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ABSTRACT: These are notes of my lectures held at the first School & Workshop on
Logarithmic Conformal Field Theory and its Applicatiorf&ptember 2001 in Tehran,
[ran.

These notes cover only selected parts of the by now quite extensive knowledge on
logarithmic conformal field theories. In particular, I discuss the proper generalization
of null vectors towards the logarithmic case, and how these can be used to compute
correlation functions. My other main topic is modular invariance, where I discuss
the problem of the generalization of characters in the case of indecomposable repre-
sentations, a proposal for a Verlinde formula for fusion rules and identities relating
the partition functions of logarithmic conformal field theories to such of well known
ordinary conformal field theories.

These two main topics are complemented by some remarks on ghost systems, the
Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the
logarithmic ¢ = —2 theory.
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1. Introduction

These are notes of my lectures held at the 8itool & Workshop on Logarithmic Confor-
mal Field Theory and its Applications/hich took place at the IPM (Institute for Studies
in Theoretical Physics and Mathematics) in Tehran, Irai1,84.September 2001.

During the last few years, so-called logarithmic conforifredt! theory (LCFT) estab-
lished itself as a well-defined new animal in the zoo of comi@lrfield theories in two di-
mensions. These are conformal field theories where, desgating invariance, correlation
function might exhibit logarithmic divergences. To our krledge, such logarithmic sin-
gularities in correlation functions were first noted by Kmik back in 1987 [66], but since
LCFT had not been invented (or found) then, he had to distiess away. The first works
we are aware of, which made a clear connection between thgegiin correlation func-
tions, indecomposability of representations and openatoduct expansions containing
logarithmic fields (although they were not called that wagni}j are three papers by Saleur,
and then Rozansky and Saleur, [106, 105]. But it took sixyegace Knizhnik’s publica-
tion, that the concept of a conformal field theory with logfamic divergent behavior due
to logarithmic operators was considered in its own right hydgie [48], who got inter-
ested in this matter by discussions with A.B. Zamolodchikekom then one, there has
been a considerable amount of work on analyzing the geneugtgre of LCFTs, which
by now has generalized almost all of the basic notions anid tio(rational) conformal
field theories, such as null vectors, characters, partitinations, fusion rules, modular in-
variance etc., to the logarithmic case. A complete list tdnences is already too long even
for lectures notes, but see for example [33, 21, 41, 43, 453971, 86, 91, 99, 100, 104]
and references therein. Besides the best understood neaimpé of the logarithmic the-
ory with central charge = —2, as well as its;, ; relatives, other specific models were
considered such as WZW models [3, 42, 70, 95, 96] and LCFBEdeblto supergroups
and supersymmetry [4, 16, 62, 64, 76, 82, 103, 105]. StrligrRpzansky and Saleur did
note that indecomposable representations should plaleanr@FT severely influencing
the behavior of, for example, the modularand7’-matrices, before Gurarie published his
work in 1993. The only concept they did not explicitly intrez was that of a Jordan cell
structure with respect th, or other generators in the chiral symmetry algebra.

Also, quite a number of applications have already been gaksand LCFTs have
emerged in many different areas by now. We will hear aboutesofthem in the course
of this school. Hence, | mention only some of them, which Infdyarticularly exciting.
Sometimes, longstanding puzzles in the description oatetheoretical models could be
resolved, e.g. the enigmatic degeneracy of the ground stalee Haldane-Rezayi frac-
tional quantum Hall effect with filling factor = 5/2, where conformal field theory de-
scriptions of the bulk theory proved difficult [11, 49, 10®&julti-fractality in disordered
Dirac fermions, where the spectra did not add up correctlpiag as logarithmic fields
in internal channels were neglected [17], or two-dimersieonformal turbulence, where
Polyakov’s proposal of a conformal field theory solution dahtradict phenomenological



expectations on the energy spectrum [35, 98, 109]. Othéelicapipns worth mention-
ing are gravitational dressing [8], polymers and Abeliandgales [13, 56, 84, 106], the
(fractional) quantum Hall effect [34, 53, 74], and — perhapsst importantly — disorder
[5, 6, 14, 15, 50, 51, 68, 83, 101]. Finally, there are evediegions in string theory [67],
especially inD-brane recoil [10, 24, 26, 47, 69, 77, 79, 87], AdS/CFT cqroeslence
[44, 60, 65, 72, 73, 93, 94, 107], and also in Seiberg-Wittdntens to supersymmetric
Yang-Mills theories, e.g. [12, 36, 78], Last, but not leastecent focus of research on
LCFTs is in its boundary conformal field theory aspects [34, %, 80, 91].

In these note, we will not cover any of the applications, aredwill only discuss
some of the general issues in LCFT. We will focus mainly on tasues in particular.
Firstly, we discuss so-called null states, and how theseheimto compute correlation
functions in LCFTs. Secondly, we look at modular invarigngkether and how it can be
ensured in LCFTs, and what consequences it has on the opaigébra. More precisely,
we discuss the problem of the generalization of charaatetise case of indecomposable
representations, a proposal for a Verlinde formula fordnsules and identities relating the
partition functions of logarithmic conformal field theasi®o such of well known ordinary
conformal field theories.

As already said, these notes cover only selected parts dfytmow quite extensive
knowledge on logarithmic conformal field theories. On thieeothand, we have tried to
make these notes rather self-contained, which means tha parts may overlap with
other lecture notes for this school, and are included herediavenience. In particular, we
did not assume any deeper knowledge of generic common coafdield theory.

Some parts are set in smaller type, like the paragraph yojustreeading. They mostly contain more advanced material
and further details which may be skipped upon first readingn&of these parts, however, contain additional explanatio
addressed to a reader who is a novice to the vast theme of G@nigral, and may be skipped by readers already familiar
with basic conformal field theory techniques.

For those readers completely unfamiliar with CFT in geneavalprovide a (very) short list

of introductory material, for their convenience which, lewer, is by no means complete.

The reviews on string theory which we included in the listtadm, in our opinion, quite

suitable introductions to certain aspects of conformad fiekory.

(1) L. Alvarez-GauméHelv. Phys. Act®1 (1991) 359-526.

(2) J. Cardy, inLes Houches 1988 Summer Schd@l Brézin and J. Zinn-Justin, eds.
(1989) Elsevier, Amsterdam.

(3) Ph. Di Francesco, P. Mathieu, D. Sénéclianformal Field TheoryGraduate Texts
in Contemporary Physics (1997) Springer.

(4) R.DijkgraafLes Houches Lectures on Fields, Strings and Dugiitappeartiep-t h/ 9703136].

(5) J. Fuchslectures on conformal field theory and Kac-Moody algeptasppear in
Lecture Notes in PhysicSpringer hep-t h/ 9702194].

(6) M. GaberdielRept. Prog. Phys3(2000) 607-667tep-t h/ 9910156].

(7) P. Ginsparg, iles Houches 1988 Summer Sch@&olBrézin and J. Zinn-Justin, eds.
(1989) Elsevier, Amsterdam [http://xxx.lanl.gov/hymedthyperlh88.tar.gz].



(8) C. Gomez, M. Ruiz-Altaba&ivista Del Nuovo Cimentb6 (1993) 1-124.
(9) M. Green, J. Schwarz, E. WitteBtring Theoryvols. 1,2 (1986) Cambridge Uni-
versity Press.
(10) M. Kaku,String Theory(1988) Springer.
(11) S.V. KetovConformal Field Theory1995) World Scientific.
(12) D. Lust, S. Theiser,ectures on String Theoryecture Notes in Physics (1989)
Springer.
(13) A.N. Schelleken€onformal Field TheorySaalburg Summer School lectures (1995)
[http://Iwww.itp.uni-hannover.de/ flohr/lectures/stibkens.cft-lectures.ps.gz].
(14) C. Schweigert, J. Fuchs, J. Walch€égnformal field theory, boundary conditions
and applications to string theofjhep-t h/ 0011109].
(15) A.B. Zamolodchikov, Al.B. Zamolodchiko¥;onformal Field Theory and Critical
Phenomena in Two-Dimensional Systesviet Scientific Reviews/Sec. A/Phys.
Reviews (1989) Harwood Academic Publishers.

2. CFT proper

In these notes, we will detach ourselves from any stringréstenor condensed matter ap-
plication motivations and consider CFT solely on its ownisIgection is a very rudimen-
tary summary of some CFT basics. As mentioned in the basicl€ftlres, it is customary
to work on the complex plane (or Riemann sphere) with therholphic coordinate and
the holomorphic differential or one-forrix. A field ®(z) is called aconformalor primary
field of weighth, if it transforms under holomorphic mappings- 2'(z) of the coordinate
as

Da(2)(d2)" = By (2)(d2)) = Bp(2)(d2)" (2.2)

In case that the conformal weightis not a (half-)integer, it is better to write this as

: 02/ (=)\ ™"
0(2) - () = ) () 22
One should keep in mind that all formulae here have an antirhotphic counterpart.
Since a primary field factorizes into holomorphic and amtiemorphic partsp,, 7, (z, z) =
oy, (2)Py(Z), in most cases, we can skip half of the story. Infinitesimélly (z) = z+<(z)
with Je = 0, the transformation of the field is

Oy () (A2 = (Bp(2) + (2)0,Pp(2) +...) (d2)" (1 + st(z))h . (2.3)
Therefore, the variation of the field with respect to a holgohic coordinate transforma-
tion is

00, (2) = (e(2)0 + h(0e(2))) Pr(z) . (2.4)



Since this transformation is supposed to be holomorphiC*init can be expanded as a
Laurent series,
e(z) = anz"“ : (2.5)
nez
This suggests to take the set of infinitesimal transformatio— ' = z + ¢,2"*! as a
basis from which we find the generators of this reparameinizaymmetry by considering
®;, — Oy, + 6,,P;, With

6, ®Pn(2) = ("0 + h(n +1)2") p(2) . (2.6)

The generators are thus the generators of the already elecedWitt-algebrd/,,, /,,] =
(n — m)lyim, Namelyt,, = —z"1+0.

We are interested in a quantized theory such that conformldisfibecome operator
valued distributions in some Hilbert spakge We therefore seek a representatiorf,pf
Diff (S*) by some operators,, € ‘H such that

5,04 (2) = [Lu, a(2)]. (2.7)

We have learned this in the basic CFT lectures, where we ised the Virasoro algebra

&
Lna Lm = - Ln m A
[ ] =(n—m)Lyym+ 19

(n?

- n)5n+m,0 . (28)
We remark thatl(2) is a sub-algebra oDiff (S') which is independent of the central
chargec. So, we start with considering the consequences ofquse, C) invariance on
correlation functions of primary conformal fields of therfor

G(Zl,...,ZN) = <0|(I)hN(ZN)(I>h1(Zl)|O> (29)

We immediately can read off the effect on primary fields fréh6}, which iso_;®,(z) =
0Py, (2), 00Pn(2) = (20 + h)®y(2), andd; @, (2) = (220 + 2hz)Pp(2).

2.1 Conformal Ward identities

Global conformal invariance of correlation functions isusglent to the statement that
0;G(z1,...,2y) = 0fori € {—1,0,1}. Sinced; acts as a (Lie-) derivative, we find the
following differential equations for correlation functisG({z;}),

0=5N0.G(z1,...,2n),
0=, (20, + hi)G(z1, ..., 2n) | (2.10)
0 = Ziil(zzazi + thzi)G<Zl7 R ZN) )

which are the so-calledonformal Ward identities The general solution to these three
equations is
(O[@ny (2x) - - Bny (20)[0) = F({me}) [ [ (2 = 20", (2.11)

1>7



where the exponenjs; = 1;; must satisfy the conditions
Z:uij = —2h;, (2.12)
j#i

and whereF'({n;}) is an arbitrary function of any set df — 3 independent harmonic
ratios (a.k.a. crossing ratios), for example

(21 — z1)(2v-1 — 2n)
(Zlc - ZN)(Zl - ZN—1)

e = , k=2,...N—-2. (2.13)
The above choice is conventional, and maps— 0, zy_; — 1, andzy — oo. This
remaining function cannot be further determined, becausé&armonic ratios are already
SL(2,C) invariant, and therefore any function of them is too. Thisfems thats((2)
invariance allows us to fix (only) three of the variables aduily.

Let us rewrite the conformal Ward identities (2.10) as

0 = {(6:@hy (20)) B (2v1) - - By (21)) + (g (22) (6, (23-1)) - - Dy (22)
o (D (2) B, (1) (030, (1)) (2.14)

where §,®,,(z) = [L;, Py(z)] for i € {-1,0,1}. We assume that the in-vacuum is
SL(2,C) invariant, i.e. that.;|0) = 0 fori € {—1,0,1}. Then (2.14) is nothing else

than (0| L; (®p, (2n) - .. Pp, (1)) |0) from which it follows that(0| L, must be states or-

thogonal to (and hence decoupled from) any other state ith#wy fori € {—1,0,1}.

In a well-defined quantum field theory, we have an isomorphistween the fields in
the theory and states in the Hilbert sp&¢e This isomorphism is particularly simple in
CFT and induced by

lim @, (2)[0) = [h), (2.15)

where |h) is a highest-weight state of the Virasoro algebra. Inde&tdesl,, ;] =
(2"T19 + h(n + 1)2")®y,, we find with the highest-weight property of the vaculi i.e.
that,|0) = 0 for all n > —1, that for alln > 0

L,|h) = llil’(l] L,®,(2)]0) = l%[Ln7q)h<Z)]|0> = l% (z"0 + (n+1)hz")@u(2)[0) = 0.

(2.16)
Furthermore/Lo|h) = h|h) by the same consideration. Thus, primary fields correspond t
highest-weight states.

A nice exercise is to apply the conformal Ward identities te@-point functionG = (@}, (2)®,.(w)). The constraint from

L_,isthat(9, + 9,,)G = 0, meaning tha&d = f(z — w) is a function of the distance only. THg constraint then yields

a linear ordinary differential equatiof(z — w)d,_., + (h+ k') f(z — w) = 0, which is solved byonst - (z — w) """,
Finally, the L, constraint yields the condition = h/. However, we should be careful here, since this does not

necessarily imply that the two fields have to be identicallyG@meir conformal weights have to coincide. In fact, we will

encounter examples where the propagéii’) = lim, ., (0|22"®;,(z)®./(0)|0) is not diagonal. Therefore, if more than

one field of conformal weight exists, the two-point functions aquire the fotd\" (2)®'7) (w)) = (z — w)~2"8, 4 D;;

with D;; = (h;i|h; 7) the propagator matrix. The matrl;; then induces a metric on the space of fields. In the following,
we will assume thab,; = §;; except otherwise stated.



It is worth noting that the conformal Ward identities (2.Ebpw us to fix the two-
and three-point functions completely upto constants. ¢, flne two-point functions are
simply given by

(@ (2) By () =~ (2.17)

(z —w)2h’
where we have taken the freedom to fix the normalization ofmunary fields. The
three-point functions turn out to be

Cijk
(zij)hi—l—hj—hk(Zik)hi-i-hk—hj(ij)hj-i—hk—hi )

(©n, (21) O, (25) Pry (21)) = (2.18)
where we again used the abbreviatigh = z; — z;. The constantg’;;; are not fixed
by SL(2,C) invariance and are called thgtructure constantsf the CFT. Finally, the
four-point function is determined upto an arbitrary functiof one crossing ratio, usually
chosen ag = (z12234)/(224213). The solution for,; is no longer unique foiV > 4, and
the customary one faN = 4 is yi;; = H/3 — h; — h; with H = 37 h;, such that the
four-point functions reads

(®h, (22) By (23) iy (22) B, (1)) = [ [ (za) 3P (22 - (2.19)

2947
i>j 24~13

Note again thab L(2, C) invariance cannot tell us anything about the functit(m), since
7 is invariant under Mobius transformations.

2.2 Virasoro representation theory: Verma modules

We already encountered highest-weight states, which arsttties corresponding to pri-
mary fields. On each such highest-weight state we can canstverma modulé’, . with
respect to the Virasoro algebitéar by applying the negative modds,, n < 0 to it. Such
states are calledescendanstates. In this way our Hilbert space decomposes as

H = @h,ﬁ Vhﬁ ® Vi_z,c 5

2.20
Vh,c:span{(HielL_m|h> NI ={ny,...nx},ni11 Zni} , ( )

where we momentarily have sketched the fact that the full &3 a holomorphic and an
anti-holomorphic part. Note also, that we indicate the gdhr the central charge in the
Verma modules. We have so far chosen the anti-holomorphiopthe CFT to be simply
a copy of the holomorphic part, which guarantees the futhtih¢o be local. However, this
is not the only consistent choice, and heterotic stringgaarexample where left and right
chiral CFT definitely are very much different from each other

A way of counting the number of states ¥j . is to introduce theharacterof the
Virasoro algebra, which is a formal power series

Xnelq) = try, g™~ (2.21)



For the moment, we considerto be a formal variable, but we will later interpret it in
physical terms, where it will be defined lgy= e?™'" with a complex parameter living

in the upper half plane, i.6&sm 7 > 0. The meaning of the constant ternz /24 will also
become clear further ahead.

The Verma module possesses a natural gradation in termg @&idglen value of.,
which for any descendant state ,|h) = L_,,, ... L_,, |h) is given byLoL_,|h) = (h +
In|)|h) = (h+ny + ...+ ng)|h). One callgn| the level of the descendant ,|h). The
first descendant states ¥} . are easily found. At level zero, there exists of course only
the highest-weight state itself;). At level one, we only have one state,  |h). At level
two, we find two states,? ,|h) andL_,|h). In general, we have

Vh,c = @N Vh(ﬁv) )
VY = span {L_a|h) : |n| = N},

,C

(2.22)

i.e. at each levelN we generically have(NV) linearly independent descendants, where
p(IN) denotes the number of partitions &f into positive integers. If all these states are
physical, i.e. do not decouple from the spectrum, we easitywrite down the character
of this highest-weight representation,

. 1
Xne(@) = "] ] (2.23)

n>1 l—q"

To see this, the reader should make herself clear that we atang:) with any power of
L_,, independently of the powers of any other madde,,/, quite similar to a Fock space
of harmonic oscillators. A closer look reveals that (2.Z1)ndeed formally equivalent
to the partition function of an infinite number of oscilladorith energies,, = n. The
expression (2.23) contains the generating function forrilmabers of partitions, since
expanding it in a power series yields

[Ta-a97"=> pVN)g" (2.24)
n>1 N>0
=14q+2¢*+3¢3+5¢" +7¢° + 11¢° + 15¢" + 22¢® + 30¢° + 42¢'° + . . . .

2.3 Virasoro representation theory: Null vectors

The above considerations are true in the generic case. Bug dtart to fix our CFT by

a choice of the central chargewe have to be careful about the question whether all the
states are really linearly independent. In other words: Magppen that for a given level

N a particular linear combination

i)y = 3 AL ulh) =07 (2.25)

In|=N

With this we mean tha(¢|X§l]7VC)) = (0 for all |¢)) € H. To be precise, this statement
assumes that our space of states admits a sesqui-lineaf.fornin most CFTs, this is the



case, since we can define asymptotic out-states by

(h| = lim (0|®}(2)z*" . (2.26)

Z— 00

This definition is forced by the requirement to be compatiith SZ(2, C) invariance of
the two-point function (2.17). We then hayi€|h) = d, . The exponent?" arises due to
the conformal transformation— 2’ = 1/z we implicitly have used. We further assume
the hermiticity conditior’.” , = L,, to hold.

The hermiticity condition is certainly fulfilled for unitgtheories. We already know from the calculation of the tvaiap

function of the stress-energy tens(F,(z)T (w)) = 3c(z — w)~*, that necessarily > 0 for unitary theories. Otherwise,

[ L—n|0)[|*> = (0| Ly L—|0) = (0][Ln, L—y]|0) = $5¢(n® — n){0]0) would be negative fon > 2. Moreover, redoing the

same calculation for the highest-weight stgtginstead of/0), we find||L_,|h)||? = (&c(n® — n) + 2nh) (h|h). The

first term dominates for large such that again must be non-negative, if this norm should be positive definihe second
term dominates fon = 1, from which we learn that must be non-negative, too. To summarize, unitary CFTs sacds
requirec > 0 andh > 0, where the theory is trivial for = 0 and whereg: = 0 implies that/h = 0) = |0) Is the (unique)
vacuum.
To answer the above question, we considenté) x p(N) matrix K™ of all pos-
sible scalar producté’ff,ﬁ)1 = (h|Lw L_n|h). This matrix is hermitian by definition. If this
matrix has a vanishing or negative determinant, then it rnassess an eigen vector (i.e. a
linear combination of leveN descendants) with zero or negative norm, respectively. The
converse is not necessarily true, such that a positivemd@tant could still mean the pres-
ence of an even number of negative eigen values.NFet 1, this reduces to the simple
statementlet K" = (h|LyL_1|h) = ||L_1|h)||? = (h|2Lo|h) = 2h(h|h) = 2h, where we
used the Virasoro algebra (2.8). Thus, there exists a nalbvat levelN = 1 only for the
vacuum highest-weight representatiog- 0.
We note a view points concerning the general case. Firsilytdthe assumption that
all highest-weight states are unique (&) = d/ ), it follows that it suffices to analyze
the matrix’x ™ in order to find conditions for the presence of null statesteNlbat scalar
products(h| L, L_,|h) are automatically zero fdn’| — |n| # 0 due to the highest-weight
property. Secondly, using the Virasoro algebra, each matement can be reduced to a
polynomial function ofh andc. This must be so, since the total level of the descendant
L, L_,|h) is zero such that use of the Virasoro algebra allows to redtice polynomial
P (Lo, &) |h). It follows that K') = pu u(h, ).

It is an extremely useful exercise to work out the ledel= 2 case by hand. Singg2) = 2, The matrixK () is the2 x 2

matrix
h|LaL_2|h)  (h|L2L_1L_1|h)
k@ (! . 2.27
(<h|L1L1L2|h> (h|Ly Ly L1 L_1]h) (2:27)

The Virasoro algebra reduces all the four elements to egjmesinh andc. For example, we evaluatle, L1 L_s|h) =
Li[Ly,L_s]|h) = 3L1L_4|h) = 6Lg|h) etc., such that we arrive at

dh+ic  6h
(2) — 2
K < oh 4h+8h2) (h|h) . (2.28)

Fore, h > 1, the diagonal dominates and the eigen values are hence bsitive. The determinant is

detK?) = 2h (16h* + 2(c — 5)h + c) (h|h)?. (2.29)



At level N = 2, there are three values of the highest weight

he {0,1—16(5—cj:\/(c—1)(c—25))}, (2.30)

where the matrix<?) develops a zero eigen value. Note that one finds two valyudsr
each given central charge besides the valuk = 0 which is a remnant of the level one
null state. The corresponding eigen vector is easily fourdraads

2 2
D o) = (3(2he + 1)Ly — L2,) |hs) . (2.31)
This can be generalized. The reader might occupy hersek siome with calculating the null states for the next few level

Luckily, there exist at least general formulee for the zeafabe so-called Kac determinadét /X (M), which are curves in
the (h, ¢) plane. Reparametrizing with some hind-sight

_ 1 1 . _ 1 c—25
c=c(m)=1 67m(m+1), ie. m= 2<1i”c—1>’ (2.32)

one can show that the vanishing lines are given by

~ ((m+1)p—mg)®—1
hpqlc) = Tm(m 1) (2.33)

= —lpg+ -1+ 4 ((13—c¢ c—1D(c—25))p% + (13 — c £ /(c — 1)(0—25))q2) .

Note that the two solutions for. lead to the same set bfvalues, sincé, ,(m (c)) = hy,(m—(c)). With this notation
for the zeroes, the Kac determinant can be written upto atantisy, of combinatorial origin as

det KN = ay H (h— hpyq(c))p(n_pq) oc det KV H (h = hpq(c)) (2.34)

pPq<N pg=N

where we have séh|h) = 1, and where(n) denotes again the number of partitionswghto positive integers.

A deeper analysis not only reveals null states, where thiarspeoduct would be positive semi-definite, but also
regions of the(h, ¢) plane where negative norm states are present. A physicaibderstring theory should possess a
Hilbert space of states, i.e. the scalar product should bitiy®definite. Therefore, an analysis which regions of(the:)
plane are free of negative-norm states is a very importaneif string theory. As a result, for< ¢ < 1, only the discrete
set of points given by the value$m) with m € N in (2.32) and the corresponding values,(c) with 1 < p < m and
1 < ¢ < m+ 1in(2.33) turns out to be free of negative-norm states. ingtheory, one learns that the regio» 25 is
particularly interesting, and that indeed- 26 admits a positive definite Hilbert space.

To complete our brief discussion of Virasoro representatieory, we note the fol-
lowing: If null states are present in a given Verma modyle, they are states which are
orthogonal to all other states. It follows, that they, andtfair descendants, decouple
from the other states in the Verma module. Hence, the corepcesentation module is
the irreducible sub-module with the ideal generated by tllestate divided out, or more
precisely, with the maximal proper sub-module divided oat,

N
Vhpyq(c)ﬂ - ‘]\4hp,q(c)7c = Vhp,q(c):c /Span{b(ﬁzp’i(c),c) = O} ) (235)
or mathematically more rigorously/;, (). is the unique sub-module such that

VhPaCI(c)vc - M}/lp,q(C),c - Mh,p,q(c%c (2.36)
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Figure 1: The first few of the lines, ,(c) where null states exist. They are also the lines where
the Kac determinant has a zero, indicating a sign change eiganvalue.

is exact for allM’. Due to the state-field isomorphism, it is clear that thisodgding

of states must reflect itself in partial differential eqoas for correlation functions, since
descendants of primary fields are made by acting with modéseo$tress energy tensor
on them. These modes, as we have seen, are representecceenddf operators. The

precise relationship will be worked out further below. Thuosll states provide a very

powerful tool to find further conditions for expectation was. They allow us to exploit

the infinity of local conformal symmetries as well, and unsi@ecial circumstances enable
us — at least in principle — to compuaél observables of the theory.

2.4 Descendant fields and operator product expansion

As we associated to each highest-weight state a primary fiddnay associate to each
descendant state a descendant field in the following way:s&afedant is a linear combi-
nation of monomiald_,,, ... L_,, |h). We heard in the basic CFT lectures that the modes
L,, are extracted from the stress-energy tensor via a conttegration. This suggests to
create the descendant fie]xﬁ””l"“’_"k)(z) by a successive application of contour integra-
tions

oy (2) = (2.37)

]il #T(wl)ﬂ #T(u@) : jé;k #T(ww%@,

where from now on we include the prefactatsinto the definition of§ dz. The contours
C; all encirclez andC; completely encircle€’; , 1, in shortC; = C;. 4.
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There is only one problem with this definition, -
namely that it involves products of operators. |
guantum field theory, this is a notoriously difficult
issue. Firstly, operators may not commute, sec->
ondly, and more seriously, products of operators Igt
eqgual points are not well-defined unless normal %r
dered. As we defined (2.37), we took care to re-
spect “time” ordering, i.e. radial ordering on the compldane. In order to evaluate
equal-time commutators, we define for operatdrs3 and arbitrary functions, g the
densities

ure 2: Typical contour deformation
OPE calculations.

A= j{dzf(z)A(z) ., B, = jgdwg(w)B(w) : (2.38)

where the contours are circles around the origin with rédii= |w| = 1. Then, the
equal-time commutator of these objects is

ApBlus = § dF()A) § dug(u)Bw)~ § duglu)B) § df(:)AG).

. “ “ . (2.39)
where we took the freedom to deform the contours in a homaisgay such that radial
ordering is kept in both terms. As indicated in the figure fivath terms together result in
the following expression,

[Af, Bylet. = fgdwg(w) % dzf(2)A(2) B(w) (2.40)

with the contour around as small as we wish. The inner integration is thus given by
the singularities of the operator product expansion (ORE)(e) B(w). We suppose that
products of operators have an asymptotic expansion fot distances of their arguments.
The singular part of this short-distance expansion detegmvia contour integration the
corresponding equal-time commutators. For example, with

1. = %dze(z)T(z) , (2.41)

0
we recognize immediately. @, (w) = (€0, + h(0,€))Pn(w) = [Ir, ®5(w)]. Note that
this is simply the general version of the common definitionhef Virasoro modeg,,, =
5= §, 2" T (2) for e(z) = 2", If this is to be reproduced by an OPE, it must be of the
form

h 1
2<I>h(w) + (Z — )

(z —w)
To see this, one essentially has to apply Cauchy’s integraddla¢ dzf(z)(z — w)™ =
o 1 0" f(w). Of course, we may also attempt to find the OPE of the stressygn
tensor with itself from the Virasoro algebra in the same waich yields

/2 2 w 1
T(2)T(w) = EEITL R w)2T( )+ Gw)

T(2)Py(w) = ———— 0y ®p(w) + regular terms . (2.42)

0T (w) + regular terms . (2.43)

12



The reader is encouraged to verify that the above OPE doe=dnylield the Virasoro
algebra, if substituted into (2.40).

