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Abstract

In this thesis, a novel approach is proposed to represekidaye functions of fractional quan-
tum HALL states in terms of conformal field theory correlators. Ittsttitom the LAUGHLIN
states and their generalization followingN’s picture of composite fermions. These effective
particles are naturally identified within tih&:-spin conformal field theories. The enigmatic phe-
nomenon of fractional statistics is described by twist 8alhich inherently appear in the spin
systems. A geometrical interpretation is obtained in whglk wave functions are understood
as holomorphic functions over a ramified covering of the clexplane. To extendAIN’s
main series, the concept of composite fermions that paipito singlets is introduced. This is
naturally adopted by the particuléfe-spin system with central charge- —2 as known for the
HALDANE-REZAY! state with filling fraction = 5/2. In this way, the new conformal field
theory proposal covers the set of experimentally confirnmadtional quantum KLL states in
the lowest LANDAU level. Concerning their stability with respect to energpgaf the ground
states, a natural ordering is deduced where unobservedfflactions are precisely avoided.
The scheme is compatible with classifications in terms a@atife GHERN-SIMONS theories.

It leads to severe restrictions of the coupliigmatrices and, in addition, th#c-spin approach
can be extended to describe noBfAIAN fractional quantum KHLL states imposing physical
constraints on them.

The scientific results underlying this thesis are submittegublication to Phys. Rev. B and
can be found in [72].



Zusammenfassung

In dieser Arbeit wird ein neuer Zugang zur Darstellung votkBi¥ellenfunktionen des fraktio-
nalen Quanten-KLL -Effekts durch Korrelatoren konformer Feldtheorien prégert. Begin-
nend mit den lAUGHLIN-Zustanden werden diese und ihre Verallgemeinerung Geia s
Konzept der Komposit-Fermionen beschrieben. Diese effekiTeilchen sind auf natirliche
Weise in den konformeb/c-Spin-Feldtheorien eingebettet. Das erstaunliche Atgftrdérak-
tionaler Statistik wird in diesem Zugang durch Twist-Feldealisiert, die inharent in den
Spin-Systemen auftreten. Auf diese Weise wird eine unthdte geometrische Interpretati-
on nahegelegt, in der die Bulk-Wellenfunktionen als holgohe Funktionen, definiert auf ei-
ner verzweigtetuberlagerung der kompaktifizierten komplexen Ebene, aad#n sind. AINS
Hauptserien von Fullfaktoren werden durch die EinflUlgrgepaarter Komposit-Fermion Spin-
Singulett Zustande fortgesetzt, welche in naturlicherd#' durch das speziebg:-Spin-System
mit zentraler Ladung = —2 beschrieben werden, wie aus der Darstellung desOANE -
REzAY! Zustandes mit Fullfaktor = 5/2 bekannt ist. Der somit abgeleitete Zugang durch
konforme Feldtheorien deckt die Menge experimentelldigger fraktionaler Quanten-iL -
Zustande im niedrigstenANDAU-Niveau ab. Deren Stabilitat in bezug auf Energieliicken d
Grundzustande wird in natirlicher Ordnung erfal3t, wgbgen unbeobachtete Fullfaktoren
nicht vorhergesagt werden. Das Schema ist kompatibel inmRatder Klassifizierung durch
effektive GHERN-SIMONS-Theorien und fuhrt zu weitgehenden Einschrankungezeietralen
K-Matrizen, die die Kopplung zwischen verschiedenembAu-Niveaus vermitteln. Ferner
ist es moglich, den Zugang zum fraktionalen QuanteniHEffekt durchb/c-Spin-Systeme
auf die Klasse nicht-BELscher Zustande auszuweiten und diesen gleichzeitig kddysthe
Zwangsbedingungen aufzuerlegen.
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Introduction 1

I ntroduction

The fractional quantum KL effect is one of the most fascinating and striking phenomena
condensed matter physics [1]. Certain numbers, the filliagtionsr € Q, can be observed
with an extremely high precision in terms of thesH. conductivityoy = v in natural units.
These numbers are extensively independent of many phystails, e.g., the geometry of the
sample, its purity, the temperature. The enigmatic andhing aspect of this phenomenon is
that only a certain set of these fractional numbersan be observed in experiments: despite
ongoing attempts in varying the purity (or disorder), théeexal magnetic field, and various
other parameters, the set of observed fractions has nogellaonsiderably over the last few
years [2, 3, 4, 5].

It was realized quite early that the fractional quantumLH effect shows all signs of univer-
sality and large scale behavior [6, 7]. Independence of gdoerngtrical details of the probe and
of its size hint towards an effective and purely topologitald theory description. Indeed,
since the quantum kLL effect is essentially a (21)-dimensional problem, the effective theory
is regarded to be dominated by the topologicalE@N-SIMONS term a A da instead of the
MAXWELL termtr [FQ] Suitable reviews on the theory of the fractional quantum.iHeffect
are [8, 9, 10, 11].

However, it is ultimately interesting to deduce a microscalescription of the fractional quan-
tum HALL effect. The task may start from finding eigenstates of antax@zoscopic FAMIL -
TONIAN. Unfortunately, this can merely be realized for a small nands electrons. The great
achievement of RUGHLIN was to conceive how a many-particle wave function has to likek

if it should respect a few reasonable symmetry constrair#if [

1
UL aughtin (215 - - -, 2N) = H (zi — Zj)QpH exp <_Z Z |Zz|2> . 1)

1<i<j<N

It is known that LAUGHLIN’s wave functions which describe fractional quantumiH droplets
with filling fractionsvy = 1/(2p + 1) (p € Z.) are extremely good approximations to the true
ground states. Furthermore, they are exact solutions faniHFONIANS with certain short-
range electron-electron interactions. Soon after, varlaararchical schemes were developed
yielding ground state wave functions for other rationairfglfactors [13, 14, 15, 16, 17]. Itis
important to note here that the ground state eigenfuncaoasime-independent up to a trivial
global phase. Thus, they might be regarded as solutions 2f@){dimensional problem. In
principle, this is the main idea behind all attempts to déscthe bulk wave functions in terms
of conformal field theory correlators.

The LAUGHLIN wave functions describe special incompressible quantatesof the electrons,
i.e., quantum droplets. Incompressibility is connectetthéexistence of energy gapless excita-
tions on the border of the quantum state [6, 7, 18, 19, 20,2123,. The latter can successfully
be described in terms of conformal field theories with curedgebras as chiral symmetries.
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Furthermore, there is an exact equivalence between th&){8imensional @ERN-SIMONS
theory in the bulk and the (@1)-dimensional conformal field theory on the boundary déscr
ing the edge excitations [24]. Naturally, these edge conébifield theories have to be unitary
since they describe the time evolution of spatial one-dsimral waves propagating @it.

However, LAUGHLIN’s bulk wave functions in a static {20)-dimensional setting show a re-
markable resemblance to correlation functions of a free BEDEAN conformal field theory set
on the compactified complex plane. This resemblance hayvatedi quite a number of works
trying to find a conformal field theory description of bulk veafunctions in the fractional quan-
tum HaLL effect, e.g., [25, 26, 27, 28]. Most approaches assumedtiierbeginning that these
“bulk” theories are unitary. However, this assumption igh&nce the bulk wave functions to be
investigated are time-independent eigenfunctions. Maeanost approaches represented the
bulk wave functions in terms of building blocks belongingtasses of conformal field theories
with continuous parameters, e.g., thauBsIiAN ¢ = 1 systems. The immanent problem with
these approaches is that there exists no principle seletttemwave functions for experimen-
tally observed filling fractions. Therefore, almost all apgches so far easily accommodate
arbitrary rational filling factors. On the other hand, it istrentirely surprising that the bulk
wave function should have something to do with conformadifibleory. As indicated above,
the observable quantities of the quantumLH system are largely independent of the precise
form and size of the sample. Thus, the normalized chargeliiibns of the electrons should
be invariant under scaling (up to an exponential factor)aed preserving changes of the shape
of the sample. The first symmetry is linked to conformal ifeace, the latter to th&V; .-
algebra [29, 30]. Furthermore, in the two-dimensional cgiebal scaling invariance implies
full conformal invariance under certain benign circumst&s

Interestingly, there exists a particularly enigmatic fragal quantum HLL state, i.e., the
HALDANE-REZAYI state withv = 5/2. This is one of the very few experimentally confirmed
states with an even denominator filling. Of course, atterhpte been made to describe pro-
posed bulk wave functions for this state with the help of comfal field theory correlators,
e.g., [21, 25, 31, 32]. In this case, however, it turned oat this can only be achieved if
the corresponding conformal field theory has central charge —2. Thus, concerning the
HALDANE-REZAYI state, it is obligatory to use a non-unitary theory. This —2 theory is the
blc-spin system of two anti-commuting fields with spins one agi zrespectively. Therefore,
it naturally yields the object expected to be observed ia ffactional quantum KLL state,
namely spin singlet states of paired electrons. In additioec = —2 conformal field theory
contains a.-twisted sector which accurately describes the effectmdlsiflux quanta pierc-
ing the quantum droplet. Thus, this theory successfullyattarizes the ground state and its
physically expected excitations with the correct fractiostatistics without predicting arbitrary
additional features.

This thesis starts from the successful bulk wave functi@tdption of the FALDANE -REZAY!
fractional quantum KHLL state via a non-unitary spin system conformal field theod/iaves-
tigates how fractional quantumAdL state bulk wave functions can be represented in terms of
conformal field theory correlators. In contrast to otherrapphes the assumption that these
theories should be unitary will be dropped because there hysical reason for it. By this,

it is possible to concentrate on a different class of con&drfield theories, namely th&/c-

spin systems of two anti-commuting fields of spjnand(1 — j), respectively. Locality forces
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J € Z/2 so that the conformal field theories are confined to a diss&tteThis ansatz will not
only naturally explain all experimentally observed fillifrgctions in the rangé < v < 1, but,
in addition, will not predict new unobserved series.

Besides these convenient features the approach yieldsutifnbegeometrical picture for the
conformal field theories used to represent the bulk wavetioms. Additionally, correlations
of spinj (or spinl — j) effective particles with flux quanta of precisely the frantl statistics
which are theoretically predicted from first principles at#ained. These statistics, e.g/m,
naturally manifest themselves in the presencg gftwists. These in turn have the geometrical
meaning of replacing the complex plane byrarfold ramified covering of itself. Thus, the
bulk wave functions are finally recast in the language of dempnalysis, i.e.j- or (1 — j)-
differentials onZ,,-symmetric REMANN surfaces.

Most of the observed filling fractiong € QQ have an odd denominator. This can be deduced
from the basic fact that the elementary entities in the quartiALL system are fermions, e.g.,
the composite fermions, effective particles that were eored by AIN. These allow to natu-
rally link the integer and the fractional quantumat. effect and can be successfully described
by b/c systems with spiy € N /2. An essential part of this work is to propose a new hierar-
chical scheme in which filling fractions can be derived frothess by forming paired singlets
of composite fermions. In this wayAlN's principal series are represented and furthermore
extended to precisely cover all confirmed filling fractioithin this approach, unobserved
fractions are avoided without problem since they all lieh&t flar end of the hierarchical series
or are characterized by series of higher order. In conteetsii$ feature, most other hierarchical
schemes predict certain unobserved fractions, since perhexperimentally confirmed ones
can only be realized at a certain ordewithin the hierarchy. The problem is the lack of a
physical reason why the corresponding low order fractigoaintum H\LL state does not exist,
but the higher order one derived from it. Thus, the schemaisfthesis seemingly provides a
natural explanation for the completeness of the set of @xygertally accessible filling fractions.

The outline of this thesis is as follows: Chapter 1 presentm@oduction to the theory of the
gquantum H\LL effect. Starting from the integer effect in the first secttbe basic ideas of
LAUGHLIN are reviewed in the second part leading to his seminal tréaalenfunctions. Con-
secutively, the appropriate generalization of them withm picture of 4IN is provided which
allows to describe a wide class of fractional quantuaLH states in terms of an integer quan-
tum HALL effect of effective particles, i.e., the composite ferndonhIN’s idea is favored
since the composite fermions are naturally identified wighds of the conformal field theory
approach of this work. Moreover, his picture has the adypnta realize most of the promi-
nently observed filling fractions within the first level o§ihierarchical scheme. The last part
of this introductory chapter deals with more generaUGHLIN type trial wave functions in
the lowest LANDAU level representing multilayer states. These are conciyptieduced from
effective GHERN-SIMONS theory which is believed to adopt many general principleshef
quantum H\LL effect, e.g., topological order. The central part of thigrfalism is a certain
matrix K encoding the interactions of the layers, i.e., of differgméantum fluids. Within this
scheme, AIN’s main series of composite fermions are consistently reiciemed.

