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Abstract

In this thesis we consider various aspects of logarithmic conformal field

theories (LCFTs). After recalling some important definitions and relations of

(logarithmic) conformal field theories we study possible extensions of conformal

ghost systems to LCFTs and the generic structure of the four-point function.

In the first part of this thesis we analyze the b-c ghost system of central

charge c = −2 and compare it with the θ-θ̄ system, which is known to be

a LCFT. For that purpose we study two different ways of constructing log-

arithmic conformal field theories: via symplectic fermions and by deforming

the energy-momentum tensor. While the two approaches lead to the same

results for c = −2, they are not equivalent for c = −26. In the latter case the

construction by symplectic fermions leads to unsurmountable problems, but a

variation of the deformation method yields operators satisfying the commuta-

tion relations of the Virasoro algebra. However, the operators do not act in

a consistent way on the Hilbert space of states which forces us to study the

theory on nontrivial Riemann surfaces. This leads to a consistent LCFT for

c = −26 which in particular differs from known LCFTs by the structure of the

Virasoro modes. The mode L0 turns out to be diagonal and it is even possible

to choose the deformation parameters appearing in the result in such a way

that the global conformal group is non-logarithmic.

In the second part we investigate the generic structure of 4-point correla-

tion functions of fields residing in indecomposable representations of arbritrary

rank. To fix the generic structure we need to solve a generalization of the global

conformal Ward identities (GCWI). The solutions are recursively determined

by using an algorithm which we present in this part of this thesis. We also

compute all results for a Jordan-rank r = 2 and r = 3 theory, making use of

permutation symmetry and introduce a graphical representation. By doing so

we obtain much shorter results and get a better understanding of the structure

of the solutions. In case all four fields are logarithmic partner fields additional

constants in the solution may appear. We discuss the origin of these additional

degrees of freedom and investigate the influence of the discrete symmetry on

these terms. Finally we explicitly determine the four-point correlator for arbi-

trary Jordan-rank for the case where up two fields are of logarithmic type and

suggest the form for the case of three logarithmic fields.

Keywords: logarithmic conformal field theory, ghost system, correlation

function





Zusammenfassung

In dieser Arbeit werden verschiedene Aspekte logarithmischer konformer

Feldtheorien (LKFTn) betrachtet. Nach einer Wiederholung der wichtigsten

Definitionen und Relationen von (logarithmischen) konformen Feldtheorien un-

tersuchen wir, inwieweit konforme Geist-Systeme zu LKFTn erweitert werden

können und bestimmen die generische Struktur von Vier-Punkts-Funktionen.

Im ersten Teil dieser Arbeit wird das b-c Geist-System mit der zentralen

Ladung c = −2 analysiert und mit dem θ-θ̄ System, bei dem es sich um eine

LKFT handelt, verglichen. Zu diesem Zweck betrachten wir zwei verschiedene

Wege, mit denen sich LKFTn erzeugen lassen: Zum einen kann dies mittels

symplektischer Fermionen geschehen, zum anderen durch eine Deformation

des Energie-Impuls-Tensors. Die beiden Ansätze liefern dasselbe Resultat für

c = −2, sind aber für c = −26 nicht äquivalent. Die Konstruktion mittels sym-

plektischer Fermionen führt zu unüberwindlichen Problemen, wohingegen die

Deformations-Methode Operatoren erzeugt, die die Kommutator-Relationen

der Virasoro-Algebra erfüllen. Da die Operatoren jedoch auf den Hilbertraum

der Zustände nicht konsistent wirken, muss die Theorie auf nicht-trivialen

Riemann-Flächen untersucht werden. Dies führt zu einer konsistenten LKFT

für c = −26, die sich insbesondere durch die Struktur der Virasoro-Moden

von anderen LKFTn abhebt. Es stellt sich heraus, dass der L0 Mode diagonal

ist und durch geeignete Wahl der Deformationsparameter sogar die globale

konforme Gruppe nicht-logarithmisch gewählt werden kann.

Im zweiten Teil der Arbeit untersuchen wir die generische Struktur von

Vier-Punkts-Korrelationsfunktionen von Feldern, die sich in unzerlegbaren Dar-

stellungen von beliebigem Jordan-Rang befinden. Um die generische Struktur

festzulegen muss eine verallgemeinerte Version der globalen konformen Ward

Identitäten gelöst werden. Mittels eines neu entwickelten Algorithmus bestim-

men wir sämtliche Lösungen für eine Jordan-Rang r = 2 und r = 3 Theorie

und stellen diese graphisch dar, wobei wir zusätzlich Permutationssymmetrien

ausnutzen. Dadurch erhalten wir erheblich kürzere Resultate und bekommen

ein besseres Verständnis für die Struktur der Lösungen. Sind alle vier Felder

im Korrelator logarithmische Partner-Felder, so können zusätzliche Konstan-

ten in der Lösung auftreten. Wir diskutieren den Grund für das Auftreten

dieser zusätzlichen Freiheitsgrade und untersuchen den Einfluss der diskreten

Symmetrien auf diese Terme. Zum Abschluss bestimmen wir explizit den Vier-

Punkts-Korrelator für beliebigen Jordan-Rang für den Fall, dass bis zu zwei

Felder logarithmisch sind und schlagen sogar eine Verallgemeinerung für drei

logarithmische Felder vor.

Schlagworte: Logarithmische Konforme Feldtheorie, Geist-System, Korre-

lationsfunktion
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Introduction

”
Wir müssen wissen.

Wir werden wissen.“

— David Hilbert (1930)

In 1984 Belavin, Polyakov and Zamolodchikov published their famous paper

about “infinite conformal symmetry in two-dimensional quantum field theory”,

cf. Belavin et al. (1984). In these times non-trivial quantum field theories

(QFTs) could almost only be studied in the perturbative regime. The work

of Belavin et al. on two-dimensional conformal field theories (CFTs) on the

other hand allows a fully non-perturbative approach, which is a consequence

of the infinitely large symmetry algebra of the theory. The impact of CFT on

theoretical and mathematical physics was enormous, and CFT was found to be

useful in wide areas of condensed-matters physics as well as in string theory.

Only three years after BPZ’s ground-breaking work Knizhnik discovered

that twist fields in ghost systems lead to logarithmic divergences (as opposed

to poles in ordinary CFT), cf. Knizhnik (1987). In the following years various

other authors discovered aspects of what we now call “logarithmic conformal

field theories” (LCFTs), e. g., Rozansky and Saleur (1993); Saleur (1992a,b).

In 1993, Gurarie introduced in his paper logarithmic operators which helped

to quickly establish LCFTs as a new and interesting field of studies. Since

then an enormous amount of work was done to understand LCFTs and to link

LCFTs to other fields in physics. Useful applications have been found in many

areas, reaching from sandpile models to applications in string theory to name

only two. The number of topics LCFT might play a role in is still expanding:

there are suggestions about an AdS/LCFT correspondence, and recently links

to Stochastic Löwner evolutions (SLE) were proposed.

In order to determine the full field content of a conformal field theory one

has to understand its representation theory. Representations of LCFTs are
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characterized by their Jordan-cell structure. In this sense CFTs form a subset

of LCFTs: CFTs are LCFTs of Jordan-rank one. Conformal field theories

have been studied for more than twenty years, and in this time a powerful

machinery of tools, algorithms and definitions was developed, which nowadays

is indispensable for analyzing conformal field theories. These definitions and

techniques include characters, null vectors, operator product expansions, cor-

relation functions, partition function, fusion rules, to name only some of the

most important. Since LCFTs were established about ten years ago, there

was a great effort to port the tested and very successful machinery of CFT to

LCFT. Among many others the works of Flohr, Gaberdiel, Kausch, Kogan and

Rouhani contributed significantly to this endeavor. Nevertheless, the founda-

tions of LCFT are still not settled, and there are many areas which are not

particularly well understood. This includes the understanding of twist fields,

in particular their geometrical meaning, modular properties of characters and

partition functions and extensions of conformal systems to logarithmic ones.

This thesis is a contribution to the effort to establish the foundations of LCFT

and to shed some light on its dark corners.

The structure of this dissertation is as follows. In the first chapter we

present the basics of conformal field theory and LCFT. This introduction

should enable the reader to understand the succeeding chapters.

In the second chapter we pick up the question whether conformal systems

can be extended to logarithmic conformal field theories. We compare in detail

a b-c conformal ghost system of central charge c = −2 with the θ-θ̄ system of

the same central charge. The latter is known to be a LCFT and has several

similarities with the former, which is a CFT. We examine two different methods

for a transition from the b-c to the θ-θ̄ system: one is via symplectic fermions,

the other approach is by a deformation of the energy-momentum tensor. Both

methods succeed in the sense that the θ-θ̄ system is recovered. In the next

step we apply the method to a b-c ghost system with central charge −26. For

such a system a LCFT was not known up to now. The symplectic fermion ap-

proach fails because the energy-momentum tensor cannot be constructed, but

a generalization of the method of deformation is possible and yields a consis-

tent representation of the Virasoro algebra. While the constructed operators

obey the Virasoro algebra, they do not act consistently on the Hilbert space

of states of the theory. Considering the origin of logarithmic operators leads

to an investigation of the theory on nontrivial Riemann surfaces. Indeed, this

yields a consistent theory for c = −26. In difference to other known LCFTs the

Virasoro mode L0 turns out to be diagonal, and a certain choice of deformation
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parameters even results in a non-logarithmic global conformal group.

The last part of this thesis deals with the question what the generic form of

four-point correlation functions in LCFT is. This question has been answered

in case of a CFT for a long time, and its solution is given in the first part of

this thesis. In the logarithmic case a generalization of the global conformal

Ward identities (GCWIs) needs to be solved. Finding the generic structure of

a correlator is much harder because the generalized GCWIs include the pre-

decessors of the correlator, i. e., correlators of a lower logarithmic level. The

latter requires to solve the equations recursively and also leads to much longer

equations. Fortunately it is possible to break the long equations into smaller

ones and to solve these with the help of an algorithm which is described in this

thesis. By using this algorithm, we compute all results for a Jordan-rank r = 2

and r = 3 theory which can be rewritten in a much more appealing form by

exploiting permutation symmetry and introducing a graphical representation.

Each solution contains several functions which only depend on the globally

conformal invariant crossing ratio. The number of these functions grows heav-

ily with the Jordan-rank r and the total level of the logarithmic partner fields.

The complexity of the solutions also increases because additional degrees of

freedom appear in correlators which contain logarithmic fields only. We explain

these additional degrees of freedom and give an almost complete classification

of the form of the additional terms which can appear. In the last subsection

of this part of the thesis we explicitly compute the four-point correlator for

arbitrary Jordan-rank for the case where up to two fields are of logarithmic

type. Furthermore, we suggest the form of a four-point function containing up

to three logarithmic fields.
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Chapter 1

Foundations

“If I have been able to see further, it was only

because I stood on the shoulders of giants.”

— Sir Isaac Newton (February 5, 1675)

This thesis is about different aspects of logarithmic conformal field theory

(LCFT). In order to provide a better understanding of the following chapters

this chapter lays the foundations, gives an overview of the basic framework and

contains all conventions and matters of notation. For brevity we omit almost

all proofs. As a compensation, we recommend introductory literature in the

beginning of each section. With the help of the given references the interested

reader should be in the position to close all remaining gaps.

LCFT actually is a generalization of conformal field theory (CFT), or to put

it more precisely: a CFT is a LCFT of Jordan-rank r = 1. Nevertheless we will

proceed in the usual way and give first an overview of conformal field theory

and afterwards deal with the LCFT. On the one hand this is for historical

reasons, on the other hand the structures showing up in CFT are in general of

a simpler form and thus easier to understand.

1.1 Conformal Field Theory

This section gives an elementary introduction to the conformal field theory. As

noted before we omit most of the proofs. We refer to di Francesco et al. (1997);

Gaberdiel (2000); Ginsparg (1988); Ketov (1995) and Schellekens (1996) for

more details. These references give a more complete introduction and should

leave almost no question open. For a mathematical more stringent approach
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towards CFT see Schottenloher (1997). For an introduction motivated by

string theory the reader should consult Polchinski (1998a,b). It may also be

of interest to study Gaberdiel and Goddard (2000); Schreiber (2004) and the

appendix of Wald (1984).

In the next four subsections we introduce a number of terms that are needed

in order to define what a conformal field theory is and that help explaining its

properties. These topics can be outlined in a fairly general setting, that is on

curved space in arbitrary dimension d. Shortly after this we will consider two

dimensional systems only, which also has the benefit that the space in question

is conformally flat, cf. subsection 1.1.4.

The much richer symmetry algebra in d = 2 and an algebraic structure

called Virasoro algebra which has no equivalent in d > 2 is discussed in the

following subsections. A nice property of a conformal field theory in two di-

mensions is that it allows for a calculation of n-point functions without having

to resort to perturbation theory in a given coupling constant.

1.1.1 Conformal transformations, conformal group

On a pseudo-Riemannian manifold (M, g) of dimension d the line element ds

and thereby the meaning of distance on an infinitesimal scale is defined by the

metric tensor g as

ds2 := gµν(x)dxµdxν . (1.1)

The diffeomorphisms f : M → M on M form the group Diff(M). If f ∈
Diff(M) additionally fulfills

f ∗gf(p) =e2σ(p)gp ∀p ∈ M (1.2)

with σ ∈ F(M) := {h :M→ � | h diffeomorphic} and f ∗ being the pullback,

then f is called a conformal transformation. The set of conformal transforma-

tions on M forms a group, the conformal group Conf(M).1 An isometry is

defined by the same equation as above, but for fixed σ = 0, and thus the group

of isometries Iso(M) is a subgroup of Conf(M). We point out that Iso(M)

and Conf(M) are properties of the space only and do not depend on a physical

action. From

gf(p)(f∗X, f∗Y ) = e2σ(p)gp(X, Y ) ∀X, Y ∈ TpM (1.3)

1In the literature it is also common to refer to the the conformal group as the component

that contains the identity.
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with f∗ being the push-forward it is clear that conformal transformations f

preserve the metric up to a scale. On a Riemannian manifold we can define

the angle φ between two vectors X = Xµ∂µ and Y = Y µ∂µ ∈ TpM the tangent

space by cosφ := gp(X, Y )/
√
gp(X,X)gp(Y, Y ) and immediately derive from

(1.2) that the angle is invariant under conformal transformations. Thus con-

formal transformations may locally change the scale, but not the shape of a

manifold.2 Expressed in components (1.2) becomes:

∂x′α

∂xµ
∂x′β

∂xν
gαβ(f(p)) = e2σ(p)gµν(p) , (1.4)

where x denotes the “old” coordinates in a neighborhood of p and x′ the

coordinates in a vicinity of f(p).

If we restrict ourselves to
� p,q with the flat metric tensor ηµν then the group

of isometries Iso(M) is the Poincaré group which is the semi-direct product

of O(p, q) and the group of translations Ep,q. In particular this means that

all rigid translations and Lorentz rotations also are conformal transformations.

The converse is not true, the conformal group for
� p,q endowed with the flat

metric is isomorphic to O(p+ 1, q + 1)/ � 2.3

1.1.2 (Conformal) Killing vector fields

A vector field X ∈ X(M) induces an infinitesimal displacement εX on points

p ∈ M with coordinates xµ. Hereby X(M) denotes the set of all vector fields

onM. Inserting the change of the coordinates by an infinitesimal displacement

xµ → xµ + εXµ(x) in (1.4) (with σ ≡ 0) leads to

LXgµν := Xλ∂λgµν + gλν∂µX
λ + gµλ∂νX

λ = 0 . (1.5)

which is called the Killing equation. The operator LX denotes the Lie-deri-

vative. A vector field X is called a Killing vector field, if its infinitesimal

displacement generates an isometry, that means it fulfills equation (1.5). In a

manner of speaking a Killing vector field represents a symmetry of a manifold.

Before we go on with the generalization of the above definitions for arbitrary

σp, we note that the d-dimensional (d ≥ 2) pseudo-Riemannian manifold
� p,1

2We remark that the given definition of angle implies that the dimension d is greater

than 1. In d = 1 every smooth map automatically is a conformal transformation.
3It should be added that the connected component of the identity of the conformal group

is isomorphic to SO+(p+1, q+1). Here SO+(p+1, q+1) denotes the connected component

of the identity in O(p+ 1, q + 1).



8 Foundations

(d = p + 1) endowed with the Minkowski metric tensor ηµν is a maximally

symmetric space. By definition this means that it possesses 1
2
d(d+ 1) Killing

vector fields. Of these d generate translations, d−1 boosts and 1
2
(d−1)(d−2)

generate space rotations.

A slightly more general concept is the following one: X is called a confor-

mal Killing vector field if the infinitesimal displacement generates a conformal

transformation, which means that

LXgµν = Xλ∂λgµν + gλν∂µX
λ + gµλ∂νX

λ = ψgµν , ψ ∈ F(M) . (1.6)

This is known as the conformal Killing equation and σ = 1
2
εψ.

1.1.3 Conformal group and algebra of ( � p,q, ηµν) for

p+ q > 2

For
� p,q, p+ q = d > 2 endowed with the flat metric tensor ηµν the conformal

Killing equation can be brought to the form

∂µεν + ∂νεµ =
2

d
(∂λε

λ) ηµν . (1.7)

In this equation we have set εµ(x) := εXµ(x). One easily finds that εµ is at

most quadratic in the coordinates xν which allows for solving (1.7) by using

the ansatz εµ = aµ + bµνx
ν + cµνρ x

νxρ.

As noted before the Poincaré group forms a subgroup of the conformal

group. Thus the conformal group contains the translations and rotations.

Additionally, the dilations x′µ = αxµ and so-called special conformal transfor-

mations4 (SCT) which can be written for x2 6= 0 in the form

x′µ

x′2
=
xµ

x2
− bµ (1.8)

belong to the conformal group. Altogether we have d translations, d
2
(d − 1)

rotations, one scale transformation and d special conformal transformations.

Thus we find that the group has 1
2
(d + 1)(d + 2) generators and, as we noted

before, the component containing the identity of the conformal group is iso-

morphic to SO+(p + 1, q + 1). We will find that the conformal group in two

4These transformations can be understood as a translation by bµ, preceeded and followed

by an inversion xµ → xµ/x2 for x2 6= 0.
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dimensions has an analogous structure, but that the conformal algebra is com-

pletely different. The generators of the conformal group in d > 2 dimensions

are

D = x · ∂ (dilation),

Pµ = ∂µ (translation),

Mµν = xν∂µ − xµ∂ν (rotation),

Kµ = 2xµx · ∂ − x2∂µ (SCT), (1.9)

and with that the commutation rules can be easily worked out.

So far we have been dealing with conformal properties of the manifold

on which physical theories will be defined. In such a physical theory the

operators 1.9 will act on fields on the manifold. In the following we use the

above operators respectively their commutation relations in order to show that

mass terms break conformal invariance.

The commutator we need to evaluate in order to show this is [D,Pµ] = −Pµ.

Then we can simply determine that

[D,P 2] = Pµ[D,P µ] + [D,Pµ]P µ = −2PµP
µ = −2m2 (1.10)

holds and for a massive state |p〉 with m2 = p2 we find

−2m2 = 〈p| [D,P 2] |p〉 = 〈p| (DP 2 − P 2D) |p〉 = 0 , (1.11)

which means that the mass m has to vanish.

1.1.4 Weyl rescaling, conformal field theory, conformal

flatness

In subsection 1.1.1 we discussed the effect of coordinate transformations on the

metric tensor gµν and introduced the notion of a conformal transformation. A

related concept is the following: suppose we are given two different metrics g

and g′ on a manifold M. Then we say that g is conformally related to g ′ if

g′p = e2σ(p)gp ∀p ∈ M . (1.12)

We refer to the transformation gp → e2σ(p)gp as Weyl rescaling. “Conformally

related” is an equivalence relation for the metric tensors onM, and the equiv-

alence class of metric tensors is called the conformal structure. It should

be pointed out that for a Weyl rescaling of the metric tensor no coordinate
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transformation is involved. Weyl invariance is not a property of the pseudo-

Riemannian manifold, but of the physical action. Now we are finally in the

position to define what we understand under the term conformal field theory : a

conformal field theory is a field theory which is invariant under Weyl rescalings

at every point of spacetime.

A pseudo-Riemannian manifold (M, g) is called5 conformally flat iff for

every p ∈ M there exists a neighborhood U such that the metric tensor within

is conformally equivalent to the metric of a flat space ηµν . From (1.2) it

is obvious that conformally flat manifolds possess the same local conformal

group as the flat Minkowski spacetime, though the global topology may be

different from the topology of a flat space. Further it can be shown that a

two-dimensional pseudo-Riemannian manifold (M, g) always is conformally

flat.6

Let us consider an example for Weyl invariance. The following action de-

scribes a free massless boson φ in d dimensions on a curved background. The

parameter α denotes some constant we are not interested in for the moment,

S = α

∫
ddx
√
|g|gµν(∂µφ)(∂νφ) . (1.13)

For d = 2 the action is known as Polyakov action.7 As every physical action

or mathematical meaningful object the action (1.13) is invariant under trans-

formations f ∈ Diff(M). What is remarkable is that the Polyakov action is

invariant under Weyl rescalings iff the dimension d = 2. This can easily be

seen as follows: under gµν 7→ e2σgµν, the inverse metric tensor transforms as

gµν 7→ e−2σgµν and g := | det(gµν)| 7→ e2dσg. Since no coordinate transforma-

tion takes place, ∂µφ and ddx are invariant under Weyl rescalings, such that

the rescaled action S ′ becomes

S ′ = α

∫
ddx
√
|g|gµν(∂µφ)(∂νφ) e(d−2)σ . (1.14)

Obviously the Polyakov action is on a classical level invariant under Weyl

rescalings iff d = 2. Of course the “critical dimension” depends on the form of

the action. For the Yang-Mills action the critical dimension is four, i. e. d = 4.

5An equivalent definition is that the Weyl tensor vanishes, cf. Nakahara (1990).
6A simple derivation based on counting degrees of freedom is given in Schreiber (2004) a

more rigorous proof can be found in Nakahara (1990).
7Though the name “Polyakov action” is well established in the literature it was in fact

Brink, Di Vecchia and Howe (1976) and Deser and Zumino (1976) who first had the idea to

study this action. Polyakov though was the first to stress its importance for quantizing the

bosonic string.
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1.1.5 Energy-momentum tensor, conserved currents

The energy-momentum tensor can be defined by varying the action with re-

spect to the metric tensor

Tµν :=
1√
|g|

δS

δgµν
. (1.15)

The so defined energy-momentum tensor is always symmetric.8 Translational

isometries imply that the tensor is locally conserved, meaning that

∇µ T µν = 0 , (1.16)

where ∇µ denotes the appropriate covariant derivative. Furthermore, one can

easily show that the Weyl invariance of the action S also guarantees that the

stress-energy tensor T µν is traceless, T µµ = 0. With the help of the energy-

momentum tensor we can now define a conformal current

jµ(ε) := Tµν ε
ν , (1.17)

that is associated with an infinitesimal conformal transformation εµ, where

εµ has to satisfy equation (1.7). The short calculation ∂µjµ = 1
2
T µµ(∂ · ε) = 0

immediately shows us that the current has vanishing divergence, too.

1.1.6 Conformal field theory in two dimensions

The structure we have investigated so far was mostly a pseudo-Riemannian

manifold (M, g) in arbitrary dimension d. There is a number of reasons why

two-dimensional systems have a beauty on their own and why it is an appealing

endeavor to solely focus on such systems. For the implications of conformal

invariance for dimensions d > 2 we refer the interested reader to Erdmenger

(1996).

First we noticed that the Polyakov action, which is of importance for

string theory, is invariant under Weyl rescalings if and only if the system

is two-dimensional. This by the way is why strings are favored by physicists

compared to extended objects like membranes. We also have noted that a

two-dimensional pseudo-Riemannian manifold always is conformally flat which

means that there exists a parameterization such that the coordinates of the

8In a theory that is invariant under the rotation group it is at least possible to make the

energy-momentum tensor Tµν symmetric.
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metric locally have the form gµν = e2σηµν. Using this feature together with

the Weyl rescaling invariance of the theory makes further calculations much

easier because we can use the flat metric tensor ηµν on the whole worldsheet.