Note that7’(z) is not a proper primary field of weight two due to the term inod
the central charge. Sin@&(z) behaves as a primary field undey, i € {—1,0, 1} mean-
ing that it is a weight two tensor with respect$d.(2, C), it is called quasi-primary. One
important consequence of this is that the stress-energptem the complex plane and
the original stress energy tensor on the cylinder differ bprstant term. Indeed, remem-
bering that the transfer from the complexified cylinder cliatew to the complex plane
coordinatez was given by the conformal map= e, one obtains

C . C
T (w) = 2T (2) — ﬂ]1, ie. (Lp)ey = Ly — ﬂanvo. (2.44)
This explains the appearance of the factet/24 in the definition (2.21) of the Virasoro

characters.

The structure of OPEs in CFT is fixed to some degree by two requgnts. Firstly,
the OPE is not a commutative product, but it should be asteejae.(A(z)B(y))C(z) =
A(z)(B(y)C(z)). The motivation for this presumption comes from the duglityperties
of string amplitudes. Duality is crossing symmetry in CFTretation functions, which
can be seen to be equivalent to associativity of the OPE.Xemple, one may evaluate a
four-point function in several regions, where differentrpaf coordinates are taken close
together such that OPEs can be applied. Secondly, the OPtEbmasnsistent with global
conformal invariance, i.e. it must respect (2.17), (2.884 (2.19). This fixes the OPE to
be of the following generic form,

Ck
Dy, (2) Py, (w) = ; o) i O (w) + (2.45)

where the structure constants are identical to the streictumstants which appeared in the
three-point functions (2.18). Note that due to our nornadian of the propagators (two-
point functions), raising and lowering of indices is trivianless the two-point functions
are non-trivial, i.e D;; # 4;;).

We can divide all fields in a CFT into a few classes. First,alare the primary field$,, corresponding to highest-weight

stategh) and second, there are all their Virasoro descendant f@ﬂag) corresponding to the descendant stdieg |h)

given by (2.37). For instance, the stress energy tensdirigsedescendant of the identityj(z) = 12 We further divide
descendant fields into two sub-classes, namely fields whigly@asi-primary, and fields which are not. Quasi-primary
fields transform conformally covariant féfZ (2, C) transformations only.

General local conformal transformations are implementexigorrelation function by simply inserting the Noether
charge, which yields

5:(0|®py (2x) ... B, (21)]0) = (0] ?fdzs(z)T(z)%N(zN) B, (21)0), (2.46)

where the contour encircles all the coordinatgs = 1,..., N. This contour can be deformed into the sunosmall
contours, each encircling just one of the coordinates, misia standard technique in complex analysis. That is ebnva
to rewriting (2.46) as

> 01y (28) - - (6D, (1)) - . D, (21)]0) = Z<o|c1>,w (zn) ... (7{ dza(z)T(z)%(zi)) By, (21)]0).
(2.47)

A A
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Since this holds for any(z), we can proceed to a local version of the equality betweenigh¢ hand sides of (2.46) and
(2.47), yielding

hi n 1
z—2z)2  (z—z

(O (=)@ () -~ B (21)]0) = 3 ((

i

)azi) 0]y (23) - .- B, (21)]0) . (2.48)

This identity is extremely useful, since it allows us to cartgpany correlation function involving descendant fields
in terms of the corresponding correlation function of pnigféelds. For the sake of simplicity, let us consider the elator

0|Ppy(2N) .. Pp,y (21) <I>(_ )( )|0) with only one descendant field involved. Inserting the d&éni(2.37) and using the
conformal Ward identity ?2 48), this gives

dw
j{ m (2.49)

OIT(2)Pry (2N) - - - Ppy (21)Pn(2)]0) — Z <(w flzl)Q + :

%

X

i)azi) (O1@1y () ... By (1)1 (2)[0)

(w—z

The contour integration in the first term encircles all therclinatesz andz;, ¢ = 1,..., N. Since there are no other
sources of poles, we can deform the contour to a circle aroimity by pulling it over the Riemann sphere accordingly.
The highest-weight propert)| L, = 0 for & < 1 ensures that the integral around= oo vanishes. The other terms are
evaluated with the help of Cauchy’s formula to

i dw hi 1 ~ (k=1)h, 1

—2)F1 \(w — %) (w— 2z (z; — z)F—1

Going through the above small-print shows that a corratafimction involving descen-
dant fields can be expressed in terms of the correlationifumof the corresponding pri-
mary fields only, on which explicitly computable partialfdifential operators act. Col-
lectingL_,, = >, £", yields a partial differential operator (which implicitlyedends on
z) such that

0|Dn, (2) - - Py (20)B ™ (2)[0) = L (0], (2) - .. D, (20)Pu(2)|0),  (2.51)

where this operatof _;, has the explicit form

(k= 1)k 1
L= ( G T z)k_lazi) (2.52)

i=1

for £ > 1. Due to the global conformal Ward identities, the case 1 is much simpler,
being just the derivative of the primary field, i.£.; = 0.. Thus, correlators involving
descendant fields are entirely expressed in terms of ctorslaf primary fields only. Once
we know the latter, we can compute all correlation functiohthe CFT.

On the other hand, if we use a descendant, which is a null field,

W) =Y ey () (2.53)

In|=N

with |X§f’vc)> orthogonal to all other states, we know that it completelyadgples from the

physical states. Hence, every correlation function iniwrg\;(ﬁfi)(z) must vanish. Hence,
we can turn things around and use this knowledge to find paliffarential equations,
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which must be satisfied by the correlation function invodythe primary®, (=) instead.
For example, the leveV = 2 null field yields according to (2.31) the equation

(2(2hy + 1)L — 02) (0|Ppy (2n) - .. Py (21)Pre (2)]0) = 0 (2.54)

with A given by the non-trivial values in (2.30).

A particular interesting case is the four-point functiorheTthree global conformal
Ward identities (2.10) then allow us to express derivatiwgh respect toz;, 25, z3 in
terms of derivatives with respect to Every new-comer to CFT should once in her life
go through this computation for the level two null field: I&tfield ®, (=) is degenerate of
level two, i.e. possesses a null field at level two, we cangedie partial differential equa-
tion (2.54) forGy = (Pp,(23)Pp, (22)Ps, (21)Pr(2)) to an ordinary Riemann differential
equation

3 2 hi 1
0= (m@ - ; ((z P ao ziazi)> Gl (2.55)

B 3 . o= 1 hi h+ hi + hj — ey,
B (2(2h+1)az +; (z—ziaz_ (z—zi)2) +Z G

2 - z)(z =)

This can be brought into the well-known form of the Gauss hypemetric equation by
extracting a suitable factar’(1 — z)? from G, with = the crossing ratio: = =212,
Using the general ansatz (2.19), we first rewrite the founpfoinction for the particular
choice of coordinates; = oo, 2z, = 1, andz; = 0 (i.e. z = x) in the following form,

where we renametl = h, to allow consistent labeling:

(Phy (00)Ppy (1)@, (0) Py (2)) = 2771 (1 — 2)TT0 F(2) (2.56)
uij = (ho—l—hl—l—hg—l—hg)/g—hl—h],
1 2

g—gho—ﬂm—% T,
q:%—gho—ﬂm—% T2,
1 — 8hg + 16h3 + 48h;hg + 24h,; .

T, =

The remaining functio’( ) then is a solution of the hypergeometric systgim(a, b; ¢; z)
given by

= (2(1=2)02 +[c— (a+b+1)2]0. — ab) F(z), (2.57)

The general solution is then a linear combination of the tnedrly independent solutions
o Fi(a,b;c; z) andzt =% Fy(a—c+1,b—c+1;2—¢; z). Which linear combination one has
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to take is determined by the requirement that the full foairpfunction involving holo-
morphic and anti-holomorphic dependencies must be siveajleed to represent a physical
observable quantity. Fgr| < 1, the hypergeometric function enjoys a convergent power
series expansion

2 Fi(a,b; ¢; 2) Z Z (@) =TD(z+n)/T(z), (2.58)
n=0 n '

but it is a quite interesting point to note that the integegdresentation has a remarkably
similarity to expressions of dual string-amplitudes enmdeted in string theory, namely

1
oF1(a,b;c; z) = %/0 dtt* =11 — )71 — 2t)7°, (2.59)

which, of course, is no accident. However, we must leaveisisise to the curiosity of
the reader, who might browse through the literature lookorgthe keywordfree field
construction

A further consequence of the fact, that descendants amelgrdetermined by their corresponding primaries is thatame
refine the structure of OPEs. Let us assume we want to compai®RE of two primary fields. The right hand side will
possibly involve both, primary and descendant fields. Stheecoefficients for the descendant fields are fixed by local
conformal covariance, we may rewrite (2.45) as

B, (2), (w) = > CH AN (2 — w)HInl=himhs g () (2.60)

where the coefficient§ are determined by conformal covariance. Note that we haipgpe#l the anti-holomorphic part,
although an OPE is in general only well-defined for fields @ffial theory, i.e. for fieldsb, ;(z, z). An exception is the
case where all conformal weights satigfy € Z, since then holomorphic fields are already local.

Finally, we can explain how associativity of the OPE and sirggsymmetry are related. Let us consider a four-point
function Gk (2, 2) = (0]|¢i(00, 00)dk(1, 1)¢;(2, 2)9;:(0,0)]0). There are three different regions for the free coordinate
z, for which an OPE makes sense, corresponding to the cootnact — 0 : (¢,5)(k,1), z — 1 : (k,5)(¢,1), and
z — o0 : (I,7)(k,4). In fact, these three regions correspond toghe andu channels. Duality states, that the evaluation

of the four-point function should not depend on this choilesorbing all descendant contributions into functidnealled
conformal blocksduality imposes the conditions

Gijkl (2,2) = ZC{?kal}}jkl (z|m).7t'”kl(2|m) (2.61)
= ZC.;'?@leifijkl(l — z|m).7t"ijkl(1 — 2|m)
m —2h; 1 s—2h; T 1
=) CpCrngiz 2" ikt (Z[m)2™" Fija(~|m),

wherem runs over all primary fields which appear on the right hane sifithe corresponding OPEs. The careful reader
will have noted that these last equations were written dowtetims of the full fields in the so-calletlagonaltheory,

i.e. whereh = h for all fields. This is one possible solution to the physieduirement that the full correlator be a
single-valued analytic function. Under certain circumses, other solutions, so-called non-diagonal theori@exést.

In the full theory, with left- and right-chiral parts comlgid, the OPE has the following structure, where the coniobat
from descendants have been made explicit:

@, 7 (2,2)®), chk k nck k, n( w)hk+‘n‘_hi—hj (z— w)ﬁk+‘ﬁ‘_ﬁi—ﬁj¢2;:%;ﬁ) (w, ). (2.62)
kn kn
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Figure 3: The three different ways to evaluate a four-point amplifuge s- - andu-channels.

Correlation functions in the full CFT should be single valiue order to represent observables, i.e. physical mealgurab
quantities. This imposes further restrictions on the paldir linear combinations of the conformal blocKs;x; (z|m) in

(2.61). In most CFTs, the diagonal combinatfor= h is a solution, but it is easy to see, that the monodromy of d fiel
@, 7 (2, Z) underz — ¢®™ 2 yields the less restrictive conditidn- h € Z, such that off-diagonal solutions can be possible.

The success story of CFT is much rooted in the following oletérn first made by Belavin, Polyakov and Zamolod-
chikov [2]: If an OPE of two primary field®;(z)®;(w) is considered, which both are degenerated at leeland N;
respectively, then the right hand side will only involve trtsutions from primary fields, whiclall are degenerate at a
certain levelsV,, < N; + N;. In particular, the sum over conformal familiéson the right hand side is then always
finite, and so is the set of conformal blocks one has to knoweahticular, the set of degenerate primary fields (and their
descendants) forms a closed operator algebra. For exaoguisidering a four-point function where all four fields are
degenerate at level two, we find only two conformal blocksfach channel, which precisely are the hypergeometric func-
tions computed above and their analytic continuationsnEmere remarkably, for the special valugs:) in (2.32) with
m € N, there are onlyinitely many primary fields with conformal weights, ,(c) with1 <p <mandl < ¢ <m+1
given by(2.33). All other degenerate primary fields with g¥esh,, ,(c) wherep or ¢ lie outside this range turn out to be
null fields within the Verma modules of the descendants adéHfermer primary fields. Hence, such CFTs have a finite
field content and are actually the “smallest” CFTs. This iyhey are calledninimal models Unfortunately, they are
not very useful for string theory, but turn up in many apiizas of statistical physics [55].

3. Logarithmic null vectors

We have learned in the basic introductionary lectures tigarithmic conformal field the-
ory (LCFT) arises due to the existence of indecomposableseptations. Thus, instead
of a unique highest weight state, on which the represemtatiodule is built, we have to
deal with a Jordan cell of states which are linked by the actibsome operator which
cannot be diagonalized. In most cases, this will be the mactfdhe stress-energy tensor,
but in general Jordan cells might occur due to the action pig@merator of the (extended)
chiral symmetry algebra. To keep things simple, we will comfourselves to the Virasoro
case within these notes. We will see other examples in therlecby Matthias Gaberdiel.

Let us briefly recall what we mean by Jordan cell structureppse we have two
operatorsb(z), ¥(z) with the same conformal weight or more precisely, with an equiv-
alent set of quantum numbers with respect to the maximaligreled chiral symmetry
algebra. As was first realized in [48], this situation leamlogarithmic correlation func-
tions and to the fact thak,, the zero mode of the Virasoro algebra, can no longer be
diagonalized:

Lol W) = h|W) + |®) (3.1)
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where we worked with states instead of the fields themselvéd® field ®(z) is then
an ordinary primary field, whereas the field =) gives rise to logarithmic correlation
functions and is therefore calledlagarithmic partnerof the primary field®(z). We
would like to note once more that two fields of the same conébrdimensiondo not
automaticallylead to LCFTs with respect to the Virasoro algebra. Eithesytdiffer in
some other quantum numbers (for examples of such CFTs spedBthey form a Jordan
cell structure with respect to an extended chiral symmatity (see [71] for a description
of the different possible cases).

We remember that a singular or null vectq) is a state which is orthogonal to all
states,

(Wlx) =0V|y), (3.2)

where the scalar product is given by the Shapovalov formhStettes can be considered
to be identically zero.

A pair of fields®(z), ¥(z) forming a Jordan cell structure brings the problem of off-
diagonal terms produced by the action of the Virasoro fieldhghat the corresponding
representation is indecomposable. Thereforgjf is a null vector in the Verma module
on the highest weight stat®) of the primary field, we cannot just replage) by |¥) and
obtain another null vector.

Before we define general null vectors for Jordan cell stmaestuwe present a formal-
ism which might be useful in the future for all kinds of exjicalculations in the LCFT
setting. This formalism, has the advantage that the Vimswodes are still represented
as linear differential operators, and that it is compact elegant allowing for arbitrary
rank Jordan cell structures. Moreover, the connection éetw.CFTs and supersymmet-
ric CFTs, which one could glimpse here and there [16, 33, 106] (see also [22]), seems
to be a quite fundamental one.

3.1 Jordan cells and nilpotent variable formalism

LCFTs are characterized by the fact that some of their higheght representations are
indecomposable. This is usually described by saying that(tw more) highest weight
states with the same highest weight span a non-trivial dozdl. In the following we call
the dimension of such a Jordan cell @k of the indecomposable representation.

Therefore, let us assume that a given LCFT has an indecorleaggresentation of
rank r with respect to its maximally extended chiral symmetry BlgéV. This Jordan
cell is spanned by statesjwg, wy,...;n), n = 0,...,r — 1 such that the modes of the
generators of the chiral symmetry algebra act as

n—1
q)(()l)|w07 Wi, .- 77’L> = wi|w07w17 S n> + Zai,k’|w07w17 Sy k) ) (33)
k=0

q)%)|w0,w1,...;n> = 0form >0, (3.4)
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where usuallyp® (z) = T'(z) is the stress energy tensor which gives rise to the Virasoro
field, i.e.@éo) = Lo, andwy = h is the conformal weight. For the sake of simplicity, we
concentrate in these notes on the representation theor€leT & with respect to the pure
Virasoro algebra such that (3.3) reduces to

Lolh;n) = hlh;n) + (L = dno)lhin — 1), (3.5)
m|h;n) = 0form >0, (3.6)

where we have normalized the off-diagonal contribution toA% in ordinary CFTs, we
have an isomorphism between states and fields. Thus, tlee/sta}, which is the highest
weight state of the irreducible sub-representation caerthin every Jordan cell, corre-
sponds to an ordinary primary fieltl ;. (2) = ®,(z), whereas statd®; n) with n > 0
correspond to the so-called logarithmic partn&s,,)(z) of the primary field. The action
of the modes of the Virasoro field on these primary fields aed thgarithmic partners is
given by

L_k(2)V (yn) (w) = (3.7)

(1—k)h 1 0 A1 — k)
m (h;n)(w) - m%‘l’(h;n)(w) - (1 - 5n,o)m‘11(h;n—1)(w) )

with A normalized to 1 in the following.As it stands, the off-diagonal term spoils writing
the modes_(z) as linear differential operators.

There is one subtlety here. In these notesassumehat the logarithmic partner fields of a primary field are alhgi-
primary in the sense that the corresponding stHtes) are all annihilated by the action of modég,, m > 0. This is

not necessarily the case, and there are examples of LCFTre @blan blocks occur, where the logarithmic partner is not
quasi-primary. For instance, the Jordan block bf= 1 fields in thec = —2 LCFT is made up of a primary field with
highest weight statg)) and a logarithmic partnér)) such that

Lolg) =1¢), Lol¢) =|¥) +1¢), Lilg) =0, Lily) =1£),

where|¢), a state corresponding to a field of zero conformal weighteliated to the primary field vid _1|§) = |¢).
Note that in this particular example, the primary field cepending to|¢) is a current, and a descendant of the field
corresponding td¢). However, there are indications that such mdecomposelplmsentanons with non-quasi-primary
states of weight only occur together with a corresponding indecomposalplieesentation of only quasi-primary states of
weighth — k, k € Z,. We are not going to investigate this issue further, but tiwdé all so far explicitly known LCFTs
possess at least one indecomposable representation ihatedess of the basic Jordan block are quasi-primary. Since
is a very difficult task to construct null vectors on non-gyaémary states, we will not consider such indecomposable
representations here. For more details on the issue of deals with non-quasi-primary fields see the last reference
[33].

Our first aim is simply to prepare a formalism in which the ¥weo modes are ex-
pressed as linear differential operators. To this end, wednce a new — up to now purely
formal — variabled with the propertyy” = 0. We may then view an arbitrary state in the
Jordan cell, i.e. a particular linear combination

r—1

‘Ilh(a) (Z) = Z anq](h;n)(z) ) (3.8)

n=0

The reader should recall from linear algebra that it is akvpgssible to normalize the off-diagonal
entries in a Jordan block to one.
2The author thanks Matthias Gaberdiel to pointing this out.
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as a formal series expansion describing an arbitrary fonefié) in ¢, namely
Z CLn—\I/h (39)

This means that the space of all states in a Jordan cell cardagilded by tensoring the
primary state with the space of power serieg,ine. ©,(V,) = V,(z) @ C[d]/Z, where
we divided out the ideal generated by the relatios: (9" =0). In fact, the action of the
Virasoro algebra is now simply given by
La@alO)w) = (- 2 S B ww)w).
(3.10)
Clearly, ¥ ,.n)(2) = ¥,(0"/n!)(2), but we will often simplify notation and just write
U, (0)(z) for a generic element i®,.(¥;). However, the context should always make it
clear, whether we mean a generic element or relly)(z). The corresponding states are
denoted byh; a(#)) or simply|h; 6). To project onto th&'™ highest weight stateof the
Jordan cell, we just use,|h; k) = 9%|h; a(0)) In order to avoid confusion witfh; 1)
we write |h; I) if the functiona(f) = 1.

It has become apparent by now that LCFTs are somehow closédyd to super-
symmetric CFTs [16, 33, 105, 106] (see also [22]). We suggsgtdenoted our formal
variable by#, since it can easily be constructed with the help of Grassimarvariables
as they appear in supersymmetry. Takivig-r — 1 supersymmetry with Grassmann vari-
ablest; subject tod? = 0, we may defing = Z;.":—ll ;. More generallyf and its powers
constitute a basis of the totally symmetric, homogenougmuhials in the Grassmannians
0;.

‘0:0'

Finally, we remark that thé variables are associateut with the coordinates the
fields are localized in coordinate space, but with the pmsétithe fields are localized in
h-space (the Jordan cells). Therefore, theariables will be labeled by the conformal
weight they refer to, whenever the context makes it necgssar

3.2 Logarithmic null vectors

Next, we derive the consequences of our formalism. An atyitstate in a LCFT of level
n is a linear combination of descendants of the form

=Y > piremzmb Ly L | k) (3.11)
k {ni+nao+..+nm=n}
which we often abbreviate as

=) L_ab™(0)[h). (3.12)

[n|=n

3More precisely, onlyh; 0) is a proper highest weight state, so callipgn) for n > 0 highest weight
states is a sloppy abuse of language.
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We will mainly be concerned with calculating Shapovalowisrv)’(6)|¢(6)) which ul-
timately cook down (by commuting Virasoro modes throughgstpressions of the form

(¥'(6)](6)) \me )" a(0)) (3.13)

where we explicitly noted the dependence of the coefficientthe central charge Com-
bining (3.13) with (3.12) we writéy’' (6')|¢(0)) = (h';d'(0")| fo n (Lo, C)|h; a(8)) for the
Shapovalov form between twaonomialdescendants, i.e.

(0" (0")| fur m(Lo, C)h; a(8)) = (W50 (0')| Ly Ly, - .. Loy, Ly, |h;a(6)) . (3.14)

More generally, sincd,|h; a(0)) = (h + 0p)|h;a(d)), it is easy to see that an arbitrary
function f (Lo, C) € C[Ly, C] acts as

1 [ oF
Pt O = 3 gy (o)) im0 (3.15)
and thereforef (Lo, C)|h; a(0)) = |h; a(6)), where witha(6) = 3, a, % we have
~ An4k a
ay = o Ok (h,c). (3.16)

It may be instructive to check this statement explicitly thoe simple cas¢(L,, C') = L7*. Keeping in mind thath; n) =
|h; L6m), one then finds

mly,. _ m ,1 n\ m m—k qk _1 n\ m m—kn(n_l)"'(n_k+1) . gn—k
L lhin) = (h+ ) "m“—Z(k)h aem,aw—Z(k)h - by

k k

_ ZH (O h™) s — k) :Zﬂaﬁf(h,cﬂh;n—k}. (3.17)
k k

Since more general functiogf§ Ly, C') are merely linear combinations of the above example wittedhtm, the general
statement should be clear. Note, however, that sofar theadeharge only enters as an external parameter.
This puts the convenient way of expressing the actiohgadn Jordan cells by derivatives
with respect to the conformal weight which appeared earlier in the literature, on a firm
ground. Moreover, from now on we do not worry about the rarfggiommations, since all
series automatically truncate in the right way due to theddan 0" = 0.
It is evident that choosing(#) = I extracts the irreducible sub-representation which
is invariant under the action dfy. All other non-trivial choices ofi(¢) yield states which
are not invariant under the action b§. The existence of null vectors of levelon such a
particular state is subject to the conditions that

> fwn(Lo, C)b"(0, b, c)|h) (3.18)

lnf=n

= fun(Lo,C) Y _p(h.c)lh;k) =0 ¥n':|n'|=n.
k

In|=n
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Notice that we have the freedom that each highest weigha sfahe Jordan cell comes
with its own descendants. These conditions determinéifi, ¢) as functions in the
conformal weight and the central charge. Clearly @) = I this would just yield the or-
dinary results as known since BPZ [2], i.e. the solution®§dh, ¢). The question is now,
under which circumstances null vectors exist on the whotdalocell, i.e. for non-trivial
choices ofu(6). Obviously, these null vectors, which we cllgarithmic null vectorsan
only constitute a subset of the ordinary null vectors. Fr@1%) we immediately learn
that the conditions imply

1 o517k
E E bnhc forn(h,e)=0Vn':n'|=n,1<s<r.
s—1-k )
et 1— k) oh

(3.19)

To see this, simply start with = 1 and observe that this recovers the well known condition fgemeric null vector of
a ordinary non-logarithmic CFE‘n‘:n bf (h, ¢) far.n(h,c) = 0. Then proceed inductively. In the next step= 2, one

now finds a condition which relates the coefficiebitéh, c¢) and the coefficients (5, ¢),
> (07 (R, ¢) fur (B €) + U5 (h, )0 for m(hy ) = 0,
In|=n

which is clear since the action @, on |h; 1) will produce terms proportional ti; 0). SinceL, never moves up within
a Jordan block, the condition for the coefficients fbrs — 1) can only involve the coefficients for statds s’ — 1),
0 < s’ < s. Thus, we arrive at the above statement.

The conditions (3.19) can be satisfied if we put

1 o
Kl Ohk ™0
In fact, choosing thé}(h, c) in this way allows one to rewrite the conditions as total
derivatives of the standard condition fg}(%, ¢). Keeping in mind that each Jordan cell
module of rank- has Jordan cells of rank$ 1 < ' < r, as submodules, we can find in-
termediate null vector conditions, where the null vectdydies in the rank-’ submodule
(think of ' = 1 as a trivial example), if we restrict the rangesaf (3.19) accordingly. Of
course, this determines thg(h, ¢) only up to terms of lower order in the derivatives such
that the conditions finally take the general form

0 (h,¢) = ——b2(h,c) . (3.20)

YA,

o > fwm(h )b (hc) | =0¥n': |n'|=n, (3.21)

In|=n

which, however, does not yield any different results. Merzpthe coefficients$? (A, ¢)
can only be determined up to an overall normalization. @e#nere arep(n) coeffi-
cients, where(n) denotes the number of partitionsiofnto positive integers. This means
that onlyp(n) — 1 of the standard coefficientd (h, c) are determined to be functions in
h, c multiplied by the remaining coefficient, elg-" " (if this coefficient is not predeter-
mined to vanish). In order to be able to write the coefficiéfta, ¢) with £ > 0 as deriva-
tives with respect té, one needs to fix the remaining free coefﬁuéﬁtl’ = pp) as
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a function ofh. The choice given here ensures that all coefficients areyalwisufficient
high degree ih.* Clearly, this works only fof, # 0. To find null vectors withh, = 0 needs
some extra care. One foolproof choice is to put the remaifigeg coefficient texp(h).
The problem is that the Hilbert space of states is a projedpace due to the freedom
of normalization, and that we usédas a projective coordinate in this space, which only
works forh # 0.

It is important to understand that the above is only a necgssmdition due to the
following subtlety: The derivatives with respect koare done in a purely formal way.
But already determining the standard solutigih, c) is not sufficient in itself, and the
conditions for the existence of standard null vectors ymi& more constraint, namely
h = h;(c) or vice versa: = ¢;(h) (the index: denotes possible different solutions, since
the resulting equations are higher degree polynondalh, c|). These constraints must
be plugged irafter performing the derivatives and, as it will turn out, this lvaéverely
restrict the existence of logarithmic null vectors, yielglionly someliscretepairs (, ¢)
for each leveh. Moreover, the set of solutions gets rapidly smaller if fginaen leveln the
rankr of the assumed Jordan cell is increased. Since therg(ajdinearly independent
conditions for theb§(h, c) of a standard null vector of level, a necessary condition is
r < p(n). As mentioned aboveé, is not a good coordinate fdr = 0, butc;(h) still is.®
Therefore, forh = 0 we should use for normalization, meaning that fér = 0, thec;(h)
have to be plugged ibeforedoing the derivatives.