Assuming basic knowledge on the topic Chapter 2 introdulteslavant conformal field theory
features and methods in terms of the scope of this work. Taesexemplified for thé/c-spin
systems. Starting from the principal structures of the §iéildng on the compactified complex
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plane in the first section their setting is naturally extehtdeZ,,-symmetric REMANN surfaces.

The third chapter is the core of this work and develops thehmnformal field theory approach
to the fractional quantum kLL effect viab/c-spin systems. Motivated by geometrical features
and following the concepts and structures of theJGHLIN states and their natural extension,
i.e., AIN’s main series, a new hierarchical scheme is deduced. Itaitlinks the composite
fermion picture to the classification of effectivedERN-SIMONS theory. TheK-matrices of
the CHERN-SIMONS formalism which encode the essential information on faawi quantum
HALL states, e.g., topological order and filling fraction, $gtsevere constraints demanded
by evident physical properties. These constraints niceigaide with the ones derived for the
blc-spin systems. The scheme starts frommNJ main series which naturally generalize the
LAUGHLIN states. While avoiding the principle of particle-hole diyalvhich is not confirmed
well by experiments all other observed filling fractions aomsecutively obtained by pairing
of composite fermions to spin singlet states. Step by stafgeswhich include more extensive
pairing structures are deduced leading to the new hierafhgnother important consequence,
the pairing scheme which is represented by tensoring the apiformal field theories with
additional b/c-spin singlet systems of central charge= —2 demands additional restraints
concerning the GERN-SIMONS K -matrices, i.e., essentially restricting them to blocknfor
The approach turns out to provide all filling fractions camied by experimental data in one-
to-one correspondence with their order of stability whilermg out controversial fractions and
others which seemingly violate principles of stabilitye®ictions for future experiments, e.g.,
guasi-particle statistics of higher order states, corechiags chapter.

Chapter 4 extends the conformal field theory approach tol#ss of non-AELIAN fractional
guantum H\LL states restricting it to discrete series. It is argued thatdet reveals to possess
a rather small energy gap. Therefore, proposals are matiéutbee experimental research
on non-ABELIAN statistics shall concentrate on special fractional quartALL states which
solely exist in the non-AELIAN form.

The fifth chapter summarizes the results and, motivated éytmpleteness of the approach

provided in this work, tries to put them into context. Unsal\problems are stressed and some
directions for possible research in the future are proposed



CHAPTER1

The Quantum Hall Effect

The quantum KHLL effect is an incredibly intriguing as well as amazing pheeaon in the
field of condensed matter physics and led to a strong interéato-dimensional electron sys-
tems. In the last two decades, a lot of concepts have beetogedein nearly all domains of
modern theoretical research. The scope ranges from magasElAMILTONIAN theories to
topological and conformal field theories. This chapter pies a short access to both the in-
teger and the fractional quantumb. effect. Starting from basic quantum mechanics in the
first section, the integer phenomenon is discussed as alecteed system involving disorder.
The fundamental differences of the fractional effect as@gfly correlated electron system are
enlightened in the second section where both phenomenakeel lvia AIN's effective com-
posite fermion model while the concluding section relakesrt to aspects of KIERN-SIMONS
theory and introduces the concept of multi-layer stategtaBle introductions to the theory of
the quantum HLL effect are provided by [8, 9, 10, 11, 35].

1.1 Thelnteger Quantum Hall Effect

The integer quantum ALL effect was discovered by IKius v. KLITZING in 1980 [36]. He
studied the charge-transport behavior of high mobility-fumensional electron gases at very
low temperatures and strong magnetic fieldosN\NK LITZING found that — for certain values of
the magnetic field3 — the longitudinal resistance of the semiconductor samgt®ines very
small while the plot of the transverse, i.e., theldd conductancey over B exhibits plateaus.
These plateaus turned out to be centered around integeiptesibf the natural unit?/h.
This quantization is observed with amazing precision (upad®). Due to experimental cir-
cumstances, e.g., macroscopic sizes and shapes of thespdid@der, and finite temperature
effects, this is even more surprising and leads to the fatftindamental quantum physical
properties are revealed. In 1985)N KLITZING was honored with the BBEL prize for his
discovery, and the accuracy of the quantuaLH effect made it the etalon of electric resistance.

In order to understand the effect in a proper way, it is coramrto start from IANDAU's anal-
ysis of the quantum dynamics of an electron moving in a pefigeitar and uniform magnetic
field. The HAMILTONIAN reads

1

M=o (5-SAm) (1.1)

wherem ande are the electron’s mass and chargis,the speed of light, and the vector potential

—

A(r) is chosen in the ANDAU gauge

A(?) = (= By, 0,0) . (1.2)
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The electron is restricted to move in the x/y-plane &Ad p,] = 0. Therefore, the natural
ansatz¥ () = exp(3p,)y(y) inserted in the BHRODINGER equation yields the differential
equation of a one-dimensional harmonic oscillator

V' (y) + —

il

m
e — Sy — o) |uly) = 0., (1.3)
wherew. = <2 is the cyclotron frequency ang) = <%= s the centre of the cyclotron orbit in
classical terms. The solution is given by

MW,

Waly — 90) = exp [~ Bty — 90| Hu (VP — ) 2o = Pl 3) . (1.4)

Here,H,, are the HERMITE polynomials. The energy levets are called IANDAU levels and
are highly degenerate due gg. Their degeneracy (n) is related to the total magnetic flux
perpendicularly piercing the electron gas and is derived to

9
 dy  hc/e

N(n)

(1.5)

Thus, the degeneracy is a constant with respect to gnpku levels. It depends linearly on
B, and is measured in units of the magnetic flux quandym

If it is assumed that electron-electron interactions caméglected, the above results can be
extended to a system afelectrons. To classify this system properly, it is reasteéddefine
the filling fractionv

number of electrons hc
]/ g - = —
number of LANDAU sites eB

ne (1.6)

wheren, is the surface density of the electrons. In order to caleula¢ HaLL conductance

oy, an electric field(r) = (0, F, 0) has to be added to (1.1). Its effect is a shifyjrand the
energys,,:

ek

2

m /cEN\2
Yo — Yo =Yoo+ — , 6n~6;=6n+eEyo+—(—> - (1.7)
mw 2\ B

[

Deducing the expectation valge,) from the wave functions (1.4) by using (1.7) yields:

Nee{vy) Nece e?

T — g '3 (1.8)
This dependence afy; on the electron density, and the filling fractiornw, respectively, has
to be analyzed in detail. If theERMI energyer of the system is continuously varied,
remains constant until the nexiaNDAU level is reached. Exceeding fills the whole level.
Since each electron state of the system contributes to the Hurrent,cy shows the same
behavior. The graphs are illustrated in figure 1.1. If coretirthey yield the linear dependence
(1.8) and no quantum ALL effect is expected. This is resolved if disorder of the sysie
taken into account. Impurities lift the degeneracy of threvbAU levels which broaden into
bands. These bands consist of localized states bound bygtslefethe probe and extended
states carrying the KLL current. Itis assumed and can be shown for several typesenials

OH — —
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FIGURE 1.1: HALL conductance and electron density ovERMI energy
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that these latter states exist in the quantumLH regime and that they are located around
the centre of the ANDAU band [18, 37]. Thus, by varying theeRMI energy, the electron
density is continuously increased while in the region oélaed states (separating the extended
ones)oy remains constant. In addition, as it was first shown RARGE [38] for the case

of impurities represented byfunctional potentials, the total current carried by aNDAU

level is unchanged, since an extended state exactly coasfer the loss due to localization
effects. As a consequence, (1.8) remains valid in the doofairplateau. The behavior of; is
indicated in figure 1.2. The KLL conductance shows plateaus with centers located at ihtegra

FIGURE 1.2: HALL conductance over electron density
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filling fractionsv and is quantized in units @f /2. In principle, this explains the results of the
experiments, but is not capable of describing the amazingracy of the effect. As indicated
above, the quantization of; remains exact. This even holds up to macroscopic lengtlescal
and more complicated types of disorder. The issue is redddyerelating the conductance
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to gauge covariance, first proposed byuGHLIN [39] and later on extended byAtPERIN
[18]. It is shown thaty is a topological invariant if the ErMI level lies in a (mobility) gap,
i.e., the domain of localized states. By this, it is assunfed guantum KLL states have
to be incompressible. This is well supported by perturleatnethods and numerical research.
Therefore, the quantization ef; (1.8) is based on fundamental physical principles independ
of experimental circumstances and devices.

The discussion on topological invariance of theltd conductance exceeds the scope of this
work, a detailed access is provided in the first chapter ghjdich reviews diverse approaches
[40, 41] in a closed context.

There is a certainty even if a microscopic theory has not loksrovered so far: the integer
quantum H\LL effect is to be understood as a one-electron effect invgldisorder where
electron-electron interactions can be neglected. Theespanding ground states have to be
incompressible quantum liquids involving a non-triviabgeetrical setting. This yields integer
guantization if and only if the ground state is non-degeteera

1.2 TheFractional Quantum Hall Effect

In 1982, three years beforeLKus v. KLITZING was awarded the DBEL prize, theoretical
physicists believed they understood the quantization@HARLL conductance in natural units.
Therefore, it was rather surprising whesdi, STORMER and G sSARDdiscovered a plateau
of the HALL conductancey atv = 1/3 and indications for another onemat= 2/3 [1]. This
‘anomalous’ behavior of quantization was inconsistenhwéspect to the theory of the integer
effect. It soon became obvious that fractionahlll states cannot be described by single-
electron quantum mechanics. Since therRMI energy resides within aANDAU level, the
energy gap necessary to establish a plateau is due to algtommgelated electron movement
reducing the ©ULOMB interaction. Therefore, the corresponding states arectggeo be of
completely different geometrical and topological nature.

To begin the analysis of the fractional quantumud effect and study its topological features
it is advisable to complexify the theory introduced in thstfichapter by: = x + iy and its
complex conjugate, yielding

1 _ 1 _
SC—§(Z+Z), y—21(2 2)7
1 1
0. =50 =19,),  0: = 5(8: +i5,) . (1.9)
Using the symmetric gauge
S 1 1

the HAMILTONIAN (1.1) becomes

2h? 1 _ 1 h
H=—-—(0:~-13%) (0: + —=2) + 2% - (1.11)

m 4]2
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wherel = \/hc/eB is the magnetic length unit.Sincefw,./2 is the ground state energy of
(1.1), it follows from (1.11) that any wave functiolsz, z) satisfying

1
(ag + Zz)\lf(z, =0, (1.12)
describe a lowestANDAU level state. They are derived as
N L o
U(z, z) =f(2) exp ( . || ) . (1.13)

In fact, the space of lowestANDAU level wave functions is equivalent to the space of analytic
functions with inner product

(f(z, 2)|g(z, 2)) = /sz f(z, 2)g(z, z) exp ( — % \z|2) , (1.14)

namely, the BRGMAN space [42].

1.2.1 Laughlin States

The first big step forward in order to solve the puzzle of therngetric structure of fractional
guantum HALL states was conducted byAUGHLIN by presenting his trial wave functions [12]:

n

- 1
ULaughtin (21, - - - 5 2n) = NH(Zk — 2)* " exp ( T Z |Zz‘\2> , (1.15)

k<l i

wherep € N, z is the position of the-th electron in unified complex coordinates (1.9), and
N is a normalization factor. They were conceived as the variat ground state wave functions
for the model FAMILTONIAN

2 n 2
e - (§]
-A ) _ 1.1
H = Z[2m< Vi~ m)) + Vg (7) *;m-m’ (1.16)

with the vector potential taken in the symmetric gauge (L.Here, V4, is a potential of a back-
ground charge distribution that neutralizes the electr@ragJLoMB repulsion. This guarantees
the stability of the system. Despite their simple structuvgGHLIN’S wave functions include
amazing features. Firstly, referring to (1.13), they areelement of the BRGMAN space and
thus describe a state in the lowestNDAU level. Secondly, sincg € N, they are completely
anti-symmetric satisfying theABLI principle, and thirdly, due to the zeroes in the polynomial
factor, the electrons are widely separated from each offi@s is a crucial condition for the
stability of the state with respect to electron-electrderiactions in strongly correlated systems.
Additionally, they are exact ground states of various sharged-potential HAMILTONIANS .

For further investigation it is important to realize that thodulus squared of the wave function
is equivalent to the BLTZMANN distribution of a two-dimensional one-component plasma.