Another important feature of two-dimensional conformal field theory, which

we have not discussed up to now, is that the conformal Lie algebra is infinite-

dimensional.9 Upon quantization, this leads to a powerful algebraic structure,

the so-called Virasoro algebra, which will show up only in two-dimensional

conformal field theory.

For the above reasons we will investigate the two-dimensional manifold
� 1,1

with the flat metric tensor ηµν from now on only. By virtue of a Wick rotation

we can even replace the Minkowski metric with a flat Euclidean metric δµν.
10

This turns out to be advantageous if we go to complex coordinates in the

following, as (1.7) for d = 2 and gµν = δµν becomes

∂1ε1 = ∂2ε2 , ∂1ε2 = −∂2ε1 . (1.18)

which are the well-known Cauchy-Riemann differential equations.

Complexification and the conformal algebra in two dimensions

In the beginning we started with a time coordinate x0 and a space coordinate

x1. Upon Wick rotating, the time coordinate became imaginary: x0 7→ −ix2.

We now choose z = x1 + ix2 and z̄ = x1 − ix2 as coordinates on the complex

plane. Also we introduce ε(z, z̄) = ε1 + iε2 and ε̄(z, z̄) = ε1− iε2 such that the

infinitesimal coordinate transformations become

z → z′ = z + ε(z, z̄) , z̄ → z̄′ = z̄ + ε̄(z, z̄) . (1.19)

The coordinates z and its complex conjugate z̄ depend on each other, but often

it is useful to regard them as independent complex coordinates. Usually this

is done by extending the range of the Cartesian coordinates x1 and x2 to the

complex plane. Then the change from (x1, x2) ∈ � 2 to (z, z̄) ∈ � 2 is just a

9Here a short word of warning is in order: physicists often speak and write about an

infinite-dimensional conformal group. This of course is (mathematically) incorrect since

the conformal group is isomorphic to the group SL(2, � )/ � 2. Martin Schottenloher de-

scribes this misunderstanding in Schottenloher (1997) as follows: “[. . . ] physicists mostly

think and calculate infinitesimally, while they write and talk globally. Many statements be-

come clearer, if one replaces ‘group’ with ‘Lie algebra’ and ‘transformation’ by ‘infinitesimal

transformation’ [. . . ]”.
10Note though that using Wick rotations is full of subtleties. One has to ensure that the

considered quantities can be analytically continued to the Euclidean space.
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change of variables, and thus z and z̄ can be treated as independent variables.

If needed at all a reality condition can be imposed at the end.

Changing the variables as mentioned before and using (1.19) reduces the

conformal Killing equation (1.7) to

∂z ε̄(z, z̄) = 0 , ∂z̄ε(z, z̄) = 0 , (1.20)

which means that ε = ε(z) does not depend on z̄. Thus any holomorphic11

function ε(z) is an infinitesimal conformal transformation, and the same holds

for the anti-holomorphic function ε̄(z̄). Since we have locally infinitely many

linearly independent holomorphic functions at our disposal, this means that

the dimension of the conformal algebra is infinitely large. As we pointed out

in the beginning of this section this is a specialty in two dimensions, in higher

dimensions the conformal algebra is finite.

More systematically we expand the infinitesimal coordinate transforma-

tions in a basis

z → z′ = z − anzn+1 , z̄ → z̄′ = z̄ − ānz̄n+1 , n ∈ � , (1.21)

and determine the corresponding infinitesimal generators

`n = −zn+1∂z , ¯̀
n = −z̄n+1∂z̄ , n ∈ � . (1.22)

These operators satisfy the classical conformal algebra, which is the direct sum

of two isomorphic algebras, also known as Witt algebra12

[`n, `m] = (n−m)`n+m , [¯̀n, ¯̀
m] = (n−m)¯̀

n+m , (1.23)

and furthermore the holomorphic and the anti-holomorphic part decouple

[`n, ¯̀
m] = 0 . (1.24)

We will notice the independence of these two parts in many other places as

well. Nevertheless the theory is not always a simple product of the two sectors.

11Here again the usage of language differs between mathematics and physics. Mathemati-

cians mean by “holomorphic” that the function is differentiable in the vicinity of some point.

Most physicists use the term “holomorphic” in the sense that the function does depend on z

only and not on z̄ at all. In this sense singularities are not forbidden. Mathematicians would

call such functions “meromorphic”. In the scope of this thesis we use the term “holomorphic”

in the physical sense.
12As we will see the quantized version requires adding an additional term which is also

known as central extension of the Witt algebra.
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In particular logarithmic conformal field theories are known for not factorizing

into two sectors, cf. subsection 1.2.1.

Though the conformal algebra is infinite-dimensional not every generator is

well-defined globally on the Riemann sphere S2 = � ∪{∞}. One finds that the

(global) conformal group is generated by the subalgebra of the Witt algebra

which consists of {`n, ¯̀
n} for n = −1, 0, 1. This results in global conformal

transformations of the form

f(z) =
az + b

cz + d
, f̄(z̄) =

āz̄ + b̄

c̄z̄ + d̄
, (1.25)

where a, b, c, d ∈ � and ad− bc = 1 and the analogous conditions apply to the

(independent) anti-holomorphic sector.

The transformations f , f̄ are known as projective conformal transforma-

tions or Möbius transformations. The group of projective conformal transfor-

mations is isomorphic to PSL(2, � ) := SL(2, � )/ � 2 which itself is isomorphic

to SO+(3, 1). The group SO+(3, 1) denotes the proper orthochronous Lorentz

group in four dimensions.13 As there is a holomorphic and an anti-holomorphic

sector the (global) conformal group of the component containing the identity

is isomorphic to PSL(2, � )× PSL(2, � ).

Note though that we duplicated the number of variables in the beginning

by saying that z and z̄ are linearly independent. Removing this artifical expan-

sion by applying the reality condition again halves the size of the conformal

group, such that the (global) conformal group for the component containing

the identity is SO+(3, 1).14

Finally we remark that the operators `−1, ¯̀−1 are the generators of the

translations, and `1, ¯̀
1 generate the special conformal transformations. It is

worth keeping in mind that that `0 + ¯̀
0 generates dilatation and K := i(`0− ¯̀

0)

generates the rotations.

The energy-momentum tensor in two dimensions

We derived a couple of properties which every energy-momentum tensor in a

conformal field theory has to fulfill, cf. subsection 1.1.5. In two dimensions

13In notation and terms we follow Sexl and Urbantke (1992) and call O(3, 1) the Lorentz

group and SO(3, 1) the proper Lorentz group. Finally SO+(3, 1) called the proper or-

thochronous Lorentz group is the component of the identity, a subgroup of O(3, 1). Be

careful that conventions in the literature differ widely, concerning the notation as well as

the meaning of the term “Lorentz group”.
14In this sense the (global) conformal group for the component containing the identity is

for every d ≥ 2 isomorphic to SO+(p+ 1, q + 1). Here with p = 2 and q = 0.
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the tracelessness implies Tzz̄ = Tz̄z = 0, and by using (1.16) we find ∂zTz̄z̄ = 0

and ∂z̄Tzz = 0. Thus the remaining two components are holomorphic and

anti-holomorphic, respectively

Tzz ≡ T (z) , Tz̄z̄ ≡ T̄ (z̄) . (1.26)

Obviously the conformal symmetry current (1.17) then becomes

jz = Tzz ε(z), jz̄ = Tz̄z̄ ε̄(z̄) , (1.27)

and we again find a separation into a holomorphic and an anti-holomorphic

part.

Primary, quasi-primary and secondary fields

A field that transforms under any infinitesimal conformal transformations

z → w(z) respectively z̄ → w̄(z̄) as

φ(z, z̄)→ φ′(w, w̄) = φ(z, z̄)

(
∂w

∂z

)−h(
∂w̄

∂z̄

)−h̄
(1.28)

is called a primary field of conformal weight (or conformal dimension) (h, h̄).15

The conformal weights h, h̄ are real quantities, and the bar does not refer to

complex conjugation. The sum ∆ := h+ h̄ is called scaling dimension, and

s := h− h̄ is often referred to as conformal spin. We will see later that h and

h̄ are eigenvalues of `0 and ¯̀
0, respectively.

In the following, we will need the infinitesimal version of equation (1.28).

For w(z) = z + ε(z) and w̄(z̄) = z̄ + ε̄(z̄) a primary field transforms infinitesi-

mally as

φ′(w, w̄) = φ(w, w̄)−
[
h(∂ε) + ε∂ + h̄(∂̄ε̄) + ε̄∂̄

]
φ(w, w̄)︸ ︷︷ ︸

=:δε,ε̄φ(w,w̄)

+O(ε2) , (1.29)

where ∂ ≡ ∂w and ∂̄ ≡ ∂w̄. We will see that these infinitesimal transformations

are generated by charges that are constructed from the energy-momentum

tensor.

The class of primary fields plays an outstanding role in conformal field the-

ories. All fields that do not transform according to (1.28) are termed secondary

fields. Sometimes, we refer to fields which transform under (global) conformal

15Note that the given definitions can be easily extended to arbitrary dimensions.
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transformations according to (1.28) as quasi-primary. Thus primary fields are

always quasi-primary, but secondary fields are not necessarily quasi-primary.

We will learn in subsection 1.1.8 that the energy-momentum tensor is a quasi-

primary field, but not a primary field. Derivatives of primary fields are typical

examples for secondary fields.

1.1.7 Radial quantization

Up to now we considered a classical two-dimensional conformal field theory

only. We will now quantize the system using a procedure which is called

radial quantization. As a first step we compactify the space coordinate by the

identifications

z ∼ z + 2π , z̄ ∼ z̄ + 2π , (1.30)

which means that the worldsheet now is a cylinder. This compactification

removes infrared divergences from the theory. Because of scale invariance the

value of 2π is not special, but was chosen for convenience only. In order to

come back to the complex plane we use the conformal map

w := eiz = ex
1+ix2

. (1.31)

The infinite past in the Euclidean time coordinate x2 = −∞ is mapped to

w = 0 and the infinite future x2 = ∞ is mapped to the infinite circle at

|w| =∞. Surfaces of equal time are mapped to circles of constant radius.

In the new coordinates the usual “time ordering” becomes a radial ordering

which is defined16 for two operators A, B as follows

R
(
A(z)B(w)

)
=

{
A(z)B(w) , for |z| > |w|
B(w)A(z) , for |z| < |w| .

(1.32)

16If the operators are fermionic we need to include a minus sign in the definition for

|z| < |w|.
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In (1.17) and (1.27), respectively, we identified the conserved conformal cur-

rent. The corresponding conserved charge Q is calculated by integrating over

the space for a fixed time, which here translates to a fixed radius and thus

Qε,ε̄ =
1

2πi

∮
dz ε(z)T (z) + h. c. , (1.33)

where “h. c.” denotes hermitian conjugation. The integration has to be per-

formed counter-clockwise, and the center of the circle is the origin of the com-

plex plane.17 The operator Qε,ε̄ generates infinitesimal symmetry variations of

any field φ according to

δε,ε̄φ(w, w̄) = [Qε,ε̄, φ(w, w̄)] . (1.34)

The right hand side of the above equation can be evaluated further. Plugging

in equation (1.33) and expanding the commutator results in two contour in-

tegrations where one has to be taken for |z| > |w| and the other for |z| < |w|.
Combining the integrals leads to a single contour integration around the point

w, and the integration is again to be taken counter-clockwise, which leads to18

[Qε,ε̄, φ(w, w̄)] =
1

2πi

∮

w

dz ε(z)R
(
T (z)φ(w, w̄)

)
+ h. c. . (1.35)

We assume that the radially ordered product R(T (z)φ(w, w̄)) is analytic in the

vicinity of the point w and do a Laurent series expansion around the point w,

R
(
T (z)φ(w, w̄)

)
=
∑

n∈ �
(z − w)nOn(w, w̄) , (1.36)

where the On denote operators which we are going to determine in the follow-

ing. The above equation is also known as operator product expansion (OPE).

For now we want to determine the OPE in the case of φ(w, w̄) being a

primary field. Then we can insert (1.29) on the left hand side of equation

(1.34) and compare this with the right hand side of (1.34) as given by (1.35)

− [h(∂ε) + ε∂]φ(w, w̄) =
1

2πi

∮

w

dz ε(z)
∑

n

(z − w)nOn(w, w̄) (1.37)

where we already inserted the ansatz (1.36). The anti-holomorphic part of

course leads to an analogous equation. With the help of the residue theorem

17Note though that that integration cannot be evaluated directly, as Qε,ε̄ is an operator

that needs to be applied to a field first.
18For all details in particular with respect to the ordering of the operators see Ginsparg

(1988).
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we can easily compute the coefficients On and infer that the operator product

expansion is given by

R
(
T (z)φ(w, w̄)

)
=

h

(z − w)2
φ(w, w̄) +

1

z − w∂φ(w, w̄) + . . . , (1.38)

R
(
T̄ (z)φ(w, w̄)

)
=

h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄ ∂̄φ(w, w̄) + . . . . (1.39)

From now on we will omit the symbol R for the radial ordering operator if

we are dealing with operator products as is customary in the CFT literature.

All operator products are understood to be radially ordered. The ellipsis in

equations (1.38) and (1.39) stand for a Taylor series in (z − w) which we will

neglect in the future as well, as we are interested in the behavior for z → w

only.

We point out that it was the transformation law (1.29) of the primary field

φ which lead to the form of the operator product expansion. Conversely the

operator product expansion, and more precisely its singular terms, include all

information about the infinitesimal conformal transformation properties of a

given field. Because of this we can also use (1.38) and (1.39) as alternative

definition for φ being a primary field. In an OPE with the energy-momentum

tensor the secondary fields have higher than second order singularities.

1.1.8 Central charge and Virasoro algebra

We already mentioned in subsection 1.1.6 that at the quantum level the energy-

momentum tensor T does not transform like a primary field. Nevertheless we

can determine the OPE of the stress-energy tensor with itself by applying two

conformal transformations in succession:19

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂T (w) (1.41)

T̄ (z̄)T̄ (w̄) ∼ c̄/2

(z̄ − w̄)4
+

2

(z̄ − w̄)2
T̄ (w̄) +

1

z̄ − w̄ ∂T̄ (w̄) . (1.42)

Here we use the symbol “∼” which means “modulo regular terms”. The con-

stants c and c̄ are called central charge or conformal anomaly.20 These con-

19The commutator of two infinitesimal conformal transformations is given by

[δε1 , δε2 ] = δε1∂ε2−ε2∂ε1 (1.40)

where we considered the holomorphic part only. See also Lüst and Theisen (1989).
20The (z −w)4 term of the conformal anomaly complies with analyticity, Bose symmetry

and scale invariance.
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stants cannot be fixed by the conformal properties, but are model dependent.21

For instance the central charge is 1 for the free boson and 1
2

for the free fermion.

Other well-known models include the simple b-c ghost system with c = −2 and

c = −26 for reparametrization ghosts. In chapter 2 we will discuss the latter

two models in more detail and in particular will pay attention to logarithmic

extensions.

For vanishing conformal anomaly c = 0 the energy-momentum tensor T (z)

is a primary field of weight (2, 0). In presence of a conformal anomaly the

field T (z) is not quite primary, but quasi-primary as can be inferred from the

infinitesimal conformal transformation of T (z)

δε,ε̄T (z) = ε(z)∂zT (z) + 2T (z)∂zε(z) +
c

12
∂3
zε(z) . (1.43)

The above equation can be derived from the OPE of T (z)T (w), cf. (1.41). Of

course analogous consideration apply to the anti-holomorphic sector as well.

From now on we will almost always consider the holomorphic sector only. The

next step is to perform a Laurent expansion of the energy-momentum tensor:

T (z) =
∑

n∈ �
z−n−2Ln , (1.44)

where we call the modes Virasoro generators. These generators in turn can be

written as

Ln =
1

2πi

∮
dz zn+1T (z) . (1.45)

The hermiticity of the stress-energy tensor T (z) leads to

L†n = L−n . (1.46)

Inserting (1.45) into the commutator [Ln, Lm] and performing some contour

integrations leads to the famous Virasoro algebra22

[Ln, Lm] = (n−m)Ln+m +
c

12
(n− 1)n (n+ 1) δn,−m . (1.47)

As usual (in the absence of a boundary), the holomorphic and the anti-holomorphic

sector completely decouple

[
Ln, L̄m

]
= 0 . (1.48)

21We will see in subsection 1.1.9 that the constants label representations of the Virasoro

algebra.
22Note though that the paper Virasoro (1970) does not contain the algebra, but the

generators of the algebra.
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Note that the Virasoro algebra (1.47) reduces to the classical conformal alge-

bra (1.23) for c = c̄ = 0. Furthermore, note that the subalgebra generated

by {L−1, L0, L1} remains unaffected by the central charge. In particular this

means that the global conformal group PSL(2, � ) continues to be an exact

symmetry group.

We need one final relation for the the following subsection. Let φ(z, z̄) be

a primary field of conformal weight (h, h̄). Then the equation

[Ln, φ(w, w̄)] = h(n + 1)wnφ(w, w̄) + wn+1∂wφ(w, w̄) , (1.49)

can be verified by inserting (1.45) on the left hand side and then using the

known OPE (1.38) to replace the appearing T (z)φ(w, w̄) terms. With the help

of the residue theorem one immediately recovers the above result.

1.1.9 Virasoro representation theory

In this subsection our interest is to constitute representations of the Virasoro-

algebra (1.47). For details about this topic we recommend Kac and Raina

(1988). In the previous subsection we found that the holomorphic and anti-

holomorphic parts of the Virasoro-algebra decouple, cf. (1.48). Therefore con-

sidering the holomorphic sector in the following is sufficient. We just need to

keep in mind that the full representation in fact is a tensor product of two

representations.

Let |0〉 be the in-vacuum of the theory. We require T (z)|0〉 to be regular at

the origin (z = 0) and infer that

Ln|0〉 = 0 ∀n ≥ −1 . (1.50)

Sometimes we also refer to this vacuum as the “SL(2, � ) invariant vacuum”.

For the out-vacuum 〈0| we find 〈0|Lm = 0 ∀m ≤ 1. Now let φ(z) be a primary

field of conformal weight h. The state

|h〉 := lim
z→0

φ(z)|0〉 (1.51)

is called a highest weight state. This name is justified by the following consid-

eration:

Ln |h〉 = [Ln, φ(0)]|0〉 = 0 ∀n ≥ 1 , (1.52)
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where we used (1.49) to derive the last equality. For n = 0 the equation (1.49)

leads to [L0, φ(0)] = hφ(0), and therefore L0 is diagonal with respect to the

highest weight states

L0 |h〉 = h |h〉 . (1.53)

Because of the hermiticity condition (1.46) all eigenvalues h of L0 are real.

Applying the raising operators L−n for n > 0 on a highest weight state can

create new states.23 The Verma module Vc,h of |h〉 includes all states that can

be created from |h〉 by applying all combinations of the Virasoro generators24

Vc,h =
⊕

{n1,n2,...}

〈
L−n1 . . . L−nk |h〉 : 1 ≤ n1 ≤ . . . ≤ nk, k ≥ 0

〉
. (1.54)

A state |k〉 ∈ Vc,h with |k〉 6= |h〉 is called a descendant state. The primary state

and its descendants form a so-called conformal family. By using the Virasoro

algebra (1.47) one can easily show that all states of the form L−n1 . . . L−nk |h〉
are eigenstates of L0 with eigenvalue h+

∑k
i=1 ni =: h +N . The number N

is called the level of the state. In the following picture we give a graphical

representation of a Verma module Vc,h:

23The representations of su(2) have some similarities with the representations of the Vi-

rasoro algebra and are often used in the literature as an illustrative example. The su(2)

generators J± = Jx ± iJy are called “raising” (J+) and “lowering operators” (J−). Analo-

gously the Virasoro operators L−n with n > 0 are referred to as raising operators.
24We do not need to include modes Ln with n > 0 as these can be commuted to the right

such that they annihilate the highest weight state |h〉. By using an analogous argument we

can also demand that the generators are ordered, i. e. ni ≥ nj if i > j.
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Before we explain the meaning of a “null vector”, we need to introduce an

inner product on the space of states, which for two states

|χ〉 := L−n1 . . . L−nk |h〉 and |η〉 := L−m1 . . . L−mj |h〉

is defined by

〈χ|η〉 := 〈h|Lnk . . . Ln1L−m1 . . . L−mj |h〉 . (1.55)

Depending on the central charge c and the conformal weight h, it is possible

that states |χ〉 in the Verma module exist, which are orthogonal to all other

states within the Verma module25

〈χ|ψ〉 = 0 ∀ |ψ〉 ∈ Vc,h . (1.56)

These states that completely decouple from all other states are termed null

vectors or singular vectors. If the Verma module Vc,h contains null vectors,

then the representation is reducible, and we speak of a reducible Verma mod-

ule.26 An irreducible representation of the Virasoro algebra can be obtained

by removing all null vectors (and its descendants) from Vc,h.
Null vectors play an outstanding role in conformal field theory. As we

will see in subsection 1.1.10, null vectors induce differential equations for the

correlation functions which may fix remaining degrees of freedom in the four-

point functions. Also the study of null vectors leads to the celebrated “minimal

models”, which we are going to discuss succinctly in subsection 1.1.11.

The inner product induces a semi-norm (often just called norm) on the

space of states by

|| |η〉 ||2 := 〈h|Lmj . . . Lm1L−m1 . . . L−mj |h〉 , (1.57)

and it is obvious that null vectors have norm zero. Besides the appearance of

zero-norm states in the Verma module it is also possible that negative-norm

states occur. A representation of the Virasoro algebra containing no negative-

norm states is called a unitary representation. By using the Virasoro algebra

we can easily prove the following relation:

||L−n |h〉 ||2 = 〈h|LnL−n |h〉 =

[
2nh +

1

12
cn(n2 − 1)

]
〈h|h〉 . (1.58)

25The structure of the Virasoro algebra (1.47) induces a grading, in the sense that the

inner product of two states is zero if the two states have different levels.
26In the literature the Verma module Vc,h itself is often referred to as representation of

the Virasoro algebra, though in fact it is the representation space.
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This means that all representations with negative central charge c < 0 are

non-unitary. Furthermore, we can infer from this equation for n = 1 that

h < 0 also leads to non-unitary representations. This means that necessary

conditions for a unitary representation are c ≥ 0 and h ≥ 0.

While unitary models and in particular minimal models are of great impor-

tance, there is also a wide range of applications for non-unitary theories. For

instance the conformal b-c ghost systems which are of interest in string-theory

always have a central charge c < 0 and thus are non-unitary. It should be

mentioned, too, that all logarithmic conformal field theories are non-unitary.

1.1.10 Correlation functions

This subsection consists of three parts. In the first part we derive the so-called

global conformal Ward identities (GCWIs) which put strong constraints on

correlators. In the subsequent part we apply the GCWIs on 2-, 3- and 4-point

correlation functions and state the results. The final part of this subsection

discusses briefly how null vectors induce differential equations.

