can
be directly applied to the class of non-ABELIAN spin polarized systems [58] as well. In this
context, the recently discoveredν = 4/11 state is proposed as a candidate to reveal the non-
ABELIAN features in a pure form.
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CHAPTER 5

Discussion

The success of the analysis of the HALDANE -REZAYI state viac = −2 spin systems [32, 60]
stimulated the presented approach. With a few general and physically motivated assumptions
restricting to a discrete set of conformal field theories a hierarchical scheme that precisely keeps
track of experimental results has been constructed. After having developed these features in
a natural and simple way, the complete set of filling fractions, with but a few exceptions, was
consecutively derived by order of stability in the fractional quantum HALL regime of0 ≤ ν ≤ 1
whereas no unconfirmed fractions were predicted.

More precisely, the conformal field theories used in the approach of this work provide geomet-
rical descriptions of fractional quantum HALL states. Since odd-denominator fillings refer to
fermionic statistics, the natural choices are(j, 1− j) b/c-spin systems withj ∈ N/2. Moreover,
the statistics of the flux quanta, as suggested by JAIN ’s composite fermion picture, reveal to
possess more general features so that RIEMANN surfaces with globalZn-symmetry have to be
considered. Representing these surfaces asn-fold ramified covering of the complex plane, the
effect of a flux quantum is geometrically the same as a branch point. Therefore, the confor-
mal field theory correlators are sections of certain vector bundles. The bulk ground state wave
function is given by a correlator of vertex operators whose twist numbers are purely fermionic
resembling the quantum numbers of a composite fermion. Withthese ingredients the bulk wave
functions for the principal main seriesν = m/(2pm + 1) are obtained. It turns out that the
choice of conformal field theories used in this scheme not only possesses a direct geometric
interpretation, but furthermore puts severe constraints on possible fractional quantum HALL

states. The description of the fractional quantum HALL effect via effective CHERN-SIMONS

theories leads to a classification of states in terms of so-called K-matrices. In principle, arbi-
trary filling fractions can be constructed this way, leavinga physically motivated classification
of them as an unsolved problem. On the other hand, the access by CHERN-SIMONS theory
is crucial to classify fractional quantum HALL states in terms of topological order. However,
since the corresponding bulk wave functions cannot be written in factorized form in terms of
conformal field theory correlators, theb/c-spin systems rule out manyK-matrices and, there-
fore, provide a very natural restraint on them.

Besides the JAIN ’s main series, other filling fractions are obtained by one further principle, i.e.,
composite fermion pairing while the so-called particle-hole duality is explicitly avoided since
it is not well confirmed by experiment. This pairing leads to anew hierarchy of states obtained
from the principal series by a growing number of pairings effectively described by additional
conformal field theories, namely thec = −2 spin singlet systems. The requirement that the
bulk wave function can be written in terms of factorized conformal field theory correlators
demands that only pairings leading toK-matrices in block form are possible. By this, all
experimentally observed filling fractions are deduced (except for the presumably non-ABELIAN
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state withν = 4/11 which is discussed in appendix A, and some controversial fractions, e.g.,
ν = 7/9, ν = 10/13, andν = 5/13). However, in the scheme of this work all filling fractions
which are not observed in nature are precisely avoided underlining its predictive power The
ansatz yields a natural order of stability in perfect agreement with experimental data suggesting
a clear picture of series which can be observed up to a given maximal numerator ofν. Thus, it
is possible to denote the next members of these series, as indicated in Fig. 3.1 and Table 3.1,
which might be observed under improved experimental conditions, but no other fractions.

The main advantage of this scheme is that it avoids arbitrariness. Furthermore, the concept of
pairing is not exceptional as well. First of all, it precisely agrees with experimental observa-
tions for the HALDANE -REZAYI state. A nice discussion is provided by these papers [61, 62].
Moreover, pairing effects are indicated by numerical studies [63, 64], and are in analogy to sim-
ilar phenomena in other fields of condensed matter physics, such as certain exactly integrable
models in the context of BCS pairing [65]. Although the bulk wave functions proposed in the
scope of this work which describe paired fractional quantumHALL states differ from the ones
predicted by the naiveK-matrix formalism, they share important asymptotic features. A check
of these bulk wave functions should be done numerically, butis beyond the scope of this thesis.