1
U = exp(—3P =
[U|" = exp(—pP) , B= il
2p+1
d=—-2(2p+1) Zln|zk—zl|+ Z| (1.17)

k<l
1n the following,! = 1 for reasons of simplicity.
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Even if the analysis is far from being easy, the main advantdghis identification is to inves-
tigate the thermodynamic limit. It turns out that with resp® charge neutrality the electron
density corresponds to filling fractions= 1/(2p + 1). Sincep € N, the RAuLI principle is
directly related to odd-denominator fractions. Furthemndhe thermodynamic behavior for
smallp reveals that the system is an incompressible liquid ratier & WGNER crystal. This
property yields the existence of plateaus in thie.H conductancey. Finally, numerical cal-
culations for systems of finite size show an excellent openldh (1.15) of more than 99.5%.
The LAUGHLIN ground state can be extended with respect to quasi-holéaggais by intro-
ducing a simple polynomial factor

Voo, = N (¢ 2L — 2y — z5) P ex (—1 ziz) . 1.18
<g>1;[<k O —zrte (=331 (1.18)

Here, the; denote the positions of the quasi-hole excitations. Wispeet to (1.17) the excited
states, in contrast to the ground states, have a non-untdbarge distribution. In comparison
with the two-dimensional plasma picture, a charge deficit/¢2p + 1) is found at the poing;,
which shows that the quasi-holes are fractionally charged.
In order to analyze the quasi-hole statistics more canefthle BERRY connection has to be
derived from the normalization factor. This was first statgdAROVAS et al. [43] (a detailed
comment on the derivation is provided in [10], chapter 2):

Voo = N [~ O [ = 207G — C)F exp (<F (21, G)) , (1.19)
k,l

r<s

F(z, )= iz <|Zz“2 + 2p1—|—1 \Cz'|2> .

)

If a quasi-particle a; encircles another one ét

(G = ¢j) — (G — ¢;) exp(2ri)

a phase o7 /(2p + 1) is picked up. This mapping is equivalent to exchanging theret
Thus, they obey fractional statistics

. s

S p+1
To stress another important feature: the non-holomor@gtofs in (1.19) describing quasi-
particle interactions lead to multi-valued wave functiansl give rise to the complex geometry
the LAUGHLIN states are built on. Despite its fundamental importancedhe-to-one corre-
spondence between statistics and analyticity is oftentechit the discussion of the fractional
guantum HLL effect. However, in a suitable field theoretical descripitdas to be considered
precisely.

(1.20)

1.2.2 Beyond Laughlin

A strongly correlated electron system underlies the foaeti quantum HLL effect. In such
systems interactions dominate the physics and long rafget®fake place. Well known exam-
ples are superconductivity and theyBBARD model which can be described in terms of effec-
tive theories. A common feature of these theories is the denfar the existence of effective



1.2. The Fractional Quantum Hall Effect 11

FIGURE 1.3: Four flux composite fermion

L B

(S

particles in the system, e.g. 0OPER pairs (superconductivity) or spinons and holons@H
BARD model). Concerning the fractional quantumalH effect one widely accepted effective
theory with direct correspondence to experimental facts eeveloped byAIN [16, 44, 45].
He explained the fractional effect by proposing the comjeormion model. A composite
fermion consists of one electron with a number of pairs of fijwanta of the magnetic field
attached to it, e.g., as in figure 1.3AIN showed that the fractional quantunnEL effect can
be expressed in terms of an effective integer quantwniLHeffect for the composite fermions.

In order to explain this in a proper way, the results of seclid have to be reconsidered. Using
the symmetric gauge (1.10) the single-electron groune statve functions (1.4) expressed in
unified complex coordinates are classified by two suitable quantum numbersm € N,
labelling the LANDAU level and the angular momentum, respectively. This leads to

U, m Nexp (+ i |z|2)8?zm exp (— % |z|2) ,

e.9., Yo m Noz™exp (— i |z|2) ;

Uy N1 2" H2m — |2]%) exp (-2 |z|2) : (1.21)
The integer effect wave functiow; (filling fraction 11 = I € N) is obtained by taking the
SLATER determinant of ¥, o, ..., ¥; y_;) whereN is the degeneracy of theANDAU level,
e.g.,
1 1 1
N
Z1 Z9 ZN
v, = : exp(—i \z2|2)
’ i=1
z{v’l zév’l z]]\\,[’l
N N
= H(zk — z) exp (— %Z EISE (1.22)
k<l =1

The composite fermion trial wave functiodsr are obtained by multiplying the integer quan-
tum HALL effect wave function, e.g., (1.22) with a polynomiakIrow factor which analyti-
cally corresponds to the attachmenpgjairs of flux quanta to the electron:

\IICF = H(ZZ — Zj)2p\111 . (123)
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The filling fraction of the CF state is derived as
41

= — . 1.24
2pvr + 1 ( )

Vcr
Here,; = I corresponds to the integer quantumii stateW;. It can be shown that this
procedure neither destroys the correlations of the systarthe incompressibility of the state.
LAUGHLIN’s wave functions are the simplest examples of this schernseti®y from av = 1
integer quantum KLL state (1.22)p pairs of flux quanta are attached. This yields:

N N
1
UL aughlin = ./\/'1_[(2Z — z;)? 1_[(2Z — zj) exp ( - %Z |zi|2>, V= Wil (1.25)

1<J 1<J

J/

v,
With respect to states beyond the maiUGHLIN series, the crucial point ilAN’s approach
is that higher laNDAU levels contribute to states with < 1. This might seem confusing and
has to be investigated in more detail. It is obvious from {1 that higher IANDAU level wave
functions depend explicitly oa. This makes them more complicated to deal with since a lot of
numerical results and field theoretical approaches rewda¢ tvalid solely in the lowestAN-
DAU level approximation. Apart from this itis naturally expedtthat a < 1 state is dominated
by its overlap with the lowest level. Following these comsations, the wave functions (1.23)
have to be mapped for further analysis using the lowestAu level projector:

o0

~ 1 — D )
PriL = Z mzk exp (— 1 z|2) /dQZ, (Z)*..., P?,. =Py . (1.26)
k=0

Wave functions witd > 1 consist of monomials of the form
p(z) =2"(z)"exp (— 1 |z|2) . (1.27)
These are projected to

n

PLiL [p(z)] = 4m( )m! mexp (= 127) . (1.28)

m

It is obvious from (1.28) that monomials with > n are identically mapped to zero.

JAIN showed that the wave functions (1.23) have a large overldptive lowest IANDAU level
for a small number of electrons, but in comparison with th@GHLIN series there exists no
analogue that carries this argument to the thermodynamit liThe question according to the
injectivity of the projection (1.26) is even more difficuti answer. However, numerical and
conceptual analyses show that purely analytic wave funstaescribe lowest ANDAU level
states more accurately.

1.2.3 Jain’shierarchical scheme

In principle, itis possible to get any rational numbeg Q as filling fraction by applyingAin’s
construction repeatedly. This forms the so-called hi¢riaed scheme of AIN. Thus, instead
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of starting with an integer quantumatL state, a fractional quantumAtL state obtained
from JAIN’s construction is taken, and new composite fermions amaédorout of the old ones
by attaching additional pairs of flux quanta. The new fillingctions are obtained by (1.24).
Instead ofl; the composite fermion state with is taken to obtain a new fillingg. In this
way, arbitrarily continued fractions of the form

V= [2p17 2p27 ceey 2pn7 VI] - 1 (129)
2p1 +

2ps +

" 2p, + L
41

can be constructed, and thus arbitrary positive rationalberse < 1. However, this hierarchi-
cal scheme shares with all other hierarchical schemes #teréeof producing way too many
unobserved filling fractions. Moreover, it is necessarynke the principle of particle-hole
duality in order to obtain some of the experimentally conédhilling fractions within the first
few levels of the hierarchy. Unfortunately, the set of alpesimentally observed fractional
guantum H\LL states does not support particle-hole duality very well @nithus avoided in
our approach.

1.3 Chern-SimonsTheory and Multilayer States

The amazingly accurate quantization of thelttd conductance in the integer and, especially, the
fractional quantum KHLL effect is deeply linked to topological principles. The @sponding
states — so-called quantum liquids — satisfy statisticscivlare directly related to complex
geometrical structures. Itis therefore crucial to chamaze the fractional quantumadL states

by suitable quantum numbers in the context of an effectieetyn This yields the classification
in terms of universality classes and topological ordery\datailed approaches to this topic are
given by [35, 46].

It is well-known that quantum electrodynamics inH®) dimensions consists of a M AWELL

part and a topological @=RN-SIMONS term. It is true that the latter is neglectable compared
to the first one in many cases, but it was shown rigorouslyttte@OHERN-SIMONS term dom-
inates the fractional quantumaAdL regime [7]. Therefore, this regime can be described in
terms of an effective GERN-SIMONS theory. A fractional quantum kLL system can consist
of several quantum fluids which may be coupled to each otleaah Huidi in the effective field
theory is described by a vector potentigl with couplings; in addition to the external field
A*. The general form of the AGRANGIAN reads

1
£ =~y Ky 0,0, — %/{i/lue“”’\ayai,\ TR (1.30)

where possible other terms such as the contribution of thsiewle current are neglected. The
complete LAGRANGIAN contains various couplings and sources which exceed theefrark

of this introductory section. The only important conclusiwithin the scope of this work is that
the internal structure of a so-callea-layer fractional quantum KLL state is encoded in the
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invertiblem x m matrix K;; describing the couplings of different layers or quantunrduwith
each other. This matrix contains various information offthetional quantum HLL state, e.g.,
the filling fraction, the topological order, the ground stdegeneracy, and the structure of the
trial wave functions. This classification may seem quite gwmbus due to gauge symmetries
and the variety of fields in (1.30), but it turns out that dsesapproaches leading to different
K-matrices can be identified with the same universality ctdsguantum H\LL fluids. This
allows a suitable ordering and classification of fractiddalLL states in the unifying scheme of
K-matrices based on general principles. As a result, for ectrein systemis;; has to satisfy
the following conditions?

| oddinteger i =j
W { integer i (1.31)
The filling fraction is derived as
vk =Y Kb (1.32)
irj

and the trial wave functions read:

N m
Uy = H H(zl(“ (“) Kuu H H (1) Kyx exp -1 Z ’z . (1.33)

1<j W 1, p<A

These lie entirely in the lowestANDAU level, but are not completely antisymmetrized among
different layers. In the following, this is investigatednrore detail.

In the K-matrix formalism integer quantumAilL effect states with filling fractiom; = I are
identified by an/ x I identity matrix, e.g.,

The two layers do not interact and the corresponding wavetiom¥, is naively obtained as a
direct product of two functions with = 1:

N N
U, = H(Zz'(l) — z](»l)) H(z,(f) — Zz ) exp ( Z ’z . (1.35)
i<j k<l

Obviously, (1.35) is not suitable to describe the two-lag&te in a meaningful way. The
structure of (1.33) reveals thét, has to be understood as the lowestDAU level projection
of the true wave function where particles of different laydre., LANDAU levels, have to be
distinguished. This issue is resolved by followirgN's composite fermion picture. Starting
from (1.34) the attachment gfpairs of flux quanta to all electrons is realized by addipgo
each entry of (1.31):

2p+1  2p 2
K&F = = . 1.36
i ( 2 2+l ) C T T (1.36)

2Throughout the workK;; is represented in the symmetric electron basis @£ RN-SIMONS theory.
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The corresponding wave functidn.r reads:

N 2 N 2
Uep = H H(Zi(u) _ Zj(u)>2p+l H H(Zi(u) _ Z‘g)\))Qp exp ( _ iz }Zgu)‘z) ' (1.37)
(7

i<j p=1 i p<A

The flux quanta introduce interactions between differeperds. Hence, the layers can be in-
terpreted as composite fermiomNDAU levels. The fractional effect for electrons is based on
a non-interacting integer effect for composite fermionsoltis described by a diagonal-
matrix, e.g., (1.34). In order to derive a suitable lowestDAU level projected wave function
the composite fermions of differentANDAuU levels labelled by;:) have to be distinguished
between. The resulting wave function is anti-symmetrigzavithin each LANDAU level, anti-
symmetrization over differentANDAU levels is unphysical and would yield a vanishiig in
most cases. Furthermore, the trial wave functions (1.33®series (1.39) show an excellent
overlap with numerical results.

The example for two layers can be directly generalized toctse ofm layers. Them x m
K-matrices read:

2p  2p+1
m
K = , =—. 1.38
! Yp 2mp + 1 ( )
2p+1 2p
2p P P 2p 2p+1
This implies the following sequences of filling fractions.j AIN’s main series:
y— L2345 6 7 8 9 10
Y35 79011 130 157 170 19 210 T
12 3 4 5 6
Vo = =y =5 755 759 a1 g0 "
5797137 177 217 25
1 2 3
- -z 2 1.39
AR TR (1.39)
1 2
Vg = —, —, .
T o ar

These are limited by the WENER crystal regime forr — 0 depending on the quality of the
sample. Therefore, the series for> 5 were still not observed. On the other hand we have a
cutoff if m, the number of aNDAU levels of composite fermions building the state, is inceglas

In terms of an effective integer quantumaH. effect this corresponds to the classical limit
Beﬂ‘ — 0.