We consider the n-point correlation function G (where we as usual omit

the anti-holomorphic part of the theory)

G(z1, . . . , zn) := 〈0|R (φ1(z1) . . . φn(zn)) |0〉 . (1.59)

The fields φk denote primary fields for the moment. As explained in subsection

1.1.7 the symbol R is the radial ordering operator. In the following we omit this

operator and implicitly understand every sequence of fields within a correlator

as radially ordered. For i = −1, 0, 1 we know that 〈0|Li = 0 and Li |0〉 = 0,

and we can use these equations to derive the following relation:

0 = 〈0|Liφ1(z1) . . . φn(zn) |0〉

=

n∑

k=1

〈0|φ1(z1) . . . φk−1(zk−1)[Li, φk(zk)]φk+1(zk+1) . . . φn(zn) |0〉+

〈0|φ1(z1) . . . φn(zn)Li |0〉

=
n∑

k=1

〈0|φ1(z1) . . . φk−1(zk−1) δεiφk(zk)φk+1(zk+1) . . . φn(zn) |0〉 , (1.60)

where εi(z) = zi+1. To show the last equality we made use of (1.34). Inserting

the definition of δε, cf. (1.29), for ε(z) = 1, z, z2 leads to a set of three equations
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which are known as (global) conformal Ward identities,

Li 〈φ1(z1) . . . φn(zn)〉 :=
n∑

k=1

zik [zk∂k + (i + 1)hk] 〈. . .〉 = 0 . (1.61)

These three relations describe the constraints that global conformal invariance

puts on the correlation functions. With the help of the GCWIs it is possible

to determine the two- and three-point functions up to constants. We will not

give a detailed derivation here and refer to Schellekens (1996) instead. As men-

tioned above, the fields φk are primary fields, and hk denotes the corresponding

conformal weights. The two-point function G(z1, z2) is up to a normalization

constant C given by

G(z1, z2) = C
δh1,h2

(z1 − z2)2h1
. (1.62)

By changing the normalization of the primary fields, the constant C can

be set to 1. For the anti-holomorphic sector one gets an additional factor

(z̄1 − z̄2)−2h̄1 , where the conformal weights h̄1 and h̄2 of course have to match,

too. The three-point function turns out to be27

G(z1, z2, z3) =
C(h1, h2, h3)

zh1+h2−h3
12 zh1+h3−h2

13 zh2+h3−h1
23

. (1.63)

Here we introduced the abbreviation zij := zi − zj. The constants C(h1, h2, h3)

are called structure constants. They cannot be determined by global conformal

invariance alone. That we can determine the three-point function from global

conformal transformations is clear in the following sense: these three com-

plex transformations (translations, scaling plus rotation and special conformal

transformations) can be used to fix the three variables z1, z2 and z3. The same

holds for the anti-holomorphic sector as well (since there exist six generators

of the global conformal group Li and L̄i, i = −1, 0, 1). This consideration also

means that the global conformal Ward identities are not sufficient to fix the

four-point function, but they can be used to determine the generic form:

G(z1, z2, z3, z4) =
∏

i<j

z
µij
ij F (x) . (1.64)

The exponents µij = µji must satisfy the condition
∑

j 6=i
µij = −2hi (1.65)

27Actually exploiting the global conformal Ward identities shows that the correlator de-

pends on z12 and z23 only, but in order to get a more symmetric form the redundant variable

z13 was kept in the result.
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and the function F depends on the anharmonic ratio

x :=
(z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
. (1.66)

This variable is invariant under Möbius transformations, and therefore the

GCWIs cannot restrict the function F any further. On the other hand things

change completely in the presence of a null vector as we briefly explain in the

following.

However, we need to introduce the28 (descendant) field that corresponds to

a descendant state. The descendant field that belongs to the state L−p |h〉 is

given by

φ(−p)(z) :=
1

2πi

∮
dw

(w − z)p−1
T (w)φ(z) , (1.67)

as one can quickly verify by evaluating φ(−p)(0, 0)|0〉 with the help of equa-

tion (1.45). A slight generalization of the first part of this subsection, namely

inserting
∮

dz
2πi
ε(z)T (z) instead of Li into the correlator leads, after some cal-

culations, confer Schellekens (1996), to

〈0|T (z)φ1(z1) . . . φn(zn) |0〉 =

n∑

k=1

[
hk

(z − zk)2
+

1

z − zk
∂zk

]
〈. . .〉 , (1.68)

〈. . .〉 := 〈0|φ1(z1) . . . φn(zn) |0〉 . (1.69)

With the help of the two previous equations a correlator that contains a de-

scendant can be evaluated (see the given reference for details). This results

in

〈0|φ1(z1) . . . φn−1(zn−1)φ(−p)
n (zn) |0〉 = L−p 〈. . .〉 , (1.70)

where 〈. . .〉 is defined as in (1.69) and the newly introduced operator L−p is

given by

L−p :=
n−1∑

k=1

Lk−p , (1.71)

Lk−p :=− (1− p)hk
(zk − zn)p

+
1

(zk − zn)p−1
∂zk . (1.72)

Equation (1.70) tells us that we can reduce any correlator containing a de-

scendant field to an operator that acts on a correlator of primaries. This can

28In a well-defined conformal field theory there should be an isomorphism between the

states of the Hilbert space and the fields of the theory.
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also be done for correlators containing more than one descendant which then

results in a more complicated formula.

The real power of equation (1.70) shows up in conjunction with null vectors.

Let us assume that the Verma module Vc,h contains a level two null vector

of the form (L2
−1 − tL−2) |h〉, where t is some constant. Via the state field

isomorphism, cf. (1.67), the descendent field corresponding to the null vector

is φ(−2) − tφ(−1,−1), where φ(−1,−1) can be constructed from φ(−1) by means of

(1.67). Using this null state within a correlator results by virtue of (1.70) in a

partial differential equation of the form

D 〈0|φ1(z1) . . . φn(zn) |0〉 = 0 , (1.73)

with D being some complicated differential operator. In the case of n = 4 the

correlator can then be replaced by the generic form of the four-point function,

as given by equation (1.64). This finally translates the partial differential

equation into an ordinary differential equation (ODE) of order two.29 In some

cases the ODE can explicitly be solved (a brief example is given in subsection

1.2.1) and thus the four-point function can be determined. As emphasized

before this procedure requires that the Verma module contains a null state.

For a more detailed description we refer the reader to di Francesco et al. (1997).

1.1.11 Minimal models

The models with the central charge

cp,q = 1− 6
(p− q)2

p q
, p, q ∈ � ∗ , (1.74)

with p and q coprime are called minimal models. In Belavin et al. (1984) it

was pointed out that these models have the very interesting feature that they

only possess a finite number of primary fields and that the operator algebra

closes under fusion. With the following formula it is possible to determine

all conformal weights of the primary fields that can appear in the model with

central charge cp,q:

hr,s =
(rq − sp)2 − (p− q)2

4pq
, (1.75)

where 1 ≤ r ≤ p− 1 and 1 ≤ s ≤ q − 1. The table of weights resulting from

the combinations of (r, s) is also known as Kac table. Without proof we note

29It is not just by chance that the order of the ODE and the level of the null vector match.

A more general consideration shows this being always the case.
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that the first null vector in the reducible Verma module with highest weight

hr,s can be found at level l = rs. As the central charge as well as all conformal

weights are rational numbers these models are also called rational conformal

field theories. If one is interested in unitary minimal models only, then it is

possible to determine this subset of the minimal models by setting p = q + 1

which leads to

cq = 1− 6

q(q + 1)
, q = 3, 4, 5, . . . . (1.76)

These models are also known as the unitary discrete series. The conformal

weights can be calculated as in (1.75).

The minimal models play a very important role for the conformal field

theory because they describe discrete statistical models at their critical points,

e. g., the Ising and the Potts model. A famous example is q = 3 which implies

c = 1
2

and corresponds to the Ising model. The conformal weights in this

theory are given by formula (1.75): h1,1 = 0, h2,2 = 1/16 and h2,1 = 1/2 and

the corresponding fields can be interpreted as operators of the Ising model,

such as the continuum Ising spin or the energy operator.

1.2 Logarithmic conformal field theory

Only three years after Belavin, Polyakov and Zamolodchikov (1984) started in-

vestigating conformal field theories in two dimensions it was noted by Knizhnik

(1987) that correlation functions may also exhibit logarithmic divergences. Six

years later Gurarie (1993) introduced the concept of a conformal field theory

with logarithmic singularities. The basic feature of these so-called logarith-

mic conformal field theories (LCFTs) is that the representations of the chiral

symmetry algebra may be indecomposable. It is worth pointing out that vari-

ous aspects of logarithmic conformal field theories were noted in the literature

before the work of Gurarie, e. g. Rozansky and Saleur (1993); Saleur (1992a,b).

In the following years almost all important structures, methods and tools,

which were known from (rational) conformal field theories, were adapted and

generalized to the LCFT case. This includes characters, null vectors, OPEs and

correlation functions. The latter will be an important part of this thesis and is

discussed in chapter 3. Nowadays the understanding of LCFT is almost at the

same level as the one about (rational) conformal field theories. Furthermore,

there exists a huge number of applications for LCFTs which include topics

like two-dimensional conformal turbulence, fractional quantum Hall effect and
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AdS/CFT correspondence. In subsection 1.2.3 we give a short overview about

applications of LCFT.

Unfortunately the introductory literature into the topic is not as compre-

hensive as the literature for CFTs is. Probably the most extensive introductory

works are Flohr (2003); Gaberdiel (2003) and Rahimi Tabar (2003). Further

works that are of interest are Flohr (2002a); Kawai (2003) and Moghimi-Araghi

et al. (2003).

In the next subsection we present one of the best studied examples of

logarithmic conformal field theory and show why logarithmic operators have

to be taken into account. In subsection 1.2.2 we introduce several definitions

and discuss the field content of LCFTs in more detail. Finally, we give a short

overview of important works and applications of LCFT.

1.2.1 A famous example

The c = −2 has been extensively studied, cf. Cappelli et al. (1999); Flohr

(1997); Gurarie et al. (1997); Kausch (1991, 1995, 2000). For us the paper

by Gurarie (1993) is of high interest, because the model is a prime example

for a model with logarithmic behavior. The structure of this subsection fol-

lows Nichols (2002). By determining a correlation function in the c1,2 = −2

system we will learn that we cannot avoid logarithmic terms in the correlator.

This has some important consequences for the operator product expansion and

eventually forces us to include logarithmic operators in the theory.

Let us take the primary field φ1,2 with conformal weight h1,2 = −1
8

which

has its first null vector on level two. While the combination r = 1 and s = 2

is not supported by (1.75) it nevertheless is part of the set of admissible irre-

ducible highest weight representations, as shown by Wang (1998). As Knizhnik

(1987) pointed out, nontrivial Riemann-surfaces, seen as a multi-sheeted cov-

ering of the complex plane, can be simulated by twist-fields inserted at the

branch points. The field with conformal weight −1/8 simulates a � 2-branch

point, which means that this field indeed can show up in a conformal field

theory. The null vector of level two can be determined to be

(
L−2 − 2L2

−1

)
|µ〉 = 0 . (1.77)

Hereby we have adapted the notation, as it is customary in the literature, and

defined µ ≡ φ1,2 as well as |µ〉 := limz→0 µ(z)|0〉. As described in subsection

1.1.10 we can determine the general form of the four-point correlation function,
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by making use of the global conformal invariance, which leads to

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = (z1 − z3)
1
4 (z2 − z4)

1
4 [x(1− x)]

1
4 G(x) . (1.78)

The function G(x) is holomorphic and depends on the anharmonic ratio x

only, cf. (1.66). The null vector of level two (1.77) induces, as explained in

subsection 1.1.10, a second order differential equation in G(x):

x(1− x)
d2G(x)

dx2
+ (1− 2x)

dG(x)

dx
− 1

4
G(x) = 0 . (1.79)

The differential equation has two independent solutions30

G(x) = c1K(x) + c2K(1− x) , (1.81)

where c1 and c2 are constants and K(x) is a complete elliptic integral of the

first kind

K(x) :=

1∫

0

dt√
(1− t2)(1− xt2)

. (1.82)

The function K(x) is regular in the vicinity of x = 0, but it has a logarithmic

singularity at x = 1. To make the logarithmic singularity more obvious we

rewrite the second solution K(1− x) by using the following formula

K(1− x) = K(x) log(x) +H(x) , (1.83)

where H(x) is a regular function in the vicinity of x = 0, for a more detailed

discussion see Bhaseen (2001). This means that all nontrivial solutions (1.81)

contain some logarithmic divergences which in turn has deep consequences for

the operator product expansion as explained in the following. Let us assume

the usual assumptions about OPEs are still valid, then the OPE has the form

Bi(z)Bj(w) =
∑

n

Cn
(z − w)hi+hj−hn

Bn(w) , (1.84)

30Actually this is not the full answer since we considered for simplicity only the holomor-

phic sector of the theory. In order to get a single-valued correlator we must consider both

sectors and then we find that the only single-valued solution for the given conformal weights

is:

G(x, x̄) = K(x)K(1− x) +K(1− x)K(x) (1.80)

Also note that the logarithmic terms that show up in the following also need to

be single-valued. This forces us to consider the combinations of both sectors, e. g.

log |x|2 = logx+ log x̄ and this is one reason why LCFTs are often more complicated than

CFTs in the sense that they do not decompose in a holomorphic and an anti-holomorphic

part.
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with Bn(w) being a primary field or a descendent of a primary and Cn denote

some coefficients. Using this OPE in the left hand side of (1.78) obviously does

not produce logarithms in the correlation function. As a consequence we have

to modify the ansatz of the OPE and must allow logarithmic operators in it.

A careful analysis shows that the OPE is given by

µ(z, z̄)µ(w, w̄) ∼ |z − w| 12
[
Ĩ(w, w̄) + log(|z − w|2) I(w, w̄)

]
. (1.85)

In this equation I is the unit operator and Ĩ is the so-called logarithmic partner

field of the I-field. The OPE of T (z) with the two fields and in particular with

the Ĩ-field is highly interesting:

T (z)I(w, w̄) ∼ h I
(z − w)2

+
∂I

z − w (1.86)

T (z)Ĩ(w, w̄) ∼ h Ĩ+ I
(z − w)2

+
∂Ĩ

z − w , (1.87)

where the conformal weight h here of course is zero. This means that the

I-field is an ordinary primary field and that the Ĩ-field has the basic structure

of a primary, but that the OPE also gives rise to an additional I-field. Thus

we can derive that L0 has a Jordan-block structure

L0

(
I
Ĩ

)
=

(
h 0

1 h

)(
I
Ĩ

)
. (1.88)

Obviously the representation of L0 is reducible, but not fully reducible. An

indecomposable representation is a typical feature of a logarithmic conformal

field theory. Note though that the LCFT we are going to present in chapter 2

has the feature that L0 is diagonal.

1.2.2 Remarks on the field content of LCFTs

In conformal field theory we basically build everything from primary fields.

Descendants of primaries were termed secondary fields and some of these sec-

ondary fields were additionally quasi-primary fields, e. g., the energy-momentum

tensor. In LCFT we encounter three main classes of fields which, together with

their descendants, lead to all fields of the theory.

First there are so called proper primary fields. These behave in all ways like

primary fields of CFT: proper primary fields have an OPE with the energy-

momentum tensor T (z) of the form given by equation (1.38) and the OPE of

two proper primary fields is a Laurent expansion of the type (1.84).
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The field µ of the previous subsection belongs to the important class of

pre-logarithmic fields. Pre-logarithmic fields behave like (Virasoro) primary

fields, e. g., the twist-field µ ≡ φ1,2 with conformal weight h1,2 = −1
8

has the

following OPE with T (z):

T (z)µ(w) ∼−
1
8
µ(w)

(z − w)2
+
∂µ(w)

z − w . (1.89)

In difference to the proper primary fields the OPE of a pre-logarithmic field

with another such field may not lead to the usual OPE. An example for this

was given in equation (1.85), where we discovered that pre-logarithmic fields

give rise to logarithmic fields. This behavior is typical for pre-logarithmic

fields: in all known LCFTs the OPEs of certain pairs of pre-logarithmic fields

generated all logarithmic fields of the theory. Furthermore, so far every known

logarithmic conformal field theory also contained fields of pre-logarithmic type.

The final class consists of logarithmic fields. These fields have an operator

product expansion with the energy-momentum tensor T (z) as given by equa-

tion (1.87). Thus logarithmic fields together with proper primary fields form

Jordan-cells.

Let us take an example and consider the two fields I, Ĩ of the previous

subsection. Both fields have the same conformal weight h = 0 and the field

I obviously is a primary field. The OPE (1.87) shows that Ĩ is a logarithmic

field and we also refer to this field as the logarithmic partner field of the I field.

The example was simple in the sense that the fields had conformal weight zero

and that the Jordan-cell was small. Now we generalize the definitions and the

notation a bit as follows:

A logarithmic field with conformal weight h of Jordan-level k is denoted

by Ψ(h,k). The Jordan-level of the field is defined by the position of the field

in the Jordan-matrix, see (1.88). A field of Jordan-level k = 0 is a proper

primary field Ψ(h,0) or sometimes simply Ψ(h). Pre-logarithmic fields do not

possess a well-defined Jordan-level, but nevertheless there are cases, where it

turns out to be sensible to assign a fractional Jordan-level to a pre-logarithmic

field. However, we almost do not deal with pre-logarithmic fields in the scope

of this work and thus we will neglect these fields for most of the discussions.

For a more detailed description of pre-logarithmic fields the interested reader

is advised to consult Flohr (2002b).

The representation space is spanned by the states |h, k〉 defined by the field-

state isomorphism |h, k〉 := limz→0 Ψ(h,k)(z) |0〉. Here |0〉, as usual, denotes the
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SL(2, � ) invariant vacuum. Let r denote the Jordan-rank of the Jordan-

cell we consider. The space of states of this Jordan cell then spanned by

{|h, r − 1〉 , . . . , |h, 1〉 , |h, 0〉}. The action of the zero mode of the Virasoro

algebra L0, is then given by

L0 |h, 0〉 =h |h, 0〉 (1.90)

L0 |h, k〉 =h |h, k〉+ |h, k − 1〉 for k = 1, . . . , r − 1 . (1.91)

Now let r be the Jordan-rank of the largest Jordan-cell. Then we can assume

without loss of generality, that all Jordan-cells are of Jordan-rank r. This can

be achieved by padding the smaller Jordan-cells with fields which are set to

zero afterwards.

1.2.3 Tools and applications of LCFT

Since Gurarie introduced logarithmic operators in 1993 a lot of work was done

to understand and to make use of logarithmic conformal field theories. Al-

most all important concepts that were known from (rational) conformal field

theories have been adapted or generalized to logarithmic conformal field the-

ories. This includes characters, null vectors, correlation functions, operator

product expansions, partition functions, fusion rules and more. The following

references deal to some extent with generalizations to LCFTs: Flohr (1996,

1997, 1998b, 2000, 2002b); Flohr and Krohn (2005a); Gaberdiel and Kausch

(1996a,b, 1999); Ghezelbash and Karimipour (1997); Kausch (2000); Khorrami

et al. (1998); Kogan and Lewis (1998); Moghimi-Araghi and Rouhani (2000);

Rahimi Tabar et al. (1997); Rahimi Tabar and Rouhani (1998) and Rohsiepe

(1996).

In the following we briefly present various topics where a connection with

logarithmic conformal field theory is assumed or established and add references

for further reading. This list is by no means complete but should be useful as

a starting point to conduct further research.

Apart from the before mentioned c = −2 model which was studied in Cap-

pelli et al. (1999); Flohr (1997); Gaberdiel and Kausch (1996b, 1999); Gurarie

(1993); Gurarie et al. (1997); Kausch (1991, 1995) and Kausch (2000) there was

also extensive interest in the cp,q models, e. g., see Flohr (1996) and Gaberdiel

and Kausch (1996a), and in Wess-Zumino-Novikov-Witten (WZNW) models,

cf. Bernard et al. (1997); Caux et al. (1997); Gaberdiel (2001); Kogan et al.

(1998); Lesage et al. (2002); Nichols and Siwach (2001) and Nichols (2001).
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The low-energy effective action of four-dimensional N = 2 supersymmetric

Yang-Mills theory as found by Seiberg and Witten (1994) is related to loga-

rithmic conformal field theory, confer Cappelli et al. (1998) and Flohr (1998a).

There also exist numerous applications that are related to string theory.

The important AdS/CFT correspondence discovered by Maldacena (1998) de-

scribes the equivalence of a string theory on some Anti-de-Sitter space and a

CFT that lives on the boundary of this space. Correspondence with LCFTs

has been described by Ghezelbash et al. (1999); Kogan (1999); Kogan and

Polyakov (2001); Moghimi-Araghi et al. (2001b, 2004b) and Myung and Lee

(1999). Another application of LCFT in string theory is the treatment of

decaying D-branes, cf. Lambert et al. (2003).

Stochastic Löwner evolutions (SLE) is a random growth process that was

introduced by Schramm (2000) and that is believed to be linked to conformal

field theory. Recent papers by Rasmussen (2004) and Moghimi-Araghi et al.

(2004a) suggest that there exists a link between SLEs and LCFTs too.
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Chapter 2

Extensions of Ghost Systems

“Ach, da kommt der Meister!

Herr, die Not ist groß!

Die ich rief, die Geister,

Werd ich nun nicht los.”

— Johann Wolfgang von Goethe (1797)

2.1 Overview

Ghost fields play a very important role in modern particle physics and they

show up in almost any quantum gauge theory. Let us explain this in a bit

more detail in the following. One way to (covariantly) quantize a field the-

ory is by means of path integrals. In case the considered theory has local

symmetries one needs to fix them. This in general leads to the appearance

of (Faddeev-Popov) ghost fields and therefore to an additional contribution

to the original action which is termed ghost field action. The name “ghost”

derives from the fact that the fields violate the spin-statistics theorem and

thus do not represent any physical degrees of freedom. String theories posses

reparametrization- and Weyl invariance. In order to fix these local symme-

tries, so called reparametrization ghosts, denoted by b and c in the following,

are introduced.

Our own interest in ghost fields stems from the observation that the con-

formal b-c ghost system resembles in the case of central charge c = −2 very

much the so called θ-θ̄ system, which is a logarithmic conformal field theory.

In particular we investigate if and how b-c ghost systems for different central

charges can be extended to LCFTs.
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We conjecture that each b-c system, with central charge cb,c=12λ−12λ2−2,

is in fact a subset of a larger logarithmic CFT with Jordan-cells of higher rank

related to the spin λ > 0. We will in detail study the case c = −26 which is

the next integer spin case, (λ, 1 − λ) = (2,−1), after the well-known c = −2

theory with spin (λ, 1−λ) = (1, 0). Indeed we find a nontrivial indecomposable

structure of the Virasoro modules which, however, is quite different from the

Jordan-cell structure in the c = −2 system.

We will proceed as follows:

In the next section we describe the most important properties of the b-

c ghost system. Hereby we do not restrict ourselves to a particular central

charge. In section 2.3 we will briefly recall the main properties of the c = −2

LCFT. First we have a look at the construction via symplectic fermions. We

then review an alternative approach given by Fjelstad et al. (2002), where the

c = −2 LCFT is built via a deformation of the energy-momentum tensor. In

the fourth section we shortly discuss the question why we need to consider

LCFTs at all and present a geometrical interpretation.

Section 2.5 of this chapter deals with the generalization of the procedures

to the ghost system with central charge c = −26. Firstly, we consider the zero

mode structure of the fields by using a generalization of the symplectic fermion

method. It turns out that the energy-momentum tensor cannot be constructed

in a similar fashion as in the c = −2 case out of these fields, without running

into severe difficulties. However, a generalization of the method of deformation

is possible and yields a consistent representation of the Virasoro algebra. Thus,

the two approaches are not equivalent in the c = −26 case.

Unfortunately, this Virasoro algebra does not act consistently on the Hilbert

space of states of this theory. The reason for this is related to the origin of

the logarithmic operators, which arise from operator product expansions of

twist fields, cf. Kogan and Lewis (1998). These twist fields exist whenever the

theory is put on a nontrivial Riemann surface, see Knizhnik (1987). Thus,

we investigate the theory on the simplest nontrivial Riemann surfaces, the hy-

perelliptic ones, and find that the full theory features a consistent Virasoro

algebra with the correct action on its space of states. Although this full theory

turns out to be logarithmic, its structure is very different from the c = −2

case. For example, the zero mode of the Virasoro algebra, L0, turns out to be

diagonal, i. e., the Virasoro modules are not indecomposable with respect to

L0. However, other Virasoro modes definitely lead to indecomposable struc-

tures. The section concludes with building highest weight states for different

conformal weights and discussing a suitable generalization of the Jordan-rank
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of the theory.

2.2 The b-c ghost system

In this section we give a brief overview of the anti-commuting b-c conformal

ghost systems, see also Lüst and Theisen (1989) and Ketov (1995) for further

details on the topic. The b-c ghost system is a quantum field theory of two

Grassmann-odd fields b and c. The fields are scalars under Lorentz transfor-

mations, but they also anti-commute. This means that they clearly violate the

spin-statistics theorem and hence are no physical degrees of freedom.

If the fields are not Grassmann–odd, but Grassmann-even we call this the

β-γ ghost system. In this case the equations that follow below need some sign

modifications as described in Ketov (1995). Bosonic β-γ ghost systems have

been studied by Lesage et al. (2002). In this section we will deal with the

anti-commuting b-c system only.