The description in terms ofb/c-spin systems seems to be sufficiently complete. It is even possi-
ble to incorporate fractional quantum HALL states from non-ABELIAN CHERN-SIMONS theo-
ries [56, 57] as shown in chapter 4 if the geometric principles are believed to remain unchanged.
The main difference lies in the nature of the quasi-particleexcitations. In the approach of this
work, non-trivial statistics is a consequence of the twistsintroduced by the flux quanta and is –
in the lowest LANDAU level – always of ABELIAN nature since all monodromies are simultane-
ously diagonalized. Therefore, if non-ABELIAN statistics is involved it cannot be represented
within the simple conformal field theories that were used. However, it is to point out that the
c = −2 conformal field theory which naturally describes pairing isactually a logarithmic con-
formal field theory and thus includes fields with non-diagonalizable monodromy action [32]. In
order to understand this in more detail, it is crucial to workwith the full twist fields, not only
the projective ones. This immediately leads to further restrictions for the twist fields in order to
be inserted in a correlator. If the twists are summed over allinsertions they have to be trivial
in all n copies of theb/c-spin system considered (a short discussion is provided in appendix
B). However, at this stage, the full description of quasi-particle excitations remains an unsolved
problem. Another one is the correct choice of the spin system, i.e., of the conformal weights
(j, 1− j) of the fieldsb(z) andc(z). This problem is related to the fact that theb/c-spin systems
possess partition functions which are equivalent to GAUSSIAN c = 1 models. Unfortunately,
the partition function of a(j, 1− j) system is closely related to the one of any other(j′, 1− j′)
system, in particular ifj − j′ ∈ Z. Thus, conformal field theory alone is not able to determine
j. However, if the composite fermion is taken as the basic object, it might be expected that
the fractional quantum HALL state involving composite fermions made out of electrons with p
attached pairs of flux quanta should correspond to spinj = 1

2
(2p + 1) fields in the conformal

field theory description. These should be elementary in the sense that the spectrum of the con-
formal field theory does not contain fermionic fields with smaller spin in the non-twisted sector.
Moreover, the twists related to the quasi-particle excitations should have a minimal charge of
α = 1/(2pm+ 1) for anm layer state, since this is the expected fractional statistics. The frac-
tional charge is entirely determined by the geometry, i.e.,the number of sheets in the covering
of the complex plane. But the requirement that the compositefermions shall be the effective
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elementary particles fixesj = 1
2
(2p+ 1) or j = 1

2
(2p+ 3) due to the dualityj ↔ 1− j. A very

interesting question is, whether an effective theory of transitions between different fractional
quantum HALL states could yield a mechanism for how theb/c-spin systems are mapped onto
each other, e.g., along the lines of [28, 66].

Finally, it is to stress that the scheme presented in this work should be understood as a pro-
posal. Although a stringent geometrical setting is provided which identifies the choice of con-
formal field theories, it is not possible to connect these conformal field theories to the full
(2+1)-dimensional bulk theory via first principles. For instance, and in contrast to the (1+1)-
dimensional edge theory, there is no mathematical rigoroustheorem which guarantees a kind
of equivalence between CHERN-SIMONS and conformal field theory. Furthermore, the expres-
sions for the bulk wave functions in terms of conformal field theory correlators, as all existing
proposals for bulk wave functions, should be understood as trial ones, since exact solutions
are not known due to the fact that no microscopic HAMILTONIAN has been discovered so far.
This even applies to the LAUGHLIN wave functions. Comparisons with other wave functions
obtained from the numerical diagonalization of some exact HAMILTONIAN can only be drawn
for a small number of electrons and not in the thermodynamic limit. On the other hand, trial
wave functions such as the ones conceived by LAUGHLIN possess many special features, e.g.,
topological order or incompressibility, and symmetries, e.g., symmetry under area-preserving
diffeomorphisms. Future research will hopefully reveal the physical nature of these properties
so that the connection with conformal field theory is eventually put on firmer ground and trial
wave functions are more thoroughly checked or even derived from first principles.
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APPENDIXA

Remarks on Unitarity

It might seem disturbing that the conformal field theories proposed to describe the fractional
quantum HALL bulk regime are non-unitary. It has to be stressed that thesetheories are not
meant to yield the bulk wave functions from a dynamical principle, nor do they provide an
effective HAMILTONIAN . Moreover, since the relevant states are stationary eigenstates of the
full (2+1)-dimensional system, no time evolution is involved. In this sense, the bulk theory
can be reduced to a truly EUCLIDEAN, (2+0)-dimensional one. The topological nature of the
full (2+1)-dimensional system suggests the bulk theory to be at least scale invariant. Thus,
the assumption that bulk wave functions should have a conformal field theory description is
reasonable, but the requirement that these conformal field theories should be unitary is not
obligatory and does not contain any physically relevant information. The bulk conformal field
theory describes purely geometrical features, namely how the corresponding wave functions
can be understood in terms of vector bundles over RIEMANN surfaces [67]. As it was argued
in the previous chapters, the fractional statistics of the quasi-particle excitations results in a
multivalued wave functions, considered on the complex plane. One of the central features of
the approach proposed in this work is to replace this settingby the geometrically more natural
scheme of holomorphic functions over RIEMANN surfaces locally represented on a ramified
covering of the complex plane leading to the non-unitary(j, 1 − j) b/c-spin systems.

