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ABSTRACT

Based on our recently published article Fermionic Expressions for the Characters of cp,1

Logarithmic Conformal Field Theories in the journal Nuclear Physics B, fermionic sum rep-
resentations for the characters of theW(2, 2p−1, 2p−1, 2p−1) series of triplet algebras are
obtained, providing further evidence that these logarithmic theories constitute well-defined
rational conformal field theories. Furthermore, after an investigation of Nahm’s conjecture,
fermionic character expressions for other conformal field theories such as the minimal Vira-
soro models and SU(2) Wess-Zumino-Witten (WZW) models are given, some of the latter
also being new. In combination with their known bosonic counterparts, fermionic character
expressions give rise to so-called bosonic-fermionic q-series identities, closely related to the
famous Rogers-Ramanujan and Andrews-Gordon identities. Additionally, it is displayed how
fermionic character expressions imply dilogarithm identities for the effective central charge
of the conformal field theory in question. In the case of the triplet algebras, this results
in an infinite series of dilogarithm identities. Since a proof for this series of identities al-
ready exists, this strongly supports the corresponding fermionic character expressions. In
general, fermionic sum representations for characters give rise to an interpretation of the
corresponding theory in terms of quasi-particles which obey generalized exclusion statistics.
This quasi-particle content is discussed for conformal field theories which admit fermionic
character expressions.





ZUSAMMENFASSUNG

Basierend auf unserem Artikel Fermionic Expressions for the Characters of cp,1 Logarithmic
Conformal Field Theories, veröffentlicht im Journal Nuclear Physics B, werden in dieser
Arbeit fermionische Summendarstellungen der Charaktere der W(2, 2p− 1, 2p− 1, 2p− 1)-
Serie von Triplettalgebren gewonnen. Die Existenz dieser Darstellungen liefert weitere In-
dizien, daß es sich bei diesen logarithmischen Theorien um wohldefinierte rationale konfor-
me Feldtheorien handelt. Darüberhinaus werden nach einer Beschäftigung mit der Nahm-
Vermutung fermionische Charakterausdrücke für andere konforme Feldtheorien wie die mini-
malen Virasoro-Modelle und die SU(2)-Wess-Zumino-Witten-Modelle angegeben, unter den
letzteren auch bisher unbekannte. In Kombination mit ihren bekannten bosonischen Ge-
genstücken implizieren diese fermionischen Charakterdarstellungen sogenannte Bose-Fermi-
q-Reihen-Identitäten, welche in engem Zusammenhang zu den berühmten Rogers-Ramanujan-
und Andrews-Gordon-Identitäten stehen. Desweiteren wird gezeigt, wie fermionische Cha-
rakterdarstellungen zu dilogarithmischen Identitäten für die effektiven zentralen Ladungen
der betrachteten konformen Feldtheorie führen. Für unsere Ergebnisse bezüglich der Triplett-
algebren resultiert dies in einer unendlichen Reihe solcher Identitäten. Das Vorhandensein
eines Beweises unterstützt die entsprechenden fermionischen Charakterausdrücke. Letztere
ermöglichen eine Interpretation des zugrundeliegenden Systems anhand von fermionischen
Quasiteilchen, welche verallgemeinerten Ausschlußprinzipien genügen. Der Quasiteilchenin-
halt für konforme Feldtheorien, die fermionische Charakterausdrücke zulassen, wird disku-
tiert.





Contents

Introduction and Overview 1

1. Conformal Symmetry and W-Symmetry 7
1.1. Conformal Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1. Conformal Transformations . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2. Conformal Invariance in Two Dimensions . . . . . . . . . . . . . . . . 8
1.1.3. The Generators of Conformal Transformations in Two Dimensions . . 9
1.1.4. Primary Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5. Radial Quantization and Operator Product Expansion . . . . . . . . 10
1.1.6. The Central Charge and the Virasoro Algebra . . . . . . . . . . . . . 12
1.1.7. Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2. Representation Theory of the Virasoro Algebra . . . . . . . . . . . . . . . . 14
1.2.1. The Space of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2. The Universal Enveloping Algebra . . . . . . . . . . . . . . . . . . . . 16
1.2.3. Highest Weight Modules . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.4. Verma Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.5. The Submodule Structure of Verma Modules . . . . . . . . . . . . . . 18
1.2.6. Jordan Highest Weight Modules . . . . . . . . . . . . . . . . . . . . . 21

1.3. Minimal Models of the Virasoro Algebra . . . . . . . . . . . . . . . . . . . . 22
1.3.1. Operator Content of Minimal Models . . . . . . . . . . . . . . . . . . 22
1.3.2. The Unitary Series of Minimal Models . . . . . . . . . . . . . . . . . 22
1.3.3. The Ising Model as a Minimal Model . . . . . . . . . . . . . . . . . . 22

1.4. W-Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.4.1. Extending the Symmetry Algebra . . . . . . . . . . . . . . . . . . . . 24
1.4.2. W-Algebras of Central Charge c = 1− 24k . . . . . . . . . . . . . . . 27
1.4.3. Triplet W-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2. Modular Invariance 33
2.1. The Modular Group Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2. Fundamental Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3. Modular Invariant Partition Function . . . . . . . . . . . . . . . . . . . . . . 38
2.4. Fusion Rules and the Verlinde Formula . . . . . . . . . . . . . . . . . . . . . 40
2.5. Θ- and η-functions and their Modular Transformation Properties . . . . . . . 40

3. Characters 43
3.1. General Virasoro Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2. Bosonic and Fermionic Expressions for Characters . . . . . . . . . . . . . . . 44
3.3. Nahm’s Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

i



Contents

3.4. Characters of Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1. Bosonic Character Expressions for Minimal Models . . . . . . . . . . 48
3.4.2. Fusion in Minimal Models . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.3. Fermionic Expressions for Minimal Model Characters . . . . . . . . . 50

3.5. ADET Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6. Characters of SU(2) Level k WZW Models . . . . . . . . . . . . . . . . . . . 59

3.6.1. Bosonic Character Expressions . . . . . . . . . . . . . . . . . . . . . . 59
3.6.2. Fermionic Character Expressions from Spinon Bases . . . . . . . . . . 60

3.7. Characters of the Triplet Algebras W(2, 2p− 1, 2p− 1, 2p− 1) . . . . . . . . 63
3.7.1. Characters in Bosonic Form . . . . . . . . . . . . . . . . . . . . . . . 63
3.7.2. Fermionic Character Expressions for W(2, 3, 3, 3) . . . . . . . . . . . 65
3.7.3. Fermionic Character Expressions for W(2, 2p− 1, 2p− 1, 2p− 1) . . . 70

3.8. Characters of W(2, 3k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.8.1. Bosonic Character Expressions . . . . . . . . . . . . . . . . . . . . . . 72
3.8.2. Fermionic Sum Representations . . . . . . . . . . . . . . . . . . . . . 73

4. Dilogarithm Identities 75
4.1. The Rogers Dilogarithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2. Dilogarithm Identities from Saddle-Point Analysis . . . . . . . . . . . . . . . 77
4.3. The Identities Corresponding to the Triplet W-Algebras . . . . . . . . . . . 80
4.4. Other Dilogarithm Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5. Quasi-Particle Interpretation 83
5.1. Quasi-Particle Representation of Fundamental Fermionic Forms . . . . . . . 83
5.2. Quasi-Particle Interpretation of Unitary Minimal Models . . . . . . . . . . . 86
5.3. The Different Quasi-Particle Interpretations of the Ising Model . . . . . . . . 87
5.4. Quasi-Particle Interpretation of the Triplet W-Algebras . . . . . . . . . . . . 87

5.4.1. The c = −2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.2. The p> 2 Relatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5. Quasi-Particle Interpretation of the SU(2) WZW Model . . . . . . . . . . . 89

Conclusion and Outlook 91

A. Rogers-Ramanujan and Andrews-Gordon Identities 95

B. The Jacobi Triple Product Identity 97

Acknowledgements 98

References 103

Declaration 115

ii



List of Figures

1.1. Conformal mapping from the cylinder to the complex plane . . . . . . . . . . 11
1.2. Contour of integration for radially ordered products . . . . . . . . . . . . . . 12
1.3. The idea of the universal enveloping algebra displayed schematically . . . . . 16
1.4. The unitary Virasoro representations in a section of the (h, c) plane . . . . . 19
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Introduction and Overview

The concepts of bosons and fermions may be defined through their spectra or in terms
of commutation and anti-commutation relations. Due to the spin-statistics theorem, both
approaches are equivalent. In three space dimensions, bosons and fermions are quite distinct.
However, in 1+1 dimensions, i.e. one space dimension and one time dimension, the difference
between fermionic and bosonic particles is merely of a statistical nature. This is called Bose-
Fermi correspondence in 1 + 1 dimensions.