3.3 An example

Now we will go through a rather elaborate example to see héwha is supposed to
work. So, we are going to demonstrate what a logarithmicvedtor is and under which
conditions it exists. Null vectors are of particular importe for rational CFTs. For any
CFT given by its maximally extended symmetry algebvaand a value: for the central
charge we can determine the so-called degen&atonformal families which contain at
least one null vector. The corresponding highest weights dut to be parametrized by
certain integer labels, yielding the so-called Kac-talfl@) = {T'(z)} is just the Virasoro
algebra, all degenerate conformal families have highegjhi® labeled by two integers
r,Ss,

hm(c):i<21—4< A= +5) (25—0)(r—8)>2—1g0). (3.22)

The level of the (first) null vector contained in the confofrfaanilies over the highest
weight statgh, ;(c)) is thenn = rs.

4We usually choose the least common multiple of the denomisatf the resulting rational functions
in h, c of the other coefficients in order to simplify the calculato This, however, occasionally leads to
additional — trivial — solutions which are the price we paydoing all calculations with polynomials only.

SAgain, this is only true as long as# 0. The special poinfc = 0,» = 0) unfortunately cannot be
treated within our scheme, but must be checked by direculzdions.
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LCFTs have the special property that there are at least twtoomal families with
the same highest weight state, i.e. that we must haweh, (c) = h,(c). This does not
happen for the so-called minimal models since their triectabnformal grid precisely
excludes this. However, LCFTs may be constructed for exarfglc = ¢,;, where
formally the conformal grid is empty, or by augmenting thddfieontent of a CFT by
considering an enlarged conformal grid. However, if we hiénesituation typical for a
LCFT, we have two non-trivial andifferentnull vectors, one at level = rs and one at

= tu where we assume without loss of generality »’.6 Then the null vector at level
n is an ordinary null vector on the highest weight state of treiucible sub-representation
|h; 0) of the rank 2 Jordan cell spanned [lhy0) and|h; 1), but what about the null vector
at leveln'?

Let us consider the particular LCFT with= c3; = —7. This LCFT admits the
highest weights: € {0, ‘41, =t 2,1, %} which yield the two irreducible representations
ath; s = ‘71 andh, g = 12 as well as two indecomposable representations with seetall
staggered module structure (roughly a generalization mfajocells to the case that some
highest weights differ by integers [41, 104]) constitutedtbe triplets(h;; =0, h; 5 =
0,hi7=1)and(hyo==, hia=7t, his=1). We note that similar to the case of minimal
models we have the identificatidn ; = hs o, such that the actual level of the null vector
might be reduced. In the following we will determine the nwdctors at level 2 and 4 for
the rank 2 Jordan cell with = ‘Tl First, we start with the level 2 null vector, whose
general ansatz is

D = (8022, + 0P Ls) b a(0) + (622, 40 L ) (s dpa(9)) - (3.23)

where we explicitly made clear how we counteract the offydraal action of the Virasoro
null mode.
For null vectors of levet, > 1 we make the general ansatz

e =303 v (he) Lo

J Inl=n

:0) (9)> (3.24)

and define matrix elements

N = g_ (Z S 0 h,e) (B Lug Lo | ;a(9)>>
Jj |n|=n

Il
ng

1 7
Z oW (h| Loy L—n |h) (3.25)

wheren; is some enumeration of thgn) different partitions ofn. Since the maximal possible rank of a Jordan cell

representation which may contain a logarithmic null vedgar < p(n), we considetN(™) to be ap(n) x p(n) square
matrix. Our particular ansatz is conveniently chosen tqtifgnthe action of the Virasoro modes on Jordan cells. Natic

81t follows from this reasoning that there can be no logarithmull vector at level 1. Thus, the only null
vector at level 1 is the trivial null vectdpls(h 0.c) = L-1]0).
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that the derivatives with respect to the conformal weiglo not act on the coefficient§ (5, c). Of course, we assume
thata(6) has maximal degree i i.e.deg(a()) =r — 1.

In our example at level 2, we hapé2) = 2 and the matrixV(?) we have to evaluate is

b8 M (R LIL2 ) + b5 (WL3L_a|h) 08" 0y (RILIL2 | |B) + 052 ), (h| L3 L _o|)

b 2202 B + 02N (B L2L ok
N + 01 (RILYLZ ) 4 by (| LT L 2| ) . (3.26)
b§ M (| Lo L2 |B) + b8 (B|LaL_o|h) b8 8 (h|LoL? | |h) + b8} 6y (h|LoL_o|h)

+ bR Lo L2 y[B) + b2 (B Lol _o|h)
Doing the computations, this reads

s b§"M (8K + 4h) + 6057 h b5 (168 + 4) + 6057 + b{" (8K + 4h) + 601 .27
605 h -+ b§H (40 + Le) 6651 + 487 + 601 h 4+ b (4h + Lo) '

A null vector is logarithmic of rank: > 0 if the first & + 1 columns of N(™) are zero, wheré = 0 means an ordinary
null vector. As described in the text, one first solves forimaidy null vectors (such that the first column vanishes up to

one entry). This determines thg(h, c). Then one puts} (h, c) = 9Fbg(h, c). Without loss of generality we may then
assume that all entries except the last row are zero. In ample, this procedure results in

0 0
N® = , (3.28)
10h% — 16h% — 2h%¢c — he 20h — 48h% — 4he — ¢

wherebi"'t = 19%(3n) andb{®} = Lak(—2h(2h + 1)) upto an overall normalization. The last step is trying to find
simultaneous solutions for the last row, i.e. common zefg®tynomialse Clh, c]. In our example,Nz(?l) = 0 yields
¢ = 2h(5 — 8h)/(2h + 1). Then, the last condition beco 22) = —2h(16h* + 16k — 5)/(2h + 1) = 0 which can be

satisfied forh € {0, ‘75, %}. From this we finally obtain the explicit logarithmic nulleters at level 2:

(hye) | Xioh)
(0,0) | (L%, —2L_)|0; a(0))
(£.1) | (3L%, —3L_s)|%;a(0)) —AL_3|4;00a(0))

(2,25)|(BL%, +3L_5) | 72;a(h)) — AL_5 | 72; pa(9))

Note, that according to our formalisrh,= 0, c = 0 does not turn out to be a logarithmic null vector at level 2rédsnd

in the following the highest order derivati‘%a(e) indicates the maximal rank of a logarithmic null vector tokbénd
hence the maximal rank of the corresponding Jordan celesgmtation to be = & + 1). It is implicitly understood that
a(0) is then chosen such that the highest order derivative y&htsn-vanishing constant.

Here, all null vectors are normalized such that all coeffitdeare integers. Clearly, they are not unique since with
IX(0)) =>4 | x5 O5a(6)) every vector

X(0)) = b Ak,z8§+la<9)> (3.29)
k >0

>

is also a null vector.

It is well known that up to an overall normalization we havettee coefficientd for the
part of the null vector built on the stalg; 1) in the Jordan cell

b =3h, b = —2n(2h+1), (3.30)
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such that according to the last section we should put
pitt =3, P =_8n—2, (3.31)

which are the derivatives of thg coefficients with respect th. The matrix elements
(h| Lo 8{;|Xf3) . k = 0,1, do give us further constraints, namely
’ =0

Bh—5 _ _,, (4h+5)(4h 1)
2h+1° - 2h +1

c=—2h (3.32)

From these we learn that only fére {0, ‘75, i} we may have a logarithmic null vector

(with ¢ = 0, 25, 1 respectively). Therefore, the level 2 null vector fox —71 ofthec = —7
LCFT is just an ordinary one.

Next, we look at the level 4 null vector with the general ansat

4
Xit) =
(bglvlvlvl}ﬁ; R U N NS N SN Co ) S 534}L_4> I a(6))

n <b{1’1’1’1}L‘f S A oI G N SRR oy b{4}L_4> \; Bpa(6)) .

Considering the possible matrix elements determines teticents up to overall normal-
ization as

it = p%(1232h° — 2466h% — 62h%c + 1198h — 296hc + 13he® 4 5¢° + 92¢
+128¢ — 144)
b1 = —4p*(11200* — 2108h% + 140h3¢ 4 428h% — 66h>c + 338h — 323hc
+90hc? + 60c* — 78 + 99¢)
b = 241%(96h° — 332h* + 44h*c + 382h° — 8h3c + 4hP¢? — 53h%c 4 12h3¢?
—235h? 4 11hc? + 14he + 65h — 6 + 3¢ + 3¢%) |
b = 241*(32h — 36h? + 4h2c + 8hc + 22h + 3¢ — 3)(3h% + he — Th+ 2 + ¢) ,
bi = —4n*(550h + 3¢® — 224h%c + 66hc® + TA8K® — 48 + 2508h* + 11hc?
+41h%c* — 40h*c — 3008h° + 12h%c® + 120hc? — 184h*c + 102hc + 27¢
— 1698h7 + 18c + 4h®c® + T68h° + 448h°c + T6h*c?) . (3.33)

Even for ordinary null vectors at level 4 we hawgl) = 5 conditions, but due to the
freedom of overall normalization only 4 conditions have besed so far. The last,

(h|Ly | XE:*Z) = 0, fixes the central charge as a function of the conformal weh
T 16=0

h(8h — 2 8h? —41h  3h2 —Th+2
{_2 (8h—5) 28h®+33 C3h2—Th+ 71_8}1}. (3.34)

2h+1 7 5 3+ 2h ’ h+1
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If we again put?(h, c¢) = d,bf (h, ¢) such that the null vector conditions take on the form
of total derivatives with respect towe get the additional constraif®|L, 0| XE:*Z) =

T 16=0
0. That result in the terribly lengthy polynomial

0 = —4h*(—14308h%c* + 6600k — 528¢ + 30hc® + 1239840h° — 113592h° + 5290hc
+ 144¢% + 462h%c® + 4368h3c® + 275hc* 4 360h%c* + 3296h* ¢ + 74240h%¢
+ 25632h°c? 4 67584h7 + 595224h3 — 25812h%c — 12712h3¢ + 11574h%*
— 2475hc? — 1287136Rh* + 60c* — 249408h°c + 324¢* — 12192h*c* — 504320R°
4 187040h*c 4 140R3c*) (3.35)

in which we may insert the four solutions foto obtain sets of discrete conformal weights
(and central charges in turn). We skip these straightfaivieart tedious explicit calcula-
tions for all the possible cases, which one may find in theltteéference of [33]. We note
that a good check of whether one has done the calculatiohsisigas a rule of thumb,
whether this last condition, which after insertioncof= ¢(h) is a polynomial solely irh,
factorizes.

Omitting trivial (non logarithmic) solutions, all logahitic singular vectors with respect to the Virasoro algelviael
n =4 are:

(hyc) X
(—2,-7) (315L% | + 315L% ) — 210L_3L_y — 210L_4 — 1050L_5L2 ) | L; a(6))
+ (—878L_3L_1 +2577L% | — 11830L_5L?, + 3657L%, — 1718L_y4) | 5*; 0pa(0))
(0, -2) (LY, —2L L2, — 2L 3L _1)|0;a(8)) +2L_4|0; 9pa(6))
(3,-2) (1260L% | + 2835L2, + 1260L_3L_1 — 1890L_4 — 6300L_2L2 ) |2;a(0))
+ (3832L_3L_y + 2152L* | — 14120L_oL% | + 9882L2 , — 7T008L_,4 \8,39a(9)>
(0,1 (=3L%, +12L_5L2 | —6L_3L_1)|0;a(f)) + (—16L2, + 12L_4) |0; Dpa())
(1,1 (—60L%, +240L_oL%, +120L_3L_1 — 240L_4) [1;a(6))

|

|

|

|

|

|

|

| + (=89L* | +476L_oL? | + 118L_3L_1 — T16L_4)|1; dpa(h))

(2,1) | (45L% +405L% 5 + 630L_3L_1 — 810L_s — 450L_»L%)|%; a(0))

| + (1996 L_3L_1 + 110L% | — 1220L_5L? | +1206L2 , — 2772L_4) | 2; 0pa(h))
|

|

|

|

|

|

|

|

|

(2L 25) (—990L* | — 8910L2 , — 33660L_3L_1 — 65340L_4 — 9900L_»L? }) | =2L;a(6))
+(45946 L 3Ly +901L% | + 11650L 5L | + 12861L% 5 + 102234 L _4) | =2%; Bpa(0))
(—3,25) (63504L% | + 254016 L _2L?% | + 635040L_3L 1 + 762048L_4) |—3; a(0))

+(59283L% | + 110124L_5L% | + 148302L_3L 1 + 76356 L _4) |—3; Oga(6))

+ (—15104L% ; — 186920L_oL? | — 6350412 , — 450920L 3L _; — 575628 _4 | ~3; aga(9)>
(77220L% | 4 17374512 , 4 849420L 3L, + 1042470L_4 + 386100L_5L? ) (0))
+ (269896 L _sL_y + 71336L% | + 150760L_L? | — 148374L2 , 4+ 113616L_4) | =2~ 27 89a(9)>
(13860L_oL?; + 27720L_3L_q + 27720L_4 + 6930L% ) |—2; a(6)))

+ (1577L* | — 9T16L_oL? | — 3564L%, — 18640L _3L_ — 21412L_4)|-2; aga(9)>
(—L1,33)| (208845L%, + 696150L_oL2 | + 208845L7 , + 1253070L_3L_; + 1253070L_4) | =*; a(6))
|+ (58354L* | — 244540L_,L? | — 304086L% , — 525036 L_3L_; — 684156 L_4) | =L ,aga(9)>

(_%a 28)
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It is worth mentioning that leveh = 4 is the smallest level where one finds a logarithmic null vectohigher rank,
namely a rank = 3 singular vector withh = —3 andc = 25.

Here, we are only interested in the null vector for= ‘Tl And indeed, the first two
solutions forc admit (among others) = ‘71 to satisfy (3.35) with the final result for the

null vector

‘XS‘—)—1/4 c:—7> = (3.36)

(PR Loy = G2 L2l + 1R L% — P Log Loy = 7 La) [ (a0 + aof”))

+ (_2{12683L41+%L L21+ 1241L oL, 11£’>28§>L2_2+821L )}47 a190)>

This shows explicitly the existence of a non-trivial logamic null vector in the rank 2
Jordan cell indecomposable representation with highegthve = ‘Tl of thecs; = —7
rational LCFT. Heregq, o; are arbitrary constants such that we may rotate the nulbvect
arbitrarily within the Jordan cell. However, as longa@as+ 0, there is necessarily always
a non-zero component of the logarithmic null vector whiaslin the irreducible sub-
representation. Although there is the ordinary null vettwoitt solely on|h;0), there is
therefore no null vector solely built di; 1), once more demonstrating the fact that these
representations are indecomposable.

3.4 Kac determinant and classification of LCFTs

As one might extrapolate from the ordinary CFT case, it igegaitime consuming task
to construct logarithmic null vectors explicitly. Howeyédrwe are only interested in the
pairs(h, c) of conformal weights and central charges for which a CFT gafghmic and
owns a logarithmic null vector, we don’t need to work so hard.

As already explained, logarithmic null vectors are subjed¢he condition that there
exist fields in the theory with identical conformal weigh#&s can be seen from (3.22),
there are always fields of identical conformal weights# ¢, , = 1 — 62=2- pq is from the
minimal series wittp > ¢ > 1 coprime integers. However, such fields are to be identified
in these cases due to the existence of BRST charges [30, @livdtently, this means that
there are no such pairs of fields within the truncated condbgnd

H(p,q) ={hrs(cpqg) 1 0<r <|q[,0<s < |p|}. (3.37)

It is worth noting that explicit calculations for higher Ewnull vectors along the lines
set out above will also produce “solutions” for the well kmowull vectors in minimal
models, but these “solutions” never have a non-trivial dardell structure. For example,
at level 3 one finds a solution with= ¢, 5 = —2 andh = hy; = hy; = —1) which,
however, is just the ordinary one. This was to be expectedussceach Verma module of
a minimal model has precisely two null vectors (this is whyadightsh appear twice in
the conformal gridh, s = h,—.,—s). We conclude that logarithmic null vectors can only
occur if fields of equal conformal weight still exist aftel pbssible identifications due to
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BRST charges (or due to the embedding structure of the Verodules [29]) have been
taken into account. For later convenience, we further défie®oundary of the conformal
grid as

0H (p,q) = {hrp(cpy) : 0 <7 <|g|} U{hgs(cpq) : 0<s < |p|}, (3.38)
02H(p, q) = {hgp(cpq)}-

These three sets are in one-to-one correspondence witbskije three embedding struc-
tures of the associated Verma modules which are of fyde, 1113, andI11$° respec-
tively [29].

It has been argued that LCFTs are a very general kind of coradlaheories, contain-
ing rational CFTs as the special subclass of theories witlegarithmic fields. In the case
of minimal models one can show that logarithmic versions GFI withc = ¢, , can be
obtained by augmenting the conformal grid. This can forynlé achieved by consider-
ing the theory withe = ¢,, ... HOwever, it is a fairly difficult undertaking to calculate
explicitly logarithmic null vectors for augmented mininmabdels, the reason being sim-
ply that the levels of such null vectors are rather large. usetook at minimaley,,_1 2
models,n > 1. Fields within the conformal grid are ordinary primary figldhich do
not posses logarithmic partners. Therefore, pairs of pyrfialds with logarithmic part-
ners have to be found outside the conformal grid and, as sioj@3] and [41], must lie
on the boundary H (p, q) (note that the corner point is not an element). Notice that fo
¢, models this condition is easily met because the conformdl Hip,1) = 0. Fields
outside the boundary region which have the property that tenformal weights are
h' =h+Ekwithh € H(p,q), k € Z, do notlead to Jordan cells (they are just descendants
of the primary fields). For example, thg, = —% model admits representations with
h=hig=hss= % which do not form a logarithmic pair and are just descendaitise
h = —% representation. Therefore, even for thg_; , models with their relatively small
conformal grid, the lowest level of a logarithmic null vectasily can get quite large. In
fact, the smallest minimal model, the trivial, = 0 model, can be augmented to a LCFT
with formally ¢ = ¢9 ¢ which has a Jordan cell representationioe= ho o = hoy = %
The logarithmic null vector already has level 8 and readdi@ty

’X§z8:)1/8.,c:0> =
(10800L% ; — 208800L_>L% ; + 928200L2,L% | — 1060200L? ,L% | + 151875L% , + 252000L_3L° |
—631200L_3L_oL> |, + 207000L_3L%*,L_; — 1033200L2 ;L2 | 4 360000L% ;L _5 — 1249200L _4L* ,
4 4165200L 4L _oL? |, — 1133100L_4L?, + 176400L _4L_3L_; + 593100L2 , + 624000L _5L>
—720000L_5L_oL 1 — 429300L _5L_3 4+ 1206000L L2 ; — 455400L_L_5 — 206100L_7L_,
— 7T79400L_s) | %, a(6))

+(76800L_3L_5L? | + 755200L_3L% y,L_1 — 2596800L% 5L2 | + 106400L2 3L _5 + 179712L_4L* |
+123648L _4L_oL* | + 3621120L _4L_3L_; — 857856 L% ;, 4+ 739200L _5L> | — 5832000L _5L_oL_,
+992800L_5L_3 + 3444000L_gL? ; — 154800L_gL_5 — 2210400L_7L_1 + 488000L_s) |5, da(6))
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up to an arbitrary state proportional to the ordinary leveludl vector. This shows that

minimal models can indeed be augmented to logarithmic cardbtheories. Level 8 is

actually the smallest possible level for logarithmic nutictors of augmented minimal

models. On the other hand, descendants of logarithmic faklalso logarithmic, giving

rise to the more complicated staggered module structud].[Ithus, whenever for =

¢y the conformal weight. = h,. ; with eitherr = 0 modp, s # 0 modg, orr # 0 mod

p, s = 0, the corresponding representation is part of a Jordanaed §taggered module

structure).
The question of whether a CFT is logarithmic really makessamly in the framework of (quasi-)rationality. Therefore
we can assume thatand all conformal weights are rational numbers. It can theshown that the only possible LCFTs
with ¢ < 1 are the “minimal” LCFTs withc = ¢, ,. Using the correspondence between the Verma modulgs«—
V_1_n.26—c One can further show that LCFTs with> 25 might exist with (formally)c = c_,,. Again, due to an
analogous (dual) BRST structure of these models pairsiofguy fields with logarithmic partners can only be found
outside the conformal grié (—p, ¢) = {h. s(c :0 <r <gq0< s < p}, afact that can also be observed in direct

calculations. For example, at level 4 we foun(fa cand|ddtﬂ|su with c_3 o = 26 andhy ; = h; 3 = —4. But again, the
explicit calculation of the null vector did not show any |oiglamic part.

The existence of null vectors can be seen from the Kac datemhof the Shapovalov
form M ™ = (n| L, L_,|h), which factorizes into contributions for each levelThe Kac
determinant has the well known form

det M™ = HH h — hy ()P (3.39)

k=1rs=k

A consequence of the general conditions derived earlidraisd necessary condition for
the existence of logarithmic null vectors in ranklordan cell representations of LCFTs
is that 2 (det M) = 0 for k = 0,...,r — 1. It follows immediately from (3.39) that
non-trivial common zeros of the Kac determinant and its\éeires at leveh only can

come from the factors whose powerg: — rs) = 1, i.e. rs = n andrs = n — 1. For

example
1
— (det M™) = ——————det M
oh . g;m (h — hm(c))
+ 7 det M™ | (3.40)
I ey

whose first part indeed yields a non-trivial constraint, weas the second part is zero
wheneverlet M ™ is. Clearly (3.40) vanishes at= h, ,(c) up-to one term which is zero
precisely if there is one othér, ,(c) = h. This is the condition stated earlier. Solving it
for the central charge we obtain

(2t = 3u+3s —2r)(3t — 2u+ 25 — 3r)
u—s)(t—r
‘- _(Qt — 3u — 3§ + 27(?))((315 — %u —2s+3r) - (3.41)
(u+s)(t+r)
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With an ansatz(z) = 1 — 61— we find

z(z+1)
— — 1 t
v U— S 7 r ’ S+ u ’ +r 7 (3.42)
t—r+s—-ut—-r+s—ut+r—u—s u+s—t—r

i.e.z € Q. This proves our first claim that logarithmic null vectordyappear in the
framework of (quasi-)rational CFTs. The further claimddwl then from the well known
embedding structure of Verma modules for central chargés rationalz (which by the
way ensures < 1 orc > 25, where at the limiting points._.; — oo andz,_o5 — —%).

Obviously, null vectors in rank Jordan cells with conformal weiglit require the
existence of- different solutiongr;, s;) such that.,, ;,(c¢) = h. Up to level 5 there is only
one case withr > 2, namely the rank 3 logarithmic null vector of the= c_;; = 25
theory withh = hg o = hy 3 = hy1 = —3.

What remains is to find the numberss, ¢, u (or more generally;, s;). The allowed
solutions must satisfy the conditions stated above: A quadt(r, s, ¢, u) parametrizes a
logarithmic null vector, if withe = ¢(r, s, t, u) one of the solutions (3.41) for the central
charge, botth, s(c), hy(c) € 0H(c) whereH(c) = H(z,x + 1) is the conformal grid
of the Virasoro CFT with central charge= c(z). This gives the conformal weights of
the “primary” logarithmic pairs, the other possibilitieseaof the formh € 0H (¢) mod
7, and belong to “descendant” logarithmic pairs. We use qimtaharks because the
logarithmic partner of a primary field is not primary in theuaksense.

As an example, we consider the by now well known models wite c,;, p >
1. Precisely all fields in the extended conformal grid (okedirby formally consider-
iNg ¢ = c3,3) excepth,, andh; 5, as well as their “dualsh, 5, and hy, form triplets
(hi, = hi2p—r, h12p1r) Which constitute a rank 2 Jordan cell with an additional dard
cell like module staggered into it (for details see [104]heTexcluded fields form irre-
ducible representations without any null vectors and dre & H (p, 1) modZ.,.. Similar
results hold for the = c_, 1, p > 1, models. However, all these LCFTs are only of rank
2. The only cases of higher rank LCFTs seem to be partieutarl andc = 25 theories.
Notice that such theories are necessardy-unitary i.e. the Shapovalov form is necessar-
ily not positive definite. However, since we are able to ecifli construct these theories,
e.g. the explicit null vectors in the Appendix, there is nabibthat these theories exist.
The reason is that the,, ;, p > 1, theories still have additional symmetries such that a
truncation of the conformal grid to finite size still can benstructed, while the = 1 and
¢ = 25 theories presumably are only quasi-rational, their canédrgrid being infinite in
at least one direction.

3.5 The(h,c) plane

It might be illuminating, and the author is fond of plots ammywto plot the set8* H (p, q),

k = 0,1,2, for a variety of CFTs. The produgl is roughly a measure for the size of
the CFT since the size of the conformal grid and thus the fietdent is determined by it.
Thus, it seems reasonable to plot all sets with< n where we have chosen= 400.
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To make the structure of thg, c) plane better visible, we transformed the variables
via
x — sign(z)log(|z| + 1) for x = h, c, (3.43)

which amounts in a double logarithmic scaling of the axe$ biot positive as well as in
negative direction. The conformal weights are plotted inzomtal direction, the central
charges along the vertical direction. The following pldt®w only the part of the€h, c)
plane which belongs to < 1 CFTs, i.e. minimal models ang,; LCFTs,p > 0. The
other “half” with ¢ > 25 shares analogous features. Due to the map (3.43) the Vertica
range of roughly—5.5, 1.0] corresponds te-240 < ¢ < 1, whereas the horizontal range
[—5.5,5.0] does roughly correspond te240 < h < 148. To guide the eye for better
orientation, we give here for the labet0, 1, 2, 3,4, 5} the corresponding values bfc,
which are in the same oder{0, 1.718, 6.389, 19.086, 53.598, 147.413}.

If one would put both plots above each other, one might infemfthem that the
set of logarithmic representations precisely lies on tlebidden” curves of the point
set of ordinary highest weight representations. This titates the fact that logarithmic
representations appear, if the conformal weights of twdndmsg weight representations
become identical.

As discussed in [33] this situation can for example ariseénlimit of series of minimal models,, ;,, ¢p,.q25 Cps.g5, - - -

with lim; . p;q; = oo. Usually, the field content of these theories increases withut it mlght happen that in the
limit p; andg; become almost coprime. More precisely, a sequence such asdmple{c,,, (a+1)q}acz, CONVErges to

a limiting theory with central chargém,, oo Cap,(a+1)q = Cp,q- Therefore, we expect a rather small field content at the
limit point since the conformal weights of thg,, ., 1), theories also approach the ones of e model (moduldz). A
more detailed analysis (second reference in [33]) revlalsiideed conformal weights approach each other giviegois
Jordan cells. Hence, the theory at the limit point, whileihg\central charge, , actually is a LCFT. The plots presented
here clearly visualize this topology of the space of CFT®&(L, ¢) plane of their spectra.

To summarize, these results strongly suggest that augchemtemal models form
rational logarithmic conformal field theories in the same sense ag,thenodels do. The
only difference between the former and the latter is thather, ; modelsH (p, 1) = 0.
We know since BPZ [2] that under fusidh(p, q) x H(p,q) — H(p, q), and since [41, 33]
that under fusiort’(p, q) x H'(p,q) — H'(p,q) with H'(p,q) = 0H (p,q) U 0*H (p, q),
if we deal with the full indecomposable representationseréfore, the only difficulty can
come from mixed fusion products of tygé(p, ¢) x H'(p, ¢) which traditionally (without
logarithmic operators) would be zero due to decoupling. elew, the general formalism
of OPEs in both, ordinary and logarithmic CFTs, as preseimtédtie basic CFT survey
lectures, yields non-zero fusion products. This can hagpere we pay the price that
representations front/ (p, q) appear with non-trivial multiplicities (because of thetfac
that the corresponding OPEs yield fields on the right hanel with » € H(p, ¢) modZ,
which have a non-trivial dependency on the formafariables. In fact, recent studies of
non-trivial c = 0 theories, which are important for the description of digsodhenomena
in condensed matter physics, show that the representdtiomsH (p,q) = H(2,3) do
indeed appear in high multiplicities. It has been obsertatlan augmented= 0 model
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Figure 4: Left: Spectra(H (p,q),cpq) for pg < 400, which constitutes the set of all ir-
reducible highest weight representations of minimal m&adeWe used a logarithmic scaling
x — sign(x)log(|z| + 1) for z = h, ¢, to make the pattern structure of the spectra of minimal
models better visibleRight: Spectra(0H (p, q), ¢, 4) for pg < 400, which constitutes the set of all
Jordan cell representations, i.e. all conformal weighteneliields with logarithmic partners exist.
The logarithmic scaling is the same as in the left figure (gf.3243).