The action of the system is given by

Sb,c =
1

2π

∫
d2z

[
b∂̄c+ b̄∂c̄

]
. (2.1)

In the following we will consider the holomorphic sector of the theory only,

i. e., the ghost fields b(z) and c(z). These have conformal weight (λ, 0) and

(1− λ, 0) respectively, where λ ≥ 1
2

is integer or half-integer. In this chapter,

we are interested in the integer spin case only. From the action we can derive

the propagator of the system, which is

〈c(z)b(w)〉 =
1

z − w . (2.2)

This implies that the operator product expansion is

c(z)b(w) ∼ 1

z − w , (2.3)

where the symbol “∼” means, as usual, “modulo regular terms”. We then

perform a mode expansion for the ghost fields:

b(z) =
∑

n∈ �
bnz
−n−λ , (2.4)

c(z) =
∑

n∈ �
cnz
−n−(1−λ) . (2.5)
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The modes obey the hermiticity conditions b†n = b−n, respectively c†n = c−n.

We denote the SL(2, � ) invariant ghost vacuum with |0〉. Regularity at z = 0

and z =∞ requires that

bn|0〉 = 0 ∀n ≥ −λ+ 1 , (2.6)

cn|0〉 = 0 ∀n ≥ λ . (2.7)

This means that the system possesses 2λ− 1 zero modes, namely (bi, ci) for

i = −λ+ 1,−λ+ 2, . . . , λ− 1. These modes are called zero modes for the

following reason. As we can infer from the highest-weight conditions (2.6) and

(2.7), the bi modes are annihilators to the left and to the right, while the ci
modes are creators to the left and to the right. Thus, the bi are proper zero

modes, and the c−i are their canonically conjugate partners.

In order to reproduce the operator product expansion (2.3), we have to fix

the anti-commutation relations as follows

{cn, bm} = δn+m,0 , (2.8)

{cn, cm} = {bn, bm} = 0 . (2.9)

This means that the in- and out-vacuua are orthogonal to each other, since

〈0|0〉 = 〈0| I |0〉 = 〈0| {b0, c0} |0〉 = 0 . (2.10)

In many cases the it is useful to introduce another out-vacuum

〈
0̃
∣∣ := const

λ∏

i=−λ
ci , (2.11)

where the constant can be chosen such that 〈0̃|0〉 = 1. Note though that this

definition breaks the SL(2, � ) invariance.

The holomorphic part of the energy-momentum tensor of the b-c ghost

system is

Tb,c(z) = −λ :b∂c : +(1− λ) : (∂b)c : , (2.12)

and its mode expansion leads to

Ln =
∑

l∈ �
(λn− l) :blcn−l : . (2.13)

It is easy to check that the Virasoro modes Ln also fulfill the hermiticity

condition L†n = L−n, and we can also easily regain the Virasoro algebra (1.47).

We then find that the central charge cb,c for the b-c system is given by

cb,c = 2(−1 + 6λ− 6λ2). (2.14)

In the following we will study systems with central charge −2 and −26 which

corresponds to λ = 1 and λ = 2, respectively.
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2.3 The b-c ghost system as subset of

logarithmic c = −2 theory

The conformal b-c system and the associated logarithmic so called θ-θ̄-system

for central charge c = −2 are well-known and have been intensely studied (see

e. g. Cappelli et al. (1999); Flohr (2000); Gurarie (1993); Gurarie et al. (1997);

Kausch (1995); Kausch and Watts (1991)). This is the reason for us having

a closer look at this system again in the hope of learning how to build such

logarithmic theories in general. In the case of c = −2 we will briefly repeat two

different ways of building a LCFT: firstly via symplectic fermions, see Gurarie

et al. (1997); Kausch (2000), and secondly by deforming the energy-momentum

tensor Fjelstad et al. (2002).

2.3.1 c = −2 LCFT via Symplectic Fermions

Following the approach described in Gurarie et al. (1997) the c = −2 theory

can be represented as a pair of ghost fields, or anti-commuting fields θ, θ̄ of

conformal weight h = 0, with the free action Gurarie (1993)

S =

∫
d2z ∂θ∂̄θ̄ . (2.15)

(Note that θ, θ̄ are not the complex conjugate of each other, but different

fields.) As described in the above mentioned reference, the vacuum |0〉 is

somewhat unusual, its norm is 〈0|0〉 = 0, while the explicit insertion of the

fields θ produces nonzero results, for instance
〈
θ̄(z)θ(w)

〉
= 1. This property

of the vacuum is believed to be typical for LCFTs.

Using the results given in Gurarie et al. (1997) the mode expansion of the

field θ (the analog holds for θ̄) is

θ(z) = ξ + θ0 log(z) +
∑

n6=0

θnz
−n , (2.16)

where ξ denotes the crucial zero modes and n ∈ Z. The non-vanishing anti-

commutators (n ∈ Z, n 6= 0) are

{
θn, θ̄m

}
=

1

n
δn,−m ,

{
ξ, θ̄0

}
= 1 ,

{
θ0, ξ̄

}
= −1 , (2.17)

and together with the highest-weight relation

θn |0〉 = 0 ∀n ≥ 0 , (2.18)
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it is quite easy to see the logarithmic nature of the θ, θ̄ system, for instance

by calculating
〈
Ĩ(z)Ĩ(w)

〉
= −2 log(z − w) (2.19)

where Ĩ is defined as Ĩ ≡ − :θθ̄ : .

The stress-energy tensor of the theory is

T (z) =:∂θ∂θ̄ : (2.20)

and it is not hard to see that its expansion with Ĩ is indeed given by

T (z)Ĩ(w) =
I

(z − w)2
+
∂Ĩ(w)

z − w + . . . (2.21)

meaning that the operator Ĩ has conformal weight 0. Also Ĩ is the logarithmic

partner of I, since L0Ĩ = I. Thus, I and Ĩ span a Jordan-cell of rank two with

respect to L0. Indeed, the reader should convince herself that the action of L0

cannot be diagonalized.

The most obvious differences between the b-c system and the θ-θ̄-system

are

zero modes: (b0, c0) (θ̄0, ξ), (θ0, ξ̄)

conformal weights: h(b) = 1, h(θ̄) = 0,

h(c) = 0 h(θ) = 0

Therefore, in order to get from the θ-θ̄-system to the b-c system we have

to reduce the number of zero mode pairs by one and also have to increase

the conformal weight of one of the fields by one. This can easily be done by

defining the transformation between b, c and θ, θ̄ in the following way:

b(z) =
∑

n∈Z
bnz
−n−1

θ̄=∂−1b
−−−−−−−−→
←−−−−−−−−

b=∂θ̄

θ̄(z) =
∑

n6=0

θ̄nz
−n + θ̄0 log(z) + ξ̄

c(z) =
∑

n∈Z
cnz
−n

θ=c+θ0 log(z)
−−−−−−−−→
←−−−−−−−−

c=θ|θ0=0

θ(z) =
∑

n6=0

θnz
−n + θ0 log(z) + ξ .

(2.22)

While the derivative (respectively integration) gives the right transformation

between b and θ̄ we artificially have to add (respectively eliminate) a zero

mode, θ0, to get the transformation between c and θ.
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One might be tempted to use this method for constructing higher logarith-

mic CFTs, namely by putting the b, c fields on equal footing by integrating

the b field 2λ − 1 times where λ > 0 denotes the conformal weight of the b

field. This integration leaves us with 2λ − 1 new modes which then turn out

to be one half of the total set of zero modes. The other half of the zero modes

has to be added artificially in an analogous way, as for the c field shown above.

The latter are necessary as canonically conjugate partners for the zero modes

arising as integration constants. Without these conjugate partners, the action

of our zero modes would be trivial.

2.3.2 c = −2 LCFT via logarithmic deformation

As noted in the introduction of this section there is a different way to construct

logarithmic extensions of conformal field theories as described in Fjelstad et al.

(2002). The idea of this method is to consider special deformations of the

energy-momentum tensor. One defines

T̃ := TCFT + T impr (2.23)

where T impr denotes the so called “improvement term” which extends the CFT

energy-momentum tensor TCFT in a way that the resulting stress tensor T̃

belongs to a logarithmic theory. Of course, the full stress-energy tensor must

still possess the correct operator product expansion with itself.

As is well-known the CFT stress tensor is given by

TCFT = −λ :b(∂c) : +(1− λ) : (∂b)c : = − :b∂c : , (2.24)

for λ = 1, which yields the c = −2 ghost system. A careful consideration

motivates the following ansatz for the improvement term:

T impr =
1

z
θ0b(z) (2.25)

with θ0 being an additional zero mode. We have deliberately chosen to name

this zero mode θ0 to make contact to the preceding approach via symplectic

fermions. Indeed, the deformed energy-momentum tensor can in this case be

rewritten in a nicer form by applying a deformation to the fields as well:

b(z) −→ θ̄(z) = ∂−1b(z) (2.26)

c(z) −→ θ(z) = c(z) + θ0 log(z) (2.27)

which leads to the well-known result (2.20). The theory with c = −2 is a bit

special, because (as we will see later) it is not always possible to write the

energy-momentum tensor as a function of the new basic fields.
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2.4 Why logarithmic conformal field theory?

We have not yet addressed the question why we need to consider logarithmic

conformal field theories at all. In this section we want to give a short descrip-

tion, why LCFTs appear in a natural way if one considers conformal ghost

systems on nontrivial Riemann surfaces. We will pick up the question again

in subsection 2.5.3, where we discuss the topic in more detail.

Conformal field theories can be studied on arbitrary Riemann surfaces. The

most simple theory in general is a conformal field theory that “lives” on the

complex plane.

While this conformal field theory has many interesting applications, there is

huge interest from a string theoretical point of view to consider CFTs on

nontrivial Riemann surfaces of genus g. For instance let us assume that we

want to study a conformal field theory that “lives” on a Riemann surface of

genus 2:

A Riemann surface can be described by a multi-sheeted ramified covering of

the complex plane. The number of branch points and branch cuts is related

to the genus g. In our example the Riemannian surface of genus 2 can be

described by two complex planes linked by three branch cuts. The following

graphical representation shows the two complex planes and the three branch

cuts respectively the six branch points.
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Note that the branch points have all the same ramification number and hence

we also call the above a � 2-symmetric Riemann surface.

Knizhnik (1987) showed how we can map the problem back to the ordinary

complex plane. We take a CFT for each sheet and have to add additional

operators, which implement the action of the branch points on the fields. The

following illustration shows the tensored CFTs that “live” on one complex

plane.

The operators µ represent new vertex operators. Now it is natural to consider

the operators µ not as statical operators, but as additional degrees of freedom.

This means that µ now becomes µ(z), a field, which is called twist field.

We consider now the b-c ghost system with central charge −2, but the

argument is much the same for other central charges. The operator product

expansion of two twist fields is

µ(z)µ(w) ∼ Ĩ(w)− log(z − w)I(w) , (2.28)

which means that the logarithmic partner of the identity operator shows up in

the OPE. Now it is important to know that the vacuum representation of Ĩ is

not an element of the Hilbert space of the b-c system,

Ĩ|0〉 = ξ ξ̄ |0〉 /∈ Hb,c (2.29)

∈ Henlarged , (2.30)

because there is no mode in the b-c system that corresponds to ξ̄, as one can

immediately infer from (2.22). This means that we have to extend our initial
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Hilbert space in order to achieve an algebraic closure with respect to the OPE.

Geometrically the OPE means that the branch points run into each other,

which is illustrated for the torus below.

It should be pointed out that a c = −2 theory on higher genus surfaces which

are hyperelliptic or � n symmetric, is somehow special, since it is possible by

a base transformation to make one of the CFTs trivial. Therefore we do not

have to consider tensored theories for c = −2 as long as we are interested in

the hyperelliptic case. For c = −26 this is not true anymore.

2.5 A close look at c = −26

Motivated by the success for the c = −2 system we are now going to construct

a logarithmic conformal field theory for c = −26 which basically has the same

properties as the θ, θ̄ system in the c = −2 case. This construction process

presumably does not only work for c = −26, but should work for any b-c ghost

system.

One might be tempted to assume that the Jordan-cell of the LCFT for

c = −26 has a rank greater than two since this theory possesses a larger

number of zero modes, i. e., modes which annihilate the vacuum to the left as

well as to the right.

As we will see we do not find higher rank Jordan-blocks: in fact, the zero

mode of the Virasoro algebra L0 turns out to be perfectly well-defined without

any Jordan structure at all. The nontrivial indecomposable structure of the

Virasoro modules manifests itself in the action of the Virasoro modes Ln, n 6= 0.

Therefore, we cannot speak of a rank of a Jordan-cell anymore. We will discuss

later in which way the Virasoro modules are indeed indecomposable.

Investigating such systems is interesting for string theory. The calculation

of string amplitudes makes use of the computation of λ-forms on nontrivial

Riemann-surfaces. In a CFT approach these are the ghost systems. As Knizh-

nik (1987) pointed out, nontrivial Riemann-surfaces, seen as a multi-sheeted

covering of the complex plane, can be simulated by twist-fields inserted at the
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branch points. It has become clear by now that operator product expansions of

such twist fields inevitable lead to logarithmic fields Flohr (1998a); Gaberdiel

and Kausch (1996b). Therefore, computation of string amplitudes automati-

cally involves not only the b,c system but its enlarged full LCFT. Also, there

have been hints that LCFTs with higher rank Jordan-blocks play a role in the

AdS/CFT correspondence Giribet (2001). Thus, it is important to learn more

about LCFTs where the indecomposable structure is more involved than in

the simple rank-two case. Even the simplest such higher-rank cases are very

difficult to study, since the generic form of operator product expansion can

only be fixed under quite restrictive assumptions Flohr (2002b).

2.5.1 Generalizing symplectic fermions

We now try to mimic what we did in the previous section, but this time for

c = −26. Starting with the well-known b-c system for c = −26 and by applying

the same steps as we did for c = −2 we get a larger system. Unfortunately

building a LCFT for c = −26 turns out to be more complicated than for the

c = −2 case. Basically two obstacles are in the way of constructing a LCFT

for λ ≥ 2:

1. The energy-momentum tensor cannot be built by combining derivatives

of the generalized symplectic fermion fields.

2. LCFT is intimately linked to twist fields arising from putting the CFT

on a nontrivial Riemann-surfaces. The full theory is a tensor product of

the CFTs for each covering sheet. We cannot neglect this fact.

In this sense c = −2 is special since the above mentioned problems do not

show up (as we will explain later).

The b-c system for c = −26 is given by the following relations if we set

λ = 2:

b(z) =
∑

n

bnz
−n−2 , c(z) =

∑

n

cnz
−n+1 , (2.31)

{cn, bm} = δn+m,0 , {cn, cm} = {bn, bm} = 0 , (2.32)

bn |0〉 = 0 ∀n ≥ −1 , cn |0〉 = 0 ∀n ≥ 2 , (2.33)

T (z) = −2 :b∂c :− : (∂b)c : . (2.34)
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As explained in section 2.2 the b-c system for central charge c = −26 comes

with three pairs of zero modes,1 namely (bi, ci) for i = −1, 0, 1. In the same

way as we extended the c = −2 theory to a larger one by formal integration,

we can try this for the c = −26 case by introducing the fields

Λ(z) := θ1 log z + θ0(z log z − z) + θ−1
z2

2

(
log z − 3

2

)

+ξ1 + ξ0z + ξ−1
1

2
z2 +

∑

|n|>1

θn
z−n+1

−n + 1
(2.35)

Λ̄(z) := θ̄1 log z + θ̄0(z log z − z) + θ̄−1
z2

2

(
log z − 3

2

)

+ξ̄1 + ξ̄0z + ξ̄−1
1

2
z2 +

∑

|n|>1

θ̄n
z−n+1

−n + 1
. (2.36)

The field Λ̄(z) := ∂−3b has now the same conformal weight as its partner

field Λ(z) := c(z) +
∑

i fi(z)θi. We call such pairs of anti-commuting fields

of identical conformal weight generalized symplectic fermions. Note that the

threefold-integration adds three new modes, ξ̄i, i = −1, 0, 1, to the theory,

which are (as we will see later) one half of the additional zero modes we

have to add to the theory in order to make it logarithmic. The other half is

artificially added in the Λ field. Similar to the c = −2 case our new fields are

now on equal footing h(Λ) = h(Λ̄) = −1.

Going from Λ, Λ̄ back to b, c of course requires removing these additional

modes:

b(z) = ∂3Λ̄(z) (2.37)

c(z) = Λ(z)
∣∣
θi=0

. (2.38)

The relations from the b-c system can be translated to the new system and we

find:

{
θn, θ̄m

}
= − 1

n
δn,−m |n|, |m| > 1 (2.39)

{
ξi, θ̄−i

}
= (−1)i+1 i = −1, 0, 1 . (2.40)

For the new modes we require the anti-commutation relations to be

{
ξ̄i, θ−i

}
:= (−1)i i = −1, 0, 1 , (2.41)

1If not explicitly stated otherwise the range of i for the c = −26 system is -1, 0, 1
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which leads to the following OPEs

Λ(z)Λ̄(w) ∼ 1

2
(z − w)2

[
3

4
− log(z − w)

]
(2.42)

Λ(z)Λ(w) ∼ O(z − w) (2.43)

Λ̄(z)Λ̄(w) ∼ O(z − w) . (2.44)

The new modes indeed have the properties of zero modes, namely that all

modes θi and θ̄i are annihilators to both sides, and the modes ξ̄−i and ξ−i are

their respective conjugate modes. Therefore, the extended theory also contains

twice as many zero modes compared to the original b-c ghost system.

2.5.2 Building the energy-momentum tensor

Having constructed fields which show logarithmic behavior leads us to the

question how the energy-momentum tensor for c = −26 looks like. Therefore,

we look back to the c = −2 case in the hope to learn from this scenario. We

remember that for λ = 1 respectively c = −2 simply plugging in the fields

(2.22) in the energy-momentum tensor

T = T [b, c] = −λ :b∂c : +(1− λ) : (∂b)c : . (2.45)

gives us the desired result (2.20). Unfortunately this does not work out in the

same way for c = −26 and presumably neither for any other λ ≥ 2.

The reason is obvious: Λ appears plainly and as first derivative in the

energy-momentum tensor. Because of Λ containing zn log(z) terms this in-

evitable leads to logarithmic terms in the energy-momentum tensor.

To find possible energy-momentum tensors at all we use a different ap-

proach and consider possible extensions of the stress-energy tensor on the

mode level. This approach is motivated by the paper of Fjelstad et al. (2002),

but note that our deformation term is slightly more general and so is our re-

sult. The deformation term in Fjelstad et al. (2002) is always constructed from

primary fields, which we do not assume here.

T log(z) =T b,c(z) +R(z) (2.46)

=
∑

n

z−n−2
(
Lb,c
n +Rn

)
(2.47)
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where the modes Lb,c
n are given by

Lb,c
−2 = −

∑

l 6=−3,...,1

l(l + 1)(l + 4)

l + 3
: θ̄lθ−l−2 : −6 : θ̄−3ξ1 : −4 : θ̄−2ξ0 :

−3

2
: θ̄−1ξ−1 : +

4

3
: θ̄0θ−2 : −5

2
: θ̄1θ−3 : (2.48)

Lb,c
−1 = −

∑

l 6=−2,...,1

l(l + 1) : θ̄lθ−l−1 : − : θ̄−1ξ0 : + : θ̄0ξ−1 : −2 : θ̄1θ−2 :(2.49)

Lb,c
0 = −

∑

l 6=−1,...,1

l2 : θ̄lθ−l : − : θ̄1ξ−1 : + : θ̄−1ξ1 : (2.50)

Lb,c
1 = −

∑

l 6=−1,...,2

(l − 2)(l + 1) : θ̄lθ−l+1 : −3 : θ̄−1θ2 : −2 : θ̄0ξ1 : −2 : θ̄1ξ0 :

(2.51)

Lb,c
2 = −

∑

l 6=−1,...,3

(l − 4)l(l + 1)

l − 1
: θ̄lθ−l+2 : −5

2
: θ̄−1θ3 : +4 : θ̄0θ2 :

+6 : θ̄1ξ1 : +12 : θ̄2ξ0 : +6 : θ̄3ξ−1 : (2.52)

and Rn denotes the extension which may contain the new deformation modes

θi, ξ̄i. The modes Llog
n := Ln+Rn of course have to obey the Virasoro Algebra,

which is a strong restriction. We get two different solutions, each coming with

three possible deformations of the stress tensor:

R−2 = 6Aθ1θ̄−3 − 4Bθ0θ̄−2 +
3

2
Cθ−1θ̄−1 (2.53)

R−1 = −Bθ0θ̄−1 − Cθ−1θ̄0 (2.54)

R0 = −Aθ1θ̄−1 + Cθ−1θ̄1 (2.55)

R1 = 2Aθ1θ̄0 + 2Bθ0θ̄1 (2.56)

R2 = −6Aθ1θ̄1 + 12Bθ0θ̄2 − 6Cθ−1θ̄3 (2.57)

R−2 = 6A′θ1θ̄−3 − B′θ−2ξ̄0 +
3

2
C ′θ−1θ̄−1 (2.58)

R−1 = −C ′θ−1θ̄0 (2.59)

R0 = −A′θ1θ̄−1 + C ′θ−1θ̄1 (2.60)

R1 = 2A′θ1θ̄0 (2.61)

R2 = −6A′θ1θ̄1 − 3B′θ2ξ̄0 − 6C ′θ−1θ̄3 . (2.62)

Testing the Virasoro Algebra with the above deformation terms is sufficient,

since all higher modes can be derived with the help of the Virasoro Algebra.
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Two things are noteworthy: firstly, the second solution contains ξ modes.

This is a bit unexpected since Llog
n should, according to what we learned from

the c = −2 theory, only lower the zero mode content and not increase it.

Secondly, both solutions look very similar. Setting B ′ = 0 in the second

solution, and thus eliminating the unwanted ξ-modes, would result in a special

case (B = 0) of the first solution. As we will see later the second solution is

indeed a special case of the first one. That is why we concentrate on the first

solution for now.

The extensions can be written in a nicer way, making use of the b-field:

T log(z) = T b,c(z) + Aθ1
1

z0
∂(z0b) +Bθ0

1

z1
∂(z2b) + Cθ−1

1

z2
∂(z4b) (2.63)

which has a strikingly similarity with the energy-momentum tensor deforma-

tions described by Fjelstad, Fuchs et al., but also has an important difference,

namely the appearance of derivatives of the first order. The important point is

that the deformations involve additional modes which are proper zero modes,

i. e., annihilation operators to both sides. There are three possible “directions”

to deform the energy-momentum tensor, which matches exactly the number of

zero modes of our system as we might have expected. In the c = −2 system

only one such deformation was possible. There is another difference between

c = −2 and c = −26: while in the former theory it was possible to redefine the

b and c fields (2.26), (2.27) in order to get an energy-momentum tensor which

consists of the new fields only, this is not possible in the latter case.

Demanding that the Virasoro modes satisfy the hermiticity condition L†n =

L−n leads to a further restriction of the solution2:

A = C . (2.64)

In the second solution, this requirement leads to the condition A′ = C ′.

2.5.3 Fields on nontrivial Riemann Surfaces

Up to now we have constructed fields Λ, Λ̄ out of the b-c system for c = −26

and we have found possible deformations of the energy-momentum tensor. The

Hilbert-space Hlog of the extended theory is an enlargement of the Hilbert-

space of the b-c system containing the additional zero modes ξ̄i.

2Note that taking the adjoint of the modes can cause an additional constant, for instance

ξ†1 = 1
2ξ−1, due to our normalization of the modes, which results from viewing them as

integration constants.
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This gives rise to another problem, namely that the constructed theory can-

not be the full theory, because of Llog
0 not being able to measure the conformal

weight of all states contained in the Hilbert-space correctly. For instance
∣∣ξ̄−1

〉

is surely an element of the Hilbert-space Hlog, but Llog
0

∣∣ξ̄−1

〉
= 0 gives the

wrong conformal weight.