Meanwhile, conformally invariant quantum field theories in two dimensions are an inter-
esting object of study. There are mainly two areas in theoretical physics where they are
commonly used. These are on the one hand the perturbative vacua of string theory, where
the world-sheet of a string is described by a Riemann surface, i.e. a two-dimensional manifold
described in terms of complex coordinates together with a conformal structure. On the other
hand, conformal field theories serve as statistical mechanics models for second order phase
transitions at the critical point. Indeed, at the phase transition, typical configurations have
fluctuations on all length scales. Thus, a field theory describing the model at the critical
point should at least be invariant under scale transformations.1

The main reason why conformal field theory in two dimensions is so useful is that in this
case, conformal transformations coincide with analytic transformations on the complex plane.
Because an analytic transformation is always expressible as a Laurent series, an infinite
number of parameters is necessary to specify a given infinitesimal conformal transformation,
resulting in an infinite-dimensional conformal algebra which consists of two commuting copies
of the Virasoro algebra, a holomorphic and an antiholomorphic one. A conformal field
theory is defined to be invariant under these transformations. Hence, the Virasoro algebra
constitutes a symmetry algebra of the theory.

Symmetry is a fundamental principle of physics. Symmetries of a physical problem lead
to conserved quantities. In quantum field theory, particles are defined as finite-dimensional
irreducible representations of the space-time (and internal) symmetry groups. In statistical
mechanics, symmetry is employed in characterizing degrees of freedom and types of inter-
action. The more symmetries there are in a physical problem, the more likely it is that
the problem is exactly solvable, i.e. without the use of perturbation theory. However, since
quantum field theories have infinitely many degrees of freedom, they are in almost any cases
not exactly solvable. In general, quantum field theory only features Poincaré invariance, i.e.
invariance under translations of time and space, rotations and Lorentz boosts. But if the
considered theory is massless, it is furthermore invariant under scale transformations and,
more generally, in almost any cases also under conformal transformations. In d > 2 dimen-
sions with signature2 (p, q), the conformal group is isomorphic to the group SO(p+1, q+ 1)

1For an introduction to these two areas, the reader is referred to e.g. [GSW87] and [Car89], respectively.
2The metric is of the form (ηµν) = diag(−1,−1, . . . ,−1︸ ︷︷ ︸

q times

, +1, +1, . . . , +1︸ ︷︷ ︸
p times

).
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Introduction and Overview

of special pseudo-orthogonal matrices in d dimensions and hence finite-dimensional. But
since in two dimensions the conformal algebra becomes infinite-dimensional and since it is
also possible to directly define the stress-energy tensor as a quantum field, which preserves
the conformal symmetry while quantizing, certain theories may in principle be computed
exactly.

Quantizing the conformal field theory, a conformal anomaly c enters the game. It is called
central charge and parameterizes the theory. For example, there is the series of models with

central charge cp,p′ = 1 − 6 (p−p′)2

pp′
with p, p′ ∈ Z≥2 integer and coprime. It was shown by

Belavin, Polyakov and Zamolodchikov [BPZ84] that the space of states of these theories
decomposes into only a finite number of irreducible representations of the left and right

Virasoro algebra, corresponding to highest weights hp,p′

r,s = (pr−p′s)2−(p−p′)2

4pp′
, 1 ≤ r ≤ p′ − 1

and 1 ≤ s ≤ p− 1. Hence, these have been termed minimal models, denoted byM(p, p′).

The zero mode L0 of the Virasoro algebra admits a natural gradation of the representation
space into subspaces of fixed L0 eigenvalue. The character of a representation displays the
number of linearly independent states in each of these subspaces as a series expansion in
some formal variable q, where the dimension k of the subspace with fixed L0 eigenvalue n is
indicated by a summand kqn in this series. If the character of a representation of the Virasoro
algebra is defined as χh(q) = TrqL0− c

24 , then the minimal model partition function can be
written as a finite sum of products of holomorphic and antiholomorphic characters. Belavin,
Polyakov and Zamolodchikov showed that because of the infinite-dimensional symmetry, all
correlation functions of primary fields can be computed exactly in these cases. In general,
if the Hilbert space of states of a conformal field theory decomposes into a finite sum of
irreducible representations, then the theory is said to be rational .

A conformal field theory with periodic boundary conditions, which may be imposed by
e.g. statistical systems of finite size, is naturally defined on a torus. The description of a
torus by some modular parameter τ ∈ H (upper half-plane) implies that the torus has to be
invariant under the modular group Γ = PSL(2,Z). Thus, the partition function is required
to be invariant with respect to modular transformations, which upon setting q = e2πiτ in
the character expressions imposes strong restrictions on the operator content of the theory.
Cappelli, Itzykson and Zuber [CIZ87b, CIZ87a] were able to classify all possible partition
functions for the minimal models in this manner. Remarkably, these are labeled in terms of
the ADE series of simply-laced Lie algebras. A similar ADE classification was done for the
non-minimal conformal field theory models with central charge c = 1 [Gin88], but for c > 1
and non-unitary models with c < 1, the results so far are rather sketchy. It is intriguing that
many of the character expressions encountered in this thesis will also be shown to feature
an interesting connection to these Lie algebras.

Non-unique bases of the Hilbert spaces in two dimensional conformal field theories establish
the existence of several alternative character formulae. The Bose-Fermi correspondence
introduced above indicates that the characters of two-dimensional quantum field theories
can be expressed in a bosonic as well as in a fermionic way, leading to so-called bosonic-
fermionic q-series identities. These identities have its roots in the famous Rogers-Ramanujan
identities [Rog94, Sch17, RR19] (see appendix A)

∞∑

n=0

qn(n+a)

(q)n

=
∞∏

n=1

1

(1− q5n−1−a)(1− q5n−4+a)
(0.1)

2



Introduction and Overview

for a ∈ {0, 1} with the q-deformed Pochhammer symbol defined as

(q)n =
n∏

i=1

(1− qn) and by definition (q)0 = 1 and (q)∞ = lim
n→∞

(q)n . (0.2)

These identities coincide with the two characters of the M(5, 2) minimal model (up to an
overall factor qα for some α ∈ Q). By using Jacobi’s triple product identity (see appendix B
or e.g. [And84]), the right hand side of (0.1) can be transformed to give a simple example
of a bosonic-fermionic q-series identity :

∞∑

n=0

qn(n+a)

(q)n
=

1

(q)∞

∞∑

n=−∞
(qn(10n+1+2a) − q(5n+2−a)(2n+1)) . (0.3)

The so-called bosonic expression on the right hand side of (0.3) corresponds to two special
cases of the general character formula for minimal models M(p, p′) [RC84]

χ̂p,p′

r,s = q
c
24

−hp,p′

r,s χp,p′

r,s =
1

(q)∞

∞∑

n=−∞
(qn(npp′+pr−p′s) − q(np+s)(np′+r)) (0.4)

with χ̂p,p′

r,s being the normalized character. It has been termed bosonic in [KKMM93b] because
it is computed by eliminating null states from the Hilbert space of a free chiral boson [FF83].
The signature of bosonic character expressions is the alternating sign, which reflects the
subtraction of null vectors. Furthermore, the factor (q)∞ keeps track of the free action of
the Virasoro ‘raising’ modes.