(which then is necessarily non-unitary) admits four fieldsconformal weighth = 2
belonging to a non-trivial enlarged set/of= 0 representations.

4. Correlation functions

As we learned in the CFT lectures, null vectors are the parimapst important tool in
CFT to explicitly calculate correlation functions. In cart CFTs, namely the so-called
minimal models, a subset of highest-weight modules possésgely many null vectors
which, in principle, allow to compute arbitrary correlatifunctions involving fields only
out of this subset. It is well known that global conformal aggence can only fix the two-
and three-point functions up to constants. The existenceilbivectors makes it possible
to find differential equations for higher-point correlapmcorporating local conformal
covariance as well. Now, we are going to pursue the quedtion,this can be translated
to the logarithmic case.

For the sake of simplicity, we will concentrate on the casemshthe indecomposable
representations are spanned by rank two Jordan cells vafiece to the Virasoro alge-
bra. The abbreviation LCFT will refer to this case. To eacthshighest-weight Jordan
cell {|h; 1), |h;0)} belong two fields, an ordinary primary fiefe},(z), and its logarithmic
partner¥,(z). We recall that one then hds|h; 1) = hlh; 1) + |h;0), Lo|h; 0) = hlh;0).
Furthermore, the main scope will lie on the evaluation ofrfpaint functions, since — as
we have already seen — the partial differential equatiodsdad by the existence of null
vectors then reduce to ordinary differential equationadne independent coordinate,
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the harmonic ratio. This is so, because in ordinary CFT, the-point function is fixed
by global conformal covariance up to an arbitrary functiofx, z) of the harmonic ratio
of the four pointsz = 2224 with the very common abbreviatio; = z; — z;. Although
LCFTs do not share the property of ordinary CFTs that allelatron functions factorize
entirely into chiral and anti-chiral halfs, it is still pabke to consider these halfs separately,
and we will do so.

4.1 Consequences of global conformal covariance

Before we discuss global conformal covariance, one funtberark is necessary. We as-
sumed so far silently that operator product expansionsiofgry fields only produce pri-
maries and their descendents on the right hand side. Walglneantioned that this is not
necessarily the case, since there are primary fields, tloalksd pre-logarithmic fields,
whose OPE with each other contains a logarithmic field. Hanewhat we will con-
tinue to assume throughout the remaining part of these mothaat primary fields within
Jordan cells do indeed only produce primaries in OPEs amaaoly ether. We will call
such primary fieldproper primary fields We note that this is a widely made assumption
throughout the LCFT literature, and that it is trivially &rdior the Jordan cell containing
the identity.

The special case where the Jordan cell is formed out of figlithdmteger conformal weight deserves a comment. A primary
field with integer conformal weight is typically a chiral laicfield. In other wordsW .0)(z)(dz)" = W (p,0)(z)(dz")"
transforms as a-differential. That means in particular, that correlatfomctions involving this primary field at, say,
coordinatez have trivial monodromy at. In particular,z is never a branch point causing a possible multi-valuedokess
the chiral correlation functions (more correctly of the faymal block) atz. Now let us consider an-point function with
several copies of this primary inserted at poinitsThen, all the pointg; have trivial monodromy. By contracting these
successively via operator product expansions, we nevelddipooduce a non-trivial monodromy or a branch cut in this
process. Therefore, in this particular setting, we canlgafinclude that the OPE of this primary field with itself walhly
produce other primary chiral local fields and their descetglen the right hand side. Thus, primary fields with integer
conformal weights are proper primaries.

On the other hand, #f ¢ Z, this is not necessarily the case. On the contrary, primelgsiwith non-integer weight
do cause non-trivial monodromies around their point ofiitige in a correlation function. Here, it might very well be
possible, that several of such primary fields add up undetraction to a logarithmic field. For example, the= —2
LCFT possesses a primary fieldof conformal weight: = —1/8. Since this field certainly has non-trivial monodromy,
it should not surprise us that it turns out that its OPE wisielit contains a logarithmic field. Actually, this field exact
behaves as &, branchpoint. Therefore, insertion 2§+ 2 of these fields in a correlator on the complex plane is egental
with considering the original correlator on a gerusyper-elliptic curve (since the latter can always be regmé=d as a
double covering of the complex plane with+ 1 branch cuts). Contracting several of these fields via OPRirdites
branch cuts or leads to degenerate moduli due to infinitétyttandles. These in turn manifest themselves as logaigthmi
divergencies in the correlation functions. Indeed, cogrsigy a four-point function of fouh = —1/8 fields shows that the

monodromy around one poiatessentially is given by'/4. Thus, naively, contracting all four fields together to dfa
one-point function would yield a trivial monodromy. Howeythis is not the only possibility, and a single branch cuyma
remain leading to a logarithmic divergency.

Under this assumption that primaries in Jordan cells anegyrat was known for some
time thatin LCFT already the two-point functions behavéaiéntly, and the most surpris-
ing fact is that the propagator of two (proper) primary fieldaishes{®,(z)®; (w)) = 0.

In particular, the norm of the vacuum, i.e. the expectati@oe of the identity, is zero. On
the other hand, it can be shown (third reference of [33]) #tlat CFTs possess a loga-
rithmic field ¥, (z) of conformal weight: = 0, such that with0) = ¥,(0)|0) the scalar
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product(0|0) = 1. More generally, we have

(@1 ()W (1)) = 5% | (4.1)
(e w) = by 2 2B

with A, B free constants. In an analogous way, the three-point fomettan be obtained
up to constants from the Ward-identities generated by theraof L., andL,. Note that
the action of the Virasoro modes is non-diagonal in the chsa &CFT,

La{or(21) - dn(z0)) = 302" [20+ (n+ (i + 8) | (91(21) - 0n(2))  (42)

)

whereg;(z;) is eitherd,, (z;) or ¥;,(z;) and the off-diagonal action is described by some
kind of step-operatody,, Uy, (z) = d;;®,(2) andd,, ®;,,(2) = 0. Therefore, the action
of the Virasoro modes yields additional terms with the nundddogarithmic fields re-
duced by one. This action reflects the transformation beha¥ia logarithmic field under
conformal transformations,

h
n2) = (22 1+ 0.0 n1(2). @3

An immediate consequence of the form of the two-point fuomtiand the cluster
property of a well-defined quantum field theory is tk&,, (z1) ... Py, (2,)) = 0, if all
fields are primaries. Actually, this is only true if a cortelais considered, where all
fields belong to Jordan cells. LCFTs do contain other prinfigigs, which themselves
are not part of Jordan cells, and whose correlators are moakt These are the twist-
fields, which sometimes are also called pre-logarithmid$iésee first ref. in [71]). Twist
fields introduce non-trivial boundary conditions, sinceyttbehave exactly like branch
cuts. Fusion of a twist with the corresponding anti-twishiiates the branch cut but
may leave a puncture, where for example screening integrabars may get pinched (for
details see [36]). As a consequence, operator product sienof two conjugate twist
fields will produce contributions from Jordan cells of prip&elds and their logarithmic
partners. However, since the twist fields behave as ordipamgaries with respect to
the Virasoro algebra, the computation of correlation fiomd of twist fields only can be
performed as in the common CFT case. The solutions, howaasr.exhibit logarithmic
divergences as well. Here, we are interested to computelatsrs with logarithmic fields,
instead.

Another consequence is that

(Wh, (21)Pny (22) - - - Py (20)) = (P, (21) Wiy (22) g (23) - P,y (20))
== (D (21) . Bp (2e) T (2))
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Thus, if only one logarithmic field is present, it does notteatwvhere it is inserted. Note
that the action of the Virasoro algebra does not producdiaddi terms, since correlators
without logarithmic fields vanish. Therefore, a correlatwth precisely one logarithmic
field can be evaluated as if the theory would be an ordinary. CFT

The conformal Ward identities (2.10) are now modified viartiadified action of the
Virasoro modes as given in (4.2). This affects the genemah ftm which global confor-
mal covariance fixes correlation functions, e.g. the two¥pfunction as given in (4.1).
It is a very good exercise left to the reader to compute theegeriorm of three-point
functions for the simple case of a rank two LCFT. The genesahfof one-, two- and
three-point functions for arbitrary rank LCFTs has beenkedrout in detail in the last
ref. of [33], where also generic operator product expantotogarithmic fields of arbi-
trary rank LCFTs have been computed. For the three-poirtioms one finds

(i (2) Py () Wi (20)) = Clggn (235)" 70 (g o= ()Tl (4.4)
(P, (2)Wn, (25) W, (21)) = [Cijrsz — 2Csjn;1 log 2]
(Zij)hk_hi_hj (Zik)hj—hi—hk (ij)hi—hj—hk 7
(Wh,(20) W, (2) Wn, (21)) = [Cijiz — Cijisa(log 25 + log 2, + log zj)

+ Cijk;l(Q log z;;1og zir, + 2log 2;;log 2, + 2 log zix, log 2

X

— log? Zij — log? 2 — log? zjk)}

X (Zij)hk_hi_hj (zik)hj—hi—hk(zjk)hi—hj—hk ,

where the other two correlation functions with two logamiib fields are given by accord-
ingly made cyclic permutations of the middle equation. Nbi& the structure constants
do only depend on the total number of logarithmic fields imedl, not on the positions
where these were inserted. These only betray themsehasyinthe generic form of the
coordinate dependent parts. General formulee for arbiteary LCFT, i.e. where there are
more than one logarithmic partner field per primary, can lbdbin in the last ref. of [33].

To simplify matters even further, we have again assumedttieatogarithmic partner field be quasi-primary, i.e. that
L,]h; 1) = 0. This is not necessarily the case. However, for our disounsdiis sufficient — even if the logarithmic partner
is not quasi-primary — that the stake|h; 1) be orthogonal to all states of fields actually occurring witthe considered
correlation functions. To be more specificfif|h; 1) = |£) # 0, but on the other han@/; n|¢) = 0,n = 0, 1, for all fields
&, and¥,, occurring in the above considered correlation functiomsnithe non-quasi-primary reminder of the action of
L, on|h; 1) does not affect the behavior of the correlation functionguestion under global conformal transformations.
To our best knowledge, this holds true in all explicitly kmnoWCFTs where non-quasi-primary logarithmic partner fields
exist. However, a more detailed discussion of this issuattsar technical, and beyond the scope of these notes.
We have argued above that the correlation function with only logarithmic field is

completely independent of where this logarithmic field isaried. Furthermore, we have

seen in the above examples of two- and three-point functizaisthe structure constants

also do not depend on where logarithmic fields are insertecian be shown on general

grounds that this is indeed always true. But it doesapply to the arbitrary functions of

harmonic ratios for highet-point functions (one may think of these functions of harimon

ratios as “structure functions”). Hence, it is more diffidol find the general form of four-

point functions, and the resulting expressions are a bitb@rsome, since the number of
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possible contractions of fields leading to logarithmic tetmeavily grows with the number
of logarithmic fields one can insert in a correlation funeti®ut let us write them down
anyway. With the common solutiom;; = H/3 — h; — h;, H = ). h;, we obtain in
condensed notation:

(@00 01) = [ ati FO(a), (4.5)
r<s

(@,®,0,0,) = [ ] 2t [szzl)( ) —2F(x) log(zkl)} 7 (4.6)
r<s

@) = [T |FR@) - Y (FP@) + FY () - FD (@) log(z,)
r<s r<se{jkl}

t={jki}—{rs}
+ FO(2)(2 Z log 2, log 21 — Z log? zrs)] : 4.7)
t:rfjif}{fk{lr}s} r<se{jkl}

where other choices for the places of insertions of loganithfields are simply obtained
by renaming the indices. Note the occurrence of non-trlinekar combinationﬂ(tl)(:c) +
F(tl)( ) — F,fsl)( ), which is fixed by global conformal invariance. Moreover, have

)

introduced the notatlofﬂ(1 : 4., () to denote an arbitrary function of the harmonic ration
x belonging to a term which stems from a correlatof ef 1 logarithmic fields inserted at
the coordinates;, ... z;,,,. Due to the off-diagonal action of the Virasoro modes (3.7),
which reduces the number of logarithmic fields by one, cati@h functions involve all
such functlonsF( m) (x) withm < ¢and{ji,...,Jms1} C {i1...141}. Finally, the

four-point functlon of four logarithmic fields has the lehgtform

(0303 0s) = [T =7 [Fi @)
1<J
- > (3eE@ + 2R @) - FA) — F()) log 2,
(L} =(him}—{rs)
LRFD @) = B (2) = B (@) = FY () = FLD @) log? 21, )

ru

- Y YED(@) +FP (@) — FP(2) — 2F0)(2)) log 2,4 log 2

{rst}C{jklm}
uwe{jklm}—{rst}

— Z FO )(210g 2,5 10g 24 10g 24, — log? 2, 10g 2g1)

r#s#Et#u
r<u

+ Z 2F©) () log 2,5 log 2y log 24, | - (4.8)

Therefore, the full solution for the four-point functionaf LCFT involves twelve (!) dif-
ferent functionsF\”, (z), 0 < r < 3.7 In a similar way, one can make &.(2, C)

211

’Due to crossing symmetry, these twelve functions are ndyrathindependent of each other. However,
at this stage it is much simpler to denote the functions is ‘thver-counting” way.
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covariant ansatz for a generiepoint function of Jordan cell fields. These results general
ize the expressions obtained in [59] for the= 0 Jordan cell of the identity field.

The powers with which a logarithmog® z;;
may occur is determined in the following way:
Each logarithmic fieldV ;.. may be thought of
as a vertex witlf outgoing legs if itis thé/+1)-
th field in the Jordan block. That is, a vertex
may have), ..., — 1 outgoing legs forarank _ _

Figure 5. Graphical representation of con-

Jordan block. Moreover, such a vertex may re->"_. L .
ceive the same number of incoming legs. Thetrac'“?nS of logarithmic f|eld$ !,eadlng oa

, ) , rhaximal) powerlog(z — 2)"** of loga-
the m_a?qrnal powek |§ the ma.><|mal. number of rithmic divergencies.
lines joining two possible vertices, i.6.+ (; <
2(r —1). This number may be decreased by the further requiremetinthaankr LCFT,
preciselyr — 1 legs must remain uncontracted, i.e. must not be joined toartgx. Thus,
ann-point function with only one logarithmic field is non-zeraly if this is the top field
in the Jordan block ..y, its legs do not link to any other vertex (i.e. field), and alier
fields do not carry legs, because they are all primary. If ntloae@ one logarithmic field is
present, the correlation function will essentially be a sawar all possible graphs where
all butr — 1 legs are linked to arbitrary vertices. (One may think of thguirement of
r — 1 free legs also in the way that— 1 legs have to be linked to the point infinity.) Un-
fortunately, this consideration does not give the relativenerical factors of the different
terms associated to different graphs. But we can immegliatfdr from this consideration
that the maximal power of any logarithmic term obviouslyimsited by 2(r — 1), which
in the main scope of these notess 2, is simply two. In fact, although the above formula
for the four-point function involves terms with upto thremgarithms, there is no single
logarithm with a power larger two. Also, since one of the flegs must remain unjoined,
the total number of logarithms per monomial cannot exceezbtim a four-point function,
or (n — 1) in ann-point function, respectively.

Itis a useful exerc!se to drgw all the p033|ble\/w\. \\ -
graphs for the four-point functions of a rank two
LCFT along the lines we have just discussed. N <
The careful reader will notice that in this simple
case, neither the arrows nor the remaining fréégure 6: All inequivalent graphical rep-
leg are really necessary, so that we only need'fFentations of contractions in a four-point
draw the inequivalent graphs where- 1 lines function with four Ioggrlthmlc fields. All
join upton vertices, and no vertex gets more th 0tther. graphs are equivalent to these by re-

. . ._labeling.
two lines. More generally, the task is to dis-
tribute " ki — (r — 1) lines,0 < k; < r — 1 being the levels of the (logarithmic)
fields within the Jordan blocks, ontovertices such that each vertegkan maximally re-
ceive(r — 1) legs. The last condition is equivalent to saying that thaltegy graph must
be a2(r — 1)-vertex graph, or that there are at m@st- 1) loops. However, it is clear that
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this will become for- > 2 quite a non-trivial combinatorial task.

4.2 Correlation functions, OPEs and locality

Although we will in practice avoid this issue, we would like tnention briefly what it is about. Physical observables
should be single valued functions of the parameters whiohbeainfluenced by the experiment. In quantum field theory,
correlation functions are the mathematical objects wharhespond to physical observable entities.

We almost always have written down, and will continue to daosdy half of the theory, since we only denoted how
fields depend on, not onz. In generic non-logarithmic CFT one has the property thatstation functions factorize into
holomorphic and anti-holomorphic parts such that it is sidfit to look at one half. The complete theory can then always
easily be reconstructed. It is known that this is not any &ngie in LCFT. Gurarie pointed out that even quantitiesolvhi
in itself do not involve logarithmic fields directly, do nadtorize [48]. A thorough study for the= —2 LCFT has bee
carried out in a series of papers [41], where a (unique) loeal-2 theory has been constructed.

The general results on chiral correlation functions we habtained so far are sufficient to suggest a simple recipe
for writing down local version of them. We briefly recapittdathe results for generic LCFTs with Jordan cells built
from quasi-primary fields, where primary fields are propemaries. The LCFT is supposed to have rankordan cells
{¥ ;1|0 < k < 7 —1}. One can show that the rank of the Jordan cell of the idengtgrinines the rank of all other

Jordan cells, which we therefore assume to be all equal to
One-point functiong¥ ;,.1,)(2)) = E,;x) must be constant due to translational invariance, and ateated by the
condition
hE(h;k) +(1- 5k,O)E(h;k—1) =0.

Under the usual assumptionts,,;,y = 0 for i # 0 which leaves onlyZ;, .1y # 0 which we normalize to one.

Two-point functions can be computed upto structure comstayy,, .., by global conformal covariance alone,
yielding

k1+k2 ¢

(-2) e

<‘I’(h1;k1)(21)‘1’(h2;k2)(Z2)>—5h1,h2< ) Dhs hasher +ha—0) 7~ log*(212) | (212) "7 "2. (4.9)
=0

Here, we have indicated the implicit conditibn = h». For a rank- LCFT, all constant®);, ) = 0 for k£ < r—1. Note
that the structure constants depend only on one label fdetie¢within a Jordan cell. In this way, the two-point furtats
define for each possible conformal WeigzhlnatricesaGEfl)’,C2 of sizer x r. However, these matrices depend only2on- r
yet undetermined constantyy, ,..), 7 — 1 < k < 2r — 2. Moreover, all entries above the anti-diagonal are zero.

The three-point functions can be fixed along the same linés egnstants”;,, 1, »,;x)- A closed formula of the

type as given above for the two-point function is extremehgthy. However, the three-point functions can all be given
the form:

k1+ka+ks ki ke ks
<\Ij(h1;k1)(Zl)qj(h2;k2)(22)\1}(h3;k3)(23)> = Z C(h1=h27h3;k) Z Z Z 5.7'1+j2+.7'3,7€1+7€2+/€3—7€
k=r—1 J1=0j2=0j3=0
X (O, )7 (O ) (O )P (213l mheto ) (4.10)
J1:J2:]3:

The corresponding formula for the two-point function canrberitten in the same manner involving derivatives with
respect to the conformal weight,

k1+k2

1 _
<\I/(h1;k1)(zl)qj(h2;k2)(Z2)> = Z 6h1-,h2D(h1,h2;k1 +k2—k)y(8h2)k('212) 2h> ) (411)
k=r—1 ’

which evaluates to exactly the form given in (4.9). Note #gdin the yet free structure constants depend only on tak tot
level within the Jordan cells, i.e. on the sum of the indiaevels. This agrees with what one might expect from thal tot
symmetry of the three-point structure constants under pttions. Differentiation with respect to the conformalgls
reproduces precisely the logarithmic contributions tisfathe inhomogeneous Ward identities.

With the complete set of two- and three-point functions atdjave can now proceed to determine the operator
product expansions in their generic form. To do this, we ficstsider the asymptotic limit

H (W i) (20) W (o) (22) W (i) (23))

Z1—2Z2
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and define matriceeG,(i))kMS in this limit similar to the matrix of two-point functions. His essentially amounts to

replacingziz by z,3. Next, we take the matrix of two-point functiod&(?),, », and invert it to obtain(G())%-f2,
Finally, the matrix product

hs;k
Céhf,hi?kﬁ@) = (Ggﬁ Vo k (GP)k:ka (4.12)

yields matnces{C’(h E), h2) ¢ encoding all the OPEs of the fielll;,, .1, (2) with fields of arbitrary level in their Jordan

cells.

This formula can be made a bit more explicit with the help ahemotation. Let us denote the complete set of
two—point functions ag/, k) = (V4. (22)¥n.x)(23)) and correspondingly the three-point functions(ésey, k2) =
Tz, oy (W) (21) Y (hoike) (22) W niey (23)), all essentially given by formulae (4.9) and (4.10). Théwe, OPEs take
the structure

r—1 /r—1 -1
Uik (21) Whyses (22) ZZ (H i,r—1— z)) (4.13)

h k=0 \i=0
<070> <0,k— 1> <07/€1,k2> <071€+1> <0,7‘—1>
x <e,'o> (, b (o, o, ko) <€,k.+ 1) <e,r'_ 1 W (22),

(r —.1,0> (r—l,.k—l) <T‘—S,.k1,]€2> <7°—1,'k+1> (r—1,r—1)

which in passing also proves that the matrix of two-pointclions can be inverted without problems. Of course, the
denominator is written here in a particularly symmetric wiagquals(j,» — 1 — ;)" forany0 < 5 <r — 1. Note that the
only non-zero entries above the anti-diagonal stem fronirtberted column of three-point functions.

With this result, we obtain in the simplest= 2 case the well known OPEs

W (1,:0) (2) ¥ (hy50) (0) =

)

C(hl sha,hil) \I}(h{)) (O)Zh—hl—hg

7 Pon
Cihy ha i D nYCthy b bi2) — D n:2)Clha hahil e
ih10) () Wiy (0) = 3 ( LR G ) (0) 4 D)z B2 R i) 1 (0) | 21T
R hhl) (h,hs1)
(h1,ho,h; 2C (hy b b
(nasn) ()W () (0) = < LR 1()1 20 Jog(2) | W (0)
3 Dy, pi1y (h,hs1)
n (Dw,h;l)C(hhhz,h 3) = Dinni2) Ot ha hi2) | 2D(h,i2) O ha 1) = Dt i s hi2) log(2)
(h h;1) D(Qh,h;l)
D,1;1)Chy hashit e
- R et o (2) | W) (0| M (4.14)
(h,h;1)

Note that, for instance, the OPE of a proper primary withagalrithmic partner necessarily receives two contribigion
One might naively have expected that proper primary fieldeaatochange the J-level, although already the OPE of the
stress-energy tensor with a logarithmic field will have aditdnal term involving the primary field.

Finally, we want to remark on the question of locality. Th@tand three-point functions and the OPEs can easily
be brought into a form for a local LCFT constructed out of-leftd right-chiral half. The rule for this is simply to repéac
eachlog(z;;) by log |2;;|, and to replace each power;;)*i by |z;;|*##. This yields a LCFT where all fields have the
same holomorphic and anti-holomorphic scaling dimensimkthe same level within the respective Jordan cells. Such a
ansatz automatically satisfies both, the holomorphic akasehe anti-holomorphic Ward identitiesziindz are formally
treated as independent variables. It is important to naegeher, that the resulting full amplitudes do not factoiiiz®
holomorphic and anti-holomorphic parts. This is a well kmdeature of LCFTs. For example, the last OPE equation in
(4.14) would read in its full form

C( ) 20(1) 10g|2|2
D

\I!(hlgl)(z,z) (ha; 1) 0 0 Z|Z|2 (h—h1—h2) \Ij(hl)(oao) (415)

(€]

DyCs) — DCrpy . 2D Cy — DwyC, C
+< 0y~ Dl | et Dl o0, - Pula 10g2|z|2> \If(h;o)(o,())]

2 2
Dy Dy Dy
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with an obvious abbreviation for the structure constantse fieader is encouraged to convince herself of both, that on
one hand this does indeed not factorize into holomorphiceamidholomorphic parts, but that on the other hand this does
satisfy the full set of conformal Ward identities.

4.3 A note on the Shapovalov form in LCFT

It is often very convenient to work with states instead of file&ls directly, in particular
when purely algebraic properties such as null states arsicened. As usual, we have
an isomorphism between the space of fields and the spaceed fitanished by the map
\h; k) = ®4.(0)]0). Although one does not necessarily have a scalar produdien t
space of states, one can introduce a pairing, the Shapdeatoybetween states and linear
functionals. ldentifying the out-states with (a subsettb® linear functionals equips the
space of states with a Hilbert space like structure. As imnamny conformal field theory,
we have(h; k| = (|h; k)T = lim,_o(0|® k) (1/2). Using now that logarithmic fields
transform under conformal mappings— f(z) as

k al a h

Dy (2) = D %@ (%) D11y (f(2))
=0
k h

the out-state can be re-expressed in a form which allows appty (4.9) from the small
print above to evaluate the Shapovalov form. In ordinaryf@onal field theory, we simply
get (h| = lim,_..(0|2?"®,,(z) such thath|h’) = &, upto normalization. Interestingly,
the transformation behavior of logarithmic fields yieldsesysimilar result, canceling all
logarithmic divergences. Thus, we obtain for the Shapavidonm

(hi kIR K'Y = O Dby

which is a lower triangular matrix. To demonstrate this, wasider again the example of
arank two LCFT. Then we clearly hayg; 0|h; 0) = 0, (h; 1|h; 0) = (h; 0|h; 1) = D po)
and with

Lim (0|41 (1/2) @ (ainy (0)) = Jim (0]2*" [ Dy (2) + 2108(2) D ino) (2)] Pnin) (0)]0)

the desired resulth; 1|h; 1) = D, 5,2). Hence, the Shapovalov form is well defined and
non-degenerate for the logarithmic case much in the samewiéycan be defined for or-
dinary CFTs. Note that the definition of the Shapovalov fooesinot depend on whether
the CFT is unitary or not.

For completeness, we mention that the Shapovalov form isiniojuely defined in
LCFTs, because the badigh; k) : £ = 0,...r — 1} of states spanning the ramkJor-
dan cell is not unique. The reason is that we always have dezlém to redefine the
logarithmic partner fields, or their states respectivedy, a

k
ity (2) = Pupy (2) + Z Ai®—iy (2)
i=1
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with arbitrary constants;. At this state, there are no further restrictions from thecttre
of the LCFT which could fix a basis within the Jordan cells. y0thie proper primary field,
or the proper highest-weight state respectively, is urigdefined upto normalization.

4.4 Differential equations from null vectors

We are now going to use the generalization of null vectoreéddgarithmic case at hand,
which we did work out before, to effectively compute cortiga functions involving fields
from non-trivial Jordan cells. As an example, we considena-point function with such a
primary field which is degenerate at level two. To simplifg formulae, we fix the remain-
ing three points in the standard way, i.e. we considgr= (¢;(00)p2(1)Pp,(2)d4(0)).
According to (3.7), the level two descendant yields

302 0w hutn,
[2(2/13 +1) +Z<w —z  (w— z)2>

w#z

G,=0, (4.16)

where again; may be either a primarg,,, or its logarithmic partnew,,.. If there is only
one logarithmic fieldg,, will produce a four-point function without logarithmic fit, i.e.
won't yield an additional term. Hence, after rewriting teguation as an ordinary differen-
tial equation solely i, we can express the conformal blocks in terms of hypergetmet
functions. Putting without loss of generality the logamiils field at infinity, we can rewrite

G4 — Zp+u:s4(1 _ Z)q+u23F(0)(Z) ’ (4_17)

with the notations as in (2.56. The®) is a solution of the hypergeometric system
2 F1(a, b; c; z) given by (2.57). Hence, we see that in a rank two LCFT, catimigfunc-
tions of fields from Jordan blocks vanish, if there is no latpanic partner present; and
they look exactly as in the ordinary case, if there is prégisme logarithmic partner
present. This nicely fits with our brief discussion on graphd combinatorics, since there
is only one leg around, and that one must remain unlinked.rEx¢ complicated case is
the presence of two logarithmic fields. The ansatz now reads

Gy = oPHhss(] — p)a+he (Fi(jl)(z) 9 log(wij)F(O)(z)) . (4.18)
Surprisingly, if the two logarithmic fields are putat = 1 andw, = 0, the additional
term in the new ansatz vanishes. However,éiaheperators in (4.16) create two terms such
that the standard hypergeometric equation becomes inhemeogs,

(2h3 + 1)

[2(1 = 2)? + (¢ — (1 + a + b)2)d. — ab] Fiy () = i(l 3 FO@Z).  (4.19)

The solution of this inhomogeneous equation cannot be givefosed form, it involves

integrals of products of hypergeometric functions. Butspecial choices of the conformal
weights, simple solutions can be obtained. The best knowFlL&&rtainly is the CFT with
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central charge: = c;; = —2. It has the following extended Kac table, which formally
can be obtained by considering this CFT as a “minimal” modéh w = cg 3, i.e. where
we artificially enlarge the Kac table by considering not ama numbers in the minimal

seriesc,, = 1 —6(p — q)*/(pq).

o] 1] 2]38[4]5 |
1| 0o | -] 0 21
2 || 1 210 | =5 0

The field of conformal weight = hy; = 1 in the Kac table possesses a logarithmic
partner, which is the (1,5) field in the Kac table. Choosirgnaights in the four-point
function to be equal ta, we find with, Fy (—4, —1; —2; 2) = A(22 — 1) + B2*(z — 2) =
Af, + Bf, the solution®

O(z) = [2(1 = 2)]*(Af1 + Bfa), (4.20)
(2) = [2(1 = 2)| 3 [Cfi + Dfs (4.21)
+ (5(B—24)fo — Afi) log(2) — (5(B — 24) fo — §Af1) log(1 — 2)

+ (622 =6z —)Afi + (=32° + 3 f1)B] .