3Solely experimentally confirmed states are indicated. Ugate experimental data is provided by [5].
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CHAPTER?2

Conformal Field Theory

During the last decades two-dimensional conformal fieldthdénas become a very powerful
tool of modern theoretical physics [47]. Its origin can bectd back to string theory on the
one hand and to statistical mechanics on the other. Thigsehppovides a short introduction

to the conformal field theory of th&c-spin systems. It is expected that the reader has basic
knowledge of conformal field theory in two dimensions. Shigaintroductions are found in
various books, lecture notes and reviews, e.g., [33, 34930].

2.1 Theblc-Spin Systems

The chiral theories of th&c-spin systems were analyzed in detail in 1986 byxiNIK [51].
They are known to play an important role in string theory amafermal field theory due to their
geometrical characteristics. Exactly these features riegaa the candidate to describe the bulk
wave functions of the fractional quantumbL effect in a natural way. The spin theories are
described by the action

S = QL /dQ,z b(z, 2)0c(z, 2) + h.c. (2.1)
7r

Here,b(z, z) andc(z, z) are anti-commuting conformal fields of weighte Z/2 and1 — j,
respectively, where, z are coordinates in the complex plahelherefore, under conformal
transformations — w(z) they behave as:

b(z) = b(uw) (i—“’) L o(2) = e(w) (i—“’) (2.2)

In mathematical terms, the field§z) andc(z) describej- and1 — j-differentials. Thus, they
are directly related to the cohomology of the topologicacpthey live on, i.e., the complex
plane. For a general field theory, the expectation value afbitrary functional?’[®] is defined
by the path integral

(Fl®]) = / (DB) exp (— S [B]) F®] | (2.3)

1Since these theories are chiral conformal field theorieshtiiomorphic and the anti-holomorphic part can be
treated independently. The dependence of the fieldsisisuppressed in the following.
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The operator valued equations of motion are obtained frenvahiations (F'[®]) = 0:
ob(z) = dc(z) = 0
(9b(2))b(=') = (9e(2))el(=') = 0
(Dc(2))b(2)) = (Ob(2))e(2) = 2m6* (2 — 2/, 2—2) . (2.4)
In classical terms the fields are expected to satisfy
(0c(2))b(2") = (Ob(2))c(2') =0 . (2.5)

The normal-ordered product of the two fields is defined bydlggirement (2.5). Sinag(1/z) =
2m0%(z, z), itis derived to

1

z—2z

b(2)e(2): = b(2)e() —

In two-dimensional conformal field theory a product of lochlral operators can be expanded
in an operator valuedAURENT series with meromorphic functions as coefficients. In tred-ev
uation of correlators these so-called operator produchesipns play an important role. The
operator product expansions of the two fiebds) andc(z’) can be read off directly from (2.6):

L () ~—

(2.6)

b(z)c(Z) ~

. (2.7)
z—2 z—2

Here, '~ denotes ‘equivalent up to regular terms’. These regulansevanish if evaluated in a
correlator.

The energy-momentum tensdi z) of the theory can be derived by varying the actmvith

respect to the induced metric. This yields

T(z) =(1—7):(0b(2))e(z): — 3:b(2)(0c(2)) : . (2.8)

In principle, there are just a few facts necessary to knowedgeneral conformal field theory:
the central chargeand the set of conformal weighf#,} of its primary fields are two of them.
They can be derived by operator product expansions invglthe energy-momentum tensor
using WICK'’s theorem:

| — 1

T(z)b(w) = :T(2)b(w): + (1 — 7)e(z)b(w) 0b(z) — j(c(2))b(w) b(z2)

~ 17T )+ —— (b(w) + (= — w)Fb(w))

z—w (z —w)? “

J
(z —w)Qb(w) * z—w

ob(w) . (2.9)

This calculation can be done analogouslyd@r) andT'(w):

T(2)e(w) ~ (21_— IZ)Qc(w) +- _1 —de(w) . (2.10)
T(2)T(w) ~ 3(-12° 412 - 2) 2 Tlw)+——oTw) . (211

(z —w)? (z —w)? z—w
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Equations (2.9) and (2.10) can be understood as the defirofi@ primary conformal field,
the numerator of the first term of the operator product exjpangelds its conformal weight.
Equation (2.11) contains a so-called anomalous term thagtiproportional to the field itself
or its derivatives. This term is due to the existence of areémixtension of the algebra of
conformal symmetries, i.e., the central chargef the theory. In fact, in all conformal field
theories the operator product expansiori'¢f) with itself reads

c/2 2 1
T(z)T(w) ~ C—wp + o w)QT(w) + = w(’?T(w) . (2.12)
Comparing (2.11) and (2.12), the central chargge ., can be read off directly:
Chje—spin = —2(65° — 65 + 1) . (2.13)

Forj # % itis negative (ag € Z/2). Therefore, thé/c-spin systems used in this wotk > 1)

are non-unitary. This may seem disturbing since the spitesysare proposed to describe the
bulk regime of the fractional quantumadL effect in a natural way. This issue is discussed in
more detail in appendix A.

In addition to the full set of conformal symmetries theresexianother symmetry. Under the

simultaneous transformation

b(z) — b(z)exp(ia) and c(z) — c(z) exp(—ia) (2.14)
the action (2.1) remains unchanged. The correspondingeoaes spin currenf (z) reads
J(z) = —:b(2)c(2): (2.15)
and the conserved®ETHER charge is

1
Qi) 7 = i OdZ (i) J(2) . (2.16)
Evaluating the operator product expansion;j6i)) with the energy-momentum tensoi( z)
yields

1—29 1 1
/ _J(w) +

T(z)J(w) ~ aJ(w) . (2.17)

(z—w)?  (z—w) z—w

Therefore,J(z) is not a primary conformal field fof # 1. In fact, j = 1 leads to the only
unitary spin systenfc = 1). It can be identified with two copies of the two-dimensior&aNG
model.

2.2 blc-Spin Systems on Riemann Surfaces

One of the most striking results in the study of the fractlanaantum HALL effect was the
discovery of quasi-particles with fractional statistic§(2m + 1) (m € N). A field theory
describing this effect in a proper way has to be incorporatedsuitable geometrical setting.

2ltis indicated how the space of states of thespin theories appropriately coincides with the. BERT space
of the (14-1)-dimensional theories describing the edge excitations.
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This section briefly demonstrates the feature&/@kpin systems living on RMANN surfaces
with global Z,,-symmetry following the lines of KizHNIK [52]. Z,-symmetry means that
every branch point of the manifold is of orderand that all monodromy matrices can be di-
agonalized simultaneously, e.g., a torus isiBNRANN surface with a globd.,-symmetry and
two branch cuts. Since this work focuses on the structure@otators, it is sufficient to do
the calculation locally for a single branch pointzat The results can be directly extendedio
branch points. AZ,-symmetric REMANN surfacel,, can be locally represented by a branched

covering of the compactified complex plaé@ =C U {oo} with the following map:

z: M, — C o 2y)=n+y" . (2.18)

The REMANN surface is locally identified by sheets ofC via the inverse map of (2.18). The
blc-spin fields living on the manifold are therefore represériig ann-dimensional vector of
identical copies of thé/c-fields b (z) andc)(z) on the complex plane with boundary condi-
tions

L0 (2) =6V (2) . 1=0,....n—1, b™(2)=00(z) ,
C

IL,cD() =™V, 1=0,....n=1, ™(z)=cd7), (2.19)
whereﬂzo is the map of analytic continuation
1L, : (z — 20) — (2 — 2) exp(27i) . (2.20)

For further investigation it is suitable to introduce theURIER basis:

be(2) = iexp (—QWi(k +j0 - n))l) b0 (z) |

cp(z) = iexp (+27Ti(k +7f(1 — n))l) D(z) , (2.21)

with & € {0, ..., n — 1}. This basis diagonaliz€s.,:

. be(2) = oxp (+27ri(/f +nj(1 - n))) belz) |

I ci(z) = exp (_QWi(k +nj(1 — n))) ce(2) . (2.22)

The conserved spin currens become single-valued in the vicinity of the branch point. In
geometrical terms this implies:

Z — 20

1
Jp(z) ~ L , Where oy, = = j{dz Je(2) . (2.23)
20

To verify (2.23), the operator product expansiogf:) with ¢;(w) has to be considered in the
vicinity of the branch point located a§. The transformation law (2.2) and the operator product
expansion of the spin fields on the complex plane (2.7) yield

b(T) (Z)C(S) (,w) — 1 (y(r) (’Z) >p+j(1n) ) (224)
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The operator product expansion is obtained by insertirigy{jdn (2.21):

1 k+j(1—n)
+
z—w n(z — zp)

)+0(:—w) . (2.25)
—Ji(2)
Therefore, the corresponding charge veectprdentified with the branch poing, is

o= _FHid=n) kef{o,....,n—1}. (2.26)

n

Aiming towards the analysis of the conformal structure ef geometrical features represented
by the spin fields, the theory is bosonized. This means toessps(z) andc(z) in terms of
exponentials of analytic scalar bosonic fiedblg 2)

bi(z) = exp (+iBy(2)): |
ck(2) = rexp (—1P(2)): . (2.27)

The fields®, (=) have conformal weights, = 0 and their operator product expansions read:
Dy (2)D,, (W) ~ =0, i In(z —w) . (2.28)
The spin currentd,, are deduced from (2.27) using (2.28):
Je(2) =10 (2) . (2.29)

Finally, the bosonized energy-momentum tensor is given by

7(2) = Y Ti(2)
k=0
Ti(z) = —%:&Dk(z)a@(z): +1300*®r(2) | (2.30)

wheref, is a background charge placed at infinity. This charge hase totboduced to keep the
conformal structure of the spin system which by itself carb®identified with a purely free
bosonic theory. The operator product expansions involthiegnergy-momentum tensby( z)
read:

Th(2)To(w) ~ 5((12—_15)60) . _QM)QTk(w) + ﬁ(m(w) , (2.31)
T1(2) 0Pk (w) ~ (zz_iﬁfu)B + e _1w)28<1>k(w) + ﬁaﬁ)k(w) . (2.32)

Comparing (2.31) and (2.13), the background charge for ectly bosonized/c-spin system
is derived to

1
Po=5-17- (2.33)
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It follows from (2.32) thab'®,,(z) is not a primary conformal field unless the background charge
vanishes. Eved,(z) itself is not primary, as it is expected from (2.28) due tolttgarithmic
term. The remaining candidates for a primary field can thusiéetified by a generalization of
(2.27). They are called vertex operators and are defined by

Vi o(2) = rexp (UDr(2)): . (2.34)

Indeed, they satisfy

(-5 0B(100 () 4 iPa(s) ) sl

1 & i)™ Py (w)m 2 > i)™ 0D, (W) Py (w)™
SIS SR LY inlip )y )

)
m—2) (z—w m —1)! (z —w)

m=0

o= (i) ®p(w)m
+lﬁoz::(](m—m (Z 2

—w)

279 _
~ 6(2/2_7106)26 Ve, e(w) + ﬁﬁvk,e(w) : (2.35)

Thus,V}. (z) is primary with conformal weight;, = ¢?/2 + (; — 1/2){. In correspondence
to (2.26) the branch point of tH&,-symmetric REMANN surface is represented by the vertex
operator

n—1
V&(Zo) = exp < — lzakq)k) . (236)
k=0
with weight
n—1 n—1 1 1
_ _ 2 -
ha =Y ha, =) (5% +(j — 5)ak) : (2.37)
k=0 k=0
The central chargers of theb/c-spin system living on the RMANN surface reads:
n—1
CRS = D Chje—spin = —2n(65% — 65 +1) . (2.38)
k=0

From (2.26) it is apparent that the charge vector of the xeperator is dominated by tti&, -
symmetry of the REMANN surface: the spin provides an offset which is just visible in the
conformal weights of the fields since the phase is determiiyed, mod 1. In addition, two
different types of fields have to be distinguished. Firsgréhexist twist fields containing the
full information of the branch point. Therefore, the chavgetora has to keep track of analytic
continuation. For example, onZa-symmetric REMANN surface and foj = 3/2, the charge
vector reads

O7n:3,j=3/2 = ( 1 ) 2/3 ; 1/3 ) . (239)
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Secondly, there are projective fields. Their non-zero ahagnponents are identical as if the
branched structure was projected torafold copy of C . This yields charge vectors

1 2
d»li):...:@)pE{O’—’—,...,l},mgn and C_y)g:o,]{]>m (240)
n n

The role ofd is crucial. Besides local chiral fields having integer valebarge vector entries
only, fractional ones (2.40) are included. The effect ofdcbresponding vertex operators is the
action of a branch point of ramification numberThis is expected precisely from the fractional
statistics of the quasi-particles. Thus, these statiatiesncorporated into a geometrical setting,
where the complex plane is replaced byrafold ramified covering of itself, created by flux
guanta piercing it.