In contrast, the fermionic sum representation for a character possesses a remarkable in-
terpretation in terms of an underlying system of quasi-particles. These expressions first
occured on the left hand side of the Rogers-Ramanujan identities (0.1). Generalizations
have been obtained by George Andrews and Basil Gordon [And74, Gor61] and later on by
James Lepowsky and Mirko Primc [LP85]. The most general fermionic expression is regarded
to be a linear combination of fundamental fermionic forms. A fundamental fermionic form
[BMS98, Wel05, DKMM94] is3

∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

∏j
i=1(q)i

r∏

i=j+1

[
g(~m)

mi

]

q

(0.5)

with A ∈ Mr(Q), ~b ∈ Qr, c ∈ Q, 0 ≤ j ≤ r, g a certain linear, algebraic function in the
mi, 1 ≤ i ≤ r, and the q-deformed binomial coefficient (the so-called q-binomial coefficient)
defined as [

n
m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
. (0.6)

It is sometimes also called universal chiral partition function for exclusion statistics [BM98,
Sch99]. It turns out that (0.5) can be interpreted in terms of a system of r different species

3The constant c is not to be confused with the central charge cp,p′ .
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of fermionic quasi-particles with non-trivial momentum restrictions. The bosonic represen-
tations are in general unique, whereas there is usually more than one fermionic expression
for the same character, giving rise to different quasi-particle interpretations for the same
conformal field theory which are conjectured to correspond to different integrable massive
extensions of the theory. There are cases for which such correspondences are known. Thus,
the different interpretations in terms of quasi-particle systems may be a guide for experimen-
tal research. Note that in general, the existence of quasi-particles has been experimentally
demonstrated, namely in the case of the fractional quantum Hall effect [SGJE97]. They
turned out to be of charge e/3, as predicted by Laughlin [Lau83, TSG82].

Furthermore, knowledge of a fermionic character expression and either the theory’s effec-
tive central charge or a product form of the character results in dilogarithm identities of
the form 1

L(1)

∑N
i=1 L(xi) = d, where L is the Rogers dilogarithm and xi and d are rational

numbers. It is conjectured [NRT93] that all values of the effective central charges occur-
ring in non-trivial rational conformal field theories can be expressed as one of those rational
numbers that consist of a sum of an arbitrary number of dilogarithm functions evaluated
at algebraic numbers from the interval (0, 1). Dilogarithm identities in general arise from
thermodynamic Bethe ansatz. Conversely, there is also a conjecture [Ter92] that dilogarithm
identities corresponding to Bethe ansatz equations xi =

∏k
j=1(1 − xj)

2Aij , where A is the
inverse Cartan matrix of one of the ADET series of simple Lie algebras (see section 3.5),
imply fermionic character expressions of rational conformal field theory characters. Thus,
the study of dilogarithm identities arising from conformal field theories gives further insight
into the classification of all rational theories.

In addition to the noted minimal models, there exist other theories that have more sym-
metries than just the Virasoro algebra. They are generated by modes of currents different
from the energy-momentum tensor. Possible extensions, which contain the Virasoro algebra
as a subalgebra, lead to free fermions, Kac-Moody algebras, Superconformal algebras or
W-algebras. In this thesis, the focus is on characters of representations of these extended
symmetry algebras (especially of theW-algebras). Specifically, theW(2, 2p−1, 2p−1, 2p−1)
series of so-called triplet algebras [Kau91], which constitute the best understood examples
of logarithmic conformal field theory models, is investigated in this thesis. These models

have central charges cp,1 = 1− 6 (p−1)2

p
, p ≥ 2. For some values of the central charge (when

there are fields with integer-spaced dimensions), the existence of fields that lead to loga-
rithmic divergencies in four-point functions is unavoidable [Gur93]. Recently, an attempt
at organizing logarithmic theories into families alongside related rational theories has been
started [EF06, FGST06b, PRZ06]. Another recent development involving logarithmic con-
formal field theory is given by Frenkel, Losev and Nekrasov [FLN06] in a work concerning
instantons, where it may occur that the Hamiltonian is not diagonalizable. For logarithmic
conformal field theories, almost all of the basic notions and tools of (rational) conformal field
theories, such as null vectors, (bosonic) character functions, partition functions, fusion rules,
modular invariance, have been generalized by now. The main difference to ordinary ratio-
nal conformal field theories such as the minimal models is the occurence of indecomposable
representations.

By contributing a complete set of fermionic sum representations for the characters of the
W(2, 2p − 1, 2p − 1, 2p − 1) logarithmic conformal field theory models with p ≥ 2 (which
are also referred to as the cp,1 models), we provide further evidence to answer the question

4



Introduction and Overview

about whether these models, although they lie outside of the usual classification scheme of
rational conformal field theories, are nonetheless bona fide theories.

This work is based on our recent article� Fermionic Expressions for the Characters of cp,1 Logarithmic Conformal Field Theories
Nucl. Phys. B (2007)
[www.arxiv.org:hep-th/0611241],

which the author of this thesis wrote in collaboration with fellow diploma student Carsten
Grabow under supervision of Michael Flohr and which has been accepted on Jan 26, 2007,
for publication in the journal Nuclear Physics B by publisher Elsevier, Amsterdam.4

This thesis is organized as follows: In chapter 1, the basics of conformal field theory andW-
algebras including the representation theory of the Virasoro algebra are being summarized.
Chapter 2 is about modular invariance of systems defined on a torus. The main chapter of
this thesis is the third one, where bosonic and fermionic character expressions for various
conformal field theories are discussed and the fermionic character expressions for the triplet
W-algebra series and the SU(2) WZW model are obtained, which we presented in our recent
publication [FGK07]. Chapter 4 is devoted to dilogarithm identities which always arise in a
pure conformal field theory context if fermionic character expressions are known. The latter
imply an interpretation in terms of fermionic quasi-particles. The quasi-particle content of
conformal field theories that admit fermionic expressions for their characters is discussed in
chapter 5.

4http://www.elsevier.com
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1. Conformal Symmetry and
W-Symmetry

1.1. Conformal Symmetry

A short introduction to conformal field theory is provided in this section, which summa-
rizes the basics of what is needed for this thesis. It is based on a conformally invari-
ant Lagrange density. For detailed reviews of conformal field theory basics, the reader
is referred to e.g. [Sch95, Sch94, Gab00, Gab03b, Car87, Car89, Nah00, DFMS99]. A
lot of interesting conformal field theories do not have a description in terms of a confor-
mally invariant Lagrangian density. In this case, there is another approach, which defines
a conformal field theory through its correlation functions. It is called meromorphic con-
formal field theory and is described by vertex operators. The theory of vertex operator
algebras developed by Richard Borcherds is an attempt at a mathematically rigorous for-
mulation of quantum field theory. For an accessible introduction, the reader is referred to
[God89, Kac96, GG00, Gab03a, EFH98]. But the latter approach also has some drawbacks,
e.g. it is not suitable in describing low-energy effective field theories. In this thesis, mostly
a Langrangian description is used except in the case of the W-algebras.

1.1.1. Conformal Transformations

A conformal transformation on some vector space V is a coordinate transformation which
acts as a Weyl transformation

gµν(x)→ Ω(x)gµν(x) (1.1.1)

on the metric g, where Ω(x) ≡ 1 corresponds to the Poincaré subgroup of the group of
conformal transformations. The transformation is called conformal because it preserves
angles <x,y>√

<x,x><y,y>
∀ x, y ∈ V (if < ., . > is a scalar product on V ). The conformal croup

consists of the following transformations, displayed in global and local form:

local global

translations xµ 7→ xµ + αµ xµ 7→ xµ + aµ

rotations and/or boosts xµ 7→ xµ + λµ
νx

ν xµ 7→ Λµ
νx

ν

dilations xµ 7→ xµ + ωxν xµ 7→ Ωxµ

special conformal transf. xµ 7→ xµ + bµ(xνxν)− 2xµ(bνxν) xµ 7→ xµ−bµxνxν

1−2(bµxµ)+(bµbµ)(xνxν)

(1.1.2)
From the infinitesimal transformations, one can calculate the generators of the conformal
group and their algebra, called the conformal algebra. The conformal group in a flat spaceRp,q, where gµν = ηµν with (ηµν) = diag(−1,−1, . . . ,−1︸ ︷︷ ︸

q times

,+1,+1, . . . ,+1︸ ︷︷ ︸
p times

), is isomorphic to

SO(p+ 1, q + 1).

7



Chapter 1. Conformal Symmetry and W-Symmetry

1.1.2. Conformal Invariance in Two Dimensions

Given Weyl invariance, we can transform the metric tensor to the form Ω(x)ηµν(x), but in
a space with an arbitrary number of dimensions, this would restrict the theory to be non-
gravitational. On the contrary, in two dimensions, it is always possible to transform the
metric tensor to the form Ω(x)ηµν(x) using a general coordinate transformation. Hence, we
can assume the space to be flat and, using a Weyl transformation, rescale it to have metric
tensor gµν = ηµν . This is called conformal gauge.