Note thatZ'(®) does not depend on which field is the logarithmic one (heneethitted
lower index), since only the contraction tfo logarithmic fields causes logarithmic di-
vergences. A nice example for this is the twist figl(t) in thec = —2 LCFT, which
hash = —1/8. Although its OPE with itself yields a logarithmic term(z)u(w) ~
I(w) + log(z — w)I, no logarithm shows up in its two-point function. At leastifdwist
fields are necessary to get a logarithm in a correlation foncwvhich is equivalent to two
logarithmic fields, sincé(z)I(w) ~ —2log(z — w)I(w) — log?(z — w)I(z).

In fact, it is well known that/z(oo) (1) u(2)1(0)) is proportional tgz(1 — Z)]%QFl(%, 1:1; 2), since the twist fielgs is

degenerate of level two. The hypergeometric sysj;fﬁr{%, ;, 1; z) has two solutions. Fde| < 1, only one of them can
be expanded as a power serieg jithe other has a logarithmic divergency. For the curiousstiiutions read
11 (3)n(3)n
Fi(z,5:1 = 220 4.22
2 1(2727 ,Z) ; (1)71(1)112 ) ( )
1 11 0 1 1
2F1(2 2 —1) —10g(Z)2F1(§,§,1,Z)+ 8—63F2(§+6,§+6,1,1+6,1+€,2) s

e=0

where the last term enjoys a regular power series expansidg|f< 1 which, however, is too complicated to write down
in a simple closed formula. As usual, the Pochhammer syrstitéfined aga),, = I'(a + n)/T'(a).

To summarize, we have so far considered correlation funstigth logarithmic fields,
but where the null field condition was exploited for a priméeyd. We found that the off-
diagonal action of the differential operators, which steanf the Virasoro modes of the
null state descendant, leadsnbomogeneoudifferential equations. These can be solved

8We have deliberately chosen this example where the hyperekeic functions reduce to simple poly-
nomials.
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in a hierarchical scheme, since the inhomogeneities fovengecorrelation function are
determined by the solutions for correlation functions vi@wer logarithmic fields.

We also learned that a null vector descendant on the fulladocll (not on its irre-
ducible sub-representation) is more complicated. For @k@nthe logarithmic partner of
theh = 1 field in thec = —2 LCFT turns out to be thé = h, 5 field in the Kac table.
Indeed, as shown in the third ref. of [33], there exists a meditor of the form

|X§L5:)1,c:—2> = @29
(ST L2, + 2L oL 5 —12L L4 + 221 _;]|h;0)
+ (L%, —10L3 L5 +36L% L5 — L 4L 4+ 16L_y L%, — 40L_»L 5+ 160L_5]|h; 1)

The first descendant is precisely the same as for a primadydiedenerate of level five.
However, a remarkable fact in LCFT is that the null descenfarorizes,

N ieea) = (- )|hs0) + (L%, — 8L_y Ly +20L_3)(L?, — 2L _o)|h; 1)
= (. )h0) + (L2 — 8L Ly +20L_3)|x\01 o o)
=7 () 0) 4 X o) s (4.24)

namely into the level two null descendant times a level thiescendant which turns out

to be the null descendant of a primary field of conformal weigh = 3. Hence, the level

two descendant of the logarithmic field is a null descendaiyt op to a primary field of

WEighth&l = h1’5 + 2.
It is worth noting that this is a general LCFT feature: Naméhe typical LCFT case is that the logarithmic partner
constituting a Jordan cell representation is degeneratevef n + k with n the level where the primary has its null
state, andc > 0. On the other hand, the conformal properties of the logauithfield are identical to the ones of its
primary partner up to the non-diagonal contributions. Hetie two fields could not be distinguished if these additiona
contributions were ignored. It follows that in a correlatathout any further logarithmic fields (where the off-diagd

part of the null field does not contribute), the logarithmétdimust behave exactly as its primary partner, i.e. musigsss
the same null field. The only way this can happen consisténthat the diagonal part of the null vector factorizes.

Another important point is that the additional descendarthe primary partner is not unique. We learned that due
to the Jordan cell structure, a descendant on the logagthantner state necessarily involves a descendant parbbutihe
primary highest-weight state. However, although this gbation cannot be zero, it is not unique. If again the lothamic
partner constituting a Jordan cell representation is degea of levelh + &, then the descendant of the primary field is

determined only up to an arbitrary contributidn,,, OémLfm|X§an)>, Where|X§L"2> denotes the ordinary level null

descendant of the highest-weight state.

That the(1,5) entry of the Kac table does indeed refer to the logarithmitnea

of the h = 1 primary (2,1) field can be seen from the solutions of the homogeneous
differential equation resulting from (4.23) when there aceoff-diagonal contributions.

Of course, the resulting ordinary differential equatiordefjree five has, among others,
the same solutions as the hypergeometric equation abotleef, 1) field. These are the
correct solutions, if there is no other logarithmic field.eTdther three solutions turn out
to have logarithmic divergences. Therefore, they cannotdtid solutions for this case,
but must constitute solutions for a correlator with two Iotamic fields. However, in this
case one has to take into account that the full null staterasl@itional contribution from
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the primary partner of thél, 5) field. The full inhomogeneous equation reads (with a
particularly simple choice for the primary part of the dewtant)

0= [2*(1-2)% +82(z — 1)(z* — 2+ 1)0* — 4(22 — 1)(52" — 5z + 2)0?
+24(22 — 1)%0 — 48(22 — 1)] Fi)(2)
+ [-82(2 = 1)(22 — 1)?0° + £(22 — 1)(52* — 52 + 2)9"
— 8 (572" — 1142° + 902 — 3332 +5)0

z(z—1)
+ sty (22— 1)(182% — 182 4 5)] FO(2) (4.25)

in the case of one further logarithmic field put at zero. Saméquations can be written
down for all three choiceﬁgf;)(z) as well as for higher numbers of logarithmic fields. In

general, there is one part of the differential equatioanﬁP with I = {3,4,...,4.}, and
the inhomogeneity is given by}:;i It is clear from this that the full set of solutions can
be obtained in a hierarchical scheme, where one fist soheebdmogeneous equations
and increases the number of logarithmic fields one by one.

In the example aboveF'® is given as in (4.20). Then the inhomogeneity reads
80(322 — 3z + 1)A + 16z(2* — 92 + 3)B. With this, the solution is finally obtained

to be given as

FY = Cufy + Cofa + Cs[3f1 log(Z5) — 6] + Cu[3fslog(z — 1) — 1227] (4.26)
+ C5[3(f1 + f2) log(2) + 122(2* — 32 + 1))
+ [2(3f1 — 2f2)log(2) + 2(7f1 + 2f2) log(z—1) 4+ 5 (122° — 182* 4+ 322 — 1)] A
+ [3(fa— fi)log(2) — 2(4f1 + fo) log(z—1) + 5= (362 — 62° — 17f1)] B.

As is obvious from the above expression, correlation fumgiinvolving more than one
logarithmic field become quite complicated. Although the tlwgarithmic fields were
chosen to be located at0, the above solution also contains termsaig(z — 1). Thisis a
consequence of the associativity of the OPE and dualityeofdbr-point function.

In principle, the full set of four-point functions can be kwted in this way. Care
must be taken with the solutions of the homogeneous equadisrindicated above, not
all of them might be valid solutions. If the correlator doestain only one logarithmic
field, then there cannot be any logarithmic divergences énsibiution. However, it is
instructive to find the reason, why already the homogenequat®n admits logarithmic
solutions. Firstly, one should remember that a similaragitun arises in minimal models.
All primary fields come in pairs in the Kac table, which are albuidentified with each
other,(r,s) = (¢ — r,p — s) if the central charge is = ¢, ,. So, in principle, one and the
same correlator can be evaluated by exploiting two differefl state conditions, which
in general will be of different degreess # rs + qp — (¢s + pr). Therefore, the physical
solutions are given by the intersection of the two sets aftsmis.

In the logarithmic case, the typical BPZ argument that ohly tommon set of fusion rules can be non-vanishing [2],
has to be modified. Th&, 1) field has the formal BPZ fusion rulé&, 1)] x [(2,1)] = [(1,1)] + [(3,1)], but the last
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term must vanish due to dimensional reasons, slace= 3 > 2hy; = 2 - 1. On the other hand, one has in a formal
way [(2,1)] x [(1,5)] = [(1,1)], meaning that the OPE of the logarithmic field with its owmpuary partner won't yield
a logarithmic dependency. Note that a logarithmic field carcbnsidered as the normal ordered product of its primary

partner with the logarithmic partner of the identity, i, (z) = :®,1:(z). As long as an OPE of such a field with a primary
field is considered, one can evaluate it in the usual way, lagul take the normal ordered product of the right hand side

with I, since the latter field behaves almost as the identity fielll veispect to fusion with primary fields. But as soon as the
OPE of two logarithmic fields is taken, one gets a new tgfin:5)] x [(1,5)] = [(1,1)]+[(1, 3)]+[(1, 5)], where all terms

are omitted which must vanish due to dimensional reasons, the (1,3) field! itself appears in the OPE, which is correct

because the OPE of two such normal ordered products wilhimevtbe well-known OPEI( M(w) ~ —2log(z — w)I(w).
This demonstrates that the logarithmic solutions of thdawnal blocks of the four-point function can only be valid evh
sufficiently many logarithmic fields are involved.

Let us come back to the above mentioned observation thatthstate of a logarith-
mic field of leveln + k factorizes into the levetb null descendant of its primary partner
times the levek null state of a primary field of conformal weight+ n. Indeed, it is a
nice exercise to show that in our= —2 example the Virasoro modes of the level two
null descendant, acting on the logarithniig_, field, produce a field which transforms as
a primary field of conformal weightt = 3. The reason is that the derivative, acting on a
logarithmic field, eats up the fermionic zero modes. Indéed,

[L_, Vp(2)] = 2"((n+ 1)h + 20)¥p(2) (4.27)
= (n+ 1)hW,(2) + :(0P,)L:(2) + @, (dD):(2) .
where the), part is omitted, the derivative first acts as derivative angtimary part of the

logarithmic field, and then acts on the fidldin thec = —2 LCFT this basic logarithmic
field can be constructed out of two anti-commuting scaladsiel

= 09"+ 05 log(2) + £, a=, (4.28)
n#0
whose zero modes are responsible for all the logarithmsn Thg = —2€05:0°60°:(2).

Therefore, the derivative will eat up zero modes, &(g)[0) = ¢+£7]0) anddL(0)[0) =
(60,6~ +6~,£7)]0). By considering states, one can show that the level two esitendant
applied to the stat&,_,(0)|0) yields a state proportional to a highest-weight state of
weighth = 3.

Recall, that we mentioned earlier in some of the small phiat bbgarithmic partner fields are not necessarily quaisi-ny.
Theh = 1 logarithmic field in thec = —2 LCFT is an example for just this phenomenon. In fact, the fibigaic » = 1

field is given as¥j,—;(z) = :100%:(z), i.e. it really is a doublet. The primag;—;(z) = 90“(z) is, of course, also a
doublet. Moreoveny;,—; is indeed not quasi-primary, sindg ¥;—,(0)|0) = £%|0). Note the appearance of one of the
crucial zero-modes, i.e. the state which spdijs-; being quasi-primary is a fermionic state. One can show ttit, lthe
primary ®,_; as well as the field of weighit = 3 generated by the action of the level two null descendank gn,, are
descendants of the statg").

In order to understand why already the solution of the homegas fifth-order dif-
ferential equation does yield logarithmic divergencies, stould keep in mind that the
regular solutions of the second-order differential equeti(where the null field was as-
sumed to be a descendant of the primary) make only sense dfdhe other three fields
is a logarithmic field. Similarly, the five solutions of thetfiforder equation seem to make
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only sense in the presence of one further logarithmic fielowéter, we just argued that
the correct solution for a four-point function with two lagamic fields must be obtained
from an inhomogeneous differential equation, and we alse Baen that logarithms may
arise just from these inhomogeneities, when we looked atetved two null field. So,
where do these logarithms come from in the homogeneous case?

It seems that the only possibility left is to assume that tWthe other three fields
must possess an OPE which produces a logarithmic field,asigtb twist fields. Hence,
we would need two seemingly primahy= 1 fields ;- which, however, have an OPE of
the formp— (2) pn—1 (w) ~ (z—w)~2[I(w)+log(z —w)I] or with another pair of primary
and logarithmic field on the right hand side. In fact, suctdBehay indeed exist, namely
pn=1(z) = 3€,50700°:(z). Expanding this field in modes via (4.28) shows that it is not
itself logarithmic, since there is no moge¢~. However, its OPE with itself produces
precisely such a term, as well as a term with a logarithmierdigncy.

As a consequence, the level five null state condition captalepossibilities of a
four-point function with fourh = 1 fields: Besides the “ordinary” primary field doublet
®p_, = 96~ and its logarithmic partner doublét}_, = :196*:, which are fermionic with
respect to the number @f*-zero modes, there is also the bosonic primary figld, =
12€430"007:(2), which is pre-logarithmic. The null vector condition catsee, of which
sort the other three fields are, as long as none of them isitbgac. Only the latter
sort does produce the betraying inhomogeneity. But therboswe-logarithmic primary,
contracted with itself, will yield a logarithmic field in theternal channel, and this in turn
is responsible for a logarithmic divergency, when contrdatith the proper logarithmic
h = 1 field. Of course, since correlation functions are only nemzf the ¢-fermion
number is even, the only possible choice for this case is agarithmic field, one proper
primary field, and two pre-logarithmic fields.

We leave it as an exercise to the reader to work out a similactstre for theh = 0
fields, and compute all possible non-vanishing four-painttions of four fields of weight
h = 0.

5. Ghost systems

A very important family of CFTs are the so-called ghost syste Mathematically, they
are the CFT description of the complex analysigafifferentials. Thus, one starts with
considering a pair of anti-commuting fielt&z) and¢(z) with conformal weightsi and
1 — j respectively. Indeedh”) = b(z)(dz)? andc'=7) = ¢(z)(dz)'~7 are invariant un-
der conformal transformations providé(t) transforms a$(z') = b(z)(dz'/dz)~7 and
analogously for(z).

Although we will see in a moment that the resulting CFT is natary, it possesses a
natural scalar product defined via

(b9, 0-9)y = j{ b(2)e(z)dz = f{ b(z)(dz) c(z)(d2)" 7. (5.1)
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If 2 € Z, these fields make sense as chiral fields, meaning that tinrayédenign under
the monodromy: — e?™ 2, acquiring nothing more than a sign (fphalf-integer). Under
these circumstances, they possess a mode expansion

b(z) = bz ", e b, = jf dzb(z) 2" (5.2)
neL
and analogously for(z). Since the fields are anti-commuting their modes satisfy the
relations

{bm7 Cn} = Om+n,0> (5.3)

with all other anti-commutators vanishing.

We mention the ghost systems here because they can be viswezreon-logarithmic
sectors of larger, logarithmic, CFTs. This shall serve asxlicit example, how CFTs
can be enlarged, or augmented, to form logarithmic CFTs. \Wedamonstrate this in
particular for thec = —2 ghost system.

Let us first extract some general information such as thetmmsaof motion. The
action of thebc system is given by

S =4 /d2z b(2)0c(z), (5.4)

which is conformally invariant by construction duejte- (1 — j) = 1. The operator equa-
tions of motion may be obtained in the usual path integral witlyout any complications,
and are ~ ~
Jc(z) =0b(z) =0,
{ ob(2)c(?) = 2m0%(z — 2/, 2 — 7, (5.5)

Ob(2)b(2') = Oc(2)c(2') = 0.
Since we have not yet fixefland therefore do not know whether we have a well-defined
mode expansion, we define normal ordering by requiring tbahal ordered objects be-

have classically. Recalling that:=! = 9z7! = 272(z, z), we find that the normal
ordered productc: must read

b(2)e(2): = b(2)e(2) — (z = 2) 7. (5.6)

Again, we may turn this around to identify the singular pdrthee corresponding OPE.
Combinatorially, normal ordering for the ghost system iscimthe same as for the free
scalar field, i.e. goes with Wick’s theorem, except thatrictianging two fields may result
in sign flips. Therefore, when contracting two fields, oneudtidirst anti-commute them

until they are next to each other, where each anti-comnautdtips the sign. We thus

obtain the following OPESs, where~ y means that is equal toy upto regular terms:

b)e(w) ~ —— ., e(2)bw) ~ ——

b()b(w) = O — w), e(z)e(w) = O —w).

(5.7)

Qw
Qw
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Note that there are two sign flips in the second OPE, one fraircammuting, and one
due toz < w. The last both OPEs are actually not only holomorphic, bey thave a zero
due to anti-symmetry (Pauli principle: expectation valugth two identical fermions at
the same place must vanish).

The stress energy tensor is obtained via Noether’s theoligmrespect to world sheet
transformationgz = (z), under whichhb = (¢9+ j(0<))b anddc = (e0+ (1—j)(0¢))c,
such that

T(z) = (1 —j):(0b)c: — j:b(dc):, T(2)=0. (5.8)

The interested reader should work out the OPE’6f) with the fieldsb(w) andc(w) to
verify that they have the expected form (2.42). Also, the @PE(z) with T'(w) is not
hard to work out, it has the standard form (2.43) and it revda conformal anomaly to
be

¢=cpe=—2(65" =65 +1) <0 for jeR—[3(1—75),5(1+ F)], (5.9)
which is clearly negative for all (half)-integerexcept; = % Obviously, this CFT is

purely holomorphic (or actually meromorphic). Of coursesre exists a completely anal-
ogous anti-holomorphic CFT with actigh= % Ik d?zboe. But as it stands, this is a theory
which is completely left-chiral, the right-chiral part beithe trivial CFT withc = 0.

The bc system admits ghost numbesymmetryéb = —icbh, éc = icc. It stems from
a globalU (1) symmetry of the action under the transformatbon) — exp(—ia(z))b(z),
c(z) — exp(ia(z))c(z) for arbitrary holomorphiey(z). The corresponding Noether cur-
rent is simplyj(z) = —:bc:(z). Thus we may expect to have a quantum number with
respect to the corresponding conserved Noether chargghtist number. Again, it is de-
fined for the left-chiral sector, and an analogous definitiolas for the right-chiral sector,
both being separately conserved. If one computes the ORPBnath j, one finds that

-2 1
(z—w)?  (z—w

T(z)j(w) ~

meaning thaj(w) is not a primary conformal field. Under conformal mappings;) thus
transforms as

)QJ'(w) 1

5i(w) = (~=(w)y — Oue(w)) + 1(2] — 1)) j(w). (5.11)

One particular case js=1—j,i.e.j = % The central charge (5.9) isthen= 1. Itis
customary, to use the notién= v, ¢ = 4 in this case. It is then easy to see that this CFT
can be split into two identical copies by writing= (11 + i) andy) = 25 (¢ — i),
such that

S=4L /dzz (V1001 + a0ts) (5.12)
T= _% (Y101 + a0ts) (5.13)

49



Each of they; theories has central charge= % and can be recognized as the CFT of a
free fermion. This theory corresponds to the case-= 3 in (2.32) and is the first non-
trivial example of a so-calledhinimal model which are CFTs with only finitely many
Virasoro conformal families (primaries with all their desclants). It will not concern
us further, but it should at least be noted that it possessigstioree primary fields of
conformal weightshy; = ho3 = 0, his = hap = 15, andhy; = hy 3 = 5 according to
(2.33), which perfectly coincides with the two order parteng of the two-dimensional
Ising model (plus the identity), the spinand the energy, and their critical exponents.
Another important value ig = 2, for which we get;,. = —26, and which is important in

bosonic string theory.

5.1 Mode expansions

We will assume for now that € Z. Then we have well-defined mode expansions (5.2),
i.e.

b(z) = anz_"_j . c(z) = chz_"_(l_j) . (5.14)

neL nez

The anti-commutators can be obtained from the OPE, and tuto®e{b,,, ¢,} = dmino
with all other anti-commutators vanishing. It seems sdasib impose highest-weight
conditions, and to consider states which are annihilate@lbynodesb, and ¢, with
n,n’ > 0. But what about the zero modes? It turns out that we have now |ga, |—) of
highest-weight states with the properties

bo|—) =0, bol+) = |-)
col=) =|+), al+) =0, (5.15)
bo|=) = bul+) = cul=) = cul+), n>0.

We may construct Verma modules on these highest-weigleisstgtacting with the modes
b_, andc_,, with n > 0. We now have to fix notation by convention, saying thabe an
annihilator, and that, be a creator. This singles out) as the ghost vacuuif)(=). Note,
however, that for consistency we must require tHato| = (=)(0|c, be the correct out-
vacuum such thdt”) (0/0)(=) = 1. In this way we guarantee that the conditions defining
the in-vacuum0)(—) are dual to those defining the out-vacuti/0|. However, this is a
further example for the situation that the “metric on fieldsg’, the two-point structure
constantsa|3) = D,g, is not diagonal.

Let us now introduce a grading or particle number operaterghost number operator
N, for the resulting Fock space. We define its action on the vasng|0)® = +1|0)),
and further define that it counts the modesN\g$b,) = —b, andN,(¢,,) = +¢,. This
definition is cooked up in such a way that the scalar produd) {§ non-vanishing only if
the total ghost number is zero. For instaricé(0|0)(~) = 0 since the total ghost number
is N, = —1. Indeed |0)(~) = B,|0)(*), and since), = b,, we see that™) (0|b, = 0.
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Next, we consider the mode expansiolf@t). Since the stress energy tensor is made
up from thebc system, its Virasoro modes will have the form

Ly o< Y (mj = n)buCmn: + 6mo0Noe , (5.16)
nez
where there might be an additional term due to normal ordevitnich can only be a con-
stant since the anti-commutators araumbers. Note that this is mode normal ordering,
i.e. normal ordering of creation operators left to annifla operators, which should not
be confused with field normal ordering. The constaftis easily computed by checking
the consistency condition that

!

2Lo|=) = [L1, La]l=) = (Gbocr) (1 = j)brco)[—) = j(1 = j)[=) = 0. (5.17)

Thus, we learn that/,, = %j(l — j) and hence

Ly =Y _(mj = n)bnCmn: + 35(1 = )omo. (5.18)
neZ
The non-vanishing constant,. hints at the fact that mode normal ordering and field nor-
mal ordering are not identical in the ghost system. One camw ghat the difference
amounts to

(B(2)e(="):) e ondering — (B(2)e(2):) mode oxcering = ﬁ ((i,)l‘j - 1) . (5.19)

zZ

The reader should convince herself that the corresponditering constantVy, in the free bosonic CFT is zero, i.e. that

the Virasoro modes are given simply by

L, = % Z 1 R, I, (5.20)

ne”z

without an additional termaV,d,, 0. This can be done in complete analogy to the ghost systemby.ehecking that

Lo|0) = 3[L1,L_4]|0) = 0. The fact that there is no ordering constant is coincidett wie fact that mode normal
ordering and field normal ordering are equivalent for the fsesonic theory.

Let us return to the ghost number currgnt —:bc: with its charge

2m . 1
Ny =55 /0 dwjep(w) = n;(c_nbn = bonn) + coby = 5 - (5.21)
which indeed satisfiesV,, b,| = —b,, and[N,, ¢,] = +c,. It therefore counts the number

of ¢ excitations minus the number bExcitations of a given state. The constant is neces-
sary to reproduce our definition of the action/éf on the ground state¥,|F) = F3|F).

Note that we have defined the ghost number for the physicalivant cylinder (the
string world-sheet). Since the ghost current is not a pynfigtd, the translation to the
complex plane has to be performed carefully. Recalling that ¢ mediates the map
between cylinder and complex plane, we find

(Ozw)jen(w) = j(2) + (j — 5)(@2w) /(Qow) = j(2) + (j — 5)= ™" - (5.22)
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This is quite similar to the effect that the zero mode of the%oro algebral,, receives a
shift by —c¢/24 when we map the theory from the cylinder to the complex pldieis, the
ghost number also receives a shift, namEly, ... = § dzj(z) = N,+Q; with Q; = j—13.
The above definitions led to unusual vacuum states, whichatréne SL(2, C)-invariant
vacua introduced earlier. This disadvantage is the prickfpatreating the ghost system
in a way where ordering prescriptions are more or less inudga of the spiry of the
system.

5.2 Ghost number and zero modes

The above approach is sometimes not useful, especially #racplar ghost system is
considered. Then, it is more natural to use $1ig2, C)-invariant vacuum. Let us now be
specific and puj = 2. For this value, théc system thus consists out of a spin-two field
and a vector field, and has central charge —26. The string theorists tell us, that this
ghost system is particularly important for the bosoniastri

The mode expansions read in this specific case simply

b(z) = Z bz "2, o(2) = Z cnz " (5.23)
We now wish to reproduce the canonical field normal ordering bmode normal ordering
prescription. The natural way to do this for a chiral localdi®,, (=), 2h € Z, with mode
expansiond,(z) = > #,z"""" is to call all modes witm > —h annihilators, and all
other modes creators, i.e. by imposing highest weight ¢cmmdi¢,,|0) = 0 for n > —h.
In our example, we thus would like to impose

ba0) =0 Vn>—1, ¢|0)=0Vn>2. (5.24)

In this way, the vacuun) is indeed theS L(2, C)-invariant vacuum. The corresponding
conditions for the out-vacuum then read

Ob_y=0Yn>-1, (Oc_,=0VYn>2. (5.25)

But now, we have to keep in mind that the modes are conjugate to the modesg,
since we have the canonical commutation relatiphs c,,} = d,4+m 0. Both highest-
weight conditions together tell us that the three maddgsb,, by are annihilators in both
directions, i.e. they annihilate to the right as well as ®l#it. On the other hand, the three
modesc_q, ¢y, ¢; are creators in both directions, i.e. they neither anriéila the right nor
to the left.

As a consequence, we find that0) = (0[{bo, co }|0) = 0. Even more strangely, also
(0]¢;]0) = 0fori € {—1,0,1}. In fact, the first non-vanishing expressior{i$c_,cyc:|0),
i.e. we need at least threemodes. One sees this by inserting a one in the form
{b;,c_;} for i € {—1,0,1}. For example(0|coc1|0) = (0|{b1, c_1}coc1|0) = 0. Of
course, this does not any longer work for the correladdr_;coc;|0), Since we are forced
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to insert the one as = {b,,c_,} with n > 1, which does not annihilate anymore. The
threec-modes are necessary to eat up the three zero modes of thé(fieldOne might
hide them in a redefinition of the out-vacuum(@s= (0|c_,coc, such that0|0) = 1.

We therefore find that the ghost system correlators can amlydm-zero, if the total
ghost number, i.e. the number efields minus the number dtfields is exactly three,
N, = #c — #b = 3. The reader should note that this differs from our discussiche
preceeding section, since we made a different choice ofurache vacuum used now is
the physical vacuum.