However, the question of unitarity is not irrelevant. To be consistent, it has to be demanded
that the ansatz of this work fits together with the (1+1)-dimensional conformal field theories
of the edge excitations. These describe waves propagating along the one-dimensional edge of
the quantum droplet and hence necessarily have to be unitary.1 Consistency requires that the
space of states of either conformal field theory, the edge andthe bulk one, are to be equivalent.
In other terms, both should have the same partition functions. Fortunately, theb/c-spin systems
have well-known partition functions which are indeed equivalent to those of certainc = 1
GAUSSIAN models. These latter unitary conformal field theories are precisely the candidates
for the description of the edge excitations which are most widely used:2

To be more explicit, a spin(j, 1 − j) b/c-spin system in some twisted sector with twistα is
considered. The full character of this system, including the ghost number, is defined as

χ(j,α)(q, z) ≡ trH(α)

[
qL

(j,α)
0 −

cj
24 zj

(α)
0

]
, (A.1)

where it is clearly indicated that the mode expansions of theV IRASORO field and the ghost

1This also follows from the strict one-to-one correspondence of (2+1)-dimensional CHERN-SIMONS theories
on a manifoldM with unitary (1+1)-dimensional conformal field theories living on the boundary∂M [24].

2There are some other proposals making use of so-called minimal W1+∞ models orŜU(m) KAC-MOODY

algebras form-layer states, e.g., [7, 17, 23, 46].
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current depend on the twist sector. Explicitly computed, these characters read:

χ(j,α)(q, z) = q
1
2
(j+α)(j+α+1)+ 1

12 zα
∞∏

n=1

(1 + zqn+(j+α)−1)(1 + z−1qn−(j+α)) . (A.2)

It is evident from this formula that the characters (almost)only depend on(j+α). In particular,
the following equivalence is obtained:

χ(j,α)(q, z) = z
1
2
−jχ( 1

2
,α+j− 1

2
) . (A.3)

Thus, the VIRASOROcharacters forz = 1 of theb/c-spin systems are all equivalent to characters
of the complex fermion withc = 1 where the twist sectorsα get mapped to others withα+j− 1

2
.

Thus, all sectors which are mapped in this way keep their statistics, sincej ∈ Z + 1
2

and
α ≡ α + j − 1

2
mod1. A more detailed analysis reveals that the partition functions are indeed

equivalent. Detailed approaches are given by [68, 69, 70, 71]. This extends to thec = −2
spin system describing pairing, which has been pointed out in [32, 60]. Therefore, the space of
states ofb/c-spin systems with twistsα = k/m, k = 0, . . . , m − 1, is equivalent to the space
of states of a rationalc = 1 (Z2 orbifold) theory with radius of compactification2R2 = 1/m.
Carefully investigated, this equivalence indeed holds. Although alwaysm copies of theb/c-spin
systems are considered, the fields are represented in an ABELIAN projection where the charges
(or twists) of all copies of the fields are closely related to each other. Since they are not chosen
independently, solely one copy of the HILBERT space is obtained.
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APPENDIXB

Twist Fields and Topology

The conformal field theory approach to lowest LANDAU level bulk wave functions of the frac-
tional quantum HALL effect presented in this work successfully describes the complete set of
experimentally observed filling fractions in the range0 ≤ ν ≤ 1 with but a few exceptions. The
spin fieldsb(z) and c(z) set on aZn-symmetric RIEMANN surface naturally simulate quasi-
particles with fractional charges and statistics. These features turn out to be closely related to
the structure of the branch cuts of the manifold and, therefore, then-dimensional charge vectors
which define the Vertex operators in the bosonized spin conformal field theory. Reconsidering
the results of chapter 3 the lowest LANDAU level bulk wave functions are deduced from the
projective fields defined in (2.40). Here, the branch point which is represented by a ramified
covering of the compactified complex planeĈ is mapped to ann-fold copy of̂C . However, even
if the analytic structure of the corresponding fractional quantum HALL states is obtained in this
manner, the geometrical and conformal features are solely defined by the full theory, namely
the twist fields with charge vectors