Suppose we have coordinates (z0, z1) on the Euclidean plane. If we perform a general
coordinate transformation ~z 7→ ~w(~z), it will imply for the contravariant metric tensor that
it transforms as

gµν(~z) 7→ g′µν(~w) =
∂wµ

∂zρ

∂wν

∂zσ
gρσ , (1.1.3)

where µν ∈ {0, 1}. In two dimensions, Weyl invariance forces

∂wµ

∂zρ

∂wν

∂zσ
gρσ = Ωgµν (1.1.4)

and thus leads to the restrictions

∂w1

∂z0
=
∂w0

∂z1
and

∂w0

∂z0
= −∂w

1

∂z1
. (1.1.5)

These are the Cauchy-Riemann equations. If the range of z1 and z2 is extended to the
complex plane1 using the transformations

∂0 = ∂z + ∂z̄ ∂1 = i(∂z − ∂z̄)

w = w0 − iw1 w̄ = w0 + iw1

z = z0 − iz1 z̄ = z0 + iz1 ,

(1.1.6)

the Cauchy-Riemann equations become

∂z̄w(z, z̄) = 0 or

∂zw̄(z, z̄) = 0 .
(1.1.7)

Any holomorphic function z 7→ w(z) or antiholomorphic function z̄ 7→ w̄(z̄) is a solution
of these. It is a fundamental theorem of complex analysis that on the complex plane, any
holomorphic transformation is conformal. Thus, the conformal group2 in two dimensions is
the set of all analytic3 maps with the composition of maps as the group multiplication law.
Since one can expand an analytic function z 7→ w(z) into a Laurent series w(z) =

∑
n∈Z anz

n,
an infinite number of parameters is necessary in order to specify a given element of the group.
Thus, the local conformal group in two dimensions is infinite-dimensional.

But local transformations are not everywhere well-defined on the Riemann sphere4 and
their inverses may not exist. The subgroup of global conformal transformations, which

1The physical subspace is then given by the two-dimensional submanifold given by z∗ = z̄, called the real

surface.
2It is not really a group because the local transformations mey not be invertible and not be everywhere

well-defined. Global transformation, on the other hand, satisfy these requirements.
3The terms ‘holomorphic’ and ‘analytic’ are used synonymously in the literature.
4The Riemann sphere is by stereographic ’projection’ isomorphic to the complex plane plus the point at

infinity, i.e. the extended complex plane C ∪ {∞}.
8



1.1. Conformal Symmetry

are well-defined on the whole Riemann sphere including the point at infinity and which are
invertible, is the so-called special conformal group. The elements of this group are the Möbius
transformations

f(z) =
az + b

cz + d
a, b, c, d ∈ C ad− bc = 1 . (1.1.8)

Since we can associate a matrix

A =

(
a b
c d

)
(1.1.9)

with it, where the composition of maps corresponds to matrix multiplication, the global
conformal group is isomorphic to SL(2,C), the group of invertible 2× 2 matrices with unit
determinant whose entries are complex numbers and which in turn is isomorphic to SO(3, 1),
in accordance with section 1.1.1.

1.1.3. The Generators of Conformal Transformations in Two
Dimensions

From the effect of an infinitesimal holomorphic coordinate transformation z 7→ z + ǫ(z) on
a field Φ(z), one can read off, when expanding the function ǫ in Laurent modes, that the
generators for the infinite-dimensional conformal group are given by

ℓn = −zn+1∂z (1.1.10)

and analog for antiholomorphic transformation. These generators obey the so-called Witt
algebra

[ℓn, ℓm] = (n−m)ℓn+m

[ℓ̄n, ℓ̄m] = (n−m)ℓ̄n+m

[ℓn, ℓ̄m] = 0 .

(1.1.11)

Obviously, ℓ−1, ℓ0 and ℓ1 form a subalgebra, corresponding to the global conformal group:
ℓ−1 = −∂z generates translations on the complex plane, ℓ0 = −z∂z scale transformations
and rotations and ℓ1 = −z2∂z special conformal transformations. ℓ0 + ℓ̄0 generates dilations
on the real surface and i(ℓ0 − ℓ̄0) rotations.

1.1.4. Primary Fields

In general, fields Φ(z, z̄) transform non-trivial under a conformal tranformation z 7→ w(z).
But in the simplest case, this transformation behavior is given by just a scalar prefactor:

Φ(z, z̄) 7→
(
∂w

∂z

)h(
∂w̄

∂z̄

)h̄

Φ (w(z), w̄(z̄)) . (1.1.12)

If this transformation behavior holds for the field Φ(z, z̄), then Φ is called primary , and h and
h̄ are called conformal weights of the field Φ. If this transformation behavior holds only for
the SL(2,C) subgroup, then the field is called quasi-primary . If a field is not (quasi-)primary,
it is usually called secondary . Derivatives of primary fields are secondary. But secondary

9



Chapter 1. Conformal Symmetry and W-Symmetry

fields can also be primary, as we will see later. For infinitesimal conformal transformations
w(z) = z + ǫ(z), (1.1.12) is of the form

δǫΦ(w, w̄) = h∂wǫ(w)Φ(w, w̄)+ǫ(w)∂wΦ(w, w̄)+h̄∂w̄ ǭ(w̄)Φ(w, w̄)+ ǭ(w̄)∂w̄Φ(w, w̄) . (1.1.13)

On the infinite plane, the holomorphic and antiholomorphic sectors of the conformal field
theory completely decouple. This situation will change when the theory is defined on ar-
bitrary surfaces. But since the sectors do not interfere on the infinite plane, they may be
studied as independent theories on their own in that case, because the correlation functions
factorize into holomorphic and antiholomorphic factors. While working on the infinite plane,
the antiholomorphic dependence is thus where possible suppressed in the following. This will
shorten the notation and a generalization will be obvious.

1.1.5. Radial Quantization and Operator Product Expansion

To quantize the theory, such that the conformal fields become operator valued distributions
in some Hilbert space H, we seek a representation of ℓn ∈ Diff(S1) by some operators Ln

acting on H such that
δnΦh(z) = [Ln, Φh(z)] . (1.1.14)

When the space dimension is being compactified, i.e. periodic boundary conditions are
imposed, which results in the momenta being quantized, infrared divergencies can be avoided.
In that case, one is no longer working on the plane but on a cylinder. A cylinder can be
mapped back conformally to the complex plane, so that use can still be made of complex
analysis. The map which does the trick is

w 7→ z = ew (1.1.15)

with z = z0 + iz1 and w = w0 + iw1, where w0 is the time coordinate and w1 is the space
coordinate on the cylinder. This map is obviously conformal. It has the effect of an equal-
time slice through the cylinder being turned into a circle around the origin of the complex
plane, just like an annual ring of a tree, as displayed in figure 1.1. On the complex plane,
the space coordinate is consequently given by an angle, whereas the time coordinate is given
by the distance from the origin: Infinite past and infinite future correspond to z = 0 and
z =∞, respectively.

In general, according to Noether’s theorem, every symmetry corresponds to a conserved
current jµ with ∂µj

µ = 0. The conserved charge is then given by

Q =

∫
dd−1xj0(~x, t) , (1.1.16)

the integral over the d− 1 space dimensions, and is the generator of infinitesimal symmetry
variations of the field Φ,

δǫ = ǫ[Q,Φ] . (1.1.17)

In two dimensions, one thus has to integrate over a circle of constant radius. However, in
complex analysis, the integral of w(z) around a simple closed curve, where w(z) is a single-
valued function which is analytic inside and on that simple closed curve except at a number
of singularities is only determined by the enclosed singularities and does, aside from that, not

10



1.1. Conformal Symmetry

Figure 1.1.: Conformal mapping from the cylinder to the complex plane

depend on the chosen contour of integration. Because of Weyl invariance, the stress-energy
tensor is traceless, which means in complex coordinates Tzz̄ = 0, and because of general
coordinate invariance, it is conserved such that ∂z̄Tzz = ∂zTz̄z̄ = 0. Accordingly, Tzz =: T
is holomorphic and Tz̄z̄ =: T̄ is antiholomorphic.5 The generator of holomorphic conformal
transformations on the complex plane is thus given by

Q =
1

2πi

∮
dzT (z)ǫ(z) . (1.1.18)

This integral is only a formal expression and needs to be evaluated with another field in the
contour of integration. Inserting (1.1.18) into (1.1.17) yields