We did go into some length here to show some features of glysstras, which
should definitely remind us in typical LCFT features. Indeth& zero-modes appearing
in the ghost systems are very reminiscent of the zero modeganithmic CFTs.

5.3 Correlation functions

The above discussion can immediately applied to calculatelation functions of théc
ghost system. We already know that, for instaneé;)c(w)) = 0. The first non-trivial
correlator is

(c(21)e(22)c(z3)) = (0] Z Z o ez T e 2 0)

= > D Olemnz ™ enmz " enz " 0), (5.26)

n<—1m<1

where we inserted the mode expansion and used the highagttwendition of the vac-
uum states. There are only two summations here, since thlddwel (with respect to the
L grading) must be zero, which fixes the mode of the third fi¢litha modes of the other
two fields are given. Since all the modgsanti-commute with each other, it is easy to see
that the only non-vanishing choices anen € {—1,0,1}. This leads to the six terms

2 2 2
(0] (0_1010021 23 + C_1C0C127 22 + CoC_1C12125
2 2 2
+ cocrc_12125 + C1C_1C025 23 + 01000_12223) |0)

= (Ofco1coco (—2i23 + 2120 — 2125 + 2123 + 2323 — 2223) |0)

where the signs come from anti-commuting the modes. Callgderms results in the
simple expression

(c(z1)e(z2)c(z3)) = (21 — 22)(21 — 23) (22 — 23) , (5.27)

which indeed satisfies the Pauli principle. In the same marallecorrelation functions

can be obtained. Firstly, it is clear that an arbitrary datren function must have first
order zeroes for each pair of coordinates, where #ffields coincide. The same is true
for each pair of coordinates, where tidields approach each other. Only when-geld
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approaches &field, the singular OPE (5.7) will lead to a first order poldeTonly non-
trivial feature is that the number offields must exceed the numberiafields by precisely
three. Thus, in all generality we find

H D [Top10) = [Tz =z [T(w; = wi) [z = w)) "0pgrs. (5:28)

i=1 Jj=1 1<’ Jj<gj’ 1,5
5.4 The logarithmicc = —2 theory

Thec = —2 theory has been extensively studied (see e.g. [11, 33, 4&8}%9]). Here
we want to give a very brief self-contained account whicludes all of the developments
relevant to our discussion of ghost systems.

Thec = —2 theory can be represented as a pair of ghost fields, or amireding
fieldsé, # with the standard action [48]

S:/ww. (5.29)

This action has asU(2) (actually even arb L(2, C)) symmetry which becomes evident
if we introduce the ‘spin-up’ and ‘spin-down’ fields = ¢ andd~ = 6 in terms of which
the action is

S /eagﬁeo‘éeﬁ , (5.30)

wheree is the antisymmetric tensor. Acting érby SU(2) matrices does not change the
action. TheSU (2) algebra is generated by tlsé/(2) triplet of generators

WP o 00°0%0° + 06° 96 (5.31)

of dimension 3, which form &V-algebra rather than a Kac-Moody algebra [%8].
The fieldsf are complex. Nevertheless writing down the full action

S o i / €a300°00° — i / €0300°100% (5.32)

shows that)" decouple from¥ and we can consider them independently. If, on the other
hand, we include them, the central charge for the theor®}5s3 = —4. We emphasize
thatd is not a complex conjugate @f but is just another field. Alternatively, we could
taked, 6 to be real fields with ai¥ L (2, R) symmetry. The potentially misleading notation
6,6 is, however, conventional and commonly used.

To quantize the theory (5.30) we have to compute the ferraifumictional integral

/DQDQ_ exp(—9), (5.33)

9As has been noted in a number of publications, and also soarevathove, the dimension 1 field8o
have logarithms in their correlations functions and theretfio not form a Kac-Moody algebra.
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We note that computed formally this fermionic path integsagéqual to zero due to the
“zero modes” or constant parts of the fieldlsvhich do not enter the action (5.30). We
will meet these zero modes below in more detail and see hosetare connected to the
above mentioned zero-modes of the spin one-zero ghoshsy$temake the path integral
non-zero we have to insert the fieldsnto the correlation functions (compare with ref.
[40]), as in

/D@Dﬁ_ﬁ_ z)exp(—S) =1. (5.34)
Therefore, the vacuud) of this theory is somewhat unusual. Its norm is equal to zero,
00y =0, (5.35)
while the explicit insertion of the field$ produces nonzero results
(0(2)0(w)) =1. (5.36)

Furthermore, if we want to compute correlation functionshef fieldsod we also need to
insert the zero modes explicitly,

(00(2)00(w)) =0, but (5.37)
(90(2)08(w)3(0)6(0)) = — —— | (5.38)
(z —w)?

Here, the second correlation function is computed by ayalothe free bosonic field. All
this strongly reminds us in some of the typical features oFILE. And indeed, from the
point of view of conformal field theory, the strange behawb(5.35), (5.36), and (5.37)
can be explained in terms of the logarithmic operators whaturally appear at = —2.
As was discussed in [48], the theory with central charge —2 must necessarily possess
an operatof of scaling dimension zero, in addition to the unit operdt@uch that

[Lo, D] =1 (5.39)

(whereL, is the Hamiltonian). Moreover, we know from the basic (L)QRToductionary
lectures that it follows by general arguments such as cardbinvariance and the operator
product expansion, that the property (5.39) necessargyi@n the correlation functions

<H(Z)f[(w)> =1, (5.40)

These relations force us to conclude that the opefatmust be identified with the normal
ordered product of andé,°

—:00: = —%eaﬁeaeﬁ (5.41)

10The author is grateful to A.B. Zamolodchikov for pointingtdbatI, as well as any other local field,
can be expressed in terms of the fundamental fielaisdé of the theory.

i
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The stress energy tensor of the theory (5.30) is given by
T = :0000: (5.42)
and it is easy to see that its expansion \iita indeed given by

T(2)(w) = G _1w)2 + - ?Hw + ... (5.43)

indicating thafl is indeed not a primary field.
Now, the mode expansion of the field$ias to be written in the form

0(z) = Z 027" + O log(z) + &, (5.44)
n#0

where¢ are the crucial zero modes (they disappear in the expansiod). Heren € Z in
the untwisted sector (ie. with periodic boundary condsijoandn € Z + % in the twisted
sector (anti-periodic boundary conditions).

To be consistent with the earlier results (5.37) and (5.48)have to impose the
following anti-commutation relations (the interesteddeamight wish to compare these
with a slightly different realization of the = —2 LCFT in terms of so-called symplectic
fermions of scaling dimension one [59])

{80} = “Oimo ¥ A0, (5.45)
{60,600} =0,
(0,6} = 18,.8,) = 0,
{¢.¢1 =0,
{€,60} =1,
(60,6} = 1.

The last two relations are absolutely crucial in keeping3pintact. The mode expan-
siond,, should not be confused with the notatigttsandé® introduced earlier. To avoid
confusion we will primarily use thé, § notation.
It is now very important to note that the modgsecome the creation operators for
logarithmic states. Indeed,
0,00 =0 Vn>0, (5.46)

and i
1]0) = €0} . (5.47)

The mode expansion (5.44) together with (5.45) and

00y =0, (&) =1 (5.48)
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can be used to compute any correlation function in the theory

For instance, we can reproduce the typical LCFT correlafimetions of a Jordan
block pair of fields such as (5.40)

(1(2)1(w) ) = (O(w)(w)) = (§6) =1 (5.49)

while on the other hand

(12)0(w)) = (0(2)6(:): :0(w)b(w):)

— (£0(2)0(w 5>+<9 )e€0(w)) = —2log(z —w).  (5.50)

The last line of (5.50) can be computed either directly imt&eof modes or by comparison
with (5.37).

As has been discussed at length in the literature, the fi®ldatroduced in (5.31) form &V-algebra and in fact all the
states of the = —2 theory can be classified according to various representatbthat algebra. A clear review can be
found in [59]. Six representations are listed in that paférey can easily be represented in terms of the fields of our

theory. We have the unit operathrthe logarithmic operatdt = —: 69 :, the SU(2) doublet of dimension 1 fieldg6
anddd, the twist fieldu of dimension—1/8, a doublet of twist fields,, = (9a)7%;¢ of dimensiod! 3/8, and finally a
structure of field9, 90 andf#o6 connected with each other by the action of the Virasoro gdoesL,,.

With all the preliminaries completed we can proceed to qoesthe correlation func-
tions of the field¥). For example, the correlation function

<06’(21)89_(w1) . 00(2,)00 (wy,) > ZagnaH : (5.51)

P T wcr(z

whereo () is the permutation of the numbers2, .. ., n, reproduces the Haldane-Rezayi
wave function which was proposed for the fractional quantdafi effect at fillingr =
5/2. Note the explicit insertion of the logarithmic operafot :06: to make (5.51) non-
zero. For convenience, we express the correlation furgfiothis section inZ-w’ nota-
tion in which thed’s are at the points; and thed’s are at thew,’s, which makes some of
the formulee more transparent.

The correlation functions in the twisted sector can be faoydplitting the logarith-
mic operator into two twist fieldg according to the general formula (see for example

[48]) )
pw(2)p(w) = Tlog(z —w) + 1, (5.52)
and is equal to
(00(21)00(w) . .. 00(z) 00w, () s (12)) = (5.53)

B : siono - (Zz - Ul)(wa(z‘) - 772) + (Zz - nz)(wa(z-) - 771)
(m = 112) ; & g (20 — o) )21/ (2 — M) (2 — 02) Wo(i) — M) (Wos) — 1)

is the mode expansion (5.44) férwheren € Z + % to reproduce the twisted sector. The zero
modes are naturally absent in that sector.
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Note that we do not need the logarithmic operator any moréadtbeen split into two
twist fields. Alternatively, we can say that in the twistedtse the summation in (5.44) is
over half integer numbers and the zero modes no longer dregendpansion for the fields
0.

Correlation functions of the type (5.53) are, for instanggeful for constructing the
bulk excitations in the Haldane-Rezayi description ofithe 5/2 fractional quantum Hall
effect. However, the twist fields are not the only way of doing/\Ve could also split the
logarithmic operator according to the operator producaesmpon

I(2)[(w) = —2log(z —w)I + ..., (5.54)

which follows from (5.40). Thus, we can easily compute ottarelation functions such
as the following one:

<09(21)0§(w1) . .ae(zn)aé(wn)ﬁ(ul)ﬁ(u2)> . (5.55)

It can be computed by either solving the differential equagiof conformal field theory,
or by the straightforward mode expansion (5.44) and (5 BBher method results in

<39(z1)8§(w1) y .89(zn)89(wn)f[(u1)f[(u2)> - (5.56)

- 1
— 2log(uy — usg) Z signo H —
- iy (3 = Woti)

— signo Y ! L o)
; 72 {H ((Zz - wo(z’))2) (w1 = 2) (= wor)) (uz — 2i) (U2 — w"(’“)} |

k=1 \i#k

We see that it splits into two terms. One is the product of ta&leine-Rezayi wave func-
tion (5.51) and the logarithm. The other is a nontrivial egsion. In fact, it is easy to
get rid of the trivial part by taking one of the logarithmicesptors to infinity. In doing so
we have to remember the transformation law for the logaiithi®lds which follows from

(5.39),

I(f(2)) = 1(z) + log (g—i) . (5.57)

According to the standard procedure, taking the positidlh@ﬁeldﬁ(z) to infinity corre-
sponds to taking the position of the fidlfl /z) = I(z) — 2log(z) to the origin. Therefore
the trivial part of (5.56) disappears.

We could have computed all these correlation functionslaysasing Wick’s theorem
for anti-commuting fields together with the fundamentaltcactions

(0(2)0(w)) = —log(z —w), (5.58)
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So far, we only looked at correlation functions with derives of 6 fields and explicit
insertions of the logarithmi& operator. It turned out that this CFT, although logarith-
mic, possesses many correlation functions which are énticed of any logarithms. We
only have to confine ourselves to a certain subset of all ples§elds (in particular the
derivative fields06 will do) together with a minimal insertion of operators subht the
resulting object is non-zero. If we only use derivative f&sld“, we have to make sure
that the zero mode& are somehow inserted. The minimal way to do this is to put one
field I at infinity.

It is a highly instructive exercise to redo some of the abayt#ireed calculations with
the slight modification that we take correlators of fiefifsandd, i.e. we allow that the
field be inserted without derivative, but not so for thiield. Note that this means that the
¢ zero mode is then present, but not fheero mode. As the attentive reader might already
have guessed, we furthermore may suggestively idé#atify

b(z) =00, c(z)=0(2). (5.59)
The conformal dimensions do indeed coincide, if we consadgrin one-zero ghost system
of central charge-2(6;* — 65 + 1)|,_, = —2. That alone is, of course, not sufficient to

justify this identification, but it is easy to see that alli@ation functions in thé; = 1,0)

be system can be reproduced exactly, provided we evaluathealxpressions ifid and

6 between the stateé8) and (¢|. The non-trivial out-state is necessary to provide thé stil
missing zero mode to ensure that the correlation functias et vanish if the number of
g fields does exceed the numberdsffields by precisely one. Thus, we find that

(b(21) ... b(z)c(wy) ... clwy)) = (£]00(21) ... 00(2,)0(wy) ... 0(w,)|0) (5.60)
=TI == IT - IT oyionns

1<j<q

Note further that the definition of the stress energy tenS@) (within the(j; = 1,0) be
ghost system does exactly agree with the definitidfi wfithin thed, § system (5.42). This
completes the identification of thie ghost system with a sub-sector of the logarithmic
c = —2 theory given by thé, § system. Thus, we can say that the= —2 LCFT is an
augmentation of the ghost system in the above described.sens

Knizhnik considered a long time ago how to put CFTs on geriRiainann surfaces. He considered ghost systems and
described non-trivial Riemann surfaces as branched cmy®df the complex plane (or Riemann sphere). He showed that
the branch points can be simulated by certain conformaldjedd-called twist fields. In case of a hyper-elliptic suefac
where all branch points have ramification number two, @ywists arise. Strikingly, these are precisely providedhsy t
field  introduced earlier. As we know now, after the advent of LO#ISt fields may produce logarithms, and we already
saw that(uupp) does indeed produce a logarithmic divergency. Since Kiiliztiid, at that time, only consider the twist
fields together with théc system, he was badly surprised by the appearance of logaritNowadays, we would simply
say that, after including twist fields to tthe system, we already have enlarged the CFT to a logarithmic ginee the

logarithmic fields can be obtained from the ORE ) pu(w) = (z — w)'/*[I(w) + log(z — w)I]. Hence, primary fields with
this property are now called pre-logarithmic fields.

2The identification can be made mathematically rigorous) dddition the zero-modg, is put to zero.
Otherwise, the mode expansiondif:) would contain the terniog(z)f, absent in the mode expansion of
c(z). However, even if this mode is present, it does not affectadriye correlation functions withé fields.
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5.5 Remarks on the Haldane-Rezayi fractional quantum Hall tate

In this section, we briefly discuss one application of LCFEpally the only one applica-
tion we will mention explicitly in these lectures. Unfortately, space-time limits do not
permit to give any introduction to the (fractional) quanttfall effect and its theoretical
description. The quantum Hall effect is essentially-al dimensional problem. It can
be shown that, in the particular circumstances relevanthfereffect, the Chern-Simons
term dominates the standard Maxwell term in the action atibog for the universality of
the effect. We further know that there is a one-to-one cporedence of Chern-Simons
theories in the + 1 dimensional bulk (usually a filled cylinder) and unitary GHan the
boundary 6! x R), a deep result due to Witten. In the quantum Hall effect nendary
CFT describes the gapless edge excitations of the quantdhstiaee, which is usually
considered to be some kind of incompressible quantum flo&lHall droplet. The issue
which concerns us here is of a different nature. If one carsithe bulk theory without
intrinsic time, i.e. as a pure quantum mechanical problérmn the resulting bulk wave
functions show a striking similarity with CFT correlatorgfeee field type. What is so
far missing is a physical explanation for this resemblantiee issue is complicated by
the fact that there is usually no principle which selectsabeect CFT among an often
large variety of possible “solutions”, i.e. of possible datate CFT which all somehow
reproduce the expected wave function in terms of certairmeif tcorrelation functions.
The situation is a bit more promising in the case of the steddHaldane-Rezayi state,
since for this state most CFT candidates can be ruled oditfrigin the start due to several
restrictions such as topological ordering.

We have already seen that the ground state for the excepfiiac@onal quantum Hall
effect at filling factorr = 5/2, as proposed by Haldane and Rezayi, is given as

Vs — Vsl L oy PO
Typ = Pi (7) IR (5.61)

(zi — 24)?

=
pleiey (21 = Wo(i))?

upto the non-holomorphic exponential factor. This factwswes that the probability den-
sity of the wave function falls off fast enough for large armgents. However, after com-
pactifying the plane to the Riemann sphere (where the honemes magnetic field is
mapped to the magnetic field of a monopole in the center ofgtherg), this factor is ob-
solete. In the above formula; andv; denote up- and down-spin states of ifeelectron,
respectively, and, is the magnetic length.

A very important concept in the theoretical study of the fi@tal quantum Hall effect
is the so-calledopological ordering which refers to the fractional statistics of quasi-
particles, and was introduced by X.G. Wen. Among other thinlgis property yields a
precise prediction on the degeneracy of the ground state fuaction on a torus geometry.
This in particular allows to test a CFT proposal for such aigrbstate bulk wave function.
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The startling prediction for the = 5/2 state now is, after a trivial reduction, that the
degeneracy is five-fold. Most attempts to describe the giatate wave functions in
terms of CFT correlators only yield smaller degeneracies ti@ torus, the ground state
reads

2
peb — pf ((uwj — viuJ'q)??c(Lifz_—;;)ﬁb(zi — Zj)) Hg%(zi —z) H 191(2 2 — k),
7 J k=1

1<t i
(5.62)

where(,, are two arbitrary complex numbers. Since there is a lindatiomship between
¥3,9% 92, we only get five different ground state wave functions with = 2, 3,4, not
taking into account the trivial degeneracy due to the fremaghof the complex center of
mass coordinates. The reader unfamiliar with standargtielti-functions should consult
any textbook on elliptic functions. These are the standarthte-periodic functions. As
a rule of thumb, a torus correlator is obtained from a plameetator by replacing any
occurrence of &z; — z;) factor by an appropriate double-periodic version of iteesislly
given by?d(z; —z;). Furthermore, a torus correlation function always receareadditional
factor for the center of mass coordinate.

The key point is that —if a CFT description is to be correctis tjiound state degener-
acy must be reproduced by the independent ways how thetiggnbipagator can be built
by the creation of two fields, which are then taken around adiogy cycle in opposite
directions to annihilate themselves when they come togetij@n. These pairs of fields
are then interpreted as quasi-hole-quasiparticle painsis,Tthe ground state degeneracy
on a torus is equal to the numberdiktinctbulk excitations. This number is determined
by the number of linear independent monodromies (or brggjithe quantum Hall state
admits.

Supposing that the = —2 CFT is the correct description for the bulk ground state,
we have to count the ways to produce the identity propagabon OPEs of other fields.
If we describe the torus by a branched covering of the compliexe, we have to insert
precisely four branch point vertex operator&;), i = 1,...,4, into a complex plane
correlator. We already know from the preceeding sectiohttiese four twist fields will
ensure that the correlator is non-vanishing. MoreoverQRE& of two such twist fields
contains the logarithmiEfield, and we need at least one of these logarithmic fieldsto ge
a non-zero correlator. Now, it is merely a matter of countragous contractions which
still yield a torus correlation functions. The generic o8¢ . . .). Inserting the OPE
for two of these fields, we get two further possibiliti€gy. .. .) and (I . ..). The last
two possibilities come form the excited twists and theh = 1 current fieldJ = §796*,
which appears in the OPE offo~. Thus, we also hav&r o~ pupu...) and(Juw...). It
needs a bit more work to see thatroo...) and(J.J...) does not yield different torus
correlators. A naive and handwaving way to see this is theviahg: we need ond
operator, which we may put at infinity, and it does not mattw hive create this (first)
one logarithmic operator. Having four branch points for i$o two of them are already
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accounted for by this requirement. Thus, we can only taketiher two branch points and
see, in which ways we can account for them. The five posséslibr a bulk excitation
are therefore the trividl (no excitation at all) angiz:, I, o to~, and.J.

We will see in the next section that the modular propertiethef: = —2 LCFT pre-
cisely support this picture. This theory admits a five dinemal representation of the
modular group. Furthermore, the rank of the fusion maNBZ = Nijﬁ is also five, i.e.
these fusion matrices have maximal r&hkThe dimension of the representation of the
modular group coincides with the number of distinct torugipan functions. Thus, the
dimension of théPSL(2,7Z) representation precisely counts the ways of writing distin
torus propagators. This is exactly what the different gobstate excitations are — formu-
lated in terms of a CFT description.

For completeness, we mention the five different ground statee functions. There is an additional trivial two-fold
degeneracy, which stems from the two completely filled Lanigzels of they = 5/2 state. It is incorporated in the
following formulae by the choice, p+ = 0, 1. We already computed three of these wave functions, nafelg (5.51),
¥, in (5.53), and¥; in (5.56). These results are recast here in the spinor oatalihe interested reader should check,
that both version do indeed coincide.

e C 3] | R0 ) CEFtS

A 7<i

(n+

S
=
=

Il

R e e e | CETRNES ) (CEPA
i,

(zi — 25)? o

2
U; = A ( (w02 = viuz) (1 = n-) o U3Z4 . ) H(zi — g )Pt H(Zi — )%,

7‘)

(21 =n4) (21 = m-) (22 =04 ) (22 =) (23 — 24)

i,+ i<t
PN Ty (u1v2 +viug) (21 — 22) (usva — vzua) (23 —n4) (22 =) +34)
Vorom = (s —1-) " A ((77+ —21) (n- — z1) (N4 — 22) (n- — 22) (23 — 24)? ' )
x [ = ne)™* [z — 2%,
= i<i
_ 1 U2V3 — VU3 oo T (s — 22
Wy = A (o ) [T o [T - 27

% i<t

In the above formula®f denotes the Pfaffian, and denotes complete anti-symmetrization. Furthermore,ribertion
points of the excitation operators indicated in the labékhe corresponding wave functions are the coordinates..,
respectively. Note that insertion of a second logarithr@tdfmakes it necessary to explicitly refer to the coordisnate
the first one. More details on this construction can be four{d®]. More recent works in the still ongoing investigation
in a CFT description of the Haldane-Rezayi state are, fomgte, [11, 102] and references therein.

The reader might note that the Haldane-Rezayi fractionahtjum Hall state is successfully described by a CFT
which is a ghost or spif0, 1) system withc = —2. This coincides nicely with the observation that the- 5/2 fractional
guantum Hall state is made out of spin-singlet pairs of ebad, i.e. anti-commuting spiji = 0 states. The full CFT
description should also account for the two fully filled Landevels. These should be filled by completely polarized
electrons, and indeed, the ghost or sp%m%) system withc = 1 precisely contains two free Dirac spin fields. Hence,
we not only have a “fit” of CFT data such as conformal weights eorrelators reproducing the Haldane-Rezayi state and
its excitations, we also have a natural geometrical intggpion for the particular CFT candidate, namely that iecliy
describes the correct spin system in the presence of a niadjet. The flux quanta of the magnetic field, which yield
the quasi-particle excitations with their fractional sttits, effectively amount to replacing the plane of therguan Hall
semi-conductor sample by a ramified double covering offithed to the effect of the flux quanta on the paired electron
singlet states. Each of the flux quanta can then be consideredbranch point. Thus, the Haldane-Rezayi quantum
Hall state beautifully connects experimentally obsergaiilysics, spin systems on Riemannian surfaces and logéeith
conformal field theory with each other.

13As the discussion in the next chapter shows, there are sieseptations, but only five of them are
linearly independent.
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6. Modular invariance

So far, we have considered CFT on the simplest possible slwelket, the cylinder, which
we have mapped by a conformal transformation to the purtitomenplex plane. In string
theory, the cylinder is the world sheet of one freely moviog+interacting closed string.
Interaction of several strings yields world sheets whiclghmibe any Riemann surface.
It is intuitive to use the genus of the Riemann surface as derarount, since it directly
corresponds to the loop order of the Feynmann diagram ofotheshergy effective field
theory, where the extent of the string becomes invisible.t&aero-th order, we have a
Riemann sphere with a number of tubes attached, one for &@ut) which interacts with
the others. To first order, we find a torus, again with a numbéulees attached, and so
on.

The tubes of the incoming and outgoing strings, if these aresidered to be oth-
erwise non-interacting, can be thought of asymptoticadlyrdinitely long and infinitely
thin spikes. In effect, these tubes can be replaced by prextf the Riemann surface,
where an appropriate vertex operator carrying the right erdom and quantum numbers
is placed. What remains is the non-trivial topology of theRann surface.

So far, we have described CFT algebraically by a set of higlveight statesh, h) =
®;,(0,0)[0), on which the left- and right chiral Virasoro algebra acts.the case of a
logarithmic CFT, we extended this to Jordan cells spanneskogral statesh; i, h;7) =
D 1,.0). i (0, 0)]0), of which only one|h; 0; h; 0), behaves as a proper highest weight state.
The question which naturally arises is which combinatiodnsugh ground states actually
occur in the CFT. If we know this, we have a complete charaaton of the physical
states in the theory, namely all the admissible ground stalies all their descendants
created by the generators of the Virasoro algebras, mihuslhktates.

Crossing symmetry, or equivalently duality, has alreadyegius some constraints,
but these were constraints for the complex plane only. Dfemiht Riemann surfaces
yield different constraints? And is it possible to have atlyeconsistent on any arbitrary
Riemann surface? The answer to both questions is yes, andlixsk&ich a bit of the
answer in the following. As a general result, one can showaftarge class of CFTs
that crossing symmetry of correlators on the complex plaree raodular invariance of
the partition function on the torus is sufficient to make thedry consistent on arbitrary
Riemann surfaces. This is one of the motivations why moduolariance on the torus is
often considered to be a fundamental requirement for CFT.

Interestingly, also condensed matter physicists are \awg bf modular invariance.
To understand this, first note that we usually consider ClRTeomplex variables and,
thus, automatically as Euclidean field theory. Time is themmonly interpreted as tem-
perature, and partition functions are well defined objebdisw, let us conformally map
the complex plane (with variable with the origin deleted onto a strip of width (with
variableu). This map is given by the exponential= exp(27iu/L). Itis a well known
technique in statistical physics to consider the system peradic strip, here with width
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L, and to introduce the transfer matrix

2m - c
T = ——(Lo+Lo——) ¢ .
eXp{ 7 Lo+ Lo 12>}
HereL, + L, serves as Hamiltonian, since this linear combination geasitime transla-
tions!* The additional term involving the central charge comes fthenused conformal
map. This map is not one-to-one, and introduces a confornahaly. The reader might
convince herself first that the stress energy tensor on theistrelated to the one on the

plane via

1
Twip(u) = —(27/L)? {Tplano@)zz Y

and then that Wit Tpjane(2)) = 0 one must havéTy,,(u)) = 5 c(2w/L)%. Hence, the
above mentioned shift in the transfer matrix.

The OPE of the stress energy tensor with itself tells us hewstiess energy tensor reacts to conformal transformatibns
is not an entirely trivial task to explicitly work out the traformation ofl’(z), but the result can be cast in the formula

)

T(z)dz? =T'(2")dz" + 1—C2{z/, 2}d2?,

where the so-called Schwarzian derivative of the map 2z’ = f(z) is defined as

f/// 3 f// 2
/ [ — _
{Z ’Z} - f/ 9 f/
The conformal anomaly mentioned above can now be compusilg b making use of the just given transformation law
of T for f(z) = —i£ log(z).
We may now further confine the system to a box of dizé/, with periodic boundary
conditions on both sides. Then the partition function ofsasystem reads

M _
Z =Z(L,M)=tr exp{—27rf(L0+Lo—1—02)} : (6.1)

A box with periodic boundary conditions has the topology @brus. The central obser-
vation is now that, since we deal with a Euclidean theorycend time are completely
symmetric to each other. It follows that in such a framewoghgsical sensible partition
function should satisfy/ (L, M) = Z(M, L).