Naturally, the projective fields are assumed to describetimaal quantum HLL states in the
lowest LANDAU level (LLL) projection. Since the bosors,(z) are free fields, the correlators
of the corresponding vertex operators read

n

(QVir, (1) -+ Vi (20)] 0) = [ [ (20 — )% %, (2.41)

1<j

where( (2 | is an out-state related to the background chakgat infinity. Since charge neutrality
in a correlator must be guaranteed, conformally neutr&esing operatorQ_, €2, have to be
introduced. These form the state ) by acting on the highest weight vacuyi):

Q) =Q7Q"|0) ,m,neN . (2.42)

The set of equations (2.40) and (2.41) including their gedoa features is the main result of
this chapter.
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Chapter 2. Conformal Field Theory
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CHAPTERS3

Conformal Field Theory Approach

The fractional quantum kLL effect reveals a large variety of physical features. Styogrre-
lated movement of electrons, fractional charges and statisf quasi-particles corresponding
to complex geometrical aspects, and topological order@ref them. Gauge covariance ar-
guments, hierarchical schemes, e.gIiNJ concept of composite fermions, and effective topo-
logical theories, e.g., theHERN-SIMONS K -matrix formalism, have been developed to adapt
these features and explain them by fundamental physicatiptes. This chapter deals with
a novel approach based on the conjecture of the correspoadstween fractional quantum
HALL state wave functions and correlators of conformal field tieso Motivated by geometri-
cal aspects bulk wave functions are proposed and a new tigzal scheme followingAIN’s
composite fermion model is presented. The first sectionssbam the LAUGHLIN states and
proceeds to their natural continuation, i.&INJs main series. In the second section fractional
guantum HLL states built from paired composite fermions are presentadnacomplete the
scheme and order the set of experimentally confirmed filliagtions in the regime < v < 1

by stability in a suitable way. Up to date experimental data lce found in [2, 3, 4, 5].

3.1 Jain’sMain Series

During the last two decades a multi-faceted set of lowesttau level trial wave functions
has been proposed which has been investigated numeriodllgyausing methods of mean field
approximation. In this connection, it often remained ursgidered to what extend the analytic
structure of a certain set of wave functions fits in a unifyamgl natural picture. Field theoretical
approaches usually follow a purely constructive principi#hout presenting reasonable restric-
tions. Reconsidering the results of section 1.3, the matrixcture (1.31) allows to construct
fractional quantum KWLL states with arbitrary filling fractions. Certainly, sevagstraints can
be implemented, but often lack physical argumentation. l@nother hand, even iadN’s ef-
fective composite fermion model shows excellent corredpane with experimental data, his
wave functions adopt no definite geometrical structure @irtlowest LANDAU level projected
form leaving theK -matrix trial wave functions (1.33) as the more reasonabtedxlates. The
challenge is to find a scheme which naturally suits the gencatéfeatures of the fractional
quantum HLL effect and, furthermore, predicts series of states in ageee with the exper-
imentally observed order of stability and the topologiaahsiderations from the viewpoint of
effective GHERN-SIMONS theory.

It is natural to start from the AUGHLIN states. Despite the simple appearance of their ground
states (1.15), the quasi-particle excited wave functidn9) reveal the most important evi-
dence for the non-trivial topological structure of fract& quantum KHLL states, i.e., fractional
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statistics. The derivation of theE&RY connection from the complex normalization factor [43]
results in a multivalued wave function. The non-holomoegactors(¢; —¢;)Y/(?+Y lead to se-
vere consequences for any field theoretical descriptiagheEithey demand the loss of chirality
or the fields naturally possess the topological abilitieghef(quasi-)particles, i.e., the structure
of a branch point with ramification number= 2p + 1. This is exactly what the projective
vertex operators of th&c-spin systems presented in chapter 2 simulate. They regirpae
ticles with fractional statistics by definition. Furtherraptheb/c-spin systems are a discrete
set of conformal field theories. Thus, compared with othef@anal field theory approaches
involving continuous parameters, e.g.AGSIAN ¢ = 1 models, avoid arbitrariness from the
beginning.

Due to the unsophisticated correspondence between isstigt2p + 1) and the geometrical
setting of theb/c-spin fields, the approach reveals an amazing simplicityefsa LAUGHLIN
filling fraction v = 1/(2p + 1), the electrore™ and the flux quantun®, respectively, are
identified with aZ,,,,-symmetric projective field. The charge vectors (2.40) atated to the
statistics, thug2p + 1)-dimensional and take the form

1 1
= (1) e (i ) 31
“ ( o 2p+1 2p+1 (3-1)

The correlators (2.41) yield the correct wave functiond$)and (1.19) up to the exponential
factor:

Urangniin = (Q[Va,_(21) .- Va_ ()] 0) = H(zi — )t

i<l

Uere, = (Q|Va_(21) .- Va_(za)Va, (C1) - - Va, (G)|0)

n,k n k
=TI - TG — 207 TG - )7 . (3.2)
r,s i<l p<q

A comment is necessary here: in the scope of this work, théoomal field theory always
lives on a ramified covering of the compactified complex plame, the REMANN sphere. On
the other hand, the fractional quantumiH system lives on a certain chunk of the plane, the
sample. Thus, in a correct treatment, the wave functiorsadfractional quantum KL system
must be elements of a suitable test space. Reconsideridgtivation yielding to (1.13), this is
the BARGMANN space [42]. The elements of the BGMANN space forN complex variables
are of the form

v({z}) = p(z, .., 2N) HeXp(—cZ-\zZ-|2) :

There are further restrictions on the constaftand on the multivariate polynomial{z})
whenever the functiog({z}) is symmetric or anti-symmetric under certain permutatiofrits
arguments. The only effect of the exponential factor is targatee a sufficient fast decay of the
modulus squared of the wave function if one or more of its argts become large. It can be
shown rigorously that this factor is absent if the fractianentum HaLL problem is considered
in a different setting, i.e., on a sphere pierced by the fi¢éld magnetic monopole positioned
in its centre. This idea was first pointed out byHbANE [15]. Since the sphere is a compact
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space, so is the support of the wave function. When compbtitigwave functions in terms of
conformal field theory correlators, this is executed auticaly on the latter setting, i.e., the
compact sphere. Thus, it is natural to expect that the cordbfield theory picture reproduces
the bulk wave functions on the sphere rather than on the plélmvever, for completeness
it is possible to reproduce the exponential factors withim ¢conformal field theory picture by
explicitly including a homogeneous background chargeibistion confining the support of the
wave function as shown by 8OREand READ [25, 53].

As indicated above, th&,,-symmetry of the REMANN surface the spin fields live on has a one-
to-one correspondence with the statistics and chargedfthasi-)particles in theAUGHLIN
states. Furthermore, the scalar products of the chargergedttermine the particles’ interac-
tion, i.e., order of zeros in the polynomial terms of the whugctions. Despite the fact that the
electron with elementary chargeobeys simple fermionic statistics — indicated by the intege
valued components of its charge vector (3.1) — the field'sigahas a geometric background
in terms of the topology of the IRMANN surface it lives on. This becomes more apparent by
investigating 4IN’s main series.

The complete set of states describing these main sequeiitdes o fractions (1.39) is included
in the b/c-spin system approach, (quasi-)particles, their chargdsstatistics are described in
terms ofZ,,,,,+1-symmetric projective fields. As beforg,labels the number of pairs of flux
guanta attached to the electron amdis the number of filled composite fermionANDAU

levels. Each layer € {1, ..., m} is connected with &mp + 1)-dimensional charge vector:
1 1<i<2p
a" =31 i=2mp+2—p . (3.3)
0 otherwise

The scalar products read:
A . ad™n =2p 46, . (3.4)

Naively, a(2p + 1)m-dimensional charge vector for an-layer state might have been expected.
However, this would demand that the flux quanta were indepaifdr each layer. ldentifying
these or, equivalently, the base spaces ofrtheopies of the ramified complex plane imme-
diately leads ta2p + 1)m — (m — 1) = 2mp + 1 dimensions, the correct dimensionality
of the charge vectors. The correlators (2.41) of the verfmrators given by (3.3) yield the
trial wave functions of thé{-matrices (1.38) representingidi’s series in the @ERN-SIMONS
formalism:

v, M (Q| H Vit (2 (M) Vi (2 (M))| 0)
N m N m
A
= H H(zi(“) — zj(»“))zp*l H H(zi(“) — z](» ))2p ) (3.5)
i<j W 2, p<A

Equation (3.5) generalizes the result of (3.2). In this wiay's main series (1.39) with filling
fractionsy, = m/(2mp + 1) are identified.
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3.2 Composite Fermion Pairing

Concerning other filling fractions all known hierarchicehemes, e.g. [13, 15, 45, 54, 55], share
the problem of not being capable to predict fractional quanitHALL states by order of stability.
They produce several unobserved filling fractions at lovelewithin hierarchy whereas some
popular states are obtained at much higher order or eversasm#gants of unconfirmed states.
To avoid this deficiency, the principle of particle-hole tiyas artificially introduced, relating,
for example the series

,_12345 6 7 8 910 (3.6)
YT 3579 11713 15 177197 217 '
and
23 45 6 7 8 9 10
Vfl) = 5 EY 5 A 149 157 15 350 0 et (37)
3’5779 11" 13" 15" 177 19

Since the complete set of experimentally confirmed states dot support this principle very
well and no obvious physical motivation for its existencelisvided, the scheme of this work
avoids particle-hole duality.

Yet, the series (3.7) with{" = m/(2mp — 1), are observed and seem to be closely related to

JAIN’s main series/,. From the topological viewpoint of IERN-SIMONS theory,uzgl) can be
represented in terms aif-layer K-matrices

-1 =
KU_{Qp iz (3.8)

Reconsidering (3.4) then demands the existence of chagerse/ andﬁ corresponding to
different layers with

a?=p3%=2—1 and @-5=2p 4 . (3.9)

This is not possible since it contradict€BwvARZ’ inequality and indicates that these ‘dual’
series possess completely new physical features. Thetenstiyucture of the wave function
(1.33) for K-matrices (3.8) exhibits that composite fermions livinghe same layer repulse
each other with the power @2p — 1) while those of different layers repulse themselveghy
This suggests the existence of an effectively attractivepusite fermion interaction within a
LANDAU level, i.e. pairing. In a conformal field theory approactstisiinduced by the = —2
logarithmicb/c-spin system with spij = 1 as shown for the WLDANE-REZzAY| state with
filling fraction v = 5/2 [21, 25, 31, 32].