δǫΦ(z) =
1

2πi

∮
[dzT (z)ǫ(z), Φ(ζ)] , (1.1.19)

where [., .] as usual denotes the equal-time commutator. When the cylinder is being mapped
to the complex plane, the time ordered product becomes the radially ordered product

R(Φ(z)Ψ (w)) =

{
Φ(z)Ψ (w) if |z| > |w|
Ψ (w)Φ(z) if |w| > |z| . (1.1.20)

Cauchy’s theorem suggests that the commutator may be defined as the difference between
contour integrals of the radially ordered product around 0

δǫΦ(z) =
1

2πi

(∮

|z|>|w|
−
∮

|z|<|w|

)
(dzǫ(z)R(T (z)Φ(w))) (1.1.21)

=
1

2πi

∮

w

(dzǫ(z)R(T (z)Φ(w))) , (1.1.22)

11



Chapter 1. Conformal Symmetry and W-Symmetry

Figure 1.2.: The resulting contour of integration for the radially ordered product

which include and exclude the point w, repectively. The resulting contour is displayed
graphically in figure 1.2. This ought to equal (1.1.13), which is the case if

R(T (z)Φ(w, w̄)) =
h

(z − w)2
Φ(w, w̄) +

1

z − w∂wΦ(w, w̄) + . . . . (1.1.23)

Thus, this operator product expansion defines Φ to be primary.
The product of field operators evaluated close together diverges. The general short-

distance operator product of two fields, which encodes the singularities that occur when
operators approach one another, is given by

R(A(z)B(w)) =

N∑

n=−∞

(AB)n(w)

(z − w)n
. (1.1.24)

In following operator products, the radial ordering symbol will be omitted, since an operator
product expansion is always intended to correspond to a radially ordered product, and the
non-divergent part will be omitted, too.

1.1.6. The Central Charge and the Virasoro Algebra

Similarly, the operator product of the stress-energy tensor with itself may be determined as

T (z)T (w) =
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w∂wT (w) . (1.1.25)

The constant c is called central charge. Thus, T (z) is not primary. If the first term in the
expansion, which is called conformal anomaly , did not occur, then T (z) would be a primary
field of weight 2. Physically, the central charge turns out to be proportional to the Casimir
energy , the change in the vacuum energy density that arises from the periodic boundary
conditions on the cylinder. Indeed,

Tcyl(w) = z2Tplane(z)−
c

24
, (1.1.26)

5‘Holomorphic’ is commonly used different than in the mathematics literature. It does not mean the absence
of singularities, but only the dependence on z and not on z̄, and vice versa for the term ‘antiholomorphic’.
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1.1. Conformal Symmetry

so that
〈Tcyl(w)〉 = − c

24
(1.1.27)

if the vacuum energy density 〈Tplane〉 is assumed to be zero on the plane. The central charge
is determined solely by the short-distance behavior and is a measure for the extensive degrees
of freedom of the systems. For example, c = 1 corresponds to the case of the free boson,
c = 1

2
to the free fermion, c = −26 to the reparametrization ghost and c = −2 to the simple

ghost system. It adds up if decoupled systems are put together. A Laurent expansion of the
stress-energy tensor may be defined as

T (z) =
∑

n∈Z z−n−2Ln , T̄ (z̄) =
∑

n∈Z z̄−n−2L̄n , (1.1.28)

with the inversion

Ln =

∮
dz

2πi
zn+1T (z) , L̄n =

∮
dz̄

2πi
z̄n+1T̄ (z̄) . (1.1.29)

The commutator of these modes can then again be computed using contour integrals, which
leads to the Virasoro algebra V

[Ln, Lm] = (n−m)Lm+n +
c

12
n(n+ 1)(n− 1)δn+m,0 ∀n,m ∈ Z (1.1.30)

[L̄n, L̄m] = (n−m)L̄m+n +
c̄

12
n(n+ 1)(n− 1)δn+m,0 ∀n,m ∈ Z (1.1.31)

[Ln, L̄m] = 0 . (1.1.32)

In general, an operator product expansion algebra of currents is equivalent to the commutator
algebra of their Laurent modes. Note that for c = c̄ = 0, this reduces to the classical Witt
algebra. Note also that L−1, L0 and L1 form a subalgebra and generate the global conformal
group SL(2,C) which thus remains an exact symmetry group despite the central charge term.
It is the most general central extension which constains sl(2,C) (Moebius) as subalgebra.
L0 + L̄0 generates dilations, which are time translations in radial quantization, hence L0 + L̄0

is proportional to the Hamiltonian of the system.
The commutator of the modes of the stress-energy tensor with primary fields is given by

δnΦh(z) = [Ln, Φh(z)] = h(n + 1)znΦh(z) + zn+1∂zΦh(z) . (1.1.33)

1.1.7. Correlation Functions

Vacuum expectation values of primary fields are restricted by conformal symmetry. Using
the abbreviation zij = zi − zj , the SL(2,C) subgroup forces a two-point function to be of
the form

G(2)(zi, z̄i) = 〈Φ1(z1, z̄1)Φ2(z2, z̄2)〉 = C12(z12)
−2h(z̄12)

−2h̄ if

{
h1 = h2 = h

h̄1 = h̄2 = h̄
, (1.1.34)

where C12 could be absorbed into a normalization of the primary fields, and a three-point
function to be of the form

G(3)(zi, z̄i) =
C123

zh123
12 zh231

23 zh312
13 z̄h̄123

12 z̄h̄231
23 z̄h̄312

13

with

{
hijk = hi + hj − hk

h̄ijk = h̄i + h̄j − h̄k

. (1.1.35)
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Chapter 1. Conformal Symmetry and W-Symmetry

This correlation function does in principle only depend on a single constant, as one can
always take three reference points z1 = ∞, z2 = 1 and z3 = 0 for the evaluation and then
determine the conformal mapping of these three points to arbitrary zi by solving (1.1.8)
simultaneously for all zi. The constants C123 can not be fixed by SL(2,C) invariance and
are called structure constants of the conformal field theory. But due to the fact that a global
conformal transformation only allows us to fix three coordinates, the four-point function still
depends on one coordinate, the so-called cross ratio

x =
z12z34
z13z24

, x̄ =
z̄12z̄34
z̄13z̄24

, (1.1.36)

and is given by

G(4)(zi, z̄i) = f(x, x̄)
∏

i<j
i,j∈{1,2,3,4}

z
h
3
−hi−hj

ij z̄
h̄
3
−h̄i−h̄j

ij with




h =

∑4

i=1
hi

h̄ =
∑4

i=1
h̄i

. (1.1.37)

In general, an n-point function depends on n− 3 cross ratios.

The conformal Ward identities

δǫ,ǭG
(N)(zi, z̄i) = − 1

2πi

∮

{(zi,z̄i)}
dwǫ(w)〈T (w)

(
Φh1,h̄1

(z1, z̄1) · · ·ΦhN ,h̄N
(zN , z̄N )

)
〉 , (1.1.38)

which employ the extra information obtained by inserting the generator of infinitesimal
conformal transformations if the full conformal group in two dimensions is used instead of
SL(2,C) only, then put further constraints on correlation functions and allow to express cor-
relators of descendants of primary fields in terms of correlators of their primary fields. Thus,
an infinite set of fields is grouped into so-called conformal families of their primary field.
Several other constraints like channel-duality and null-state decoupling then in principle
enable one to compute all correlation functions of certain two-dimensional theories, which
are hence called exactly solvable. For the subgroup of global conformal transformations
SL(2,C), (1.1.38) implies (1.1.34) and (1.1.35).

1.2. Representation Theory of the Virasoro Algebra

An introduction to the representation theory of the Virasoro algebra is provided. Some
definitions are in order. The representation theory of the Virasoro algebra V is mainly
analogous to the representation theory of finite-dimensional Lie algebras (for an introduction
to the latter see e.g. [Hum72, Geo99]).