This is an extremely interesting observation. The origin of logarithmic

fields is tied to the existence of so-called pre-logarithmic primary fields, whose

operator product expansions contain the logarithmic fields, cf. Kogan and

Lewis (1998). In fact, the first hint for the existence of the field Ĩ in the c = −2

theory comes from evaluating the four-point function of four Z2 twist fields µ

of conformal weight h = −1/8, as has been observed in Gurarie (1993). As a

result, this four-point function contains the following two conformal blocks:

〈µ(∞)µ(1)µ(x)µ(0)〉 = [x(1− x)]
1
4F (x) ,

F (x) =





2F1(1
2
, 1

2
; 1; x) ,

2F1(1
2
, 1

2
; 1; 1− x) = 2F1(1

2
, 1

2
; 1; x) log(x)

+ ∂
∂ε 3F2(1

2
+ε, 1

2
+ε, 1; 1+ε, 1+ε; x)

∣∣
ε=0

.

(2.65)

In case of the ghost systems, these pre-logarithmic twist fields have a geometric

meaning: these fields behave exactly as branch points of a ramified covering

of the complex plane. For example, the above mentioned Z2 twist fields µ

simulate the branch point of a hyperelliptic surface in case of the c = −2

theory. Whenever all branch points have the same ramification number, say

n, all monodromies around these points can be diagonalized simultaneously.

As Knizhnik has shown, ghost systems on such Zn-symmetric Riemann

surfaces can be dealt with by putting them on an n-fold sheeted covering of the

complex plane where the branch points are represented by suitable constructed

vertex operators. However, these vertex operators are twist fields, and thus

may produce logarithmic divergences in their operator product expansions.

Furthermore, to yield a local theory, we have to take the tensor product of the

theories on all covering sheets.

The simplest such case is the hyperelliptic one, since then automatically all

branch points are of order two. This hyperelliptic case is special since for the

c = −2 theory, and only for this theory, one of the two copies of the conformal

field theory decouples completely. This is a major difference of the c = −2

theory compared to other ghost systems, namely that it is possible to eliminate

the theory on one of the two covering planes because after diagonalizing the

monodromies the vertex operators associated to the branch cuts become trivial

on one of the sheets.
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Since this is a subtle point, we discuss it a bit more in detail: The twist

field µ for a branch point on a hyperelliptic surface for the c = −2 ghost

system is actually given by µ(z) = V−1/2(z) ⊗ V0(z), where Vq(z) denotes a

vertex operator with charge q with respect to the ghost current J = :bc: in

a free field construction, and where we have indicated the composition of the

twist field out of the two copies of the CFT. The conformal weight is, with

h(q) = 1
2
q(q+1), given by h(− 1

2
)+h(0) = −1

8
as it should be. The background

charge at infinity is for both copies q0 = −1/2 such that the total sum of all

charges in each copy must add up to 2q0 = −1. Looking at the four-point

function mentioned above, we actually have to compute

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = 〈V−1/2(z1)V−1/2(z2)V−1/2(z3)V−1/2(z4)〉
× 〈V0(z1)V0(z2)V0(z3)V0(z4)〉

= 〈Q+1V−1/2(z1)V−1/2(z2)V−1/2(z3)V−1/2(z4)〉
× 〈Q−1V0(z1)V0(z2)V0(z3)V0(z4)〉 , (2.66)

where we have indicated the necessary screening charges in the last step. Now,

we can easily construct a screening current with charge q = 1 since V1(z) has

conformal weight h(q) = 1
2
q(q + 1) = 1 as we expect. Actually, V1(z) behaves

essentially in the same way as the screening current, since J(z)dz = :bc:(z)dz

transforms exactly like a one-differential. Thus Q+1 =
∮

dzV1(z). This fac-

tor of the four-point function yields then precisely the integral representa-

tion of the hyper-geometric function appearing in (2.65). The second fac-

tor of the four-point function is more tricky, since the field V−1 has con-

formal weight h = 0, thus cannot serve as screening current. However, a

screening current with the correct properties can be constructed in the form

Q−1 =
∮

dz
∮

dz′V1(z)V−2(z′), since V−2 also has conformal weight h = 1.

When inserting these two screening charges, one has to be careful with the

choice of the contour for the integration. It turns out that the net result in

the presence of nothing but four identity fields V0(zi), i = 1, . . . , 4, simply is

the operator : φV−1 : (0), where φ(z) is the free field used in the bosonization.

Thus, we end up with the insertion of the logarithmic partner Ĩ(0) of the iden-

tity such that the second factor of (2.66) does not vanish identically, but yields

simply a constant. Taken all together, we arrive at (2.65).

Repeating this computation for the c = −26 ghost system is a bit more

involved. The twist fields for the hyperelliptic case have now the composition

µ(z) = V−1/2(z)⊗V−1(z), such that the second factor is not merely the identity

operator. The conformal weights are now given by h(q) = 1
2
q(q + 3) and

the background charge at infinity is now −3/2. The twist field has therefore
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conformal weight hµ = h(−1
2
) + h(−1) = −5/8 + (−1) = −13/8. Thus, we

have to satisfy

〈µ(z1)µ(z2)µ(z3)µ(z4)〉 = 〈V−1/2(z1)V−1/2(z2)V−1/2(z3)V−1/2(z4)〉
× 〈V−1(z1)V−1(z2)V−1(z3)V−1(z4)〉

= 〈Q−1V−1/2(z1)V−1/2(z2)V−1/2(z3)V−1/2(z4)〉
× 〈Q+1V−1(z1)V−1(z2)V−1(z3)V−1(z4)〉 , (2.67)

where we have again indicated the necessary screenings. Here, the second

factor is easier, since the screening charge Q+1 can always be taken as the

contour integration of the ghost current J+1(z) ≡ J(z) = :bc:(z), since it

transforms by construction as a one-differential. Moreover, all charges q are

always defined with respect to this ghost current. This is true independent of

the value of the spin λ of the ghost system considered. Thus, the screening

charge Q+1 is always easy to construct.

For the first factor, we have to use a modified version of the screening cur-

rent, since the current J̃(z) = :V1V−2:(z), although it has the correct conformal

weight h = 1 and is a local chiral field, does not yield the correct charge. It

is merely an alternative representation of the screening current. Instead, we

might use J−1(z) =
∮

dz′V1(z)V−2(z′) =
∮

dz′(z − z′)−2V−1(z′). This current

has the correct charge, but the wrong conformal weight h = 0. We arrive thus

at a similar situation as with the second factor in the c = −2 case, namely

where the effect of screening is the insertion of a nontrivial h = 0 field.

However, it is possible to construct a correct screening for the first factor

by making use of the nontrivial h = 5 field of charge q = 2, which is part of the

extended chiral symmetry algebra of the c = −26 ghost system. The correct

screening charge reads then

Q−1 =

∮
du1

∮
du2

∮
du3V−1(u1)V−2(u2)V2(u3) . (2.68)

The integrand has total conformal weight h = (5) + (−1) + (−1) = 3, which

after three integrations yields a conformally invariant object.

The lengthy discussion shows the following: Evaluating the four-point func-

tion of four Z2 twist fields in the c = −26 case as in (2.67) yields an expression

which will exhibit logarithmic singularities just as in the c = −2 case. Indeed,

the second factor in the c = −26 case is again related to an integral representa-

tion of a hyper-geometric system, 2F1(1, 0; 0; x) = 1F0(1; x) =
∫ x
x0

du(1− u)−2.
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The first factor, however, is much more complicated since it involves a three-

fold integration

∮
du1

∮
du2

∮
du3

(u1 − u2)2

(u1 − u3)2(u2 − u3)4

4∏

i=1

(zi − u1)
1/2(zi − u2)1

(zi − u3)1
. (2.69)

After bringing the four-point function (2.67) into standard form with z1 =∞,

z2 = 1, z3 = x, z4 = 0 with x the crossing ratio, one of the three integrations

can be performed and yields a Lauricella system of D-type (see for exam-

ple Exton (1976)), which is a generalized hyper-geometric system of several

variables:

〈V−1/2(∞)V−1/2(1)V−1/2(x)V−1/2(0)〉 =

∮
du2

∮
du3(u2 − u3)−4 (2.70)

× F (3)
D (

3

2
,−1

2
,−2, 2; 3; x, u2, u3)

u3(1− u3)(x− u3)

u2(1− u2)(x− u2)
.

The system F
(3)
D has several solutions depending on the choice of the inte-

gration contour, some of them exhibiting logarithms when expanded around

x = 0. This is similar to the ordinary hyper-geometric case where a loga-

rithmic solution appears whenever c in 2F1(a, b; c; x) is an integer. In fact,

F
(3)
D (3

2
,−1

2
,−2, 2; 3; x, u, u) = 2F1(3

2
,−1

2
; 3; x), which is a hyper-geometric sys-

tem with the two expansions

y1 =
∑

n

(3
2
)n(−1

2
)n

(3)n(1)n
xn , (2.71)

y2 = log(x)
∑

n

(3
2
)n(−1

2
)n

(3)n(1)n
xn +

∑

n

∂

∂ε

(
(3

2
+ ε)n(−1

2
+ ε)n

(3 + ε)n(1 + ε)n

)

ε=0

xn(2.72)

around x = 0. The full computation of this four-point functions is beyond the

scope of this chapter.

We note once more that looking at n-point functions of twist fields re-

veals whether we should expect logarithmic operators and thus indecompos-

able structures in our CFT or not. The logarithmic operators get exchanged in

the internal channels of the n-point functions of twist fields due to degeneracies

in the moduli space of the considered Riemann surface, if branch points run

into each other. The present case, c = −26, clearly shows all signs to be a

logarithmic CFT.

This discussion motivates, however, that our logarithmic deformation of the

ghost system is related to the above mentioned situation on nontrivial Riemann
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surfaces. For the sake of simplicity, we concentrate again on the hyperelliptic

case. Doing so, we now have two sets of modes (θpn, θ̄
p
n, ξ

p
i , ξ̄

p
i , n ∈ Z, p = 1, 2)

and also two sets of deformation parameters: A1, A2, B1, B2.

The easiest unification of both theories is given by defining the modes of

the unified theory in the following way:

Ltot
n := Llog,1

n + Llog,2
n , (2.73)

which means that we indeed take simply the tensor product of the two isomor-

phic conformal field theories. However this alone does not lead to a proper

theory, since the new modes Ltot
n do not satisfy the Virasoro algebra. To

achieve the latter we have to identify the new modes, ξ̄i, θi, on the one plane

with the ξi, θ̄i modes on the other covering plane, by demanding

θ1
i ∼ θ̄2

i (2.74)

ξ̄1
i ∼ ξ2

i . (2.75)

and analogously for θ2
i and ξ̄2

i . Using up two more degrees of freedom by setting

A := A1 = −A2 (2.76)

B := B1 = −B2 (2.77)

we get

[
Llog,1
n , Llog,2

m

]
= 0 , (2.78)

and therefore Ltot
n now not only fulfills the Virasoro algebra with total central

charge 2 · (−26) = −52, but also acts correctly on the full space of states. It is

worth mentioning that our construction automatically and naturally forces us

to consider the (deformed) ghost system conformal field theory on a nontrivial

Riemann surface. Moreover, we also have to slightly alter Knizhnik’s pre-

scription of constructing the full conformal field theory. A consistent Virasoro

algebra with the correct action on the Hilbert space can only be obtained, if

the two copies are not simply added, but only if the zero modes of the two con-

formal field theories are intermixed. This, in essence, encodes that the action

of the monodromies cannot be fully diagonalized, leading to indecomposable

structures in the conformal field theory. It is very interesting that for c = −26,

and presumably for any other ghost system with λ 6= 1, the deformation of the

Virasoro algebra inevitably leads us to consider such tensor products of these

ghost systems, which do not factorize completely. As mentioned above, the

c = −2 case appears now as particularly simple, since here the factorization
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of the full theory in two copies still almost holds.3 Thus, our enlarged theory

has a nice and natural geometrical interpretation.

Applying the same steps to our second solution (2.58)-(2.62) gives:

A′ := A′1 = −A′2 (2.79)

C ′ := C ′1 = −C ′2 (2.80)

B′ := B′1 = B′2 = 0 . (2.81)

This means that the second solution is already included in the first one (B = 0)

and in particular the condition (2.78) enforces the elimination of the terms

containing ξ modes. Therefore, it is sufficient to investigate the first solution

though we bear in mind that B = 0 might be an interesting choice.

Retranslating the system to the familiar b-c system using the choice above

leads to

Rtot
−2 = −1

2
Ab1
−3b

2
1 − 2Bb1

−2b
2
0 − 3Ab1

−1b
2
−1 +

1

2
Ab2
−3b

1
1 + 2Bb2

−2b
1
0 (2.82)

Rtot
−1 = −(A +B)b1

−1b
2
0 − (A +B)b1

0b
2
−1 (2.83)

Rtot
0 = 0 (2.84)

Rtot
1 = (A+B)b1

0b
2
1 + (A+B)b1

1b
2
0 (2.85)

Rtot
2 = 3Ab1

1b
2
1 + 2Bb1

2b
2
0 +

1

2
Ab1

3b
2
−1 + 2Bb1

0b
2
2 +

1

2
Ab1
−1b

2
3 . (2.86)

Therefore, our theory is diagonal with respect to Ltot
0 for arbitrary A and

B. Off-diagonal contributions appear in all different modes for almost all

nontrivial choices of A and B. The only nontrivial exception is A = −B which

eliminates all off-diagonal elements for Ltot
−1 and Ltot

1 thus leading to a theory

which is as “little” as possible logarithmic, in the sense that the SL(2,C) global

conformal group is not deformed at all. In particular the second solution (2.58)-

(2.62) which narrowed down to the first one with B = 0 comes for all nontrivial

choices always with a deformation term. Note that there is no physical reason

forcing this choice.4 For any nontrivial choice of A and B it is inevitable that

deformations of higher modes |n| ≥ 2 occur.

3Of course, one should in principle also identify the additional zero mode for the defor-

mation with the zero mode of the other copy of the conformal field theory for the other

sheet.
4If we want to keep the relations we already know from other LCFTs, then A = −B is

mandatory. In the so far known LCFTs, the Virasoro modes can be written in the form

Ln = zn (z∂i + (n+ 1)(hi + δhi)), see e. g. Flohr (2000), such that L−1 has no off-diagonal

contribution, which one might expect for the generator of translations. This differs from the

case considered here, where L0 has no off-diagonal term. It follows then from the Virasoro

algebra that L−1 having no logarithmic contribution implies the same for L1 and vice versa.

The choice A = −B reproduces this behavior.
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The next question is, what the highest weight states for our enlarged theory

are, since these correspond to the primary fields. Leaving aside twisted sectors

of the theory, we found the following highest weight states for h = −2,−1, 0

(note that there are no such states for h = 1, 2 and that all states for h = −2

are highest weight states).

h = −2 : c1
1c

2
1|0〉 , c1

0c
1
1c

2
1|0〉 , c1

1c
2
0c

2
1|0〉 , c1

0c
1
1c

2
0c

2
1|0〉

h = −1 : c2
1|0〉 , c1

1|0〉 ,
c1

0c
1
1|0〉 ,

(
c1

0c
2
1 − c1

1c
2
0

)
|0〉 , c2

0c
2
1|0〉 ,(

c1
0c

1
1c

2
0 − 2c1

−1c
1
1c

2
1

)
|0〉 ,

(
c1

0c
2
0c

2
1 − 2c1

1c
2
−1c

2
1

)
|0〉

c1
−1c

1
0c

1
1c

2
1|0〉 ,

(
c1

0c
1
1c

2
−1c

2
1 − c1

−1c
1
1c

2
0c

2
1

)
|0〉 , c1

1c
2
−1c

2
0c

2
1|0〉 ,

− (A+B)c1
−1c

1
1c

2
1|0〉+ c1

−1c
1
0c

1
1c

2
0c

2
1|0〉 ,

(A+B)c1
1c

2
−1c

2
1|0〉+ c1

0c
1
1c

2
−1c

2
0c

2
1|0〉

h = 0 : |0〉 ,
c1
−1c

1
0c

1
1|0〉 , c2

−1c
2
0c

2
1|0〉 ,(

c1
−1c

1
1c

2
0 − c1

−1c
1
0c

2
1 − c1

0c
1
1c

2
−1

)
|0〉 ,

(
c1
−1c

2
0c

2
1 + c1

1c
2
−1c

2
0 − c1

0c
2
−1c

2
1

)
|0〉 ,

(
A2

4
c1

0c
2
0 +

1

2
ABc1

−1c
2
1 +

1

2
ABc1

1c
2
−1 +Bc1

−1c
1
1c

2
−1c

2
1

+
1

2
Ac1
−1c

1
0c

2
0c

2
1 +

1

2
Ac1

0c
1
1c

2
−1c

2
0 + c1

−1c
1
0c

1
1c

2
−1c

2
0c

2
1)|0〉 (2.87)

As we noted above Ltot
0 is—in contrast to the c = −2 theory—diagonal. An

operator for c = −26 which has similar properties as L0 for c = −2 is Ltot
−2.

Indeed, applying this operator generates off-diagonal terms as the following

example shows

Ltot
−2

∣∣c1
1c

2
1

〉
=
(
c1

1c
2
−1 + c1

−1c
2
1

)
|0〉 − 2

(
b2
−2c

2
0 + b1

−2c
1
0

) ∣∣c1
1c

2
1

〉
+ 3A|0〉 . (2.88)

Applying Ltot
−2 a second time leads to further off-diagonal terms

(
Ltot
−2

)2 ∣∣c1
1c

2
1

〉
=− A(12b1

−2c
1
0 +

3

2
b1
−3c

1
1 + 12b2

−2c
2
0 +

3

2
b2
−3c

2
1)|0〉

+ 8B(b1
−2c

1
1b

2
−2c

2
1)|0〉 . (2.89)

While A = −B in general makes the theory easier (by eliminating logarithmic

contributions) this does not reduce the number of terms in this case.
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If we multiply the deformation term with q (A→ qA, B → qB) then it is

interesting to note that the power in q does not go beyond a certain threshold if

we consider (Ltot
−2)m |state〉 , m ∈ N. The reason for a threshold can be derived

from the structure of the extension Rtot
n and the states: each Rtot

n contains at

least one annihilator bpi (p = 1, 2, i = −1, 0, 1) while the states are words in

the conjugated modes, the creators, cpi (p = 1, 2, i = −1, 0, 1) applied to the

in-vacuum. By applying Rtot
n the number of c modes is reduced by one or two

(or the term is eliminated) and most importantly there is no term in Ltot
n which

increases the number of c modes again. Therefore, the maximum power in q

which theoretically can occur is 6.

Our c = −52 theory comes, though logarithmic, with a non-logarithmic Ltot
0

which is a major difference to all LCFTs we know up to now. Because of Ltot
0

being trivial we obviously get no Jordan-cell or a Jordan-rank in the traditional

sense. Nevertheless we have some properties which are the same in both types

of LCFTs, the ones with and without logarithmic LLCFT
0 . Remember that

applying LLCFT
0 on a highest weight state |h, k〉 leads to an extra term |h, k − 1〉

for k > 0. Therefore, marking the logarithmic extension term with a q leads

to

(Llog
0 )m |h, k〉 = qk |h, 0〉+ qk−1(. . .) + . . .+ hm |h, k〉 , m > k (2.90)

where k = 0, . . . , jrk (Llog
0 )− 1 and jrk denotes the rank of the Jordan-matrix.

This means that the Jordan-rank can be found by applying (LLCFT
0 )m for all

m ∈ N on all |h〉 ∈ HWS (HWS denotes the set of all highest weight states).

The highest occurring power in q plus 1 defines the rank of the Jordan-cell.

This motivates the following definition (writing LLCFT
n = LCFT

n + qRn with Rn

being deformation term):

jrk (Llog
n ) := max

{
k = degq

(
(Llog

n )m |h〉
)

: |h〉 ∈ HWS, m ∈ N
}
, (2.91)

where (Llog
0 )m |h〉 is to be understood as a polynomial in q after evaluation.

The logarithmic behavior of this theory becomes (for A = −B) manifest in

Ltot
−2. The Jordan-rank in the above defined sense of Ltot

−2 can easily be found by

examining (2.82): each term contains at least one of the modes bpi (p = 1, 2, i =

−1, 0, 1). The remaining b modes are of no interest since these are creators and

the zero modes are mutually distinct in each of the terms. Therefore, the only

states we are interested in are words in the letters c2
−1, c

2
0, c

1
1c

2
1, c

1
−1, c

1
0. Looking

at the highest weight states of conformal weight h = 0 in equation (2.87) shows

that one highest weight state really contains a state which consists of all the

above letters implying an upper bound

jrk (Ltot
−2) = 5 (2.92)
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up to accidental cancellations. Tedious and lengthy calculations reveal that

the upper bound is satisfied. We note for completeness that for B = 0, A 6= 0

the Jordan-rank is jrk (Ltot
−2) = 3.

2.6 Summary and conclusion

The well-known b-c system with central charge c = −26 can be enlarged to

a logarithmic CFT. In some aspects the transition is similar to the c = −2

case, in others it is completely different: the energy-momentum tensor cannot

be built by combining derivatives of the generalized symplectic fermion fields

and we also have to consider that it is not correct to neglect one half of the

theory if we investigate it on hyperelliptic Riemann surfaces. On the contrary,

enlarging the c = −26 ghost system to a logarithmic theory makes it necessary

to consider this theory on nontrivial Riemann surfaces. This is natural and

consistent with our understanding of the geometrical origin of logarithmic fields

from operator product expansions of twist fields which simulate branch points.

On the other hand, it is surprising in so far as it is possible to consider the

logarithmic extension of the better known c = −2 theory without the need

of putting it on higher genus Riemann surfaces. As we have seen, this is

impossible for c = −26. Due to the particular structure of the vertex operators

which represent the branch points, we conjecture that logarithmic extensions

of other ghost systems with λ 6= 1, 2 are only possible when considered on

Zn-symmetric Riemann surfaces.

We are confident that the presented construction scheme works not only

for c = −26 but for all b-c ghost systems. The deformation term we used in

order to obtain the new energy-momentum tensor is slightly more general than

the deformation term discussed in the paper by Fjelstad et al. (2002), but is

naturally linked to the zero mode structure of the ghost systems. Thus, we

expect that the spin (λ, 1−λ) ghost system has generically 2λ+1 deformation

directions which presumably get restricted due to hermiticity conditions and

consistency requirements for the action of the deformed Virasoro algebra of

the full theory on the Hilbert space of states.

The structure of the logarithmic c = −26 theory is very different from what

one might have expected in analogy to the c = −2 case: Ltot
0 is not logarithmic

at all. This is a completely new property of a LCFT. Furthermore, the special

choice of the deformation parameter A = −B (see equation (2.63)) leads to

a theory where the whole global conformal group is non-logarithmic. This
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special property is not yet completely investigated. The logarithmic character

of the theory becomes manifest in Ltot
−2 which shows similar indecomposable

properties as L0 in a standard LCFT. A generalization of the definition of the

Jordan-rank has been given which we used to find that the Jordan-rank of Ltot
−2

is 5 for all nontrivial choices of A and B. This should help in identifying the

proper generalization of “logarithmic partners” to primary fields.
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Chapter 3

Four-Point Functions

“A species stumped by an intractable problem

does not merely cease to compute.

It ceases to exist.”

— Seth Lloyd

3.1 Overview

Correlation functions play an important role in quantum field theories, as they

are related to observables. For instance it is possible to compute the cross

sections of a scattering process from the correlation functions of the theory.

These cross sections are also accessible in experiments and thus are of great

interest. In general one often calls a quantum field theory to be solved if all

its correlation functions can be determined.

The above is the reason for us to study correlation functions in LCFT. To

this aim we reconsider correlators in the framework of CFT. As we have learned

in subsection 1.1.10 the global conformal Ward identities (GCWIs) are pow-

erful tools which allow fixing the two- and three-point correlation function up

to constants. Furthermore, these identities make it possible to determine the

generic structure of the four-point function, see (1.64). By generic structure

we mean that the result still contains an unknown function F which solely de-

pends on the anharmonic ration x as given by (1.66). This all is a consequence

of invariance under global conformal transformations.
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We here again write down the GCWIs, but in difference to equation (1.61)

we use the notation that was introduced in subsection 1.2.2

Lq
〈
Ψ(h1)(z1) . . .Ψ(hn)(zn)

〉
:=

n∑

i=1

zqi [zi∂i + (q + 1)hi] 〈. . .〉 = 0 , (3.1)

where Ψ(h)(z) denotes a primary field.