More generally, one could consider a periodicity, wherergetiranslation byl/ is always accompanied by a space trans-

lation, generated by Ly, — Lo).'® Let us assume that this addition space translation i&’bfrhen the partition function
would read

M - N _
Z =Z(L,M,N)=tr exp{—27rf(Lo + Lo — 1—02) + 27rif(L0 - LO)} .
Introducing complex numbers; = L, wa = N + iM, 7 = wy/ws, One can rewrite this witly = exp(2xir) and

g = exp(—2riT) elegantly as
Z(r,7) = tr (qLo—c/24qL0—c/24) .

6.1 Moduli space of the torus

The reader should take care ttiat+ L, considered on the-plane, generates dilatations. Only in the
u-strip does it generate time translations.
150n thez-plane,i(Lo — Lo) generates rotations.
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As a general rule of thumb, one usually as-
sumes that all states in a theory contribute to
loop diagrams. This may be seen as a motiva- , .
tion, why we expect that it is useful to study CFT- |- . AL
on the simplest loop diagram, the torus. Essen- /
tially, a torus is a cylinder whose ends have been
sewn together. Mathematically, it is usually de-
scribed as the complex plane modulo a lattice.
Let the lattice be spanned by two basic lattice
vectors,w; andws. Then two points;, 2’ in the ,
complex plane are identified with each other, if "
there exist two integers;, n, suchthat’ = 2+ Figure 7: The upper half plane and the
niwi + naws. Since the overall size and orientamodular parameter defining a lattice, i.e.
tion of the torus shouldn’t matter (due to globabrus.
scaling, translational and rotational invariance
of the CFT), we may choose more conveniently one of the béseglaectors to lie on the
real axis with length one, starting at the origin, and theotan without loss of generality
be taken to lie in the upper half planeq~ ws/wq, Sm7 > 0. In effect, the entire lattice is
described by one complex numhbee H.

The key observation is now that the lattice, and consequéhd torus, does not
change at all if we replace by 7 + 1, since this spans the same lattice. Such a trans-
formation is called unimodular. In the same manner, thécktloes not change if we
replacer by 1/7, where we implicitly have to rescale the lattice, thougle @erall since
of the torus is irrelevant). Since ~ w,/w;, we see that-1/7 basically interchanges the
role ofws andw;. The group spanned by these transformatibns — 7+1,5 : 7 +— —}
is called the modular groupSL(2, Z) and is the set of alt x 2 matricesM = (“") with
a,b,c,d € Z anddet M = ad — bc = +1. The action of this group on is given by
M(r) = Z:IZ which explains why we restrict the sign of the determinard atentify
matricest M with each other (this is what the stands for:PSL(2,Z) = SL(2,Z)/Zs).

Since the torus does not really change und&ysd.(2, Z) transformation of its mod-
ulus 7, we should expect that a physical sensible theory does rastgehunder such a
transformation either, as we have motivated in the preogesiection. Thus we impose
as a condition on our (L)CFT that its partition function bedular invariant. In the fol-
lowing, we often use the variablgs= ¢*"'" andg = e~ instead ofr and7. A series
expansion iny, g is then an expansion around the point +ioco, i.e. where the torus is
more like a cylinder.

We so far have made elaborate use of the fact that much inwgoafdield theory can
be considered separately for holomorphic and anti-holpimorfields, or left-chiral and
right-chiral fields, respectively. Although one of the notrsce features of LCFT is that
correlation functions do not any longer factorize into méphic and anti-holomorphic
parts, we still can consider most entities in factorizearfpas long as we do not impose

1 Ret
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the physical constraint that observables should be sivagleed. This is particularly true
for the representation theory of the CFT under considerative call a CFT rational, if
it has only finitely many highest-weight representationsef, as Cardy observed a long
time ago, the partition function of such a ration CFT can bigtem as a sesqui-linear form
over the characters of these representations. Thus, dgribé finite set of representations
by R, the partition function takes the form

Z(r7) = > Naxa(mxi(r), (6.2)
h,heR

whereN,; is a certain matrix with non-negative integer entries. H#ve character of the
highest-weight representatidd; . is defined as usual,

Xn(T) = trag, gm0, (6.3)

and analogously fog; (7).

Since the partition function is modular invariant, the @taers from which it is built
must transform covariantly under the modular group. Tleeefin the present setting of a
rational theory, i.e|R| < oo, they form a finite-dimensional representation of the madul
group. As a consequence, the transformatinsr — —1/rand7 : 7 — 7+ 1 are
represented as matrices acting on the characters, that is,

x(-2) = 3 (). (6.4)
h'eR

Xa(T+1) = > T xw(r). (6.5)
h'eR

One of the most astonishing deep results in CFT is thaStheatrix fulfills a certain alge-
braic property, which on first glance seems to be pure magic Mérlinde [110] suggested
namely, that th&'-matrix also yields the so-called fusion rules, which eiaéiy count the
multiplicities of representations appearing on the rigintdh side of the fusion product of
two representations. The latter is, in analytical termeyjaed by the OPE, and might be
thought of as some kind of tensor product algebraically. aseenotation, let us arbitrarily
enumerate the weightse R ash;, i = 0,...,|R| — 1 with the convention that, refers
to the vacuum representation. Then, the seminal so-ca#dthde formula reads
rQriQ—1\k
[ha] * [hy] = zk: N ] with N = Z % : (6.6)

Although, the entries of th&-matrix may be very complicated algebraic numbers (made
out of exp(27ip) expressions withy rational numbers), thé@-f are always non-negative
integers.

In the following, our task will be to generalize this setupthe logarithmic case.
We will take an approach which on one hand tries to stay a®dsspossible to the
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generic case, but on the other hand does disentangle theomg@sable representations
and their irreducible highest-weight sub-representa®much as possible. The lectures
of Matthias Gaberdiel will follow a different approach, whiavoids many of the diffi-
culties we will encounter, but where indecomposable repriedions are only treated as
a whole, losing any backtrace of their inner structure. Irtipalar, our approach will
always keep the irreducible highest-weight sub-repregems with their corresponding
proper primary fields as valid representations to be seggriamicluded into the seR of
representations. The price we have to pay for this on firdttsigite natural approach
is that in order to account for the states from the full indeposable representations,
we are forced to generalize the definition of characters heybe immediately physical
meaningful.

Our explicit character formulas,-matrices and fusion rules will be worked out for the
series of pseudo-minimal models with central chargec,, = 13 — 6p — 611), which all
constitute LCFT$8 These models happen to be the best known LCFTs, with theplanti
prominent prime example of the ; = —2 theory which we already encountered several
times.

6.2 Thec,; models

In a work of H.G. Kausch [58] the possibility to extend theadoro algebra by a multiplet of fields of equal conformal
dimension has been considered. Besides some sporadimaslae found a series of algebras extended by a singlet or
triplet of fields of odd dimension which resembl&&(3) structure. The operator product expansion is given by

. 1 W@ ¢
Z(Wk Gom + Cannie’™ =08 é)l

wherec = ¢, 1 andA = 2p — 1. Note, that for the singlet algebra there is no term propoéi to the fieldV’. These CFT
posses infinitely many degenerate representations witgéntconformal weights

c

WD ()W (¢) = + descendant fields , (6.7)

hok11 = k*p+kp— k. (6.8)

These representations correspond to a set of relativedy éiwral vertex operators. But there is a peculiarity: Thergy
operatorL is no longer diagonal on these degenerate representdtiatris given in a Jordan normal form with non-trivial
blocks.

A standard free field construction [2, 20] shows that the degate fields have conformal weigltts, ,, = % +
Cp 171

51— Whereay,, , = m\/ﬁ—n\/ﬁ’l. The fundamental region of the minimal models unfortunageémpty:{m, n|1 <

m < 1,1 <n < p}=0. But without loss of generality we can reduce the lal§eisn) to the regiord < m,0 < n < p,
smceam n = —Q_pm, —pn aNdoy, n = amt1,ntp. Moreover, we have the following abstract fusion rules \Juhmsult from
the condmons for the existence of well deflned chiral vedperators [59]:

Forc =13 —6(p+p~!) with p € N, there exist well defined chiral vertex operators for triplef Virasoro highest
weight representations (@, n,+ P .nes Pms,ng) With 0 < m; and0 < n; < piff |m; — ma| < ms < m; + my and
|n1 — na| < ng < min(p,ny + nge — 1), and moreovem; + ma + ms — 1 =nq +ng +ng — 1 = 0 mod2.

The screening charges have a special meaning. Witk ap + /1 + o2 andad = (1 — p)?/4p the first of them
is given by

dz
01 2mi

Q = Voc+ (Z) )

where(; encircles the origin counterclockwise in the standard wayas trivial monodromy on the Fock spags »
of the free field construction on the weiglits, ,,, and therefore is by itself a well defined local chiral vertgerator

8As minimal models, these CFTs do not exist, because theiioomal grids (Kac tables) would be
empty.
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Q : §m,n — Sm—2.n- This screening charge is exactly responsible for the pleitstructure of the chiral fields. We have
Q™ = 0ong,, . The other screening charge (to the “powk)’is

Qk:/ d—Zl....di]?Vai(Zl)---Va,(zk)a

Qp 2mi 2mi

where the integration path is radially orderéd,| > ... > |z, and encircles the origin. It is well defined @, ,, iff

0 < k = n < p. QP vanishes identically 01 p- The BRST-identity ig)?~"Q" = 0, such that we have the following
embedding structure of Fock spaces (see [30 31]) inducdidebgxact sequence

Qv Q" Qv Q" Qv Q"
—>Sm 2n—’8m 1pn—>8mn—>8:m+1pn—>8m+2n—>---
The Virasoro modules are then given by, , = kergmen. The fieldsgar11,1 = Vase,r.r B € N, all have integer

dimensionshar11 = k%p + kp — k, such that one is tempted to extend the local chiral algepréném. Indeed, it
follows from the abstract fusion rules that the local chidglebra generated by only the stress energy tensor and ldhe fie
¢3,1 closes, since no other fields can contribute to the singwdrqf the OPE. The multiplet structure is obtained by

repeated application ap, W) = Q7¢5,. Indeed, this yields three fields with SO(3)-structure [58}d therefore a
W(2,2p —1,2p — 1,2p — 1)-algebra. With/ = 3~ W) we get the symmetric singlet algedra(2,2p — 1).
With the BRST-structure given above one can construct gxagt(regular) representations of the fully extended

chiral algebra by taking into account the multiplets getesthy theR-operatot’. Formally we can write these/-modules
as

oo 2j—1

n+_@@Q f)QJJrlna (69)

j=0 m=0
co 2j—2

oy = @ @ Q" H2j.n (6.10)

j=1 m=0

with 1 < n < p. The corresponding conformal weights &@re,, andh ,, respectively. ThéV-representations fai; ,

are singlets, the ones fax, ,, doublets. There also exist special representations fow#ightsh, ,, 1 < n < p. Their
highest weight vectors are singular vectorsgin,—,, which have thesamehighest weights. The corresponding chiral
vertex operators are degenerated. For instance, theresickeb the identity — 1 additional vertex operators of conformal
weight zero, which mag_,, to §1,,—1. Consequently, also the descendant fields of the identitylyeare degenerated,

in particular the Virasoro field itself. This forces the egisce of non-trivial Jordan cells fdt, i.e. Ly no longer is
diagonalizable. Moreover, the multiplicities of stateghe Virasoro modules must change. We have, in sloppy terms,
a p-fold degenerate identity, which will lead to a multipligiof p in the characters of the highest weight representations

ho,n.

6.3 Representations and characters
Let us assume that the Hilbert spages § is a direct sum of irreducible highest weight
representations (HWR) with respect to the chiral symmdgglaralV,
HeH=EPsY e s, (6.11)
AEA

Further we assume tha is maximal such that = A is the set of all)V HWRs, i.e. the
theory issymmetric We decompos&™ into Virasoro HWRs, the set of them we denote

with Ny,
HeH = (@ Ve P 555”) . (6.12)

AEA VEN) VEN)

1"The operators) andQ* generate four two-dimensional complexes of 1., one form even and
odd respectively, and one far= p andn # p respectively [59].
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A CFT is said to beational, iff |[A| < oc. Itis calledquasi-rationa] if A is countable and only finitely many terms appear
in each fusion product. The Cartan sub-algabia spanned by.q, the central extensio@' and the zero modes of the

simple primary fieldsy; € By, which generate th&V-algebra. We denote the highest weight state (HWS&);&ﬁ\f by
W) = e, h,,,wgk),wgk), ...) whereh € C* is the highest weight vector (HWV). A regular HWHy,, of a)V-algebra
to a HWS|h) = |c¢, h, w1, wo, .. .) is then defined to satisfy the following conditions:

Clh) = c|h),

Lolh) = hlh),

diolh) = w;|h) Vo; € By,

Lulh) = 0 ¥n >0,

dinlh) = 0 Ve € By and Vn > 0,
Mpy = UW)|h),

whereU (W) denotes the universal enveloping algebra/df Moreover, we call a HWR/,, Verma modulgiff the
sequence

V‘h> I M‘h> — 0 (6.13)
is exact for all HWRsMy,y. The Verma modul&/,,, has a natural gradation
Vi = @ Vi (6.14)
n€Zy

WhereVﬁi> is the Ly eigenspace with eigenvaléet n.

Let us now assume that there exist HWRs, whogeigenvalues differ by integers.
We must distinguish two cases. If the differentk of the L, eigenvalues of two HWRs is
always non zero, or the highest weights differ in at leastameponent, it still is possible
to diagonalizeL,, even if Ah € Z. Moreover, there are no logarithmic operators neces-
sary. The reason is that the differential equations for trdarmal Ward identities do not
degenerate in this case. This is different to the case of thdukar differential equation to
be satisfied by the characters, which is only sensible modtégers. Examples of such
rational CFTs with HWRs witlk\h € Z can be found in [32].

Therefore, we now assume the existence ef 1 > 1 HWRs such thah; — h; = 0
forl1 <1i,7 <n+1,i.e.we consider a LCFT. We already learned that we have tifgno
the definition of HWRs in the following way: The HWS is replddey a non-trivial Jordan
cell of L, of dimensiom: + 1, which is spanned by|h; 0) = |h), |h; 1),..., |h;n)}. We
then will call M (|h; m))o<<, alogarithmicHWR of a)V-algebra to the highest weight
Ly-Jordan cell of ranke + 1, (|h;m) = |¢, h,wy, we,...;m))o<m<n, If it Satisfies the
following conditions:

Lolh;m) = hlhym) + [hym — 1), m >0,
Lo[h;0) = h|h;0), (6.15)
biolhym) = wilh;m) +..., m >0, Vo, € By,

and otherwise the conditions of the original definition. Tugs in the last condition rep-
resent possible non-diagonal contributions. In additibare is in general no orthogonal
system of states within the Jordan cell, il; k|h; [) # 0 even fork # [. Since the other

properties of HWRs remain unchanged, it makes sense tod=rsich logarithmic HWRs

if the whole Jordan cell structure is taken into accountlierdefinition of)V-families.
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Next, we want to discuss the consequences for the charadienrssimplicity, we
consider a Jordan cell of forrﬁj }L) i.e. we have two HWSg/; 0) and|h; 1), on which
the action ofL, is given byLy|h;0) = h|h;0) and Ly|h; 1) = hlh; 1) + |h;0). The off-
diagonal element could be any non-zero number, since adoslledecomposition is just
one particular choice. The physical correct decomposititinbe fixed later by modular
invariance.

The HWS|h;0) is an ordinaryL,-eigenstate, such that the character of the corre-
sponding HWR should be defined in the usual manner. The othts, §; 1) is not a
Lq-eigenstate, application df, generates a new state, which also is not contained in the
standard Verma module. If we apply, once again, this state is recovered plus an ad-
ditional one, etc. Thus, the operatbg, acting on the Jordan cell, may be written as
Ly = (oLOij)’ where the second labglrefers to the Verma like modules on which the
L,.; operators act.

The character of a HWR on a HWB) is usually defined as

Xy (q) = trag,, g™/, (6.16)

whereq = exp(2rir) and the trace is taken over the module which is created bgracti
of U(W) on |h). Using ourL, matrix, and treating infinite series inin a formal way
without consideration of their convergence propertiesphain

[e.e]

Z (27’(’17’)” LO;O 1 "
n! 0 LO;l

n=0

Lo
q

_ i (2miT)" (L&O nL&El )n
~ nl 0 011
Lo;o i L0s0
qo0 2miTgm
= ( 0 gl ) ) (6.17)

Since formally27ir = log(q), we see that a non-trivial Jordan cell may generate logarith
mic terms in the character expansions. This is completedjogious to the logarithms in
the correlation functions of certain operators, which stemm the degeneracy of the con-
formal Ward identity differential equations: We obtain eésigally the same degeneracies
in the modular differential equations for the charactericl force additional solutions
with logarithms. We will continue to call modular functioormaininglog(q) terms char-
acters, although, strictly speaking, such functions domext all requirements one usually
imposes on characters. In particular, the formal serieamsipn of a character allows to
extract the multiplicities of states at a certain lexein a module from the coefficients
of the corresponding-th term in the expansion. This does not make sense for fumti
which are of the forn2zir ¢7 )" a,a”.

The careful reader may wonder, how the logarithmic tetoagq) = 27ir can show up in the characters. Usually,

traces (6.16) over modules are well defined, since the campligbert space is a direct sum of modules dngdcan be
uniquely restricted to one of the modules. Now/if has non trivial Jordan form, moduléd)y, ;, and My, are not
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orthogonal. Therefore, the characters depend on the chb&®asis of generating states, while the syl x|n.x) (¢)

is invariant under any base changek) = B¥ |h;1). Only this sum is a trace of a well defined restrictionyéf —¢/24
and does never contain any logarithmic parts. But the ckenrscan: For example change of the bds$ig 0), |h; 1)} to

{1h;0) = [A;0) + |h; 1), [h;0) = —~|h; 0) + | 1)} yields

1o 1 [ (1 —=2xir)gho0 + gFor (14 2rir)ghoo — glon
(1 - 27TiT)qLU‘0 — qLO:l (1 + 27TiT)qL0?U + qLO:l

T2

The generalization to larger Jordan cells is straightfodwa

However, in a mathematical rigorous framework, this is tiskectory. A character should have the interpretation
that it counts states at a given level. This interpretatie@arty is lost whenlog(q) terms are present. The lectures of
Matthias Gaberdiel (see also [41]) will follow a differeqtoach avoiding many of the mathematically disturbingeéss
raised in our treatment. We note that, for historical reasere call the modular functions calculated below character
although they do not all allow this interpretation. On thieesthand, one might consider torus zero- and one-pointifumst
in particular so-called torus partition functions. In ardiy rational CFT, these usually coincide with the charaaé&the
theory. This is no longer true for LCFTs, and we believe thatrhodular functions witltog(g) terms should correctly be
considered as torus partition functions rather than charsacWhat is striking, however, is the fact that the torusitian
functions do indeed coincide with characters calculatethffirst principles along the lines of [41], when a certainitlim
is taken, as will be described in more detail in the followirifven more puzzling is the fact that we can compute well
defined characters of the irreducible sub-representatibtie indecomposable representations which, howevat Miza
their modular transforms to modular functions without alwlefined interpretation as characters.

Since the characters of a CFT can be viewed as the zerofomictions on a torus
with modular parametet, they in general turn out to be certain modular functions seho
Fourier expansions around= +ioco are just thej-series. One of the most powerful tools

in CFT is the modular invariance of the partition function
Z(1,7) = (q7) " #1tr(grog™) . (6.18)

Since the patrtition function of a rational CFT is a quadrftdion in the characters, modular
invariance puts severe restrictions on the modular behatite (generalized) characters.
It will turn out that modular invariance uniquely deternsreebasis of HWSs within each
Jordan block and therefore all characters, i.e. that LCF& sianilarly constraint by mod-
ular invariance as generic CFTs.

We now fix some notations for the following. We will very ofteise the so called
elliptic functionsor Jacobi-Rieman®-functionswhich are modular forms of weight/2,
defined as

Oui(rT) =Y gV N e /2, keN/2. (6.19)
nez
We call A theindexand the modulusof the ©-function. TheO-functions obeyo, ; =
O©_ k= Oxyark, ANAO, ;. has, as power series dnonly even coefficients. We also need
the Dedekindy-functionwhich is defined ag(r) = ¢'/** [[,.n(1 — ¢"). The modular
properties of these functions are fork € Z

2U%—1
@,\,k(—%) =/ _2—}: €m%@,\/,k(7) , (6.20)
N=0
Ori(T + 1) = ™3O, 4(7) (6.21)
n(—1) = v—irn(7), (6.22)
n(r+1) = /12 n(T). (6.23)
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To prove these formulae, one has to make use of the Poissanmestion formula. The
functionsA, (1) = ©,x(7)/n(7) are then modular forms of weight zero to a particular
main-congruence subgrodfiN) C PSL(2,Z), e.g.N is the least common multiple of
4k and24 for k € Z.

As we have seen above, the (generalized) characters faittogac CFTs are func-
tions in the ringZ|[q]][log ¢]. Therefore we introduce the following additional functson

0 i 2
(00)rk(T) x a@m(f) = % Z(an 4 \)gZn N 4k (6.24)

nez

where we made explicit that new linear independent solstmfirdegenerate differential
equations can be obtained by a formal derivation of the degéa solution with respect
to its parameter. As long as modular covariance is not coeckrthere is no reason why
7 could not appear as a factor. We introduce the so-calfiae ©-functions

(00)x4(7) = Z(g;m N g(enN? Ak (6.25)

ne”L

which play an important role in the character formulee fa aﬂfﬁne@-algebra. They
are odd, i.e(00)_, = —(90), ;. Moreover, per definitionerw®),, = (90);, = 0.
Their modular behavior is

(00)u(~1) = (=ir)\ 32 3 ™ (90 alr).

(00) x4 (T + 1) = ™3 (90) 4 () .

(6.26)

Since they are no longer modular forms of weigh2 underS : 7 — —1/7, we have to
add further functions

lo 2
(VO)au(T) = Qii (2 + A)g(2hm (6.27)
nel

in order to obtain a closed finite dimensional representatiothe modular group. It is
clear thatS interchanges these two sets of functions, while 7 — 7 + 1 transforms
(VO)x INto (VO), . + (00), k. Therefore, the linear combination

(09)xk(T)(VO) (1) = (VO)sk(7)(00)3 4(7) = (7 — 7)|(0O) sl

is modular covariant of weight 1/2!

Of course, the modular differential equation (see below)abe degenerate of higher
degree, and one had to introduce generalizatiofi®), , and(V"0), . (the expression
(t — 7)™ is modular covariant of weight2n for all n € Z.). One can show [23] that reg-
ular rational theories with.z < 1 can only have one powey(7)n(7) in the denominator
of the partition function. Regular means that the charaaez modular forms.
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Now, the modular behavior of characters of logarithmic CisTalmost the one of modular forms, except the possibility
to expand into a power seriesqn In particular, the asymptotic properties needed in thefj23] are only affected in an
analytic way by logarithmic corrections: In fact, althoubk modular differential equation makes only sense foriqaer
isolated points in parameter spa¢e,h;, hs,...) € @ C*, where the corresponding CFT is rational, it can be regarded
as a differential equation depending on continuously eigarameters — once it has been written down. The chasacter
of our theories in question are solutions of certain deggranodular differential equations, obtained in a uniqug wa
by analytic continuation. Therefore, we conjecture thatrisult of [23] should also hold for logarithmic rational T
Thus, we should only be concerned with= 1 in our case.
We conclude this introduction of the general setup with aasdnon the classifica-

tion of rational CFTs. Whence the finite sBtof representations and their characters is

known, a particular finite dimensional representation efrtftodular group is fixed in terms

of multiplicative systems of modular functions (such the thatricesS and7” have con-

stant coefficients). The definitions of multiplicative srsis of modular functions given

above were all cooked up from ratios of modular forms of weigt2. In particular, the

denominator was always chosen to be the Dedekifuthction. It is possible to relate the

maximal power ofp-functions in the denominator of a character to the effectiumber

of degrees of freedomg of the CFT. Now, ifc.g < 1, this power is at most one such

that the numerator can only be given by a modular form of weigh. In this case, the

Serre-Stark theorem provides us with a complete set of aipte such forms. It turns

out that they are all of the type (6.19) together with one otyyge, namely
Oni(T) = D _(—)mqn N X ez/2, ke N/j2.

nez
There are no other linearly independent modular forms ofjtatgi/2. This theorem forms
the basis of the complete classificatioratifrational conformal field theories withg < 1.
These are the = 1 Gaussian models at compactification ratiii? = p/p’ € Q, the
minimal models, and the = 1 — 6k, k € N series [32]. The = 1 theories were first
classified by P. Ginsparg. The completeness of this claaBditwas proven by E. Kiritsis
using the Serre-Stark theorem. In essence, one formulates sonditions for a potential
partition function of a rational CFT to be physical sensedud. that its Fourier expansion
aroundg = 0, i.e.7 — +ioo, has non-negative integer coefficients, that the grourtd sta
has multiplicity one, etc. These conditions are then cheédke arbitrary finite linear
combinationsZ = ). Z[z;], z; = p;/p; € Q, of the basic modular invariant entity

2pp’ —1

ZIp/¥) (¢, 3) = m 3" O (0O (@)

Here,\" is given in terms of\ in the following way: Fomp, p’ coprime, there exists always
a representation = rp — sp’ mod2pp’ with integersr, s. Then the value\’ is given by
N = rp+ sp’ mod2pp’. The physical conditions restrict the possible linear corations
to a surprisingly small set of a few series. Besides the knsglations yieldinge = 1
rational Gaussian models or the minimal models, Kiritsignid one further possibility
for a series of physical partition functions, which coulditbentified with a series of non-
unitary rational CFTs by the present author. Modular iraatrpartition functions for = 1
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models and for the minimal models have a beautiful classifiogattern resembling the
A-D-E-classification of finite subgroups ¢fU(2). For the minimal models, this was
shown by Cappelli, Itzykson, and Zuber (their work, as wsltlge classification of = 1
models by Ginsparg, can be found in [55]).

On the other hand, we are going to show that the logarithmi€sG# thec, ; series
are at least very close to rationality, and they also have-= 1. In light of the Serre-Stark
theorem, it is a surprising and unexpected result that thisrelass of CFTs exists. Their
existence does not contradict Serre-Stark. In our apprbattw, we allow characters
which do not have a homogeneous modular weight such thattthasforms include un-
physicallog(q) terms (which we have to get rid of at the end by a limiting pchae). The
approach in the lectures of Gaberdiel does not violate S&aek either, since he obtains
results which coincide with characters and partition fiore of certainc = 1 models. It
should be emphasized in this context that a set of charaatetsheir partition function
does by no means fix an underlying CFT uniquely. LCFTs are tecpéar strong example
for this, since their inner structure is very different froine c = 1 models with equivalent
partition functions.

6.4 Characters of the singlet algebra3V(2,2p — 1)

We are now going to derive the characters ofdhe models viewed a¥V(2, 2p — 1) algebras. In particular, we will show
that the singlet models/(2, 2p — 1) are not rational since the chiral symmetry algebra is todldimathat.

The additional primary field of thiV(2, 2p — 1)-algebra is just the symmetric singlet of the2) triplet of primary
fields which generate the/(2,2p — 1,2p — 1,2p — 1). One way to obtain the characters is to explicitly calcutae
vacuum character and then get the others by modular tranafmms. From the embedding structure of Virasoro Verma
modules for the values= ¢, ; of the central charge [28, 29, 30, 31] we learn that the Viasbaracter for the HWR on
|hont1.1), n € Z4, is given by

g(1=0)/24
(qh2n+1,1 _ qh727171,‘1) ) (6.28)

Vir
X2n+1, 1(7) = n(7)

Therefore [32], the character of th&-algebra vacuum representation is

Vir
E X2n+1, 1

neZy

(1—c)/24 12
q (@pntp—1)7
=y o seme (6.29)

nez

where we definedgn(0) = 0. It is convenient to rewrite the signum functionsgs(n + %). This character seems (up
to the signum function) to be quite similar to the classiadR)-O©-function©,_; ,(7,0,0) divided byr. Note, that the
classicalsu(2)-0O-functions®, (7, z, u), coincide forz = « = 0 with the elliptic functions defined in (6.19). They are

the building stones for the characters of #hé2) Kac-Moody-algebra. We therefore define

Enm() = Y sgn(k)g™ . (6.30)

k€Z+ 5=

But the modular transformation behavior is quite differfieom (6.20), while the presence of the signum function dass n

change the behavior undét, =, ,,,(t + 1) = exp(iw%)Emm(T). In order to get the behavior und&r we rewrite the
functionsz,, ,,, as linear combinations &, ; functions. For this we introduce

7271'1yp

o(z,y) = ilir(l) \/_/ P — eiip””) dp, (6.31)

o p+1€2
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such thatr(x,0) = sgn(z). In the following we omit the obvious limiting procedure. \filed

Enm(m) = Y o(k,0)g™"

keZ+ 5=
_ Z / 27rikp _ e—27rikp) qu2 (6.32)
k€Z+ 2771 27T

= \/_/OO dp nm Tp,o)_(an,m(Tv_pvo)) .