1.2.1. The Space of States

The vacuum expectation value of the stress-energy tensor 〈T (z)〉 is demanded to be well-
defined, i.e. regular, as z → 0. If the vacuum, which is assumed to be SL(2,C) invariant,
is regarded as some state of an Hilbert space H and T (z) as some linear operator acting
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on that Hilbert space, then also the Laurent modes of T (z) become linear operators. The
regularity condition then implies that

Lm|0〉 = 0 for all m ≥ −1 . (1.2.1)

One may then consider the action of a primary field operator on this vacuum state. From
(1.1.33), it follows that L0Φh(z = 0)|0〉 = hΦh(0)|0〉, i.e. Φh(0)|0〉 is an eigenstate of L0 to
the eigenvalue h. In general, there is an isomorphism V between the fields in the theory and
the states in the Hilbert space H induced by the mapping

V (Φh) = lim
z→0

Φh(z)|0〉 , (1.2.2)

and we define limz→0 Φh(z)|0〉 ≡ |h〉 or, in general, limz→0 Φh,h̄(z, z̄)|0〉 ≡ |h, h̄〉 as the asymp-
totic in-state corresponding to the asymptotic field Φh(z = 0), since the interaction is as-
sumed to be attenuated in the infinite past. In wanting to construct a Hilbert space of states,
a scalar product has to be defined. Therefore, the asymptotic out-state

〈h| := |h〉† , (1.2.3)

corresponding to the infinite future, is defined as the Hermitean conjugate of the asymptotic
in-state on the real surface z̄ = z∗. This Hermitean conjugation has to be defined as6

|h, h̄〉† = lim
z,z̄→0
〈0|
(
Φh,h̄(z, z̄)

)†

:= lim
z,z̄→0

z̄−2hz−2h̄〈0|Φh,h̄(1/z̄, 1/z) = lim
w,w̄→∞

w̄2hw2h̄〈0|Φh,h̄(w̄, w) (1.2.4)

so that when defining the mode expansion of Φh,h̄(z, z̄) as

Φh,h̄(z, z̄) =
∑

m,n∈ZΦm,nz
−m−hz̄−n−h̄ , (1.2.5)

then

Φh,h̄(z, z̄)
† = z̄−2hz−2h̄Φh,h̄(1/z̄, 1/z)

= z̄−2hz−2h̄
∑

m,n∈ZΦm,nz̄
m+hzn+h̄

=
∑

m,n∈ZΦ−m,−nz̄
−m−hz−n−h̄ . (1.2.6)

It follows that this definition of Hermitean conjugation on the real surface implies

Φ−m,−n = (Φm,n)† . (1.2.7)

If on the real surface, i.e. (1.2.7) holds, and the representation is a Hilbert space, i.e. if it
has a scalar product (implying that the norm will be positive definite), then the theory will
be unitary.

6Euclidean time τ = it has to be reversed in order to keep the Minkowskian time t unchanged during
Hermitean conjugation.
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Figure 1.3.: The idea of the universal enveloping algebra displayed schematically

1.2.2. The Universal Enveloping Algebra

The term module is used synonymously with the term representation. For a general Lie
algebra L, a vector space V , endowed with an operation L × V → V , (x, v) 7→ xv, is called
an L-module if the following conditions are satisfied:

(ax+ by)v = a(xv) + b(yv) (1.2.8)

x(av + bw) = a(xv) + b(xw) (1.2.9)

[x, y]v = x(yv)− y(xv) (x, y ∈ L, v, w ∈ V, a, b ∈ C). (1.2.10)

L itself is an L-module for the adjoint representation.
The representation space decomposes into irreducible representations of the Virasoro alge-

bra which are labeled by the L0 eigenvalue of highest weight states if L0 acts diagonally. For
certain symmetry algebras, e.g. certain extensions of the Virasoro algebra calledW-algebras,
L0 may not be diagonalizable. In that case, it is not possible to decompose the representation
space into irreducible representations of the extended symmetry algebra. There exist inde-
composable representations. However, the simple case will be studied first. An L-module V
is called irreducible if it contains no proper submodule (i.e. other than itself and 0). It is
called indecomposable if there exist no submodules V1, V2 ⊂ V such that V = V1 ⊕ V2. V is
called completely reducible if V is a direct sum of irreducible L-submodules. The study of
representations becomes easier when extending to the unital associative algebra:

The universal enveloping algebra of V is a pair (U , i) with

(i) U is a unital (i.e. contains 1) associative C-algebra.

(ii) The embedding i : V → U is linear with i([x, y]) = i(x)i(y)− i(y)i(x) ∀x, y ∈ V.

(iii) For every unital associative C-algebra A and every linear map j : V → A with
j([x, y]) = j(x)j(y) − j(y)j(x) ∀x, y ∈ V, there exists exactly one algebra homo-
morphism Φ : U → A with 1U 7→ 1A such that Φ ◦ i = j.

Thus, every V-module is mapped to a unique U-module as displayed diagramatically in
figure 1.2.2. The universal enveloping algebra exists. It can be directly constructed from V
as the quotient of the tensor algebra T (V) =

⊕∞
n=0 V⊗n, which is associative and has a unit

element, of the vector space underlying V and the two-sided ideal in T (V) which is given
by I = 〈{[x, y]− (x⊗ y − y ⊗ x) | x, y ∈ V}〉, 〈·〉 denoting the span and [·, ·] the algebra
operation of V. Furthermore, the universal enveloping algebra is unique up to isomorphism.

A basis of the universal enveloping algebra of V is given by the Poincaré-Birkhoff-Witt
basis . It consists of all ordered monomials (i.e. words) of Virasoro generators and is given
by {

L−n1L−n2 · · ·L−nk
Ci | nj ∈ Z, k, i ∈ Z≥0, ni ≥ ni+1

}
. (1.2.11)
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1.2. Representation Theory of the Virasoro Algebra

A basis of the level N of U is given by the subset of the PBW basis for which the condition∑k
j=1 nj = N holds. Its span will be called UN . Since the central element C is proportional

to the identity according to Schur’s Lemma because it commutes with every other operator
in the algebra, these bases are further reduced, because monomials which differ only by the
number of C operators are being identified.

1.2.3. Highest Weight Modules

From (1.2.1) and (1.1.33), one deduces that

Ln|h〉 = 0 for all n > 0 . (1.2.12)

This is the condition for a highest weight state of a Virasoro representation. Thus, high-
est weight states correspond to primary fields. In the following, U± denotes the universal
enveloping algebra of the V-subalgebra V± that is given by the span over {Ln | n ≷ 0}.

If V denotes a V-module, then a state |χ〉 ∈ V is called singular vector if U+v = 0.
Furthermore, V is called highest weight module if it contains a singular vector |h〉 with

(i) L0|h〉 = h|h〉, h ∈ C
(ii) C|h〉 = c|h〉, c ∈ C
(iii) V = U−|h〉
The state |h〉 is then called highest weight state and h is called highest weight of the rep-
resentation. The states obtained from |h〉 by application of L−n1L−n2 · · ·L−nk

, ni ≥ ni+1,
k, ni ∈ Z>0∀i ∈ {1, . . . , k} are called descendant states . It may occur that one of the de-
scendants is also a singular vector. In that case, that descendant gives rise to a full Virasoro
subrepresentation of V , i.e. a subset of V that is closed under the action of the Virasoro
generators and consists of the descendant singular vector and its descendants. In this case,
the representation is not a Hilbert space, since a scalar product, which would be demanded
to be positive definite, does not exist in that case.

1.2.4. Verma Modules

There is a mathematically defined abstract object called Verma module which can be mapped
onto any highest weight module: A highest weight module V with highest weight h and
highest weight state |hV 〉 is called Verma module if it has the universal property that for any
highest weight module W with highest weight h, highest weight vector |hW 〉 and the same
central charge c, there is a unique V-homomorphism V → W mapping |hV 〉 to |hW 〉.

The Verma module V (h, c) for any given c, h ∈ C exists and is unique (of course, up to
V-isomorphism) with a basis given by

{L−n1 · · ·L−nk
|h〉 | k ∈ Z≥0, ni+1 ≥ ni} , (1.2.13)

where |h〉 is the highest weight vector of V (h, c). The existence may be proven by construc-
tion, and the uniqueness then follows from the universal property.

A Verma module is called degenerate if it contains a proper submodule, i.e. other than
0 and itself. The maximal proper submodule is given by the sum of all proper submodules.
If one builds the quotient module of the Verma module V (h, c) by its maximal proper
submodule, one obtains an irreducible highest weight module M(h, c).
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1.2.5. The Submodule Structure of Verma Modules

One can analyze the submodule structure using the so-called Shapovalov form 〈., .〉, a sym-
metric bilinear form on V (h, c). This bilinear form does not have to be a scalar product,
since it is not required to be positive definite. The highest weight vector |h〉 of V (h, c) satifies
〈|h〉, |h〉〉 = 1 and 〈|h〉, |ξ〉〉 = 0 ∀|ξ〉 ∈ Vk>0. The dual module is built on the dual highest
weight vector (|h〉)† ∈ V (h, c)∗ by action of

{(
L−k1L−k2 · · ·L−kj

)†
:= Lkj

Lkn−1···Lk1
| j ∈ Z≥0, ki+1 ≤ ki

}
.