In analogy to (2.27) the fields(z) andc¢(z) can be bosonized on a ramified covering of the
compactified complex plane locally representingZhesymmetric REMANN surface in terms
of vertex operators:

by(z) = rexp (+ 1f‘y’<f>(z)) :
" 0,1} . (3.10)
c3(z) = rexp (— i7P(2)): e, 1}
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The pairing effect of the composite fermions is described(byoc(z'). The operator product
expansion

22

b(2)des (2) ~ ——— (3.11)

(z—2')?

yields the so-called RAFFIAN form Pf(z;, z!) when the fields (3.11) are evaluated in a correla-
tor:

(Q] (b5(0)9:4e5(z1) - - (b5(en)Oye5(2)) [0) = 77PE(zi, 20)

Pf(z, z)) = Z sgno) (3.12)

geSN i=1

=
w

In this way, theuff) series can be identified by the same fields as the basicskries (3.5) if
additional inner-lANDAU level pairings are included. To find a physical and stabl¢esysall
composite fermion RNDAU levels are expected to be paired. To obtain a proper deisarjpt
each layep. € {1,... ,m} possesses an-dimensional charge vector:

%(u) =80 = W .3V =4, . (3.13)

The composite fermions themselves correspond to the chagers (3.3). Thus, the wave
functions read:

\Il(l 2y = (Q] H Vi (21 - Vi (28] 0)

(T (b )0 (G800 - (o (g ) [0)
o

2N m 2N m

_ ﬁ iu : ZN+Z HH (1) H))Qp-i—l H H(Zi(u) _ ZJ()\))Qp ' (3.14)
w

i<j u B 4,j p<A

*)
It is important to stress that equation (3.14) satisfies theRN-SIMONS approach and has to
be identified with the<-matrix (3.8). Only the trial wave functions (1.33) have wdxtended,

since they are not capable to realize pairing effects in agravay. However, the FAFFIAN
cancels two powers of the paired composite fermion cortiohuo (). Thus, paired composite

fermions repulse each other (),;/Z.(“) —z](.“))Qp_1 in either wave function. Additionally, both yield
the same filling fractions

-_n (3.15)
2mp — 1
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The first order paired series related roNIs main series are identified:
m 2345 6 7 8 9 10

T Ry T 1113 15 17 197

1) 12 3 4 5 6
Vs = =, =, T5y TT, T, TSy -

2 377 11 15 19’ 23’

1 2 3

o _ L 2 9 3.16
Y3 5 11 17 (3.16)
o 12

4 715’

This proposal can be extended in a natural way imaginingltieegtructure of paired composite
fermion singlets is not restricted to be an inneNDAU level effect. Two LANDAU levels of
composite fermions that are completely paired among edugr oain form a new incompressible
qguantum liquid and can hence interact with other blocks oglsilayers of paired droplets.
Therefore, two natural series Af-matrices(K* ©);; appear with an even and an odd number of
layers, respectively:
p—1 i=j
(K9°);; =1 2p—2 i#7j, 2(k—1)4+1<i,j<2k (1<k<b) . (3.17)
2p  otherwise

Here,b is the number of paire@lx 2-blocks. The first series, giverRa-layer fractional quantum
HALL state, read:

2p—1 2p—2 2p e 2p
2p—2 2p—1 2p
(K%)= 2p 2p T 2p 2p , viPe= " (3.18)

P 4bp — 3
2p 2p—1 2p—2

2p 2p 2p—2 2p—1

The latter, given &b+ 1-layer fractional quantum KLL state, has a remaining solely self-paired
layer and corresponds to filling fractions

(2)0 Qb+3

= . 3.19
T op(2b+3) -3 (3.19)
Together, they yield the second order paired séfries:
ne 4 (6 8 10 ne D T (9
y@e_Z (2} ° Y y@eo_ 2 L [ 7
1 - ) ) ) y 1 - ) ) PR
5°\9 137 17 77117\ 15 390
2)e 2 4 (2o ( . )
l/2 — _, _, e 9 l/2 — e e . .
5 13

1Solely experimentally confirmed states are indicated.
2Fractions in brackets are not coprime and also appear im séhies. This indicates that these states can exist
in different forms of quantum liquids.
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The scheme can be generalized in a natural way to the case afblocks of paired IANDAU
levels in order to derive the-th order series. There exigst— 1 subseries determined by the
number- of remaining solely self-pairedANDAU levels, e.g.; = 0 in the even case for second
order andr = 1 in the odd case, respectively. Letlenote the number of fully paired blocks
then them x m-matricesKI()%, wherem = bn + r of then-th order paired fractional quantum
HALL states read:
p—1 i=j
(Kgmﬁz p—2 i#j, (k—Dn+1<ij<kn (1<k<b) . (3.21)
2p  otherwise

The corresponding filling fractions are derived to

ST _ bn+r(2n —1)
pm op(bn +r(2n —1)) — (2n — 1)

(3.22)

By this, the third order states confirmed by expeririané deduced (higher orders do not yield
additional observed fractions):

Vﬁw:[?} S 8 el
o _ 3 NO. 32 _
2 _77 P =... D) =...

Having a closer look on (3.21) the question arises to whatrgxhe access to fractional quantum
HALL pairing presented up to this point is too restrictive. Moeagral K -matrices with band-
like or even more complicated structures could be imagineldiyng arbitraryv. For example,

v = 4/11, a state that was very recently confirmed by experiment f&}|cbe realized by

3 2 2 4
2 4 2
2 3 2
4 2 3

K= (3.24)

DN >~ W

This K-matrix describes a ring of two second order blocks. Renidykthe result of a detailed
analysis of equation (3.22) shows that certain fractioneaappear, for example/9, 10/13,
5/13, and4/11. In agreement, as far as experimental data is providecs therely exist con-
troversial data concerning the first three, indicating thidiey exist they presumably have to be
another kind of fractional quantumatL fluid. The same holds far = 4/11 that is assumed to
belong to the class of nonBELIAN states which are discussed in more detail in chapter 4. As
exactly these fractions lie beyond the access of the scheopeged in this work, thé/c-spin
systems motivate a reasonable physical constraint for HEerR8-SIMONS formalism in order
to classify fractional quantum ALL states. This can be directly deduced from the conformal
field theory picture of the fields given by (3.10). If an oflebk pairing structure was possible,
there would exist a triplet of fields
bii (2 )0 (25)) s b (=)0 (27)) b (270 (7)) (3.25)

3The statey = % has not been confirmed so far, since it falls in the domaintodietion of thev = 1 plateau.

However, it is strongly expected.
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with the charge vectors obeying the following set of equedio

— 2 — 2
=1

== , Niom=Ticop=1 and %B-p=0. (3.26)

Since their components are restricted to be eithar1, this ends up in a contradiction:

Ti=T=% and HAT 4. (3.27)

As a consequence the most genéfamatrix for a correct description of paired fractional quan
tum HALL states is restricted to have a block structure:

2p—1 1= b1
(Kpm), =< 2p—=2 i#] 1+Zm<zy<2m (1<k<b) . (3.28)
2p  otherwise =1

Herein, b denotes the number of blocks ang the corresponding sizes. Therefore, =
Zle ny , If singly paired layers are denoted by = 1. It is to stress that the new series of
filling fraction5ygv ™ obtained from (3.28) are rather unlikely to be seen in expenits as their
K-matrices are by far less symmetric than the ones given 21{3Since it is quite difficult to
derive a general formula foxp’f’ ™ the only additional fraction that may be seen in the nearer
future is provided:

19
pi 32 = =5 - (3.29)

Therefore, the set of matrices (3.21) remains as the natanalidate to describe series of paired
fractional quantum HLL states by order of stability. The corresponding bulk wavecfions

\I/ﬁ,”)n of the n-th order paired fractional quantumadL states can be calculated as a direct
generalization of (3.14). Given the matrm(,f‘)n , anm-dimensional charge vector with respect

to a paired blockB € {1, ..., b+r} (eithern x n or aremainind x 1 layer) is identified with
each layey :

V= Oy = A A = Sp by - (3.30)

In addition, each layek possesses @mp + 1)-dimensional charge vector for the composite
fermions:

1 1<i<2p
525“) =1 i=2mp+2—p = aW.aN=2p+4,, . (3.31)
0 otherwise

Let / denote the set of pairedaNDAU levels, e.g./ = {(1,1), (2,2), (3,3), (1,2), (2,1)}
describes a triple-layer state wm‘ﬁ); = 5/(10p — 3) where the first two BNDAU levels form
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FIGURE 3.1: Observed HWLL fractions in the interval) < v < 1. Established fractions are
labelled by O’. The symbol %’ denotes cases that exceed the scheme of this work. The basic
JAIN seriesy, approximatel /2p from below, the corresponding first order paired serigs

from above (both marked by continuous lines) as well as tgkériorder series!” (marked
by dashed lines)
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a2 x 2-block while the third is solely self-paired. The wave fuonos read

") mH o0 (7)o Voo (2830)10)
A
< AT (500 ()0 ey 50 (25000)) - - -+ (B (287) D 500 (253)) | 0)
(u, N eI
2N m 2N m
A
= [IPe, R TTTIGE = 5 TT T - 570 (3.32)
(u, el i<j p 4,3 p<A B
\Ilp,m(z(u))

whereV,, ., (z; () ) is the bulk wave function of the basiaidi series (3.5).

Combining equations (1.39), (3.16), (3.20), and (3.23% tbmplete sétof experimentally
confirmed filling fractions is obtained by order of stabilith natural cutoff is found if either the
number of participating composite fermiomADAU levelsm increases or it — 0. Series of

4Except forv = 4/11, which is presumably a non#ELIAN fractional quantum HLL state falling outside the
approach of this work, and controversial fractions like- 7/9, v = 10/13, andv = 5/13.
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TABLE 3.1: Expected Hall fractions

p I/p I/]gl) V]SQ) VI(J?’) I/]g4)
| oo [E TR PR VRS PN ER TR
23 21 19’ 21 17719’ 21| 9’ 15’ 29
)| T T [ 56 [ 688
29 27 177 21 19’ 27 25
4 4 4 5
T 23 21 77
NE! 3 .
25 23 29

more complicated composite fermions (largeare less developed, complete pairings=(0)
are favored and each series precisely keeps track of thétgtabthe fractional quantum HLL
states found in experiments whereas no unobserved frastimedicted.

A comment has to be made on the absence ofthe7/9 state. If the series

__k 67T 8 9
2%k -5 779 1113

14

was naively assumed, = 7/9 would have to be considered to be more likely to appear than
v = 8/11. Furthermore, it cannot be argued thi@9 is dominated by the = 1 plateau since

v = 4/5 exists. This seems rather unusual or even exceptionalf predisely coincides with
the b/c-spin system approach. Therefore, the series in figure gplgiindicate where new
fractions given by (3.22) will show up. Following the hiezhical scheme of this work, the
subsequent filling fractions are predicted to appear if Brpental circumstances are improved
in the future (merely fractions with denominatbK 29 are indicated).

3.2.1 Quasi-Particle Excitations

One of the most striking results in the study of the fractlanaantum FhLL effect was the
discovery of quasi-particles with fractional charges atadigtics [12]. Experimentally it has
been proven very difficult to measure them (even for tae&HLIN states) and a lot of effort is
spent to investigate them in more detail. The two sets of iiavetions (3.5) and (3.32) describe
the electron ground state for a given filling fraction As already shown for the AUGHLIN
series the geometric features of excitations responsilstétistics and charges are directly
embedded in th&/c-spin systems and are related to Fiesymmetry of the REMANN surface
the fields live on, i.e., the dimension of the composite femtharge vectors (3.31). However,
an elementary quasi-particle excitation ofrarayer state has to be considered more carefully.
First of all, a quasi-particle is expected to have triviatistics with respect to the composite
fermions:

dp-al) =1, (3.33)
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TABLE 3.2: Quasi-particle statistics for confirmed fractionaaqtum HALL states

© v C) v

T 1 s 7T 9

3 3 5 1_51_3<E)

T 1 2 2 2 2 4 4 4 4 8 8 8
5 55 3 17| 177157177157 137 97 177 15 13
T 1 3 35 T 3 3 3 9 9 9

7 7T 57 19 19° 177 13719’ 177 13

T 1 22 2 4 4 4 8 T 5 5 5 10 10 10

9 9°9°7 5 9 7 5 11 21 217197 117 21° 19" 17

s 5 5 7 s

11 11'9" 11 23

T 2 2 3 3 3 6 6 (6 s 6 6

IE Tg’ﬁ’ﬁ’ﬁ’?’ﬁ’ﬁ’(@) % % 23

Where&g‘g is the charge vector of the composite fermion in ki layer as given by (3.3). The
naive solution

1 1 1
Gp = ( . ) . (ds)’ = (3.34)
2mp+1 2mp+1 2mp+1
yields the valuev,, - @) = 2t which is not an integer fom > 1. A simple generalized

solution exists, namely

m 1<:<2p
1 2mp4+2-—-m<i<2mp+1 |, (3.35)
0 otherwise

. 1
Qo= 2mp + 1
which coincide with (3.1) forn = 1. By this, the desired result for all layers is obtained.
Furthermore,
1 m
Ny O = ———————=(2mp? =—. 3.36

Since each of the: layers contributes/(2mp + 1) this yields the correct quasi-particle statis-
tics.

Therefore, the quasi-particle excitations of the wave fioms ¥, ,, and \Ifﬁ,”,)n are predicted
to carry a phas® ~ w/(2mp + 1) and have the charge ~ e¢/(2mp + 1) as it is shown in
Table 3.2. Since several filling fractions belong to moratbae series, e.q2/5, and thus exist
in different forms of quantum liquids, various types of gyaarticles can be found for these
states. Direct experimental observations are still diffjaand — as far as it is known so far
— good indications solely exist for theAUGHLIN series. Finally, it has to be noted that the
choice (3.3) for the charge vectors of the composite ferraimh(3.35) for the quasi-particles is
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not unique, although physically motivated, particulaiiypgle and symmetric. The ambiguity

is not disturbing since most other solutions are related blgamge of basis within the tensor
product of the conformal field theories. The advantage ofathy@oach of this work is that the

conformal field theories themselves are confined to a dssezies leaving not much space for
arbitrariness.
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CHAPTERA4

Non-Abelian Fractional Quantum Hall States

The conformal field theory approach presented in this wodajsble to describe the complete
set of experimentally observed filling fractions with buteavfexceptions. One of these ex-
ceptions isv = 4/11, recently confirmed by AN et al. [5]. It was named an ‘odd’ quantum
HALL state and is assumed to belong to the class of nBBEAAN quantum H\LL states which
have been analyzed in detail by [56, 57, 58]. In this chapterscope of thé/c-spin system
formalism in terms of a suitable representation of this nessof states is investigated.