Therefore, by linearity of th&-transformation, we can write

En,m(_%) =, ,/‘” S sin ) (), (6.33)

n’ mod 2m

whereZ,, ,,, is given by

= 1 2 —mT -
Snm = Z o(k, —%)q M= Z erf( pp k)q kL (6.34)

kEZ+ 5% kE€Z+ 5%

Here, erf(z) denotes the usual Gauss error function up to normalizatitmderive the last equality, one has to use
the scaling invariance of the integral meas&zfe Although the set of functiong,, ,,, and=, ,, closes under thé&-

transformation, they do not form a representation of theriddular group, since thémm do not close under'. This
means that they do not have a good power series expansipmwith integer coefficients and powers which differ by
integers only. From this follows that the modular group feram infinite dimensional representation by repeated aofion

T on En,m. Therefore we conclude that th& (2, 2p — 1)-algebras do not yield rational CFTs.

Similar to the case of the elliptic functior®, ., one may introduce additional variables which correspand t
additional quantum numbers. For example we could write

Enm(T,2) = Z cr(k,z)quz. (6.35)

k€Z+ 5%

The variable: could belong to the eigenvalue of the additional eleni&pnbf the Cartan sub-algebra, actually to its square,
since only the latter can be determined. From the transfoombehavior of theu(2)-©-functions [57] we get

min?
Enm(T+1,2) = e2m Ep (T, 2), (6.36)

Emm(—l,ZT 2 \/_IT Z sin( 27r—)un m(T, 2). (6.37)
T m

n’/ mod 2m

Indeed, this set of functions forms a finite dimensional espntation of the modular group. But the presence of an
additional quantum number indicates that the chiral symyradgiebra is not yet maximally extended. Some further réshar
on this may be found in [38, 39].

6.5 Characters of the triplet algebrasiV(2,2p — 1,2p — 1,2p — 1)

We now view thec, ; models with respect to their maximally extended chiral syatrgn
algebra, which we briefly mentioned in some small-printHartup. The typical recipe
is ti construct theyV-characters by summing up the Virasoro characters of degtne
representations whose highest weights differ by intederaddition, we have to take care
of multiplicities coming from theu(2) symmetry. Using the isomorphism between fields
and Fourier modes which span the Hilbert space of the vacepnesentation, one easily
can show that the multiplicity of the Virasoro HWR @1 1) is 2k + 1. In particular,
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the multiplicity for ks ; = 2p — 1, the dimension of the additional primary fields, is 3 as it
should be. The Virasoro characters are due to Feigin and[2@ks

1 1
Xaie11 = oD (q'2enr — o) (6.38)

since there is precisely one singular vector in these reptasons. The vacuum represen-
tation of the)V-algebra is then the Hilbert space

=P Ek+1H5r . (6.39)

|hor41,1)
keZ4

Therefore, the vacuum character is

Xy = Z (2k + )Xo

kGZJr
g(1-e)/24
= D 2k 4 D)ghrrt =N " (2k + 1)gt-@mens
g(1-e)/24
— D 2k + 1)ghrt 43 (2K 4 1)gh-e (6.40)
n(a) \i= et
1-p)2/4
— M 2(2]{; + 1)ql(= @k 1)p)*~(1-p)?]/4p
n(q)
1 2
- Z(gk + 1)qPPhtr=1)%/4p
n(q) £
This can be expressed in terms@ffunctions and affin®-functions as
1
XE)/v = () ((00)p-1,p(T) + Op—1,(7)) - (6.41)

But now we are in trouble here, since only the functidng = ©, ;/n are modular forms
of weight zero, while the term@A), , = (909), x/n have the modular weight 1.

Let us consider the modular transformation behaviqodf) , ,, underS and7". From
(6.20) we get the relations

(OM)ax(7 + 1) = exp <2m (ﬁ - 2—14)) (OM)ar, (6.42)
(ON) s (—=) = (—ir) \[ > sm< AX) CINY (6.43)
<k

Note the occurrence of a termwhich cannot be written as a power series.iWe define
(VA)ax = —7(0M) 1, Which have the modular properties

(VAQAr(T+1) = exp <27Ti (i_k - 2—14)) (VA)ar — (OA)ar) (6.44)
(VA)si( \f 3 sin (“A/) CINTS (6.45)
1<N<k—-1
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It is remarkable, that th&-transformation is no longer diagonal. In some caseshthe
values of the allowed HWRs are explicitly known. These ®Wé2.3,3,3) atc = —2,
with the only possible highest weighis= {—1/8,0,3/8,1}, andW(2,5,5,5) atc = —7,
which has HWRs forh € {—1/3,—-1/4,0,5/12,1,7/4} only. With these data one can
solve the modular differential equation to find the chanacterhe result is up to base
changes the same.

The modular differential equation is a condition which miistsatisfied by any finite dimensional representation of the
modular group in terms of forms. One introduces the so-@atiedular covariant derivatiotod,

1 1
COd(S) = —(97— - =

o 2°C2(7)

which increases the weight of a modular form by two. He&Fe,denotes the second Eisenstein series (whialbisa
modular function). Using the abbreviation

Di = COd(gi_g) .. .COd(g)COd(O) s

and some reasonable assumptions on the asymptotics ottdrarahe modular differential equation foreasimensional
representation of the modular group takes the simple form

Zq)”(n-ﬁ-l)—d—QkaXi =0, 1<i<n,
k=0

whered = 12(3""_, h(i) — nc/24). Thus, the equation depends on the conformal data, i.e ethieat charge: and all

conformal weightg:(¢) of then representations. The coefficiedis must be entire modular functions, i.e. must be given
in terms of Eisenstein series,

(I)n = Z anyl(G4)k(G6)l.

k,l€Z
4k+6l=n

Since there is no modular function of weight two, there cand@,, and for completeness one defigs= ao to be a
constant. Usually, the equation can used to infer the poerg@sexpansion of unknown characters, if the central earg
all conformal weights, and at least one character asynugstatie known. However, if it happens that two characters have
the same weight;(i) = h(j) for some pair # j, the equation degenerates (as every differential equédten), and pure
power series ansatze are not sufficient to get all solutions

A more precise exposition of this technique and all the aggioms one has to make on the characters is, unfortu-
nately, beyond the scope of these notes.

We would like to recall that one can formally read off the pbkesrepresentations
from the conformal grid of minimal models in the following waTlhe possiblé:-values
of a minimal model withe = ¢, are given byh,, = #=#=0=0" with 1 < 7 < ¢
andl < s < p. One obtains thé-values for ac, ,;-model including all inequivalent
representations to the same highest weight from the comfloyrd of ¢, 5.

For simplicity, we concentrate now on the case —2, i.e.p = 2. We first assume

the usual form of the characters,

Xi = q" Y “bud (6.46)
=0
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whereh; is given byh, ; = 12‘2”3% Solving the modular differential equation yields
up to multiplicative prefactors the characters

X2 = Moz,

X3 = A'Ny o+ B'(0A)1 2, (6.47)
Xa = Moo,

X5 = %Al 2~ %(8/\)12

Therefore,x, x3 andys are linear dependent. if; is supposed to belong to the vacuum
representation, its coefficient ¢p must vanish, i.eb,; = 0. This forcesA = B =
1/2, if one also require$, , = 1 (which essentially means that the vacuum state is not
degenerate).

We now need one further, linear independent solution. Weenttadk ansatz

s = log(q)q"/"*> " bsuq'. (6.48)
=0

Inserting this into the modular differential equation, vet g
X3 = (VA)12, (6.49)

where we define the characters as functiong,ine. (VA)y, = —%%(9A), ;. Please
note that we always mean byg(q) the branch of the logarithm given [rir. Indeed,

our result is exactly the same as what we got from the exmlatulation of the vacuum
character and it§-transformation.

We collect our intermediate results: The LCFTs with ¢,; = 13— 6(p+p~') and
chiral symmetry algebrav(2,2p — 1,2p — 1,2p — 1) admit precisely3p — 1 HWRs with
highest weight#, ;,1 < s < 3p — 1. Of them2 - (p — 1) HWRs have pairwise identical
highest weights, furthes — 1 highest weights differ from these pairs by positive integer
which are the levels of the corresponding singular vectérbasis for the characters is
given by (;~* times) the function$®, ,, (90),.,, (VO),.,10 < A\, u < (2p—1), u # 0, p}.

To distinguish the representations with identical confarmeightsh, we denote one of
them a[h], the other agh]. The S-matrix has determinant one and satisfi@s= 1, which
one may expect, since— —1/7 is an involution. We already noted that the functions
(VO),., lead to a non diagondl-matrix. It decomposes into blocks similar to Jordan cells,
but which also mix characters whose corresponding highegihis differ by integers.
Nonetheless, this matrix satisfies together with$hmatrix the relationST)* = 1. This
condition is very important in order to have modular invage of the CFT, and resembles
the associativity condition of the OPE.

But what are the “physical” characters? Note that due todhethat many conformal
weights differ only by integers, the characters are onlgeined upto linear combina-
tions among such characters whose formal expansions haveathe fractional overall
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power modulo one. The question will be answered by enforainoglular invariance of
the partition function. From our discussion of the modulaperties of the characters we
know that the following expression is modular invariant:

2p—1 2p— 1
Ziog D] Z |@A7p|2+az (00),,(VO): , + (VO),,(00)) , (6.50)
u#p

wherea is a free constant. The normalization of the parZgf[p] independent o results
from the requirement that its expansion must have integefficaents only to be physical
relevant. Furthermore, the coefficient yielding the muiltipy of the ground state should
be as small as possible, preferable one. Note that we campaise such a condition
on « since this part of the partition function is not a power srieq, ¢ which could be
interpreted as yielding multiplicities of states in Vermadules.

The task of finding the linear combinations which yield thggibal correct characters is not trivial. Even in the sinsple
¢p,1 model, thec = —2 theory, we only know two characters for sure, namely theattars for the twist field sectofs%]
and([2]. The reason that we know these is simply that the functio®) » and consequently als67©), . vanish for

A =0, k. That leaves us only with ;, anddy, .. The same holds for al}, ; models, meaning that only the two characters
to the sector$h; ,] and[hq 2,] can be fixed a priori. All the other sectors of the= —2 theory have conformal weights
differing by integers, allowing arbitrary linear combiitats among the function, ., (90) x, (VO),  for fixed A.

One needs some knowledge about the different represerdatiohec, 1 models. We know that all sectors besides
the two twist sectors come in triplets. The following picwrithin the Kac table emerges

h = h +s
1,2p+s 1,s
b T
h h h h h h h h h h h
1,1 1,2 1p-1 1p 1,p+1 1,2p-2  1,2p-1 1,2p 1,2p+1,2p+2 1,3
\&/—// +

hl,s = h1,2p—s
We will denote the characters for the representatigag], 1 < s < p, asx;p. These shall be the characters to the
irreducible sub-representations contained in the Jorttaokb. The characters to the representatigns,+s]. 1 < s < p,
are caIIedX;p = X_s,p- Note thath; 2,15 = h1 s + s. Finally, we introduce for the remaining set of represeoiet
[h1,2p—s], 1 < s < p, the characterg; ,. We know for these LCFTs that the representations of théetggh, s =
hi,2p—s, h12pts) are linked with each other [48, 104]. They come from one Jotolack built from a primary state
|h1 s) and its logarithmic partngh, 2, ), and another indecomposable block built on a highest-visigite| 1, o

which also contains a logarithmic part. However, we don'dl fsomething for it in the Kac table. On the other ﬁand the
logarithmic state of this second module is not independemnt the logarithmic state of the former Jordan block.

A deeper analysis reveals that the charactersshould be split into two parts/2xs,, = )Zj,p+>2;p. The so-called
guantum dimension of the origingl , character is zero, being the sum of the quantum dimensiotieaplit characters
Xsi,p- This procedure is well known in the theory of quantum groupéenever the quantum deformation parameters
become roots of unity, additional so-called exceptionptesentations appear in pairs, whose quantum dimensiehs ad
up to zero [46]. In fact, every rational CFT has an underlyjugntum group structure, and as it happens, one of the
corresponding quantum deformation parameters becomes@lsel = exp(2wi(p/q)) for the ¢p,q Minimal models with
g = 1. It can be shown that this exceptional quantum group strachanifests itself in the CFT itself, and suggests the
above mentioned split of characters.

Armed with these rather involved results from more advaralgdbraic insights, we make the following general
ansatz for all characters:

1
Xap = E [ pOxp + Brp(0O)xp + 1 p(VOApl, —p<A<p, (6.51)
3 1
XE, = - [0 O0up + B, (00)up + 75, (VO)up] » 1< A<p. (6.52)
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The first set also includes the characters for the two twimtaEentations, since the affi@efunctions vanish foi = 0, p.
One may now write down an arbitrary sesqui-linear combamatif these characters and check whether it takes the form

of the partition function (6.50) for some. This determines solutions for the coefficieats,,, ozfp, e

We also mention that a completely different approach isiptessand will be presented in the lectures by Matthias
Gaberdiel. In this approach, one does not consider chasdotethe irreducible sub-representation of the indecosapte
representations separately. This avoids many of the difisuwith log(q) terms, singulaiS-matrices and fusion rules
with negative coefficients. However, it looses all inforioaton the inner structure of the indecomposable repreensa
This is the reason why we stick to our approach, despite itsyrdéficulties.

Since the complete deduction of the correct physical baskarficters is quite lengthy
and involved, we can only quote the result here. The indussneader might try to recover
it by making a suitable ansatz (as described in the abovd pnirat) and then ensuring all
conditions from physical requirement. These conditiors for example, that the parts of
characters, which are pure power series, must have noriveegdaeger coefficients, that
the sesqui-linear combination must reduce to the form {@&@0someq, that the sesqui-
linear combination may only combine characters with eabkmtvhose fractional overall
power are congruent modulo dfiethat the sesqui-linear form must have non-negative
integer coefficients only, and so on. We finally note that wkatimpute the character for
the SL(2, C) invariant vacuum representation explicitly in (6.40), efhimay be used as
additional input fixing one further character a priori. Or&gcin principle, also compute
the characters of other representations from first priesiphand it is often helpful to do
so for the first few levels. This has been accomplished in $91,104], and the results
suggest the following general form of the characters:

1

Xop = 590,17, (6.53)
1

Xpp = ~%pp> (6.54)
7
1

Xip = 5o [0 =10 + (90D (6.55)
1

X):p = [)\@)\,p - (a@))\,p] ’ (656)
P

i 1 _

Wy = 5 [Orp +1aA(VO),] (6.57)

1 ,

Xow = 5 [Oxrp —ia(p = A)(VO)r,] , (6.58)

where0 < A < p. The conformal weights are (in the same orde(), 1)1 ,, 2(p, 1)1.2p,
h(p,1)p—x, h(p, 1)3p—r, @ndh(p, 1),+r. The last set refers to boﬁfp characters together,
which incorporate the effect of the logarithmic operatodl. the “non-tilde” characters
are free of anylog(q) terms and have an immediate physical interpretation. They a
the characters of irreducible representatifing,] The x characters cannot be considered
as characters of representations in the usual sense, butlvdeEmote the corresponding

181 two characters are given as= ¢”[3_, .7 anq"™ +10g(q)(. . ), X' = ¢°[> ez bug™ + log(q)(. . .)]
with p, o € Q, they are congruent modulo onepit= ¢ + ¢ for an integer.
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modules which could be associated to the power series pénegf characters b)ﬁzm].
One easily sees that the partition function

p
Zlog [p7 OZ] = ‘XO,p|2 _'_ ‘Xp7p‘2 + Z [X)tp)’&}tp _'_ X;tpjz;tp + X;7p>2)_\7p + X)_Hpj&;,p] (6'59)

A=1
1 ¢ . \ ;
- nn* {|@0,p|2 + |@p,p|2 + Z [2|@>\,p|2 +la ((a@)&p(V@))\,p - (a@)A,p(V@)Am)} }
A=1

is modular invariant for alk € R and coincides with (6.50). Notice the important fact
that the partition function remains modular invariant ef@na = 0 and then equals the
standard: = 1 Gaussian model partition functidf(+/p/2). This in particular means that
we have a modular invariant partition function even in theecevhere the characters do
not form a closed finite dimensional representation of theuer group by themselves.

However, if we wish to compute ast-matrix from this set of characters, we run into
the problem that the full set is not linearly independentoider to find theS-matrix we
have to forget about the split of tigecharacters. Thus, we choose as linear independent set
{Xo0p: Xp.p Xi:\,;lﬂ [(p+2—=A)X},+(A—2)X; ]} The resultings-matrix, and therefore also
the fusion rules [110], depend on the valuenofClearly, theS matrix becomes singular
for « — 0, but it turns out that the fusion rules remain well definede Timesa — 0
just puts several of the fusion coefficients to zero. One tawdhat in general only the
fusion rules in the limitvx — 0 are consistent and integer valued.

As an example let us again consider the casec,; = —2. TheS matrix reads

4 1 1 1 _ 1
20 4 2« 4 4o
1 41 5 0
Sew)=| —2a 172 ~1 1a (6.60)
-1+ -1 1 0
201 20 =1 0

The S-matrix S, ) in general is neither symmetric nor unitary, which is a rekabte
difference to the case of generic non-logarithmic ratioB&IT. But at least it fulfills
S(Qp’a) = 1. The general expression for tt#ematrix is cumbersome, but can easily be
obtained from the explicit form of the characters in term®p{00), and(VO) functions

(cf. egs. 6.53-6.58) and the known modular transformatedrasior of the latter (cf. egs.
6.20, 6.26, and 6.45).

In order to compute the fusion rules, we will use a modificatd the Verlinde for-
mula (6.6). SinceS(, ) depends onv in a continuous way, we cannot expect that the
fusion coefficients are independent@f On the other hand, the characters don’t have a
physical evident meaning, as long lag(q) terms are present which, however, are nec-
essary to get a closed finite-dimensional representatiderutne modular group. Thus,

we define fusion coefficient¥’; 7 () according to the Verlinde formula with respect to the
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S-matrix S, ), and then take the “physical” limit

N} = lim NF(a). (6.61)
So far, so good. This procedure yields integer valued fusitas, but unfortunately some-
times negative signs. Moreover, since the set of charalbtssmes linearly dependent in
the limit« — 0, the right hand side of the fusion rules is not necessarilgualy deter-
mined. Care must be taken in interpreting the right handssislace we may have charac-
ter identities which translate to relations among the regméations. For example, we have
for a = 0 at least thaR[h(p, 1)1 p—»] + 2[A(p, 1)13p-2] = [A(p, 1)1p+2], 0 < X < p, €.0.
the relation0] = 2[0] + 2[1] in thec = —2 theory. The fusion rules now read

&
|
=)

0] * | 3 1
1 1 5 (5] = [1] = [—5],
4« [ =202 =0, & L
. - _ {10 =203+ 20,
{_ﬂ . %]] _ [23[?] A1 =1 [1] « [1] = [0], o (6.62)
S b e [ [0) = 0]+ ap) - 0] = .
R R I < e
By =20 o=, O 0= s0lEsi=40

We see that one negative sign occurs. Not accidentallyppéas where the only “rep-
resentation’{0] whose character hasleg(q) term appears on both sides. Recall that for
a =0, the charactersf2 coincide. We can reintroduce the split representatjpfisback

into the fusion rules by hand. This yields the following nfaxitions

S =01, s @H =07,
S [3) =07], 0%« [0%] = 20%] +2[07), (6.63)
E e [E] = [0, [0%] * [07) = 2[0%] +2(07].

To see this, one has to make an ansatz where each occurébids céplaced by eithef*]
or [0~] (if [0] appears with multiplicity: > 1, then this is to be replaced by [0]+n_[07]
with n_ + n_ = n), and check that associativity of the fusion rules is sa&iikfit makes
sense to considéd] to stand for the complete indecomposable representatidn 00,
while [0~] stands for the indecomposable module with/ihe 1 primary. As explained in
[41], these two modules are equivalent, which nicely agwaisthe fact that our charac-
tersf(f2 coincide forae = 0. Although it is cumbersome to insert the split represeoiesti
by hand, our approach has the advantage to be able to distmigetween the two equiv-
alent indecomposabel representations. This holds alsartrthe generat, ; case, where

this has to be applied to all the triplet&(p, 1)1 .|, [2(p, 1)1.2p—r]s [R(Ps 1)1.2p4+])-

6.6 Moduli space ofc, ; LCFTs

We have seen that the modular invariant partition functigp, o] of ac, ; model (6.50)
has a part which is independent®f The approach of [41] yields precisely this part, i.e.
concides with our approach far= 0. This part is well known, it is nothing else than the
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partition function of the CFT of a single free boson comdadion a circle with radius
R = /p/2. Itis customary to denote the free boson partition funchigr (R), but we
will chose the slightly different notatio®[2R?]. The benefit of this will become clear
below. For completeness, we note that

2(R) = 7R} = L 3 ghnen/m? ghimi o/
nn monel

which for2R? = p/q € Q may be expressed &g7) ' times a sesqui-linear form iy, ,,
functions. The partition functio (R) is also called the standard Gaussiai) partition
function. -

The case = 1 is trivial, there are no logarithmic representations. [juist s1(2),
the simplest non-abelian infinite dimensional Lie algehka, with ¢ = 1. In particular,
Ziog[l] = Z][1]. This means that our logarithmic CFT reduces to the Gausshatdhe
multi-critical point of radiusl/v/2. But R. Dijkgraaf and E. & H. Verlinde [19] have
proven that there aneo marginal deformations, which can lead out of the known miodul
space ok = 1 CFTs. There is one field of marginal dimension,,_, with hy, ; = 1,
which belongs to the (extended) conformal grid of sectioihce the first label is even,
it has vanishing self coupling, which is necessary for a inatgperator to be integrable.
But this field does not exist fgr = 1, since all fieldsp, ; with » = 0 or s = 0 decouple
completely from the physical Hilbert space due to annilulatoy the BRST operator.
Thus, we indeed cannot go from the moduli space of regutand CFTs to the logarithmic
CFTs withc,g = 1 via marginal deformation®. If we finally note that the partition
function (6.50) also allows non diagonal decompositioreshave the following statement:

The moduli space of logarithmic CFTs witlyy = 1 is generic one dimensional and
not connected to the moduli space of regularx 1 CFTs. The partition function of a
logarithmic CFT is for(p, ¢) = 1 given by

1
Zioglp/d] = % |X0,pq|2 + |qu7pq|2 (6.64)

+ Z (XIPQX:;,P(] + XIPQX;’;,I?Q + X;Pl]i;ﬁl’q + X;P‘]X;JNI) ’
1<s<pg—1
wheres = pn — ¢gm mod2pq impliess’ = pn + gm mod2pyq.
The connected part of the moduli space:Gf 1 theories has an exact copy of loga-
rithmic theories in the following manner: First, one writes

Zioglt] = (1 + Q—fﬁ) Z[x], (6.65)

19The so-calledffectivecentral charge is defined agr = ¢ — 24y, for a rational CFT. Heré,,i, =
min{h|h € R} is the minimal eigenvalue af,. For unitary theories;eq = ¢. For non-unitary theories,
wherec < 0, is ceqr always> 0. Thec, ; models all have.g = 1.
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which by the way define&,,[z] for arbitrary, not necessarily rational In the same way
we obtain the partition function of tH8,-orbifolds of the logarithmic theories by applying
(14 229,) t0 Zon |2,

(1 N 2_9{2§) Zla] + <1 + 2—y.22> Zy]

The correspondingV-algebras, which exist at points of enhanced symmetry goal®
to the regular case, are the following: T..[p],p € N belongs aW(2, (2p — 1)®?),
whoseZ,-orbifold contains aV (2, 6p — 2), the Z,-orbifold of W(2,2p — 1) where the
singlet field is given byV = W, + W, + W_ and the orbifold is obtained by identifying
W with —W. Since the structure constaft]’,;; does not vanish for the triplet, tH#,-
orbifold of the triplet should be given by the identificateo, <« —W,, W, < —W_,
andW_ « —I¥, such that one field, e.§’ = W, — W_ survives. The orbifold would
then be aV(2,2p — 1,6p — 2). If p is a complete square, = n?, these algebras can
be extended by a field of dimensién,,. ;1 = p(n* +n) —n = n* + n®* — n. In the
same manner one can write down the logarithmic analogs ahtiee exceptional = 1
partition functions. Settind, = %&C, the exceptional logarithmic partition functions
simply read

Zlog,orb [JI] =

N

y=4

/2. (6.66)

1
Zrog,ps = 5 > (14 D.)Z[a] - 2[1]) , (6.67)
ze{4,9,9}
1
Trog, 5 = 5 > (14 Da)Z[x] - 2[1]) , (6.68)
z€{4,9,16}
1
Trogps = > 1+ Da)Z[x) - 2[1]) . (6.69)
z€{4,9,25}

In this way, the fulle = 1 moduli space is recovered in the “logarithmic” regime. Ther
are no other linear combinations possible, since the ngarithmic part of the partition
function has to satisfy the usual requirements to be phiygtavant, which only yield the
knownc¢ = 1 solutions.

Of course, there could be higher powers of logarithmic terAisexpressions of the
form (3_,cz, a.Dy)Z[z] are modular invariant. Fortunately, as mentioned abovs, th
presumably cannot happen for theories with < 1 (see also last ref. in [32]).

We conclude with a remark oN = 1 supersymmetric theories. The explicit known
examples as well as the general results on the modular pieperf characters make it
clear thatV = 1 CFTs will have the same structure. One finds again logarithh@ories
(with c. = 3/2), which have a completely analogous representation tha@tig analogy
extends the similarity of the representation theory of fhesaly knownN = 0, 1 rational
CFTs [32]. Some works dealing witN' = 1 supersymmetric LCFTs are [62, 63, 87] But
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as already observed in other cases, such results do nodexién = 2, since there no
rational like structure can be found for non-unitary thesrilt remains the conjecture that
for N = 2 rationality of a CFT implies its unitarity.

7. Conclusion

These notes by no means provide a comprehensive introduotibe vast theme of loga-
rithmic conformal field theory. Many topics of great importe have been skipped com-
pletely, or mentioned only in a half-sentence. In partigudathorough and mathematical
rigorous discussion of the algebraic aspects of LCFT isrgimehe lectures by Matthias
Gaberdiel. We did not mention anything about boundary staté€ CFTs, since these are
discussed in the lectures by Y. Ishimoto and S. Kawai. Mahgiossues such as the loga-
rithmic partners of the stress energy tensor as well as LGETroent algebras, presented
by Alex Nichols, or applications such as disorder, the tagi®Reza Rahimi Tabar’s lec-
tures, are left out here. Notes of the other lectures arepeapon the web as well, and
we encourage the (still) interested reader, to consuletf@sfurther information on the
young and exciting field of LCFT.

These notes pretty much consist of the material presentée iactual lectures, which
were mainly designed to address an audience, which not cedynew to the subject, but
which also did not have experience with ordinary common aonél field theory. There-
fore, the selection of covered material was made along ties lof this course. The nature
of the course, to provide a preliminary survey on logarithiconformal field theory as
well as a basic introduction to some parts of standard cardbfield theory, is reflected
in the incompleteness of these notes. Moreover, since LEHKTill a field in its infancy,
there are still many open topics. Of course, these noten oéféect foremost the authors
point of view, in particular concerning such not yet fullyderstood issues. Here, and also
with regard to the bibliography, the author apologizes foy amissions made, and there
certainly are many. The bibliography might help the readdiirtd some more compre-
hensive and detailed works on the topics touched upon orredJ®y these notes. Again,
also the bibliography does not attempt to be thorough in ange, but is intended to list
easily accessible papers on logarithmic conformal fieldriles as well as some of its ap-
plications. Fortunately, since this is a young topic, mdshe papers can be found on the
arXive servers. A few papers on particularly important aspef and results in general
conformal field theory, especially those needed in someeftiguing in our text, have
been listed for completeness.
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