In case of logarithmic conformal field theory the GCWIs need to be adapted

to take into account the indecomposable representations that LCFTs typically

possess. The generalized form of the GCWIs was given by Flohr (2000)

n∑

i=1

zqi [zi∂i + (q + 1)(hi + δhi)]
〈
Ψ(h1,k1)(z1) . . .Ψ(hn,kn)(zn)

〉
= 0 , (3.2)

where Ψ(hi,ki)(zi) denotes a logarithmic field of Jordan-level ki respectively

a primary field in case ki = 0. The operator δhi acts on these logarithmic

fields by reducing the Jordan-level of the field by one respectively annihilat-

ing the field in case it is a primary one: δhiΨ(hi,ki) = Ψ(hi,ki−1) for ki > 1 and

δhiΨ(hi,ki=0) = 0 otherwise (field being a primary). Note that in the above

equation the additional operator δhi vanishes for q = −1 meaning that the

LCFT version exactly matches the CFT version for this value of q. The ad-

ditional operator δhi makes it much harder to find the generic form of the

correlators, because it renders the differential equations inhomogeneous, i. e.,

the solution will depend on solutions of lower Jordan-level.

As before L0 acts on the states

L0 |h; k〉 = h |h; k〉+ |h; k − 1〉 for k > 0 (3.3)

where we additionally define

|h;−k〉 := 0 ∀k > 0 . (3.4)

This shows, that the fields Ψ(hi,ki) indeed correspond to Jordan cells with

respect to L0. The representation of a LCFT with the largest Jordan cell

defines the rank r of the LCFT, i. e., ki < r.

All states |h, k〉 are typically assumed to be quasi-primary in the sense

that Ln |h, k〉 = 0 ∀n > 0 and for all k. Thus, they almost behave as highest-

weight states, up to the non-diagonal action of L0. This is not true in general,

because states to logarithmic partner fields may fail to be quasi-primary, i. e.

L1 |h, k〉 6= 0 for k > 0. However, under certain assumptions, this does not

affect the form of correlation functions. Furthermore, from the results for 1-,
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2- and 3-point functions we can expect the vacuum representation to have the

maximal Jordan-rank. No counter-examples are known up to now and thus we

assume that the Jordan-rank is the same for all representations without loss

of generality. The latter is justified as follows: in case some smaller Jordan-

rank representation does show up, we can extend this representation by adding

additional fields which we set to zero. In essence, this simply means that the

general results remain valid with some of the structure constants set to zero.

For further details on the precise assumptions in the case of non quasi-primary

fields and on the maximal rank of the vacuum representation see Flohr (2002b).

While there are generic methods to determine 2- and 3-point correlation

functions Flohr (2002b); Ghezelbash and Karimipour (1997); Khorrami et al.

(1998); Moghimi-Araghi et al. (2001a); Rahimi Tabar et al. (1997), no such

method exists for 4-point correlation functions, but see Moghimi-Araghi et al.

(2001a, 2003) for a solution in case of 4-point functions involving a level two

null vector field. On the other hand all n > 4-point correlation functions can

be reduced to 2-, 3- and 4-point correlators. Therefore one can compute all

observable quantities of a CFT–at least in principle–if one knows all 2-, 3- and

4-point functions. Thus, this thesis attempts to close the remaining gap by

providing the prescription to fix the generic form of 4-point correlators in the

case of arbitrary rank Jordan-cells in LCFT.

While the generic form of 2- and 3-point functions is fixed up to structure

constants the generic form of 4-point functions can be fixed only up to functions

Fi1i2i3i4(x) of the globally conformally invariant crossing ratios x. As in the case

of ordinary conformal field theory these structure functions can be computed if

additional local symmetries, i. e. null vectors, exist. Indeed, such null vectors

can exist in the logarithmic case Flohr (1998b), but the resulting differential

equations are more difficult to solve because they are inhomogeneous in general

Flohr (2000).

In this chapter we describe how the most general ansatz can be constructed

and how the emerging constants can be calculated in order to find a valid ansatz

for equation (3.2). Most of the constants can be fixed with the help of the

global conformal Ward identities, but we will also encounter cases where some

degrees of freedom are left. A necessary condition for these additional degrees

of freedom is that all four fields in the four-point function are of logarithmic

origin. The number of degrees of freedom very much depends on the form

of the correlator. Furthermore, we find that we have to identify some of the

structure functions Fi1i2i3i4 that are part of the correlator.

We then will use the discussed methods to determine all correlators for
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Jordan-rank r = 2 and r = 3. The results are given in a graphical represen-

tation and also we make use of permutation symmetries in order to keep the

terms as short as possible. In the last section we consider the special case

that only two of the four fields are logarithmic and we show how the resulting

equations can be solved in this case for arbitrary Jordan-rank r.

3.2 Approaching the problem

In this section we describe how we simplify the initial problem and what algo-

rithm we use to solve it for Jordan-rank r = 2 and r = 3. We also discuss the

appearance of additional degrees of freedom that may show up if all four fields

are of logarithmic type. For understanding of this section it might be helpful

to have a glance at the next section which in detail discusses the most simple

non-trivial case, that is Jordan-rank r = 2.

3.2.1 Simplification

As noted in the previous section the equation (3.2) is equal to the global

conformal Ward identity in CFT for q = −1, meaning that the ansatz has to

be translation invariant and therefore allows terms of the form zij := zi − zj
only to show up. From now on we will consider 4-point correlation functions

only. After solving the first of the three equations, the ansatz has the following

form

〈
Ψ(h1,k1)(z1) . . .Ψ(h4,k4)(z4)

〉
=
∏

i<j

z
µij
ij f(z12, z13, z14, z23, z24, z34) . (3.5)

Here the exponents µij = µji must satisfy the conditions

∑

j 6=i
µij = −2hi . (3.6)

The factor
∏

i<j z
µi
ij exists to counter the hi terms on the left hand side of

equation (3.2) and therefore we can set all conformal weights to zero, hi = 0

without loss of generality. Note that the full correlator of course depends on

the conformal weights. The point here is that the global symmetries are not

sufficient to fix the complete correlator, but they are strong enough to fix the

generic form and this form has no dependence on hi. Therefore, we can lighten
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the resulting formulas by simply omitting the trivial direct dependency on the

conformal weights. If we set all conformal weights to zero then (3.2) becomes

4∑

i=1

zqi [zi∂i + (q + 1)δhi] 〈k1k2k3k4〉 = 0 , (3.7)

where we write ki instead of the much longer form Ψ(hi,ki)(zi). The remain-

ing two equations for q = 0, 1 have a δhi term acting on the correlator and

thus lowering the sum of the Jordan-levels by one. Because of calculating the

expressions recursively we can assume the predecessors δhi 〈. . .〉 to be known.

This leads us to the final form

O0 〈. . .〉 :=

4∑

i=1

zi∂i 〈. . .〉 = −
4∑

i=1

δhi 〈. . .〉 , (3.8)

O1 〈. . .〉 :=

4∑

i=1

z2
i ∂i 〈. . .〉 = −2

4∑

i=1

ziδhi 〈. . .〉 , (3.9)

where the correlators depend on the difference zij only. Though looking simple

for given predecessors δhi 〈. . .〉 at first glance, it is not easy to find an ansatz

for the correlator at all. Moreover we will learn that in some cases the result is

not unique. We sometimes use the sloppy term “integrating” the predecessors

δhi 〈. . .〉 as a shortage for finding an ansatz that fulfills the above equations.

The starting point for the recursion is given by

〈k1k2k3k4〉 = F0(x) for
∑

i

ki = r − 1 respectively (3.10)

〈k1k2k3k4〉 = 0 for
∑

i

ki < r − 1 (3.11)

where x is the anharmonic ratio, as defined in (1.66). In essence this means

that a correlation function with total Jordan-level K :=
∑

i ki = r−1 behaves

like a correlation function in ordinary conformal field theory, i. e. it depends

on one function of the globally conformally invariant anharmonic ratio.

The reason for these initial conditions comes from the fact that the only

non-vanishing one-point function in LCFT is the one of the highest level log-

arithmic partner of the identity, Ψ(h=0,k=r−1). Evaluating a correlation func-

tion amounts to contracting the inserted fields, in all possible ways, down

to a one-point function. Therefore, it is only natural to expect that the to-

tal Jordan-level K of a non-vanishing correlator must at least be equal to

r − 1. Furthermore, since the cluster decomposition property should hold,
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the initial conditions must also hold for arbitrarily factorized correlators, e. g.,

〈k1k2k3k4〉 ∼ 〈k1k2|0〉〈0|k3k4〉 in case that z1, z2 are well separated from z3, z4.

However, some care has to be taken about the correct insertion of the “iden-

tity” channel, which formally can be thought of to be of the form |0〉〈0| =∑r−1
k=0 |h = 0; k〉〈h = 0; r − 1− k|. It is easy to see that the cluster decompo-

sition with the above identity channel implies (3.11) and that precisely one

term of this identity channel survives yielding (3.10), where we made use of

the results for two-point functions in Flohr (2002b).

In the beginning we mentioned that ki > 0 represents a logarithmic partner

field, while ki = 0 is a primary field. We can subdivide the class of primary

fields into two subclasses, the so called proper primary-fields and the pre-

logarithmic fields. This difference between the subclasses becomes apparent

if one considers the operator product expansion (OPE). In contrast to the

OPE of two proper primary-fields the OPE of two pre-logarithmic shows an

additional term of logarithmic behavior, cf. Kogan and Lewis (1998).

In the following we consider proper primary-fields only and use the term

synonymous with primary field. Restricting to proper primary-fields is for

simplicity only. It is possible to include pre-logarithmic fields into the theory,

by making changes to the initial condition (3.10), (3.11). For instance in the

well-known c = −2 example the initial-conditions for Jordan-rank r = 2 would

be

〈φφφφ〉 = 0 (3.12)

〈µφφφ〉 = 0 (3.13)

〈µµφφ〉 = F0(x) , (3.14)

where φ stands for a proper primary and µ denotes a twist field. Note that

the same could be formally achieved by assigning rational values ki to pre-

logarithmic values, e. g., in this example assigning a value of ki = 1
2

to the

twist fields and using (3.10), (3.11) would lead to the same initial conditions.

A more precise analysis of this and how to assign correct values for the ki
can be found in Flohr (2002b). Apart from the initial conditions we also need

slight adaption of the “connection rules” we are going to explain in subsection

3.2.4. More comments can be found in the conclusions.

3.2.2 Naming conventions

The dependence of F on the anharmonic ratio, is suppressed in the following.

Further note that we do not write out the dependence on the Jordan-rank r,



3.2 Approaching the problem 67

e. g., 〈1000〉 = F0 (for r = 2) as well as 〈1100〉 = . . . = 〈2000〉 = F0, namely

for r = 3.

As we will see the solution for all other cases K :=
∑

i ki > r− 1 is always

of the form

〈k1k2k3k4〉 =Fk1k2k3k4 + (c1l12 + . . .+ c6l34)Fk1−1,k2,k3,k4 + . . .+

(logarithmic degree K − r + 1)F0 , (3.15)

where lij := log(zij). The highest logarithmic powers that appear in the solu-

tion are always the factors associated with the function F0. The degree in lij
also called logarithmic degree for short, is given by

deg({lij}) ≤ K − r + 1 =: lmax . (3.16)

There are cases where we will find that some of the functions Fj1j2j3j4 can be

identified with each other, e. g., we will find that F2100 ≡ F1200 for r = 3. After

identification we will always use the F -term whose index represents the lowest

“number”. For example we write 〈2100〉 = F1200(x)+ . . . instead of using F2100.

In many places we decided to use a graphical representation instead of

writing long expressions of logarithms. The idea for this stems from Flohr

(2003) where it was chosen in order to give a better understanding of the

contractions that can appear. Reading the diagrams is straightforward, the

points stand for the four vertices and each lij is represented by a line between

the vertices i and j. Permutation operators P are used to further reduce the

length of the expressions, for instance

l212l23l34 − l223l12l14 = (1− P(13)) r r r r . (3.17)

From section 3.3 on we will always use the graphical representation to present

the results.

3.2.3 Properties of O0, O1

Both operators Oq are linear, nilpotent, act as derivatives on the function space

and are invariant under any permutations p ∈ S4.

The function space we consider is the space of polynomials in the logarith-

mic functions lij := log |zi − zj|, called Flog := C[l12, l13, l14, l23, l24, l34].
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For q = 0, 1 the operators Oq have a simple behavior, when acting on Flog:

O0 :

{ Flog → Flog

li1j1 . . . linjn 7→
n∑
k=1

li1j1 . . . lik−1jk−1
lik+1jk+1

. . . linjn
(3.18)

O1 :




Flog → Flog[{zij}]
li1j1 . . . linjn 7→

n∑
k=1

li1j1 . . . lik−1jk−1
(zik+zjk)lik+1jk+1

. . . linjn
, (3.19)

meaning that we can replace the term by a sum, where each lij is replaced by

either 1 (for q = 0) or by zi + zj (for q = 1). Thus acting with Oq on any term

obviously reduces the logarithmic degree by one and by that proves (3.16).

An obvious question is whether the map Oq : f → f ′ is injective: are there

any non-trivial f ∈ Flog with O0f = 0 and O1f = 0?

If we restrict ourselves to the function space Flog then we find that we can

exactly determine the kernel of the operator O := (O0, O1).

As will be shown in subsection 2.6 below, the kernel is given as follows.

kerFlog,g
O =

{
g∑

i=0

aiK
i
1K

g−i
2 : ak ∈ R

}
(3.20)

K1 := l12 + l34 − l13 − l24 (3.21)

K2 := l12 + l34 − l14 − l23 , (3.22)

where Flog,g := {f ∈ Flog| deg f = g} denotes the space of functions with

logarithmic degree g, such that Flog =
⋃
g Flog,g.

3.2.4 An ansatz for the equations

As mentioned before we want to recursively solve the equations (3.8) and (3.9).

Since the number of terms quickly becomes huge and calculation tedious we

make use of computer algebra software for performing the calculations. In the

next subsection we show that the two equations can be reduced to a set of

simpler equations and in subsection 3.2.4 we present the algorithm we used for

creating an ansatz.

Recursion

With recursion we mean the following: we start with the initial conditions

as given in (3.10) which corresponds to logarithmic degree l = 0. Then we
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calculate all necessary correlators which contain exactly one more logarithmic

field or one field whose Jordan-level is increased exactly by one. In short this

means that we determine all correlators of logarithmic degree l = 1. The

following diagram describes which correlators need to be calculated in order

to determine the correlation function for 〈2110〉.

〈0110〉 = 〈1100〉 = 〈1010〉 = 〈2000〉 = F0 (l=0)
@
@
@
@R ?

�
�
�
�	

@
@
@
@R

@
@
@
@R

�
�
�
�	 ?

〈1110〉 〈2100〉 ∼ 〈2010〉 (l=1)
@
@
@
@R ?

�
�
�
�	

〈2110〉 (l=2)

The effort for calculation can be reduced, since many of the correlators are

related ∼ to others by simple permutations, e. g., 〈2100〉 = P23 〈2010〉.

Breaking down into a set of equations

The operators O0, O1 in equations (3.8), (3.9) are linear, they act as derivatives

on the correlators 〈. . .〉 and they are invariant under any permutation P ∈ S4

of the indices. The ansatz as well as the term on the right hand side can, as

we have seen before, be written in terms of the functions of F..., resulting in

Oq

{
Fk1k2k3k4 + (. . .)uFk1−1,k2,k3,k4 + (. . .)uFk1,k2−1,k3,k4 + . . .

. . .+ (. . .)uFr−1,0,1,0 + (. . .)uFr−1,0,0,1 + (. . .)uF0

}
=

(. . .)Fk1−1,k2,k3,k4 + (. . .)Fk1,k2−1,k3,k4 + . . .+ (. . .)Fr−1,0,1,0

+(. . .)Fr−1,0,0,1 + (. . .)F0 . (3.23)

The terms (. . .) denote functions which may additionally depend on the differ-

ences z12, z13, . . . , z34 caused by the action of O1. As usual r is the Jordan-rank

of the theory. For the right hand side we can assume these terms to be known,

because we will solve the equations recursively. The corresponding terms on

the left hand side are unknown, they are marked with a small “u”. Oq oper-

ates as a derivative and since OqF = 0, we find that the problem reduces to
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“integrating” the following set of equations

Oq(. . .)
u
k1,k2,k3,k4

= 0 (3.24)

Oq(. . .)
u
k1−1,k2,k3,k4

= (. . .)k1−1,k2,k3,k4

Oq(. . .)
u
k1,k2−1,k3,k4

= (. . .)k1,k2−1,k3,k4

. . .

Oq(. . .)
u
r−1,0,0,1 = (. . .)r−1,0,0,1

Oq(. . .)
u
0 = (. . .)0 . (3.25)

The upper index u just reminds us that these terms are not yet known, and

the lower index tells us from which part of the equation (3.23) the term stems

from. Note that the first equation (3.24) and its solution is well known

(. . .)uk1,k2,k3,k4
= Fk1,k2,k3,k4(x) , (3.26)

with x being the anharmonic ratio.

Description of the algorithm

Until now we did not specify what ansatz we fill in the left hand side of

the equations (3.24) to (3.25). From OPE considerations, see Flohr (2002b),

respectively from the structure of the operators O0 and O1 we expect the

correlators to consist of terms of the type la1
12 l

a2
13 . . . l

a6
34 , where each term comes

with an coefficient which needs to be determined. More precisely, the generic

structure of 2- and 3-point functions depends on the lij in a strictly polynomial

form in such a way that the same is true for the operator product expansion.

Thus, also the 4-point functions should depend only in a polynomial way on

the lij since, asymptotically, a 4-point function decomposes into an operator

product expansion times remaining 3-point functions, all of which are entirely

polynomial in the lij. Unfortunately, the number of possible monomials in

the lij grows heavily with the rank r of the LCFT, and thus the number of

coefficients. Luckily we can reduce the number of possible terms that can show

up in the following.

We do not have to take into account every logarithmic degree a1 + a2 +

. . . + a6. The equations (3.18) and (3.19) tell us that the logarithmic degree

is reduced by one if we apply O0 or O1. If we assume for a moment that

in every equation of (3.24) to (3.25) the right hand side consists of terms of

the same logarithmic degree l, then it is apparent that the terms on the left

hand side have logarithmic degree l + 1. We build all correlators recursively
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as explained in subsection 3.2.4 and since our initial conditions only consists

of one term on the right hand side, we trivially find our assumption fulfilled.

Thus by induction all terms la1
12 l

a2
13 . . . l

a6
34 in (. . .)un1,n2,n3,n4

have to have the same

logarithmic degree.

As described in Flohr (2003) it is helpful to use a graphical representation

where each field Ψ(h,k)(z) in a Jordan-cell is depicted by a vertex with k out-

going lines. Contractions of logarithmic fields give rise to logarithms in the

correlators, where the possible powers with which lij may occur are determined

by graph combinations.

h;k( )Ψ

h’;k’( )Ψk-i

k’-i’

i

i’

Essentially, the terms for an ansatz of logarithmic degree l are given by a sum

over all admissible graphs subject to the following rules:

1. use at most ki legs of a vertex for connections with other vertices,

2. the source i and the destination vertex j have to be different: i 6= j,

3. do connections with other logarithmic fields only (do not connect with

primary fields) ,

4. create exactly l connections ,

5. write lij for every connection between two vertices i and j.

Let us have a look at a simple example. We consider a theory of Jordan-

rank r = 3 and are interested in the structure of the correlator 〈2110〉 for

the highest possible logarithmic degree, i. e. the F0 term. The corresponding

graph for 〈2110〉 is

r r r rBB�� �� �� .

Altogether we have four legs to our disposal, but we also have to fix two of them

leaving us with two free legs. If we want to know which terms can appear for

logarithmic degree l = 2, then we have to create all 2-contractions according

to the above rules. This results in the following six different graphs:
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r r r r , r r r r , r r r r , r r r r , r r r r , r r r r .
Note that there are only two different truly independent graphs in the sense

that they are not a mere permutation of other graphs. The first three graphs

and the remaining three graphs form two equivalence classes induced by per-

mutations of S4.

Using the algorithm results in a maximum of
(
l+5
l

)
terms that can appear.

Combinatorial restrictions which we will discuss in the following can reduce

this number, for instance 〈2211〉 for l = 3 does not contain a l334 term.

3.2.5 Restrictions

The analysis of the results we found shows that several restrictions reduce the

number of different terms that may appear in the end result.

The first restriction naturally appears during the integration process. In

some cases our method for recursively constructing “higher” correlators fails. It

is not possible to repair this failure in a sensible manner by adding further terms

to the ansatz, but a simple identification of different functions F immediately

fixes the problem.

This behavior is a general property of the theory for r ≥ 3, as we will see

in section 3.5. For now it is sufficient to note that Fk1−1,k2,0,0 = Fk1,k2−1,0,0,

e. g., for r = 3 we get F2100 = F1200 +5 more identifications by virtue of

permutations.

The second restriction we encountered is the so called discrete symmetry of

the correlators, which limits the dimension of the kernel. By discrete symmetry

we mean that a correlator which contains at least two fields of the same Jordan-

level should be invariant under any transposition that exchanges these fields,

for instance

P(12) 〈ΨkΨkΨk3Ψk4〉 = 〈ΨkΨkΨk3Ψk4〉 . (3.27)

At this point we point out again that we have set, without loss of generality,

all conformal weights hi to zero and wrote Ψk instead of Ψ(h,k)(z). In the next

subsection we will discuss in more detail to what extent the above mentioned

invariance limits the dimension of the kernel respectively show that in some

cases no kernel term can show up at all.

The dimension of the kernel that finally shows up in the results is often

smaller than the one we would expect for the given logarithmic degree and
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given discrete symmetry. The difference will show up especially if the loga-

rithmic degree is close to the maximum degree lmax = K − r + 1.

The reason for this difference is that the ansatz does not allow all terms

of lij of a given degree to show up. For instance the correlator 〈2211〉 forbids

the existence of terms of the type l334 and by that limits the dimension of the

kernel of degree 3. We also refer to this as combinatorial restriction, because

the restriction depends on the form of the correlator, e. g., the term l334 is not

forbidden in 〈2221〉.

3.2.6 Additional constants

As we have seen in section 3.2.3 the kernel of the operator O is non-trivial.

That means that the results may come with additional constants. In order to

understand the meaning of these constants in the context of conformal field

theory we rewrite the two basis terms K1, K2 which every element of the kernel

consists of as follows:

K1 := l12 + l34 − l13 − l24 = log

∣∣∣∣
z12z34

z13z24

∣∣∣∣ ≡ log |x| − log |1− x| (3.28)

K2 := l12 + l34 − l14 − l23 = log

∣∣∣∣
z12z34

z14z23

∣∣∣∣ ≡ log |x| (3.29)

where x = z12z34

z14z32
is the anharmonic ratio of the four points. The anharmonic

ratio x and its five possible involutions 1
x
, 1−x, 1− 1

x
, 1

1−x , and x
x−1

result in four

linearly independent functions. If we take the logarithm of the absolute value

of these four functions, then we are left with only two independent solutions,

namely log |x| and log |1− x|. The choice of the basis has no influence on the

results and our choice of the basis K1, K2 is given as above.

We can turn around the argument and ask for all functions of the anhar-

monic ratio x, i. e. globally conformally invariant functions, which have the

additional property to be strictly polynomial in the lij. These functions are

all in the kernel of the operator O. On the other hand, there can be no other

functions in the kernel if we restrict ourselves to polynomials of the lij, since

every member of the kernel must be invariant under global conformal trans-

formations and thus be a function of x. This proves the statement in section

3.2.3. However, we note that this yields only an upper bound on the size of the

kernel. We will see that the size may be reduced due to further symmetries.

Equation (3.20) gives us the maximal dimension of the kernel for logarith-
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mic degree l,

K(l) :=

{
l∑

i=0

aiK
i
1K

d−i
2 : ak ∈ R

}
(3.30)

dmax(l) = l + 1 . (3.31)

Up to a few exceptions we will notice that the full kernel never shows up in any

equation. These restrictions on the kernel are caused by the discrete symmetry

and combinatorial constraints. Examples for combinatorial constraints are

shown in the next two sections.

It is worth noting that a non-trivial kernel can show up in a correlator only

if there is no primary field in the correlator present. This is obvious, since

both kernel elements K1, K2 refer to all four vertices z1, z2, z3, z4.