4.1 Non-Abelian Spin Singlet States

The topological order of effective ERN-SIMONS theory represented in th&-matrix for-
malism classifiesAlN’s main series and their natural extension, the compogiteite paired
fractional quantum KHLL states, both obeying fractional buBALIAN statistics. These series
are described by thigc-spin systems in a natural way putting fractional statssiica geometri-
cal setting and predicting the set of states by experimendar of stability. Within the last few
years, a new class of fractional quantumald states with non-BELIAN statistics has been
discussed. These states are special insofar as their tiad functions for quasi-hole excita-
tions have more than one component. Therefore, braid tstatere represented by matrices
acting on these wave functions if two quasi-particles agharged. Since matrices — in gen-
eral — do not commute, the statistics were named 'n@®=AAN’. A subset of this class is
the set of non-BELIAN spin singlet fractional quantumAdL states which are analyzed in the
following.

In 1983, HALPERIN emphasized that fractional quantunalH states do not always have to
be completely spin polarized since theE2MAN energy is dependent on thefactor of the
electrons and seems to be rather small compared to otheyyes@les of the system [8]. He
proposed spin singlet states with the following trial wanedtions:

N N
wphbrt b S TTAD = 20y — A T = Ay exp (=13 1)), @.2)
i p

i<j ¥

wheren € N and %(T), zj(.“ denote the positions of the electrons with spin up and spimgo
respectively. The filling fraction is derived to= 2/(2n + 1). For oddn a bosonic and for even

n a fermionic state is obtained. The latter resembles theldyer composite fermion state, -

of JAIN’s main series (3.5) with = 2p.

In 1998, READ and RezAYI studied a class of spin-polarized nomB#LIAN quantum HhLL
statestl!’lifj\” [58] generalizing the PAFFIAN states which successfully describe composite fer-
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mion liquids withv = 1/(2p) where2p is the number of flux quanta attached to the electrons.
The non-AELIAN wave functions were proposed to read:

B k
Mk +2

k, 2
\I]Nziv[ = Upara(2:) H(zz —2z)MTE

1<j

(4.2)

Here, V.., represents wave functions deduced from correlatoZs.gfarafermionic conformal
field theories.

It turned out that the features of (4.1) and (4.2) can be coetbi By this, the class of non-
ABELIAN spin singlet fractional guantumAdL states is conceived [56, 57]. Their wave func-
tions are given by:

=

N N
k, M T ! T 1
vty = w0 G0, o) (T IT 2 - 402 TT - o >>)

i<j =1, 1 i

N
X H H W) _ MH Mexp ( Z }z : (4.3)
i<j p=T,|

where\Ifggrg’) is a wave function derived frorSU(3),-parafermionic conformal field theory

correlators. Explicit calculations olfﬁig’) reveal to be rather difficult (a detailed analysis is
provided by GPNER [59]) and even though concref€-matrices have been calculated for
\III’QASS in [56], the one-to-one correspondence between tHERBI-SIMONS formalism and
the blc-spin systems does not hold due to the parafermionic streictifet, solely the non-
parafermionic part of (4.3) determines the filling fraction

ke, M 2k

VNASS 2]{]M 4+ 3 (44)

and the geometrical features. Therefore, it can be regasiedtwo-layer state with a pseudo

K-matrix
(K m) ( *i +%> (4.5)
k,Mi': . .
g M+ M+ 3%

It is the characteristics of (4.5) that have to be adoptedby/t-spin systems. If this is taken
for granted, the full theory is obtained by a tensor produith whe SU(3),-parafermionic con-
formal field theories.

The structure of< \; induces the one-component statistizsf the fractional quantum ALL
state. Thus, they are expected to be proportional{@k M + 3). If these statistics are to be
realized byb/c-spin vertex operators, the appertaining charge vecidrave to bg2kM + 3)-
dimensional. Due to the additionZh-symmetry of the conformal field theory modules, i.e.,
the RAMOND and NEVEU-SCHWARZ sectors, the most general charge entries are restricted to

1 1
Gie 40, , o1l 4.6
“ e{ 5(2kM 1 3)" 2kM 1 3 } (4.6)
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This implies strong restraints on the set of states whichbearepresented by the spin systems
since the components of (4.5) are obtained via scalar ptediiche charge vectors as shown
in chapter 3. More precisely, this demands

22(2kM +3)*=nk , k,neN, McN . (4.7)

This diophantic equation is solved by prime decompositibk.oSince2kM + 3 is odd, the
factor2? on the left hand side of (4.7) has to be absorbeddmn . From this follows

k= 2PH k; | (4.8)

with p < 2 andk; odd prime. Restricting té; without loss of generality leads to
2k My +3)> =niky , My €Ny, n €N . (4.9)
Sincek; is prime
2 M1 +3 ~k = mnoki =3, mnoeN . (4.10)

Therefore, the only possible prime decomposition remairtset of the formk = 27 - 37 with
p < 2andq € N. Inserted in (4.7) yields

32(My397 ' +1)2=n337, My eNy,n3 €N . (4.11)

This directly postulateg < 2 sinceM,39~! + 1 is not divisible by3 and the prime decomposi-
tion of £ reads:

E=2P.-37 pqg<2. (4.12)

As aresult, the non-BELIAN fractional quantum KHLL stateslfl’ifli‘és can only be expressed in
terms ofb/c-spin conformal field theories if 36 is divisible lay

Reconsidering (4.4), the filling fractions of these stat@aade with the ones obtained in the
pureb/c-spin approach in most cases indicating that a certain sieactional quantum KHLL
states may exist in different types of quantum liquids. ¥etre are some exceptiohs:

v =4/11,4/19, 8/19, and12/25 |, (4.13)

which solely exist in the non-BeLIAN form of whom only the firsi = 4/11 has been con-
firmed so far [5] giving rise to the assumption that this typ&actional quantum HLL states
possesses a very small energy gap.

The requirement ok turns out to be sufficient and possible charge vectors ofdhesponding
Vertex operators are found to be nicely symmetric as indctat Table 4.1.

1Only filling fractions with denominatad < 29 are indicated.
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TABLE 4.1: Charge vectors of non8kLIAN fractional quantum HLL states:;?l(\?:1 ando?l(\(ﬁ):1

denote the charge vectorSI(= 1) of the first and the second layer of (4.5), respectively.

o?l(\ZLMH shows the components which have to be added wtile- M + 1 passes through the

series.

k, M .
k| vNass 041(\/1 L /a aM L / O‘l(\%HMH .
4 (1’ %’ %’ %7 %7 07 0)
2 (1,L, L0011
4M+3 )29 920 Yo My 99 9
SN
2 2 2 1 1 1
9 (5.5 35 3 3 3 0,00
2 2 2 11 1
3 2M—|—1 (3’ 37 5’07 07 07 37 3 g)
( ) 17 07 07 07 ,O)
1 1 (4.14)
8 (]-7 57 07 5, 0, 0, 0, 0’ 0’ 0’ 0)
Hsrss (1,5,0,0,0,0,0,3,0,0,0)
( ) %7 %7 707 %, %7 07 0)
5 2 11 1 1 1 1 1 11 1
4 (67 6’ 6’ 6° 67 6° 6’ 6 6 37 g, §7 0’ 0’ O)
5 2 1 1 1 N L1 1
6 4M+1 (67 6’ 67 37 _7 2 0 0 0’6’ &) 6’ 5 5 6)
(....1,0,0, 0.0, 0,0,0,0, 0,0, 0)

As mentioned in the concluding section of chapter 3, theahof the charge vectors is not
completely fixed — not even up to a change of basis. Therefomaore detailed analysis

of non-ABELIAN statistics remains an unsolved problem and has to be igatstl from an
experimental as well as a theoretical point of view. Yet,\thetors in Table 4.1 are chosen in
the most symmetric form in terms of geometrical aspects.

Reconsidering the results of this section, thespin approach motivates severe constraints for
the set of observable none&LIAN spin singlet fractional quantum AL states which can

be directly applied to the class of norBALIAN spin polarized systems [58] as well. In this
context, the recently discovered= 4/11 state is proposed as a candidate to reveal the non-
ABELIAN features in a pure form.
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Discussion

The success of the analysis of thaltbANE-REZAY!I state viac = —2 spin systems [32, 60]
stimulated the presented approach. With a few general aysiqatlly motivated assumptions
restricting to a discrete set of conformal field theoriesaadrichical scheme that precisely keeps
track of experimental results has been constructed. Aligmly developed these features in
a natural and simple way, the complete set of filling fractionith but a few exceptions, was
consecutively derived by order of stability in the frac@bguantum HLL regime of0 < v <1
whereas no unconfirmed fractions were predicted.

More precisely, the conformal field theories used in the aagh of this work provide geomet-
rical descriptions of fractional quantumadL states. Since odd-denominator fillings refer to
fermionic statistics, the natural choices &fel — j) blc-spin systems with € N /2. Moreover,
the statistics of the flux quanta, as suggestedAy’d composite fermion picture, reveal to
possess more general features so thaMRNN surfaces with globd?.,,-symmetry have to be
considered. Representing these surfacesfatd ramified covering of the complex plane, the
effect of a flux quantum is geometrically the same as a brawoatt.p Therefore, the confor-
mal field theory correlators are sections of certain vectordtes. The bulk ground state wave
function is given by a correlator of vertex operators whagstthumbers are purely fermionic
resembling the quantum numbers of a composite fermion. iVabe ingredients the bulk wave
functions for the principal main series= m/(2pm + 1) are obtained. It turns out that the
choice of conformal field theories used in this scheme nog poksesses a direct geometric
interpretation, but furthermore puts severe constraintpassible fractional quantumatL
states. The description of the fractional quantumLH effect via effective GERN-SIMONS
theories leads to a classification of states in terms of §eec&™-matrices. In principle, arbi-
trary filling fractions can be constructed this way, leavanghysically motivated classification
of them as an unsolved problem. On the other hand, the acge€sibRN-SIMONS theory

is crucial to classify fractional quantumatL states in terms of topological order. However,
since the corresponding bulk wave functions cannot beenrritt factorized form in terms of
conformal field theory correlators, tlbé--spin systems rule out marfy-matrices and, there-
fore, provide a very natural restraint on them.

Besides theAlN’s main series, other filling fractions are obtained by oréer principle, i.e.,
composite fermion pairing while the so-called particldehduality is explicitly avoided since

it is not well confirmed by experiment. This pairing leads toeav hierarchy of states obtained
from the principal series by a growing number of pairingetively described by additional
conformal field theories, namely the= —2 spin singlet systems. The requirement that the
bulk wave function can be written in terms of factorized aynfal field theory correlators
demands that only pairings leading t6-matrices in block form are possible. By this, all
experimentally observed filling fractions are deduced éexdéor the presumably nonB8ELIAN
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state withv = 4/11 which is discussed in appendix A, and some controversiatitnas, e.g.,

v =17/9,v=10/13, andv = 5/13). However, in the scheme of this work all filling fractions
which are not observed in nature are precisely avoided Unuohey its predictive power The
ansatz yields a natural order of stability in perfect agresetwith experimental data suggesting
a clear picture of series which can be observed up to a givetmmahnumerator of.. Thus, it

is possible to denote the next members of these series, iaated in Fig. 3.1 and Table 3.1,
which might be observed under improved experimental candit but no other fractions.

The main advantage of this scheme is that it avoids arbiegas. Furthermore, the concept of
pairing is not exceptional as well. First of all, it precigs@grees with experimental observa-
tions for the FALDANE-REZAY!I state. A nice discussion is provided by these papers [61, 62]
Moreover, pairing effects are indicated by numerical sad63, 64], and are in analogy to sim-
ilar phenomena in other fields of condensed matter physics$, as certain exactly integrable
models in the context of BCS pairing [65]. Although the bul&we functions proposed in the
scope of this work which describe paired fractional quaniunL states differ from the ones
predicted by the naiv&’-matrix formalism, they share important asymptotic feasurA check

of these bulk wave functions should be done numericallyidlbiéyond the scope of this thesis.