~αZn

j, i = −
i+ j(1 − n)

n
, i ∈ {0, . . . , n− 1}, j ∈ Z/2 , (B.1)

wherej is the spin of the theory. This spin provides an offset in (B.1) which is irrelevant for
the statistics of the quasi-particles and is only apparent in the conformal weighth of the Vertex
operators (2.37). Thus, the conformal background of the spin theories is determined by the
simplified charge vectors

~αZn =

(
0,

1

n
,

2

n
, . . . ,

n− 1

n

)
. (B.2)

It was first shown by KNIZHNIK [51, 52] that these vectors have to satisfy severe constraints.
In order to guarantee an overall fermionic system, the sum over each component~αZn

i of all
existing quasi-particles of the fractional quantum HALL state has to be an integer. If a state
with L excitations is considered, each quasi-particle is associated with a charge vector (B.2)
allowing permutations of its components. This yieldsn diophantic equations. For example, a
state with two excitations(L=2) always implies the charge vectors

~αZn,(1) = (1/n, 2/n, . . . , 0) , ~αZn,(2) = ((n− 1)/n, (n− 2)/n, . . . , 0) . (B.3)

These indeed satisfy the physical constraints since

2∑

i=1

~α
Zn,(i)
k = 1 , ∀k ∈ {0, . . . , n− 1} (B.4)
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solves the system of diophantic equations. This is the only solution up to simultaneous permu-
tations of the vectors (B.3). Thus, there solely exists one correlation function or, more precisely,
one conformal block which describes an excited bulk wave function with two quasi-particles.
An interesting consequence is that there seems to be no solution for L= 1. In the geometrical
picture this would correspond to a branch cut leading to nowhere. The excitation behaves as a
monodromy operation which moves the system from a sheetℓ to ℓ + 1. The only reasonable
argumentation in this case is to consider∞ to be the second branch point. By this, the desired
wave function (1.18) is obtained.

ForL>2, there may exist more than one solution.1 Their numberNexc provides deeper insight
in the topological characteristics of the given fractionalquantum HALL states. The intrinsic
geometrical features of theb/c-spin approach allow to read off the degeneracy of the ground
state for a given fractional quantum HALL state in a non-trivial setting by countingNexc. On the
other hand, these excitations can be interpreted to effectively generate the non-trivial topology
in terms of vertex operators. In the following, this is illustrated for the degeneracy of the ground
state in (Z2-symmetric) torus geometry which is often quoted with respect to topological order.
The calculation is executed for an excited bulk wave function with L = 4 and ends up with
four independent sets of charge vectors plus the non-excited ground state, hence in total five
solutions:2

(0000) , (↓↓↓↓) , (↓↓↑↑) , (↓↑↓↑) and (↓↑↑↓) . (B.5)

This is the well-known degeneracy of the HALDANE -REZAYI ground state.3

Further calculations have been applied to globalZ3-symmetric fractional quantum HALL sys-
tems with charge vectors

~αZ3 =

(
0,

1

3
,

2

3

)
(B.6)

or permutations of (B.6). The result is illustrated in TableB.1. The set of solutions for large
L or n is far more difficult to find. The number of permutations behaves asn! and there are
n diophantic equations withL dependent parameters to solve. To summarize, the geometrical

TABLE B.1: Ground state degeneracyNGS of Z3-symmetric fractional
quantum HALL systems withL quasi-particle excitations.

L 2 3 4 5 6 7 8 9
NGS 2 3 4 6 11 14 23 32

features of theb/c-spin conformal field theory description of the fractional quantum HALL effect
1The number of solutions must be always understood ‘up to simultaneous permutations of allL charge vectors’

since these global permutations do not provide additionally physical information.
2The symbols0, ↓, and↑ denote the charge vectors(0, 0), (0, 1/2), and(1/2, 0), respectively. The insertions

of the excitations are at four ordered distinct points.
3More precisely, the full degeneracy turns out to beNGS =10 where the additional factor of two arises from a

spin1/2 realization of anSU(2)-symmetry via a GAUSSIAN c=1 conformal field theory [32, 60].



49

naturally encompasses quasi-particle excitations in the full, unprojected setting, leading to non-
trivial constraints and furthermore revealing topological information. However, a detailed study
of these excited bulk wave functions is beyond the scope of this thesis and is subject to further
studies.
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