Discrete symmetry for invariant F

In this subsection we are interested in the impact on the kernel by a given

symmetry. Since we consider four point correlation functions exclusively there

are four interesting symmetry groups only, namely S2, S2 × S2, S3 and S4.

Let us study an expression first, where the function F is invariant under any

permutation, e. g., (. . .)F1111.

We start with the smallest symmetry group S2 = {1, P(12)}, P being, as

usual, a permutation of the indices. One immediately remarks that P(12)K1 =

K2, P(12)K2 = K1 and thus a S2 invariant kernel of logarithmic degree l has the

form

K
(l)
S2

:=

{
l∑

i=0

aiK
i
1K

d−i
2 : ak ∈ R, ak = al−k

}
. (3.32)

Therefore the maximum number of constants dmax
S2

that could appear for log-

arithmic degree l is

dmax
S2

(l) =
⌊
l
2

⌋
+ 1 , (3.33)

where b.c denotes the floor function.

If we replace the transposition P(12) by P(34) all statements stay true. Thus

when restricting to kernel space K :=
⋃
lK

(l) we have P(12) ≡ P(34). This in

turn means that the kernel is not only S2 invariant, but automatically has full

S2 × S2 = {1, P(12), P(34), P(12)(34)} invariance:

K
(l)
S2×S2

≡K(l)
S2

(3.34)

dmax
S2×S2

(l) =
⌊
l
2

⌋
+ 1 . (3.35)
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For the S3 symmetry we note, that a S3 invariance extends to S4 invariance.

This is because S3 invariance in particular means P(12) invariance which, as

explained above, also means P(34) invariance. By this we immediately obtain

full S4 invariance:

K
(l)
S3
≡ K

(l)
S4
. (3.36)

No linear combination of K1, K2 is S4 invariant, but higher terms in K1, K2

have this property. The first two dimensional kernel d = 2 can be found for

logarithmic degree l = 6:

K
(2)
S4

:= K2
1 −K1K2 +K2

2

K
(3)
S4

:= (2K1 −K2)(2K2 −K1)(K1 +K2)

K
(4)
S4

:= (K
(2)
S4

)2

K
(5)
S4

:= K
(3)
S4
K

(2)
S4

K
(6,(2,2,2))
S4

:= (K
(2)
S4

)3

K
(6,(3,3))
S4

:= (K
(3)
S4

)2

K
(7)
S4

:= (K
(2)
S4

)2K
(3)
S4

. (3.37)

These results are unique, up to constants and linear combinations. Of course

any combination of the form (K
(2)
S4

)i(K
(3)
S4

)j leads to a kernel of logarithmic

degree 2i + 3j and we believe that the kernel space is not larger than this,

though it is not important since we consider kernels up to logarithmic degree

l = 6 only in the further course of this chapter.

We expect the dimension of the S4 invariant kernel to be the number of

possible partitions of the of the degree in the numbers 2 and 3, e. g., 6 = 2+2+2

as well 6 = 3 + 3. This in turn means that every integer 6 can be represented

in two different ways, leading to the following number of degrees of freedom

that could appear at most for logarithmic degree l:

dmax
S4

(l) =

{ ⌊
l
6

⌋
; l = 6k + 1, k ∈ N0⌊

l
6

⌋
+ 1 ; else .

(3.38)

Discrete symmetry and non-invariant F

In the previous subsection we analyzed the structure of the kernel under sym-

metry groups and found that we have to consider S2 and S4 symmetry groups

only. This holds if the function F... itself is invariant under permutations.
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Things get more complicated if Fa is mapped to Fb by the permutation.

For example we know that the S2 invariant kernel for one F (F1 for short)

is one-dimensional, namely K
(1)
S2

= {a(K1 + K2) : a ∈ R}. But if we have

two F , which are related by the permutation, e. g., F1022 and F0122, then the

dimension of the kernel for F1022 becomes larger. The kernel would be (cK1 +

c′K2)F1022 + (c′K1 + cK2)F0122, or PS2(K(2)F1022), PS2 = 1 + P(12) for short.

The kernel dimension therefore not only depends on the symmetry group

and the logarithmic degree, but also on the size of the equivalence class of

functions F which are involved. The size of the equivalence class is noted

by Fn and the results for the logarithmic degrees l = 1, 2, . . . 5 are listed in

appendix A.

The simple rule that S2 corresponds to S2 × S2 respectively that S3 cor-

responds to S4 does not hold for n > 1, therefore we have to discuss all four

symmetry groups in the appendix. The dimension of the kernel decreases with

increasing size of the symmetry group and increases with increasing size of the

equivalence class. It is interesting though not surprising, that the full kernel

K(l) is recovered, if the size of the equivalence class |F | equals the size of the

symmetry group |S|.

3.3 Results for Jordan-rank r = 2

In this section we present and discuss the results for a logarithmic conformal

field theory with Jordan-level r = 2. We have used the algorithm described in

subsection 3.2.4 to obtain these results and though known, e. g., Flohr (2000),

we can write them in a more appealing form. Also we will discuss the appear-

ance of an additional degree of freedom, which shows up for 〈1111〉.
We start with simply writing down the first three expressions that our

algorithm provides:

〈1000〉 =F0 (3.39)

〈1100〉 =PS2

{
1
2
F1100 − r r r rF0

}
(3.40)

〈1110〉 =PS3

{
1
6
F1110 + (1

2
P(13) − 1) r r r rF0110 +

[ r r r r − 1
2
r r r r]F0

}

(3.41)

with PX =
∑

X P(x). Writing the results this way makes the discrete symmetry

manifest, that is S2 for 〈1100〉 and S3 invariance for 〈1110〉.
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For the correlator 〈1111〉 we have a logarithmic partner field at every vertex

which means that we can expect getting a non-trivial kernel for the first time.

The result without kernel is given by

〈1111〉 =PS4

{
1
24
F1111 + (1

6
P(13) − 1

3
) r r r rF0111+

[
1
2
(P(24) − 1) r r r r + (1− 1

2
P(14)) r r r r − 1

4
r r r r]F0011+

[
1
2
r r r r + 1

3
r r r r − r r r r]F0

}
. (3.42)

the contribution to the kernel is

Ker〈1111〉 = PS4

{
K

(2)
S2
F0011

}
. (3.43)

That we get a two-dimensional kernel for F0011 is not surprising, since there

are 6 functions F belonging to the equivalence class of F0011 and the resulting

K
(2)
S2

can be read of the table for logarithmic degree 2 from the appendix.

The inverse question is more interesting, namely we are interested in un-

derstanding, why no other kernel term shows up at all. For logarithmic degree

l = 1 the equivalence class of F0111 is four and thus there is no kernel term

showing up. According to (3.38) the S4 invariant kernel of logarithmic degree

l = 3 should be one-dimensional. We can immediately understand why this

kernel term does not show up, by looking at the graphical representation:

K
(3)
S4

=PS4

{
1
2
r r r r + 2 r r r r − 3 r r r r − 3 r r r r+

3
2
r r r r + 2 r r r r} . (3.44)

This shows us that terms of the form l312 appear, which is impossible for a

Jordan-rank r = 2 theory. Though three free legs are available the three-

fold connection between vertices i and j is forbidden for r = 2. Of course

higher Jordan-rank LCFT r > 2 are allowed to include such terms, but similar

combinatorial restrictions will show up for r = 3 as well.

3.4 Results for Jordan-rank r = 3

While the general structure of the correlators for Jordan-rank r = 2 has been

known before, nobody so far has studied the form of correlators for LCFTs

beyond the case of r = 2. With what we have learned we can apply our

methods to the case r = 3 in order to determine the form of all correlators for

a theory of Jordan-rank r = 3.
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Analogously to r = 2 the starting point for the recursion is given by

〈1100〉 = F0 , 〈2000〉 =F0 . (3.45)

As before the missing correlators result from applying a permutation to the

correlators.

〈0012〉 =PS2

{
1
2
F0012 − r r r rF0

}
(3.46)

〈1110〉 =PS3

{
1
6
F1110 − 1

2
r r r rF0

}
(3.47)

〈2200〉 =PS2×S2

{
1
4
F2200 − 1

2
r r r rF1200 + 1

2
r r r rF0

}
(3.48)

〈1120〉 =PS2

{
1
2
F1120 − (1+P(23)+P(13)) r r r rF0120 + (1

2
−P(23)) r r r rF1110+

[
(1 + 3

2
P(23)) r r r r − (1

4
+ 1

2
P(23)) r r r r]F0

}
(3.49)

where as before PX =
∑

x∈X Px.

The above correlators do not have an additional degree of freedom be-

cause they contain at least one primary field. The simplest correlator with no

primaries is

〈1111〉 = PS4

{
1
24
F1111 + (1

6
P(13) − 1

3
) r r r rF0111 + (1

4
r r r r)F0

}
. (3.50)

This is the first correlator for r = 3 which has a non-trivial kernel, namely

Ker〈1111〉 = c1K
(2)
S4
F0 . (3.51)

The restriction that the expression needs to be invariant under S4 permutations

is very strong and forbids any kernel terms of degree one to show up.

The remaining correlators containing at least a primary field are

〈2210〉 =PS2

{
1
2
F2210 + (1

2
−P(13)) r r r rF2200 − (1+P(23)−P(13)) r r r rF1210+

[
2 r r r r − r r r r]F1200 +

[
P(23)
r r r r + (1

2
−P(13)) r r r r]F1110+

[
(−1− P(23) + P(12)) r r r r + 1

2
(1 + P(23) + P(13)) r r r r]F0120+

[
(P(13) − 2) r r r r + 1

2
r r r r − r r r r]F0

}
(3.52)
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and

〈2220〉 =PS3

{
1
6
F2220 + (1

2
P(13) − 1) r r r rF1220+

[
P(23)
r r r r + (1

2
− P(23)) r r r r]F1120+

[
(1

2
P(12) − 1) r r r r + (1

2
+ 1

4
P(13)) r r r r]F0220+

[
1
2
r r r r − r r r r + 1

3
r r r r]F1110+

[
(2P(13) − 1) r r r r − 1

2
P(13)
r r r r − r r r r]F0120+

[
1
2
r r r r + 1

8
r r r r + 3

4
r r r r − r r r r]F0

}
. (3.53)

Finally there are, up to permutations, four correlators without primary

field and at least one field being of Jordan-level 2.

〈1112〉 =PS3

{
1
6
F1112 + (1

6
− 1

3
P(14)) r r r rF1111+

(P(13)(24) − P(24) − 1
2
P(13)) r r r rF0112+

[
( 1

12
− 1

6
P(34) + 1

4
P(24)) r r r r − 1

6
r r r r + 1

12
P(14)
r r r r]F1110+

[
(1 + P(34) − P(14)) r r r r + (P(24) − 1) r r r r − 1

2
r r r r]F0012+

[
(2

3
− 1

3
P(24)) r r r r + (2

3
P(34) − 2

3
+ 2

3
P(24) − 1

3
P(124)) r r r r+

(1
6
P(13) − 1

3
P(13)(24)) r r r r]F0111+

[
(1

4
− 1

4
P(34) + 3

4
P(24) + 3

4
P(14)) r r r r − 1

4
P(24)
r r r r − 1

6
r r r r+

(1
2
− 3

2
P(24)) r r r r − 1

2
(1 + P(24)) r r r r + 1

4
(1− P(14)) r r r r]}F0

(3.54)

This correlator has 6 additional degrees of freedom:

Ker〈1112〉 = PS3

{
c1(2K2 −K1)F0112 +K

(2)
S4
F1110+

[
c3K

2
1 + c4(K2

2 −K1K2)
]
F0111+

[
c5K

2
1 + c6(K2

2 −K1K2)
]
F1002

}
. (3.55)

The set of {F0112, F1012, F1102} allows a one dimensional kernel, namely 2K2 −
K1. Note that this kernel is not S3 invariant.

For the self-invariant terms F1110 and F0 we remarked in subsection 3.2.6

that S3 invariance implies S4 variance. The dimension of the S4-invariant

kernel is nS4
max = 1 for d = 2, 3. The corresponding kernel term for F1110 shows

up, combinatorial restrictions forbid the same for F0. The only kernel of degree
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3 that would have been possible is K
(3)
S4

, but this one includes l3ij terms for all

1 ≤ i < j ≤ 4, which is not compatible with the contraction rules as described

in subsection 3.2.4–〈2111〉 cannot contain l334 terms, cf. 3.44.

For the 3-element sets {F0111, F1011, F1101} respectively {F0012, F0102, F1002}
we know from the kernel analysis in appendix A that there is a two-dimensional

kernel.

It should be noted that 〈1211〉 is generated by applying P(12) to 〈2111〉. The

same holds for the additional terms of the kernel. This means that the degrees

of freedom we have for 〈2111〉 are not available for the permutations of this

correlator, e. g., 〈1211〉.

The correlator 〈2211〉 comes with a high number of additional degrees of

freedom, some of these are restricted by combinatorial constraints. The corre-

lator without kernel terms has the form

〈2211〉 =PS2×S2

{
1
4
F2211 + (1

2
− P(13)) r r r rF2201+

(1
2
P(13)(24) − P(23)) r r r rF1211+

[
1
2
P(23)
r r r r + (1

2
P(14) − 1) r r r r + 1

4
r r r r]F2200+

[
(1

2
P(23) − 1

6
) r r r r + (1

3
− 1

2
P(14)) r r r r + 1

12
r r r r]F1111+

[
(P(243) + P(24) + P(12) − P(12)(34) − P(124) + P(142)) r r r r+
(1− P(23)) r r r r − P(24)

r r r r]F1201+
[
(1

2
+ 1

2
P(23) − 1

2
P(24) + 1

2
P(12) + 1

2
P(124) + 3

4
P(142) + 1

4
P(14)) r r r r+

(−1
2
− P(24)) r r r r − (1

4
+ 1

2
P(14)) r r r r]F0211+

[
2P(12)
r r r r − P(12)
r r r r − P(13)
r r r r − 1

2
r r r r]F1200+

[
1
2
(P(34) − 1 + P(243) − P(24) − 2P(1243) − P(124) − 2P(143) − P(14)) r r r r+

(1 + P(24)) r r r r − (1
2

+ 1
2
P(24)) r r r r + P(34)

r r r r+
(P(34) + P(243) − P(12)(34) − P(13)) r r r r + 1

2
P(14)
r r r r]F0102+

[
1
3
(P(23) − 2 + P(34) + 2P(234) − P(134) + 4P(13) + 3P(14) − P(143)) r r r r+

(1
6
− 1

3
P(13)) r r r r − (4

3
+ 2

3
P(23)) r r r r + (1

3
P(34) − 4

3
) r r r r+

(2
3
P(23) − 2P(243) + 4

3
P(13)) r r r r − (1

3
+ 1

3
P(23) + P(24)) r r r r]F1101+



3.4 Results for Jordan-rank r = 3 81

[
(2

3
P(23) − 5

4
+ 7

12
P(24) − 7

12
P(12) + 3

4
P(124) + 7

12
P(132) + 2

3
P(142) + 5

4
P(13)+

1
12
P(1423) − 1

6
P(14) − 1

12
P(14)(23)) r r r r − (4

3
P(24) + 2

3
P(12)) r r r r+

( 5
12
− 5

12
P(24) − 1

4
P(14)) r r r r − (4

3
+ 2

3
P(24) + 1

2
P(14)) r r r r+

(4
3
P(23) − 7

6
+ 7

6
P(24) + 1

6
P(12) + 7

6
P(132)) r r r r+

(11
12
− 5

4
P(24) − 7

12
P(13) + 1

4
P(13)(24)) r r r r]F0111+

[
(P(24) − 1

2
P(23) − 3

4
P(14)) r r r r + 1

2
(1

2
− P(23) + P(24) − 1

4
P(14)) r r r r+

1
2
(1 + P(23) − 4P(24) − P(14) − 4P(13)) r r r r − (1

8
− 5

8
P(24)) r r r r+

1
2
(1 + P(23) − P(14)) r r r r + (3

4
P(24) − P(23) + 5

4
P(13)) r r r r+

(1
2
P(23) − 1

2
P(24) − 1) r r r r + 1

2
P(23)
r r r r + 3

16
r r r r+

(2P(13) + P(14) − P(13)(24)) r r r r + r r r r]F0

}
, (3.56)

where PS2×S2 = 1 + P(12) + P(34) + P(12)(34). The kernel of 〈2211〉 has a dimension

of 18:

Ker〈2211〉 =PS2×S2

{
K

(1,d=1)
S2

F2201 +K
(1,d=1)
S2

F1211+

K(2,d=3) +K
(2,d=2)
S2

(F2200 + F0211 + F1111)+

(K1 −K2)2(K1 +K2)(F1101 + F0111 + F1200)+[
c(K1 −K2)2K1 + c′(K1 −K2)2K2 + c′′(K1 −K2)K1K2

]
F0102+

K
(4,d=1)
S4

F0

}
, (3.57)

where we used a somewhat condensed notation and left out almost all con-

stants. If multiple F in brackets show up you should add the necessary con-

stants in your mind, for instance, K
(2,d=2)
S2

(F2200 + F0211 + F1111) stands for

2 ·3 = 6 degrees of freedom. For better orientation we added a small ”d = . . .”

index to the common kernel terms which notes their dimension.

For the sets {F2201, F2210} and {F1211, F2111} we get the expected one-dimen-

sional kernel K
(1)
S2

. Also the results for logarithmic degree 2 are not surprising.

Things are more complicated for higher logarithmic degrees. For d = 3

we would have been expecting a two-dimensional kernel K
(3)
S2

for F1101, F1200,

F0111 and a full 4-dimensional kernel K(3) for F0102. But here we have to take

into account the combinatorial restrictions again. The basis elements of K
(3)
S2

,

K
(3,a)
S2
∼ K3

1 + K3
2 contains l312, l

3
13, . . . , l

3
34 contributions and K

(3,b)
S2
∼ K2

1K2 +

K1K
2
2 comes with l312, l

3
34 terms. Thus both basis elements are not allowed due

to the l334 term, but a linear combination is, namely (K1 − K2)2(K1 + K2),
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which contains no l234 term. For the set {F0102 ≡ F0201, F1002 ≡ F2001, F0120 ≡
F0210, F1020 ≡ F2010 the four dimensional kernel reduces by the combinatorial

constraint to a three dimensional one.

The reasoning for d = 4 goes along the same line. We expect from (3.35) a

three dimensional kernel space, but also we have two restrictions. No l4ij term

may show up, not even l412, because of the S2×S2 invariance. And no l334 term

is allowed. These two restrictions limit the kernel to K = K1K2(K1 − K2)2,

leaving us with a one-dimensional kernel.

〈2221〉 =PS3

{
1
6
F2221 + (1

6
− 1

3
P(14)) r r r rF2220 + (1

2
P(13) − 1) r r r rF1221+

[
(2− P(34) − 1

2
P(12) + 2P(12)(34) + P(14)) r r r r − (1 + P(24)) r r r r+

(−1
2
− 3

4
P(13)) r r r r]F0221+

[
(2− P(24)) r r r r + (2− 2P(34) − 2P(12) + 2P(12)(34) − P(124)) r r r r+
(P(13)(24) − 1

2
P(13)) r r r r]F1220+

[
(1− 1

2
P(23) + 1

2
P(243) + P(34) + P(234) + P(24) − P(14)) r r r r − r r r r+

(−P(24) − 1
2
P(13)(24)) r r r r]F1121+

[
2
3
r r r r − 2

3
r r r r − 2

3
r r r r − 1

3
r r r r − 1

6
r r r r+

(1
3

+ 2
3
P(34)) r r r r]F1111+

[
1
2
r r r r − 2P(23)

r r r r + P(23)
r r r r + r r r r+

(P(134) − P(34) − P(13)) r r r r]F1120+
[

1
2
(1− P(34) − 2P(13) − P(134)) r r r r + r r r r + (1− P(12)) r r r r+

1
4
P(13)
r r r r − 1

2
r r r r + 1

2
r r r r]F0220+

[
1
2
(P(23) − 2P(34) + 2P(234) − P(243) + P(13)(24) + P(12)(34) + 3P(1243) + P(14)(23)+

3P(124) −P(12) +2P(132) +P(1342) +P(24) −P(1324) +4P(143) −P(1423)) r r r r+
(1− 2P(34) + P(23) + 2P(234) + P(243) − P(12) + 2P(12)(34) + P(1243) − P(13)+

2P(132)) r r r r − (1 + 2P(34) + P(24) + P(14)) r r r r+
(1

2
− 3

2
P(23) − 1

2
P(24) − 3

2
P(14)) r r r r − (1

2
P(23) + P(14)) r r r r+

(−P(23) − 2P(24) − P(12)) r r r r]F0121+
[

2
3
r r r r − 2

3
P(14)
r r r r − (1

3
+ P(24)) r r r r + (2

3
P(34) − 1

3
) r r r r+

(4
3

+ 2
3
P(34)) r r r r − 1

6
r r r r + 2

3
r r r r − r r r r+

(4
3
P(14) − 2

3
) r r r r − 1

3
P(24)
r r r r − 2

3
r r r r]F1110+



3.4 Results for Jordan-rank r = 3 83

[
(1

4
P(34) + 1

2
P(23) − 1

2
P(234) − 1

4
+ 1

4
P(14)) r r r r + (P(23) − P(34)) r r r r+

(P(23) − 1
2

+ 1
2
P(243) + 1

2
P(24)) r r r r + (P(23) − 1) r r r r + r r r r+

1
2
(P(234) − 3P(34) − 3− P(23) + 2P(13) − 2P(134) + P(143) − P(14)) r r r r+

(1
2
P(234) − 1− P(34) − 1

2
P(23) + 1

2
P(13) − 1

2
P(134)) r r r r + 3

8
r r r r+

(3
2
P(23) − 1

2
− 1

2
P(143) + 1

2
P(14)) r r r r + (3

4
+ 1

4
P(24)) r r r r+

(1− P(13) − P(14) + P(1324)) r r r r]F0012+
[

1
2
(P(34) + P(23) − 3P(243) − P(12)(34) − 6P(123) − 6P(1234) + P(132) − 2P(13)(24)+

2P(1324) − 3P(1432) − 2P(14) + 2P(1423)) r r r r + (1
2
P(24) + 3

2
P(13)) r r r r+

1
2
(3P(24) −P(23) −3P(234) −P(12)+P(12)(34) +P(123)) r r r r + 3

2
P(24)
r r r r+

1
2
(2P(23) −P(34) +P(12)(34) −P(132) −P(14)) r r r r + 1

2
(P(243) −P(23) −P(234)+

P(124)) r r r r + (2P(1234) − P(23) − P(234) + P(243) − P(124)) r r r r+
1
2
(P(124) + P(13) − P(134) − P(13)(24) − P(14) + P(1423)) r r r r+

(1 + P(34) + P(24) + P(13)) r r r r + (2− P(34)) r r r r]F0120+
[

1
3
(17

2
P(34)−1+P(12)+

11
2
P(124)+

5
2
P(1342) +2P(13)−P(13)(24) +

3
2
P(14)) r r r r+

(1
2
− 5

3
P(34) + 2

3
P(24) + 1

2
P(12)(34) + 1

3
P(13) − 1

3
P(12)) r r r r + 1

3
r r r r+

(5
6
− 1

2
P(34) − 5

6
P(24) − 2

3
P(12) + 2

3
P(12)(34) − 1

6
P(124) + 1

3
P(14)) r r r r+

(5
6
P(34) − 5

6
+ 1

3
P(134) + 1

2
P(124) − 1

2
P(13)(24) + 1

3
P(143) − 1

3
P(14)) r r r r+

(1
2
P(12)(34) − 1

2
P(34) − 7

6
P(12) + 5

6
P(142)) r r r r − 1

12
P(13)
r r r r+

1
3
(1− P(34) − P(24) − P(13) − 2P(134) − 4P(14)) r r r r − 11

6
r r r r+

(1− P(34) + 1
2
P(24) + 1

6
P(134) − 1

2
P(124)) r r r r+

(−5
6
− 1

3
P(13) − 1

2
P(13)(24)) r r r r]F0111+

[
(1

4
−P(24) + 3

4
P(34)) r r r r + (1−P(34)) r r r r + (P(24)−P(34)) r r r r+

(3
4
P(24)+

5
4
) r r r r − (3

4
+ 1

4
P(24)) r r r r + (1−P(34)−2P(14)) r r r r+

(P(24) − 7
4

+ 3
4
P(34) −P(14)) r r r r + (P(34) −1 + 5

2
P(24) − 3

2
P(14)) r r r r+

1
4
(1 + P(34) −2P(14)) r r r r + 1

4
(P(34) −1) r r r r + (P(34) −1) r r r r+

1
4
(P(24) − 1) r r r r + 3

2
(1 + P(34)) r r r r − 1

2
(P(34) + P(14)) r r r r+

1
2
(P(14) − 1) r r r r + (1

2
P(34) − 3

2
P(14)) r r r r − 1

2
r r r r]F0

}
(3.58)

Interestingly the dimension of the kernel for 〈2221〉 is also 18 and by that not
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larger than the kernel for 〈2211〉. Naively one would expect that the kernel

dimension increases with growing Jordan-level K :=
∑

i ki. On the other hand

the larger symmetry group (S3 instead of S2×S2) reduces the kernel size which

can even lead to a smaller kernel, as we will see in the case of 〈2222〉.