The description in terms dfc-spin systems seems to be sufficiently complete. It is evesipo
ble to incorporate fractional quantumabL states from non-BELIAN CHERN-SIMONS theo-
ries [56, 57] as shown in chapter 4 if the geometric pringples believed to remain unchanged.
The main difference lies in the nature of the quasi-partsieitations. In the approach of this
work, non-trivial statistics is a consequence of the twiistioduced by the flux quanta and is —
in the lowest lLANDAU level — always of BELIAN nature since all monodromies are simultane-
ously diagonalized. Therefore, if nonB&LIAN statistics is involved it cannot be represented
within the simple conformal field theories that were usedweleer, it is to point out that the

¢ = —2 conformal field theory which naturally describes pairingsually a logarithmic con-
formal field theory and thus includes fields with non-diadmadle monodromy action [32]. In
order to understand this in more detall, it is crucial to waikh the full twist fields, not only
the projective ones. This immediately leads to furtheriesdns for the twist fields in order to
be inserted in a correlator. If the twists are summed ovenaértions they have to be trivial
in all n copies of theb/c-spin system considered (a short discussion is providegmper=dix
B). However, at this stage, the full description of quagitipke excitations remains an unsolved
problem. Another one is the correct choice of the spin system of the conformal weights
(7,1 —j) of the fieldsb(z) andc(z). This problem is related to the fact that thie-spin systems
possess partition functions which are equivalent mu&sIAN ¢ = 1 models. Unfortunately,
the partition function of &5, 1 — j) system is closely related to the one of any otfyérl — ;')
system, in particular if — j* € Z. Thus, conformal field theory alone is not able to determine
j. However, if the composite fermion is taken as the basicatpjemight be expected that
the fractional quantum KLL state involving composite fermions made out of electrortl i
attached pairs of flux quanta should correspond to ;pin%@p + 1) fields in the conformal
field theory description. These should be elementary in¢nse that the spectrum of the con-
formal field theory does not contain fermionic fields with $ieraspin in the non-twisted sector.
Moreover, the twists related to the quasi-particle exictet should have a minimal charge of
a =1/(2pm + 1) for anm layer state, since this is the expected fractional stesis@he frac-
tional charge is entirely determined by the geometry, ite ,number of sheets in the covering
of the complex plane. But the requirement that the compdsitaions shall be the effective
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elementary particles fixes= 3(2p + 1) or j = 1(2p + 3) due to the duality — 1 — j. Avery
interesting question is, whether an effective theory afiditions between different fractional
quantum H\LL states could yield a mechanism for how tiie spin systems are mapped onto
each other, e.g., along the lines of [28, 66].

Finally, it is to stress that the scheme presented in thikwbould be understood as a pro-
posal. Although a stringent geometrical setting is progiddaich identifies the choice of con-
formal field theories, it is not possible to connect thesefamwonal field theories to the full
(2+1)-dimensional bulk theory via first principles. For instapand in contrast to the {11)-
dimensional edge theory, there is no mathematical rigotioesrem which guarantees a kind
of equivalence betweenHERN-SIMONS and conformal field theory. Furthermore, the expres-
sions for the bulk wave functions in terms of conformal fi¢lédry correlators, as all existing
proposals for bulk wave functions, should be understoodialsdnes, since exact solutions
are not known due to the fact that no microscopieMHLTONIAN has been discovered so far.
This even applies to theAUGHLIN wave functions. Comparisons with other wave functions
obtained from the numerical diagonalization of some exaatHHTONIAN can only be drawn
for a small number of electrons and not in the thermodynamid.| On the other hand, trial
wave functions such as the ones conceived hy&HLIN possess many special features, e.g.,
topological order or incompressibility, and symmetrieg, esymmetry under area-preserving
diffeomorphisms. Future research will hopefully revea gihysical nature of these properties
so that the connection with conformal field theory is eveltyyaut on firmer ground and trial
wave functions are more thoroughly checked or even dernged first principles.
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Chapter 5. Discussion
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APPENDIXA

Remarkson Unitarity

It might seem disturbing that the conformal field theoriespmsed to describe the fractional
guantum HALL bulk regime are non-unitary. It has to be stressed that ttheswies are not
meant to yield the bulk wave functions from a dynamical ppte; nor do they provide an
effective HAMILTONIAN . Moreover, since the relevant states are stationary eigiessof the
full (241)-dimensional system, no time evolution is involved. Irstbense, the bulk theory
can be reduced to a trulydeLIDEAN, (2+0)-dimensional one. The topological nature of the
full (2+1)-dimensional system suggests the bulk theory to be at $eate invariant. Thus,
the assumption that bulk wave functions should have a cordbfield theory description is
reasonable, but the requirement that these conformal tedries should be unitary is not
obligatory and does not contain any physically relevardrimiation. The bulk conformal field
theory describes purely geometrical features, namely t@acorresponding wave functions
can be understood in terms of vector bundles ove&MRANN surfaces [67]. As it was argued
in the previous chapters, the fractional statistics of thasitparticle excitations results in a
multivalued wave functions, considered on the complex@la@ne of the central features of
the approach proposed in this work is to replace this seltynthe geometrically more natural
scheme of holomorphic functions overeRIANN surfaces locally represented on a ramified
covering of the complex plane leading to the non-unitgry — j) b/c-spin systems.

However, the question of unitarity is not irrelevant. To lmmsistent, it has to be demanded
that the ansatz of this work fits together with the-()-dimensional conformal field theories
of the edge excitations. These describe waves propagdting the one-dimensional edge of
the quantum droplet and hence necessarily have to be uhif@gnsistency requires that the
space of states of either conformal field theory, the edgetatulk one, are to be equivalent.
In other terms, both should have the same partition funstibortunately, thé/c-spin systems
have well-known patrtition functions which are indeed eglewnt to those of certain = 1
GAUssIAN models. These latter unitary conformal field theories aexigely the candidates
for the description of the edge excitations which are moselyi used:

To be more explicit, a spifj, 1 — j) b/c-spin system in some twisted sector with twisis
considered. The full character of this system, includiregghost number, is defined as

(Jre) & (a)

XYU9(g, 2) = trye| g BT | (A-1)

where it is clearly indicated that the mode expansions ofMirasORO field and the ghost

1This also follows from the strict one-to-one corresponaewio(2+1)-dimensional GERN-SIMONS theories
on a manifold)M with unitary (1+1)-dimensional conformal field theories living on the boan M [24].

2There are some other proposals making use of so-called minivy, ., models or@(m) Kac-Mooby
algebras forn-layer states, e.g., [7, 17, 23, 46].
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current depend on the twist sector. Explicitly computedsthcharacters read:

1

X(j,a)(q7 )_qz(ﬁa (G+at)+45 H + gt~ )(1+z71qn7(j+a))_ (A.2)

It is evident from this formula that the characters (almosty depend orij + «). In particular,
the following equivalence is obtained:

X(j,a)(q’z) _ z%*jX(%,aﬂ'*%) . (A.3)

Thus, the VRASORO characters for = 1 of theb/c-spin systems are all equivalent to characters
of the complex fermion witk = 1 where the twist sectorsget mapped to others with+j — 3.
Thus, all sectors which are mapped in this way keep theirstts, sincej; € Z + % and
a=a+7]— % mod 1. A more detailed analysis reveals that the partition fumgiare indeed
equivalent. Detailed approaches are given by [68, 69, 7D, This extends to the = —2
spin system describing pairing, which has been pointedrof3d, 60]. Therefore, the space of
states ofl/c-spin systems with twists = k/m, k = 0,...,m — 1, is equivalent to the space
of states of a rational = 1 (Z, orbifold) theory with radius of compactificatiadh?z? = 1/m.
Carefully investigated, this equivalence indeed holdsh@ugh alwaysn copies of thé/c-spin
systems are considered, the fields are represented iBanIAN projection where the charges
(or twists) of all copies of the fields are closely relatedaoleother. Since they are not chosen
independently, solely one copy of thellBERT space is obtained.
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Twist Fieldsand Topology

The conformal field theory approach to lowestNDAU level bulk wave functions of the frac-
tional quantum HLL effect presented in this work successfully describes timeptete set of
experimentally observed filling fractions in the rarigg v < 1 with but a few exceptions. The
spin fieldsb(z) andc(z) set on aZ,-symmetric REMANN surface naturally simulate quasi-
particles with fractional charges and statistics. Theaéufes turn out to be closely related to
the structure of the branch cuts of the manifold and, theegtben-dimensional charge vectors
which define the Vertex operators in the bosonized spin cordbfield theory. Reconsidering
the results of chapter 3 the loweshlDAU level bulk wave functions are deduced from the
projective fields defined in (2.40). Here, the branch poiniciiis represented by a ramified
covering of the compactified complex plaieis mapped to an-fold copy ofC . However, even
if the analytic structure of the corresponding fractionahatum FhLL states is obtained in this
manner, the geometrical and conformal features are soédflgeatl by the full theory, namely
the twist fields with charge vectors

&%Q:—W,z’e{O,...,n—l},jEZ/Q, (B.1)
wherej is the spin of the theory. This spin provides an offset in {Bvhich is irrelevant for
the statistics of the quasi-particles and is only apparetite conformal weight of the Vertex
operators (2.37). Thus, the conformal background of the gpories is determined by the
simplified charge vectors

1 2 _1
&Zn:(o, -2 ) . (B.2)
n n n

It was first shown by KizHNIK [51, 52] that these vectors have to satisfy severe congtrain
In order to guarantee an overall fermionic system, the suer each component’~ of all
existing quasi-particles of the fractional quantumL state has to be an integer. If a state
with L excitations is considered, each quasi-particle is asteutiaith a charge vector (B.2)
allowing permutations of its components. This yielddiophantic equations. For example, a
state with two excitationsL =2) always implies the charge vectors

aln () — (1/n,2/n,...,0) | qlm(2) = (n—=1)/n,(n—=2)/n,...,0) . (B.3)

These indeed satisfy the physical constraints since

2
dar =1, vke{o,....n—1} (B.4)
=1
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solves the system of diophantic equations. This is the arilytion up to simultaneous permu-
tations of the vectors (B.3). Thus, there solely exists ameetation function or, more precisely,
one conformal block which describes an excited bulk wavetion with two quasi-particles.
An interesting consequence is that there seems to be nacsofat L. = 1. In the geometrical
picture this would correspond to a branch cut leading to rev&hThe excitation behaves as a
monodromy operation which moves the system from a shézt + 1. The only reasonable
argumentation in this case is to considerto be the second branch point. By this, the desired
wave function (1.18) is obtained.

For L > 2, there may exist more than one solutfofiheir numberV,,. provides deeper insight

in the topological characteristics of the given fractiogabhntum HLL states. The intrinsic
geometrical features of théc-spin approach allow to read off the degeneracy of the ground
state for a given fractional quantunHL state in a non-trivial setting by countiig.,.. On the
other hand, these excitations can be interpreted to efedgtgenerate the non-trivial topology
in terms of vertex operators. In the following, this is iliteged for the degeneracy of the ground
state in Z,-symmetric) torus geometry which is often quoted with respe topological order.
The calculation is executed for an excited bulk wave fumctioth L = 4 and ends up with
four independent sets of charge vectors plus the non-ekgiteund state, hence in total five
solutions?

(0000) ,  (LLLL) (LT (1) and (L1T1) - (B.5)

This is the well-known degeneracy of the\EbANE -REZAYI ground staté.
Further calculations have been applied to gldbakymmetric fractional quantumAlL sys-
tems with charge vectors
1 2
ars = (0 ) (B.6)

'3 3

or permutations of (B.6). The result is illustrated in TaBld. The set of solutions for large
L or n is far more difficult to find. The number of permutations betsasn! and there are
n diophantic equations witlh dependent parameters to solve. To summarize, the geoatetric

TABLE B.1: Ground state degenerady,s of Zs-symmetric fractional
guantum H\LL systems withl, quasi-particle excitations.

L |2]|3]4]5]l6]7]8]9
Nos | 21314611 142332

features of thé/c-spin conformal field theory description of the fractionabgtum HALL effect

1The number of solutions must be always understood ‘up tolsame&ous permutations of dll charge vectors’
since these global permutations do not provide additignddi/sical information.

2The symbolg), |, and{ denote the charge vectai® 0), (0, 1/2), and(1/2, 0), respectively. The insertions
of the excitations are at four ordered distinct points.

3More precisely, the full degeneracy turns out toMes = 10 where the additional factor of two arises from a
spin1/2 realization of arBU(2)-symmetry via a @ussIAN c=1 conformal field theory [32, 60].
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naturally encompasses quasi-particle excitations inuheunprojected setting, leading to non-
trivial constraints and furthermore revealing topologjinéormation. However, a detailed study
of these excited bulk wave functions is beyond the scopeisthiesis and is subject to further
studies.
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