If the Shapovalov form is restricted to a certain level l ≥ 0, one can study the determinant
of the matrix which is obtained by inserting all possible combinations of basis vectors of
V (h, c)l into 〈., .〉l. Because it may occur that a Verma module is degenerate, i.e. reducible,
it possibly contains singular vectors. The Shapovalov form of a singular vector |χ〉 with itself
is zero. Moreover, |χ〉 is orthogonal to the whole Verma module because

〈χ|L−k1L−k2 · · ·L−kj
|h〉 = 〈h|Lkj

Lkj−1···Lk1
|χ〉∗ = 0 . (1.2.14)

Obviously, this requires a sesquilinear form 〈.|.〉. A sesquilinear form is easily constructed
from the Shapovolov form. The matrix 〈., .〉l is unaffected by that change and equals 〈.|.〉l.
If one has a sesquilinear form and imposes the condition L†

n = L−n, the representation will
be unitary if it is a Hilbert space, i.e. if the sesquilinear Shapovalov form is positive definite
and thus a scalar product, which is the case for an irreducible representation M(c, h). The
stress-energy tensor T will then furthermore be Hermitean. Studying the sesquilinear form
of L−n|h〉 with itself,

〈h|LnL−n|h〉 = 〈h|(L−nLn + 2nL0 +
c

12
n(n + 1)(n− 1))|h〉 (1.2.15)

= (2nh+
c

12
n(n + 1)(n− 1))〈h|h〉 , (1.2.16)

it turns out that it can only be non-negative for all n ≥ 0 if c ≥ 0 and h ≥ 0. Therefore,
a representation of highest weight h for which either c < 0 or h < 0 is always non-unitary.
Moreover, one can show that representations with c ≥ 1 and h ≥ 0 are always unitary
[Lan88, FSQ86]. On M(h, c), the sesquilinear Shapovalov form is non-degenerate and hence
a scalar product. This implies that one can read off from the determinant of 〈.|.〉l for which
levels the Verma module V (h, c) has a non-trivial intersection with the maximal proper
submodule. There is an explicit formula for this determinant, which was stated by Victor
G. Kač [Kac79] and proven bei Boris L. Feigin and Dimitrij Borisovich Fuks [FF82] in terms
of a free-field construction (see e.g. [Fel89]). It is aptly called Kač determinant . The Kač
determinant of the matrix of 〈.|.〉l on V (h, c)l is given by

detl(h, c) = Kl

∏

r,s∈N
rs≤l

(h− hr,s(c))
p(l−rs) with (1.2.17)

hr,s(c) =
1

48
((13− c)(r2 + s2)±

√
(c− 1)(c− 25)(r2 − s2)− 24rs− 2 + 2c) , (1.2.18)
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Figure 1.4.: The unitary Virasoro representations in a section of the (h, c) plane

where p(n) denotes the number of additive partitions (see also appendix A) of an integer n
into arbitrary many integers greater than or qual to one with generating function

∏

n∈Z≥1

(1− qn)−1 =
∑

n∈Z≥0

p(n)qn , (1.2.19)

and where Kl are nonvanishing constants (depending on the choice of base). A change of
the branch taken in (1.2.18) just amounts to an interchange of r and s. Hence, the first
singular vector, or null state, in a reducible Verma module with a highest weight h that can
be parametrized by r and s as in (1.2.18) occurs at level l = rs. The number of additive
partitions into integer parts greater than zero of an integer smaller than one is defined to be
zero.

Introducing the parameterization

c = 1− 6

m(m+ 1)
(m ∈ C) (1.2.20)

for the central charge, hr,s(c) may be rewritten as

hr,s(m) =
((m+ 1)r −ms)2 − 1

4m(m+ 1)
. (1.2.21)

It can be shown that theories with 0 ≤ c < 1 are only unitary ifm ∈ Z≥2 and if 1 ≤ r ≤ m−1,
1 ≤ s < r [FQS84, FSQ86, Lan88]. Figure 1.4 displays a plot of the unitary representations
in a section of the (h, c) plane, created with the mathematics software package Maple. It is
illuminating to also plot different sections.
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Chapter 1. Conformal Symmetry and W-Symmetry

With the Kač determinant, Feigin and Fuks determined the Verma modules that can be
embedded in a given V (h, c) [FF83]. The maximal proper submodule of V (h, c) is then the
sum of these embedded modules.

Reparameterizing the central charge by

c = 1− 24k (1.2.22)

and inserting this into (1.2.18) leads to

hr,s = −k +
1

4
((2k + 1)(r2 + s2) + 2

√
k(k + 1)(r2 − s2)− 2rs) . (1.2.23)

If there exist no r, s ∈ Z≥1 such that h = hr,s, then V (h, c) itself is irreducible. In case
V (h, c) is not irreducible, it is degenerate. The degenerate representations V can be classified
by k and k′ :=

√
k(k + 1), where Vr,s := V (hr,s, c):

Case 1 (k, k′ ∈ Q): k = (p−p′)2

4pp′
with p, p′ ∈ Z≥1 coprime and therefore cp,p′ = 1 − 6 (p−p′)2

pp′
.

Moreover, hr,s ∈ Q∀r, s ∈ Z. There are three different subcases:

Minimal Models (p > p′ > 1): There is an infinite number of singular vectors and
only finitely many highest weight representations of the Virasoro algebra with

hr,s = (pr−p′s)2−(p−p′)2

4pp′
, restricted to 1 ≤ r ≤ p′ − 1, 1 ≤ s ≤ p − 1 because of

hr,s = hr+p′,s+p. One has the following embedding structure:

ւ Vr,−s ← Vr,s+2p ← Vr,−s−2p ← Vr,s+4p . . .
Vr,s տւ տւ տւ

տ Vr,2p−s ← Vr,s−2p ← Vr,4p−s ← Vr,s−4p . . .
(1.2.24)

Logarithmic Models (p > p′ = 1): The highest weight representations for the weights

hr,1 = (pr−1)2−(p−1)2

4p
have the embedding structure

V1,s ← V1,−s ← V1,s−2p ← V1,−s−2p ← V1,s−4p . . . (1.2.25)

Because of hr+1,s = h1,s−rp, Mr+1,s ≃ M1,s−rp, the embedding structure for all
other highest weight representations is fixed as well.

Gaussian models (p = p′): The embedding structure for all highest weight represen-
tations is given by Vr,s ← Vr,−s with central charge c = 1.

Case 2 (k ∈ Q, k′ ∈ C \ Q): These so-called parabolic models (cf. [Flo93]) correspond to
those c ∈ Q not included in the above discrete series. The set of rational weights consists
of hr,±r ∈ Q ∀r ∈ Z. The embedding structure for all highest weight representations is
Vr,s ← Vr,−s.

Case 3 (k ∈ C \ Q): The central charge c is irrational as well as all the hr,s except h1,1 = 0.
The embedding structure for all highest weight representations is also Vr,s ← Vr,−s.
These are irrational models.
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1.2.6. Jordan Highest Weight Modules

As mentioned in section 1.2.2, it may occur that L0 is not diagonalizable, a situation en-
countered e.g. in logarithmic conformal field theories, which are also discussed in this thesis.
There appear indecomposable representations. One is in need of a generalized concept. In-
stead of on a unique highest weight state, the representation is then built on an in general
multi-dimensional so-called Jordan cell . Victor Gurarie is acknowledged to be the first who
pointed out [Gur93] that if a theory contains two operators with the same conformal weight
h and in general the same set of quantum numbers with respect to the maximally extended
chiral symmetry algebra, then logarithmic correlation functions appear and L0 is no longer
diagonalizable. More precisely, logarithmic operators necessarily appear in a conformal field
theory whenever the differential equations arising from the conformal Ward identities and
the existence of singular vectors yield degenerate solutions. The representation theory of
the Virasoro algebra is then more complicated. The necessary basics are provided in this
section. For a more detailed presentation, the reader is referred to [Flo03, Gab03a].