Ker〈2221〉 =PS3

{
(2K2 −K1)F1221|d=1+

[
cK2

1 + c′(K2
2 −K1K2)

]
(F1220|d=2 + F2111|d=2 + F0221|d=2)+

K(3)F0121|d=4 +K
(3)
S4
F1111|d=1+

[
cK2(K1 −K2)(K1 − 2K2) + c′K2

1 (K1 − 2K2)
]
F0220|d=2+

[
cK2(K1 −K2)(K1 − 2K2) + c′K2

1 (K1 − 2K2)
]
F2110|d=2+

K2
1K2(K1 −K2)F0111|d=1 +K2

1K2(K1 −K2)F0120|d=1+

K2
1K2(K1 −K2)F1002|d=1

}
(3.59)

There is not much surprise for most results. For logarithmic degree 1 and 2

we get for the sets containing three F a d = 1 respectively a d = 2 kernel. For

degree 3 we have the self-invariant term F1111 with a S4 symmetry and two

d = 2 kernels for {F0220, F2020, F2200} and {F2110, F1210, F1120}. There is also a

set containing six F , which results in a full four dimensional K (3) kernel.

As expected combinatorial constraints show up the first time for degree

four, because of the last vertex having one leg only and thus disallowing any

l4i4 (i = 1, 2, 3) term. For degree actually a d = 3 kernel would have been

possible, but eliminating all l4i4 terms means that the kernel has to be reduced

to a one-dimensional kernel each. Also note that the only possible kernel term

of degree 5 would have been K
(5)
S4

which does not show up, because of the same

combinatorial restriction.

〈2222〉 =PS4

{
1
24
F2222 + (1

6
P(13) − 1

3
) r r r rF1222+

[
(1

3
P(12) + 1

6
P(14)) r r r r − 1

3
r r r r − 1

12
P(13)
r r r r]F0222+

[
1
2
P(24)
r r r r + (1

2
P(23) − P(24)) r r r r + 1

4
P(13)(24)
r r r r]F1122+

[
(3P(34) + 3 + P(14)) r r r r − 5 r r r r − (13

6
+ 5

2
P(34)) r r r r+

(5 + 3P(24)) r r r r − r r r r − (3 + 3
2
P(14)) r r r r)F1112+

[
1
2
(P(124) − 11− 9P(12) − 7P(123) − P(132) − 3P(142) − 7P(14) − 7P(13)(24)+

P(13) − 8P(14)(23)) r r r r + (5 + 3
2
P(24) + 3P(14) + 9

2
P(13)(24)) r r r r+

(6 + 7P(23) + 5P(12)) r r r r + (3
2

+ P(13) + 5
4
P(13)(24)) r r r r+
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(−10− 2P(23) − P(24) − 8P(12) − 5P(123) − 2P(132)) r r r r+
(9 + 4P(24) + 9

2
P(14)) r r r r]F0122+

[ r r r r − 1
3
r r r r − 1

2
r r r r − r r r r − 1

24
r r r r+

5
12
r r r r + 1

6
r r r r + 1

3
r r r r]F1111+

[
1
2
(P(13) − P(23)) r r r r − 1

4
(1 + P(13)(24)) r r r r + (1

8
P(23) − 3

8
) r r r r+

1
2
(1− P(23) + P(24) − 1

2
P(14)) r r r r − (1

4
+ 1

8
P(14)) r r r r − 1

2
r r r r+

1
2
(3 + P(23) − P(24) + 3P(13)(24)) r r r r + (P(23) − 1− P(1324)) r r r r+

1
2
(1

2
P(24) − 1− P(23) − 1

2
P(13)) r r r r − 1

16
r r r r + 1

2
r r r r]F0022+

[
1
4
P(24)
r r r r + 1

2
(1− P(34) + 2P(24) + 1

2
P(12) − 1

2
P(124) + P(142)) r r r r+

1
2
(P(134) −2P(24) −P(13) −P(1243) + P(124) −2P(142) + P(143) − P(14)) r r r r+

1
2
(3P(34)−1−3P(24)−P(12)(34) +2P(124)+P(12)−2P(13)(24)−3P(142)) r r r r+

(P(24)−P(34)−1+P(13)−2P(14)−2P(13)(24)) r r r r + (P(34) + 2) r r r r+
1
2
(3P(34) −1−P(24) + P(12) −2P(142)) r r r r + 1

2
(P(24) − P(13)) r r r r+

1
2
(P(34) − P(12) − P(134) − 2P(13) + P(14) + 2P(143)) r r r r − 1

2
r r r r+

1
2
(1− P(34) + 3P(24) + P(13) + 3P(1243) + P(12)) r r r r]F0112+

[
1
12
P(13) − 4

3
− 1

12
P(14)) r r r r + ( 5

12
+ 11

12
P(13)) r r r r + 4

3
P(14)
r r r r+

(13
12
− 1

4
P(14)) r r r r + 1

12
(P(13) − P(14)) r r r r + 3

4
(P(12) − 1) r r r r+

(1
6
P(14) − 5

6
P(13)) r r r r + (1

6
P(13) − 7

6
P(14)) r r r r + 1

4
P(14)
r r r r+

(1
2
− 1

6
P(13)) r r r r + 5

6
(1− P(14)) r r r r − (5

4
+ 7

12
P(12)) r r r r+

(3
2
P(12) − 7

6
− 2

3
P(14)) r r r r + 2

3
r r r r + (1

3
− 2

3
P(12)) r r r r+

(4
3
P(14) − 1

6
− 1

2
P(12)) r r r r + ( 1

12
P(14) − 5

6
+ 3

4
P(13)) r r r r]F0111+

[
1
2
(1− P(243) − P(24) − 1

2
P(14)) r r r r + 1

2
(1− P(24) + P(23) − P(13)) r r r r+

1
2
(P(243) −1 + P(234) + P(134) −P(143)) r r r r + (P(243) − 1

2
−P(13)) r r r r+

1
2
(P(234) − P(243) + P(13) − P(14)) r r r r + (P(23) − P(34) − 1

2
P(234)) r r r r+

1
2
(P(243) − P(24) − P(13) + P(14)) r r r r + (P(34) − P(13) + P(13)(24)) r r r r+
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(2P(34) + P(234) − P(243) + P(13) − P(14)) r r r r − (1 + 3
4
P(13)(24)) r r r r+

(3 + 1
4
P(234) − P(243) + 1

2
P(13)) r r r r − (P(24) + P(1324)) r r r r+

1
2
P(1324)
r r r r − 3

8
r r r r − P(13)
r r r r]F0012+

[ r r r r + r r r r − r r r r + 1
4
r r r r + 1

2
r r r r − 1

4
r r r r+r r r r + 1

2
r r r r − 1

2
r r r r − 3

2
r r r r + 1

4
r r r r − r r r r+

1
4
r r r r − 5 r r r r − 3

4
r r r r − r r r r − 1

2
r r r r − r r r r+

1
2
r r r r + 3 r r r r + 2 r r r r + 5

2
r r r r − 1

6
r r r r]F0

}
(3.60)

We saw that the transition from 〈2211〉 to 〈2221〉 did not increase the dimension

of the kernel mainly because of the increase of the discrete symmetry group

from S2 × S2 to S3. This transition to 〈2222〉 enlarges the symmetry group

from S3 to S4 and by that even reduces the dimension of the kernel to 13.

Ker〈2222〉 =PS4

{
K

(2)
S2
F1122|d=2+

[
cK2(K1 −K2)(K1 − 2K2) + c′K2

1(K1− 2K2)
]
F0122|d=2+

K
(3)
S4
F1112|d=1 +K

(4)
S2
F0022|d=3 +K

(4)
S4
F1111|d=1+

[
cK4

1 + c′K2
2 (K1 −K2)2 + c′′(K3

1K2 − 2K1K
3
2 +K4

2 )
]
F0112|d=3+

K1K2(K1 −K2)2(K1 +K2)F0012|d=1
}

(3.61)

There is no kernel of logarithmic degree one because at most we have four

F in a set and the S4 symmetry then is forbidden according to appendix A.

Additional combinatorial constraints start with logarithmic degree 5: no l5ij for

1 ≤ i < j ≤ 4 is allowed to show up.

For F0012 plus the five permutations there would have been a d = 3 kernel,

but the given linear combination is the only one which eliminates all l5ij terms.

For {F0111, F1011, F1101, F1110} only K
(5,d=1)
S4

would be possible, but is ruled by

the combinatorial restriction.

That there is a kernel for d = 6 is a bit unexpected. On the one hand we

have (3.37) a two dimensional kernel, but on the other there are two constraints

which need to be satisfied, namely all lij to the power of 5 and to the power of

6 have to be eliminated. The given combination fulfills both restrictions and

thus gives us an additional degree of freedom for F0.
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3.5 Exact results for two logarithmic fields

The most easiest non-trivial case is the one, where we have two logarithmic

fields and two primaries. For this case the correlator 〈k1k200〉 for k1, k2 > 0

can be solved exactly for arbitrary Jordan-rank r.

The correlator for Jordan-rank r has the following form

〈k1k200〉 = Fk1,k2,0,0 + c1l12Fk1−1,k2,0,0 + c2l12Fk1,k2−1,0,0 + . . . . (3.62)

As described in subsection 3.2.5 it is possible to identify some of the appearing

F -terms with each other. In this case it turns out that it is easy to find the

identifications that stems from the integration process by inserting the above

ansatz in equation (3.9). This leads to

O1 〈k1k200〉 = −2z1 〈k1−1, k2, 0, 0〉 − 2z2 〈k1, k2−1, 0, 0〉 , (3.63)

and considering the terms of the lowest order in {lij} only we get

(z1 + z2)(c1Fk1−1,k2,0,0 + c2Fk1,k2−1,0,0) +O(l12)

= −2z1Fk1−1,k2,0,0 − 2z2Fk1,k2−1,0,0 +O(l12) . (3.64)

We immediately see that these equations do not have a solution. As before

we can circumvent the problem by reducing the complexity of the equations,

which can be accomplished by identification of some of the functions F . Here

we can solve equation (3.64) by using the following identifications

Fk1−1,k2,0,0 ≡ Fk1,k2−1,0,0 . (3.65)

This in perfect agreement with the results presented so far for r = 3. Because

of having the the above identifications we are left with only one function F for

each logarithmic degree of 〈k1k200〉. Using (3.8) yields after a short calculation

the full result for a correlator of Jordan-rank r with two primary fields:

〈k1k200〉 =

k1+k2−(r−1)∑

n=0

(−2)n

n!
ln12Fk1+k2−(r−1)−n,r−1,0,0 . (3.66)

As a consistency check we can compare the above result with the one presented

in Flohr (2002b), respectively Rahimi Tabar et al. (1997). For the two-point

correlation function the first paper gives the following result

〈Ψk1(z1)Ψk2(z2)〉 =

k1+k2∑

`=0

(−2)`

`!
l`12D(h1=0,h2=0,k1+k2−`) . (3.67)
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where we slightly adapted the notation and have set the conformal weights

h1, h2 to zero. The D(··· ) are called “structure constants” and have the property

that D(h,h;k) = 0 for k < r− 1. In other words the index ` in (3.67) effectively

runs from 0 to k1 + k2 − (r − 1) and thus (3.66) and (3.67) are of identical

structure. This means, that the polynomial dependence on the logarithms

lij is exactly the same and that precisely the same number of free structure

constants D(··· ) or structure functions F···(x) are needed.

3.6 Summary and conclusion

In the scope of this thesis we analyzed the influence of the global conformal

symmetries in form of the global conformal Ward identities on 4-point correla-

tion functions in arbitrary logarithmic conformal field theory. While it is not

possible to completely determine the correlators, this does not even work in

the CFT case, it is possible to fix the generic structure of the correlators.

The presented algorithm can be used to calculate the generic structure of

4-point correlators. Within this thesis we restricted ourselves to combinations

of proper primary and logarithmic fields, but did mention how to adjust the

algorithm in order to extend the algorithm to pre-logarithmic fields.

We explicitly gave the results for, up to permutations, all correlators of

Jordan-rank r = 2, 3. In some of the results we found additional constants

which were identified as elements of the kernel O. Furthermore, we discussed

various restrictions which limit the number of terms that can appear in an

ansatz or which lead to lesser degrees of freedom in the kernel. Also we found

that integration sometimes requires that some functions F need to be identified

with each other.

Finally we gave explicit results for the case of exactly two logarithmic fields

for arbitrary Jordan-rank r. Studying this very simple case showed us why we

need to identify some of the functions F with each other. Also we did a

consistency check of the result and showed that equation (3.66) is equivalent

to the one presented in Flohr (2002b).

The comparison can be extended to three-point correlators. For instance

we can consider the terms of logarithmic degree l = 2 of the correlator 〈2110〉
in a Jordan-rank r = 3 theory, cf. equation (3.49):

〈2110〉 |l=2 =
[
− 1

2
(l212 + l213 + l223) + 3l12l13 + l12l23 + l13l23

]
F0 . (3.68)
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As a comparison we evaluate formula (3.11) in Flohr (2002b) and get for l = 2

the same result, except that F0 has to be replaced by the structure constant

C(h1,h2,h3;k=0). We once more note that we suppressed any direct but trivial

dependence on the conformal weights, so actually, we should compare with

C(0,0,0;k=0). However, our results are, up to the omitted pre-factor
∏

i<j z
µij
ij ,

valid and independent of the values of the conformal weights hi. For the other

correlators like 〈2210〉 et cetera we also confirmed that the results match if

we restrict us to the highest logarithmic degree, which corresponds to lmax =

k1 + k2 + k3 − r + 1. As we will see in the following it is interesting to study

the case where l < lmax. We use 〈2110〉 as an example again, but this time we

consider the term of l = 1 only:

〈2110〉 |l=1 =F1020(l13 − l12 − l23) + F1110(l23 − l12 − l13)+

F1200(l12 − l13 − l23) . (3.69)

We remind the reader that the above result includes the usual identifications

such as F2100 ≡ F1200. The structure of the formula in Flohr (2002b) makes

it obvious that for l = 1 only one structure constant shows up and thus the

corresponding term is

〈211〉 |l=1 = −(l12 + l13 + l23)C(h1=0,h2=0,h3=0;k=1) , (3.70)

where we again set the conformal weights to zero and slightly adjusted the

notation. Though looking differently at first glance we can achieve the same

form of the result if we demand that the following extended identifications

hold too, namely

F1200 ≡ F1020 ≡ F1110 . (3.71)

This means that we do not only regain the F0 terms, but that we can reclaim

all information, provided that we do all necessary identifications. With “nec-

essary” we mean that we have to identify all F··· terms of the same logarithmic

degree.

We already encountered one situation where we had to identify several

functions F with each other: the initial conditions (3.10) where we identified

F0 ≡ F ′0 ≡ . . . by virtue of the cluster decomposition argument.

This evokes the question whether this form of massive identifications of

functions F is necessary or useful in the context of some physical theory re-

spectively what conditions could force us to massively reduce the number of

functions F . It is clear that the special case where all conformal weights hi
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are equal to each other has an additional symmetry, since we can freely ex-

change the fields. In this case, we definitely expect that a large number of such

identifications should take place.

Furthermore, one can quickly check that the given solutions remain valid

after identifying remaining free structure functions because any remaining such

function can be arbitrarily chosen as long as no further constraints such as

local conformal symmetry are invoked. Due to the recursive dependence of the

solutions for total Jordan-level K on the ones for level K ′ < K, identifications

are consistent only if restricted to functions Fk1k2k3k4, Fk′1k′2k′3k′4 with k1+k2+k3+

k4 = k′1 + k′2 + k′3 + k′4. However, a more detailed analysis which identifications

should be present in the general case, i. e. for arbitrary values of the conformal

weights hi, will be left to future work.

Of course, when all four fields in the 4-point function are logarithmic, we

cannot expect that the resulting polynomials in the lij can be matched with

the ones of 2- and 3-point functions. But one might attempt to make the

following comparison.

The four-point functions 〈k1k2k3k4〉 are ultimately composed out of (a suit-

able generalization of) conformal blocks which depend on the internal propa-

gator in the 4-point function. Crossing symmetry of the 4-point function imply

that the 4-point function
〈
Ψ(h1,k1)(∞)Ψ(h2,k2)(1)Ψ(h3,k3)(x)Ψ(h4,k4)(0)

〉
, viewed

as an analytical function of the anharmonic ratio x, possesses for each asymp-

totic region |x| < 1, |1 − x| < 1, or 1/|x| < 1 expansions of the schematic

form

〈(h1, k1)(h2, k2)(h3, k3)(h4, k4)〉 ∼
∑

(h,k)

C
(h,k)
(hi,ki)(hj ,kj)

C(h,k)(hl,kl)(hm,km) + . . .

(3.72)

for all permutations {i, j, l,m} of {1, 2, 3, 4}, which must all be expansions of

the same analytical function. These expansions involve the 3-point structure

constants as well as the OPE structure constants. In the logarithmic case,

these structure “constants” are matrix valued with coefficients in C[{lij}]. In

the notation used in this paper, C(h1,k1)(h2,k2)(h3,k3) = 〈k1k2k3〉 where on both

sides all terms of the form z
µij
ij depending in the canonical way on the confor-

mal weights are omitted. In the r-dimensional Jordan-cell space, this defines

matrices (Ck1)k2k3 labeled by the first Jordan-level and with indices given by

the second and third Jordan-level. In the same way, the propagator defines a

matrix (D)k1k2 = 〈k1k2〉. The OPE structure “constants” are then given by
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the matrix product

(Ck1)
k3
k2

= (Ck1)k2k(D
−1)kk3 (3.73)

involving the inverse propagator. Now, one can compute the leading orders

of the different expansions of the 4-point structure functions which will yield

different polynomials in the lij with coefficients given by rational functions of

the 2- and 3-point structure constants D(h,h;p) and C(hihj ,h;q). Two observations

can now be made:

Firstly, the three expansions for the s-, t- and u-channel, i. e. for |x| < 1,

|1 − x| < 1 and 1/|x| < 1 all differ. They lead to different polynomials. It is

easy to check in simple examples that certain monomials in the lij may appear

only in one of the expansions. This always happens for 4-point functions of

the form 〈k1k2k3k4〉 with all ki > 0 but not all ki equal.

Secondly, the polynomials in lij with coefficients given by the structure

functions Fk1k2k3k4(x) cannot be matched to any of the three expansions. On

the contrary, the 4-point functions will involve all the different monomials in

the lij and in particular all the ones which do not appear in all the expan-

sions, but in only one of them. It is therefore much more difficult to match

the 4-point structure functions to expressions in the 3- and 2-point structure

constants or to suggest further identifications as they can easily be read off

in the case of 4-point functions of type 〈k1k200〉 or 〈k1k2k30〉. In fact, it is

not straightforward how the three different expansions should be combined for

a comparison of coefficients in case all four fields are logarithmic. A further

complication is given by the freedom to change the polynomials in the lij by el-

ements in the kernel of the operator O or, equivalently, by a redefinition of the

structure function coefficients. But we believe that it would be very interesting

to investigate the consequences of crossing symmetry for the structure func-

tions of LCFT 4-point functions, because this might yield severe restrictions

on the number of functions which have to be determined by other means, for

example local conformal invariance. This is an important task for future work

in order to greatly ease the full computation of 4-point correlation functions

in LCFT of rank r > 2.
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Appendix A

Overview of the kernel terms

The following tables contain the kernel terms that can show up for a logarith-

mic degree from one to five. In addition to the logarithmic degree the kernel

depends on the number of functions F that are involved and also on the dis-

crete symmetry. As we are considering four point functions only we are left

with four different symmetry groups.

The format of the entries is the same as in subsection 3.2.6 with the small

addition of the dimension d of the kernel. It is interesting how similar the

entries for the different logarithmic degrees are, the only exception being the

entry for the pair (F3, S3) respectively (F12, S4). Also note that each column

contains the full kernel, namely if and only if |F | = |S|, where S denotes the

symmetry group and |S| its cardinality .

“↔” means that these entries have to be identical as shown in (3.34), (3.36).

Log.deg 1 S2 S2×2 S3 S4

F1 K
(1),d=1
S2

↔ K
(1),d=1
S2

0 ↔ 0

F2 K(1),d=2 K
(1),d=1
S2

— —
F3 — — (∗)|d=1 —
F4 — K(1),d=2 — 0
F6 — — K(1),d=2 K

(1),d=1
S2

F12 — — — (∗)|d=1

F24 — — — K(1),d=2

(∗) = 2K2 −K1|d=1
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Log.deg 2 S2 S2×2 S3 S4

F1 K
(2),d=2
S2

↔ K
(2),d=2
S2

K
(2),d=1
S4

↔ K
(2),d=1
S4

F2 K(2),d=3 K
(2),d=2
S2

— —
F3 — — (∗)|d=2 —

F4 — K(2),d=3 — K
(2),d=1
S4

F6 — — K(2),d=3 K
(2),d=2
S2

F12 — — — (∗)|d=2

F24 — — — K(2),d=3

(∗) = cK2
1 + c′(K2

2 −K1K2)|d=2

Log.deg 3 S2 S2×2 S3 S4

F1 K
(3),d=2
S2

↔ K
(3),d=2
S2

K
(3),d=1
S4

↔ K
(3),d=1
S4

F2 K(3),d=4 K
(3),d=2
S2

— —
F3 — — (∗)|d=2 —

F4 — K(3),d=4 — K
(3),d=1
S4

F6 — — K(3),d=4 K
(3),d=2
S2

F12 — — — (∗)|d=2

F24 — — — K(3),d=4

(∗) = cK2
1 (K1 − 2K2) + c′K2(K1 −K2)(K1 − 2K2)|d=2

Log.deg 4 S2 S2×2 S3 S4

F1 K
(4),d=3
S2

↔ K
(4),d=3
S2

K
(4),d=1
S4

↔ K
(4),d=1
S4

F2 K(4),d=5 K
(4),d=3
S2

— —
F3 — — (∗)|d=3 —

F4 — K(4),d=5 — K
(4),d=1
S4

F6 — — K(4),d=5 K
(4),d=5
S2

F12 — — — (∗)|d=3

F24 — — — K(4),d=5

(∗) = cK4
1 + c′K2

2 (K1 −K2)2 + c′′(K3
1K2 − 2K1K

3
2 +K4

2 )

Log.deg 5 S2 S2×2 S3 S4

F1 K
(5),d=3
S2

↔ K
(5),d=3
S2

K
(5),d=1
S4

↔ K
(5),d=1
S4

F2 K(5),d=6 K
(5),d=3
S2

— —
F3 — — (∗)|d=3 —

F4 — K(5),d=6 — K
(5),d=1
S4

F6 — — K(5),d=6 K
(5),d=3
S2

F12 — — — (∗)|d=3

F24 — — — K(5),d=6

(∗) = c(−2K3
1K

2
2 + 8K2

1K
3
2 − 11K1K

4
2 + 5K5

2 )+
c′(−K4

1K2 + 4K3
1K

2
2 − 6K2

1K
3
2 + 4K1K

4
2 )+

c′′(8K5
1 + 1K4

1K2 − 10K2
1K

3
2 + 20K1K

4
2 − 20K5

2)|d=3
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