Suppose there exist k operators Φ(n)(z) with the same conformal weight h, 0 ≤ n ≤ k− 1,
corresponding to k linear independent states |h(n)〉, forming a Jordan cell of rank k. An
V-module M is called Jordan highest weight module of rank k if the following requirements
are fulfilled:

(i) C|v〉 = c|v〉 ∀|v〉 ∈M

(ii) L0|h(0)〉 = h|h(0)〉 and L0|h(n)〉 = h|h(n)〉+ |h(n−1)〉 ∀n ∈ {1, . . . , k − 1}

(iii) Ln|h(m)〉 = 0 ∀n ∈ Z≥−1, m ∈ {0, . . . , k − 1}

(iv) M = U|h(k−1)〉 .

Then, h is called highest weight of the module and the |h(n)〉 are called its highest weight
vectors. In the case of k = 2, |h(1)〉 is called upper and |h(0)〉 is called lower highest weight
vector. The fields Φ(n)(z), 1 ≤ n ≤ k − 1, are called logarithmic partner fields, or just
logarithmic partners, of the primary field Φ(0)(z). Thus, the dimension of the Jordan cell is
the rank k of the indecomposable representation.

In section 1.4.1, the extension of the Virasoro symmetry algebra by chiral primary fields
is described. Of course, it may also happen that the zero modes of these other generators
are non-diagonalizable. In this thesis, however, only the representation theory of logarithmic
conformal field theories with respect to the Virasoro algebra alone will be necessary.

Again, there is an abstract entity which can be mapped onto any Jordan highest weight
module: A Jordan Verma module of highest weight h is a Jordan highest weight module V
with highest weight h that has the following universal property: For every Jordan highest
weight module M with highest weight h, there exists a unique (up to scalar multiples) V-
epimorphism Φ : V → M . The Jordan Verma module of highest weight h is unique for all
h ∈ C.

Let V be the Jordan Verma module with highest weight h and highest weight vectors
|h(0)〉 and |h(1)〉. Then, a base of V is given by

{Lkn . . . Lk1 |h(j)〉 | n ∈ Z≥0, j ∈ {0, 1}, 0 > k1 ≥ . . . ≥ kn} . (1.2.26)
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1.3. Minimal Models of the Virasoro Algebra

1.3.1. Operator Content of Minimal Models

As discussed in section 1.2.5, the conformal field theory models with central charge

cp,p′ = 1− 6
(p− p′)2

pp′
p, q ∈ Z>1 , (1.3.1)

with p and p′ coprime, are called minimal models . In [BPZ84], it was pointed out that these
models only possess a finite number of primary fields and that the operator algebra closes
under fusion. All conformal weights of the primary fields in the model with central charge
cp,p′, wich will be denoted byM(p, p′), are determined by

hp,p′

r,s =
(pr − p′s)2 − (p− p′)2

4pp′
(1.3.2)

with 1 ≤ r < p′ and 1 ≤ s < p and w.l.o.g. p > p′. The resulting table of possible weights is
called Kač table or conformal grid .

1.3.2. The Unitary Series of Minimal Models

If the minimal model of the Virasoro algebra is demanded to be unitary , i.e. the sesquilinear
form 〈., .〉 is positive definite, then, as discussed in section 1.2.5, the set of possible central
charges is restricted to

cp+1,p = 1− 6

p(p+ 1)
. (1.3.3)

The corresponding distinct highest weights are then given by

hp+1,p
r,s =

((p+ 1)r − ps)2 − 1

4p(p+ 1)
with 1 ≤ r ≤ p− 1, 1 ≤ s ≤ r . (1.3.4)

To illustrate the class of minimal models a bit, let us give an example for a physical appli-
cation of a certain unitary minimal model in the next section.

1.3.3. The Ising Model as a Minimal Model

The Ising model is about the simplest imaginable system in which large numbers of particles
might be expected to produce some kind of cooperative behavior. In 1920, Wilhelm Lenz
proposed the Ising model as a simplified version of a ferromagnet. Shortly after, Ernst Ising
studied that model during his doctoral studies. It just consists of up and down spins arranged
on a lattice. For neighboring spins, it takes less energy to point into the same direction
than in opposite directions. But there is just this short-distance interaction, no lang-range
interaction, and thus the spins are sort of randomly distributed by thermal fluctuations on
the long range. This is indeed a very simplified model, the spins representing electrons, the
lattice representing the crystalline structure of the ferromagnet and the nearest neighbor
interaction representing the overlap of wave functions. If the temperature is high, thermal
fluctuations completely randomize the spin orientation. If the temperature is zero, the spins
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are all aligned. In a one-dimensional Ising model, it turns out there is no phase transition,
but in a two-dimensional Ising model, there is an abrupt magnetization (number of up
spins minus number of down spins) at a certain temperature, which corresponds to a second
order phase transition at the so-called critical point between a disordered phase at high
temperature and an ordered phase at low temperature, just as experiments have shown it to
be the case. The Boltzmann weight e−

E
kT divided by the partition function Z determines the

probability of a certain state depending on temperature and energy. Onsager in 1944 solved
the problem of computing the partition function for the two-dimensional Ising model in the
thermodynamic limit (as the number of spins tends to infinity) and was able to predict the
critical temperature. The magnetization varies with the temperature according to the power
law M ∼ (TC − T )

1
8 in its ferromagnetic phase, and for T > TC , there is no magnetization.

This defines the critical exponent β = 1
8
. The behavior of thermodynamic functions near

or at the critical point is characterized by critical exponents defining power laws as T tends
towards TC . There are six common exponents of this type for the Ising model, which can all
be expressed in terms of two of them, η and ν. In two dimensions, the exact solution yields
η = 1

4
and ν = 1.

The unitary minimal model M(4, 3), which has the smallest non-trivial Kač table of all
unitary minimal models7, describes the critical Ising model . It consists of the Ising spin σ
and the energy density ε, both of them being continuum versions of the lattice spin σi and
the interaction energy σiσi+1, respectively. The two-point correlation functions in conformal
field theory display the critical exponents η and ν. In two dimensions,

〈σiσi+n〉 =
1

|n|η (1.3.5)

〈εiεi+n〉 =
1

|n|4− 2
ν

. (1.3.6)

Assuming that the scaling fields σ and ε have no spin, i.e. h = h̄, (1.3.5) and (1.3.6) imply
via (1.1.34) that their conformal dimensions are

hσ = h̄σ =
1

16
and hε = h̄ε =

1

2
. (1.3.7)

Together with the identity operator we have thus three operators in the holomorphic part
of the theory, whose weights can all be found in the Kač table displayed in figure 1.5 of the
minimal conformal field theory model M(4, 3), which has the smallest possible non-trivial
value of the effective central charge c4,3

eff = c4,3 = 1
2
. Thus, the minimal model M(4, 3) can

be identified [BPZ84] with the critical Ising model, the fusion rules (cf. section 3.4.2) being

σ × σ = 1+ ε (1.3.8)

σ × ε = σ (1.3.9)

ε× ε = 1 , (1.3.10)

compatible with the Z2 symmetry σi 7→ −σi of the Ising model. Note also that there is an
equivalence to the free Majorana fermion model with c = 1

2
.

7The non-unitary minimal model M(5, 2) has an even smaller Kač table, corresponding to the Yang-Lee
model and the trivialM(3, 2) model has just central charge c = 0, H = C and thus the single character
χ = 1.
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Figure 1.5.: The Kač table for theM(4, 3) minimal model which corresponds to the critical
Ising model

1.4. W-Symmetry

1.4.1. Extending the Symmetry Algebra

The Virasoro algebra, which is always present in a conformal field theory, only leads to
rational models for values of the central charge that are smaller than one. These are the

minimal models with cp,p′ = 1−6 (p−p′)2

pp′
. Even the effective central charge cp,p′

eff = cp,p′−24hmin

has to be smaller than one in this case. For the unitary series of minimal models, ceff =
1 − 6

pp′
. However, some applications concerning second order phase transitions are known

which also need rational conformal field theories with c > 1, e.g. the two-dimensional spin
models with k spin states, the so-called Zk parafermions. In [FZ85], these were shown by
Vladimir A. Fateev and Zamolodchikov to have conformal field theories with central charges
c = 2k−2

k+2
describing their second order phase transition. Moreover, important applications

in string theory require N = 2 supersymmetric rational conformal field theories with c = 9
[Gep87, Gep88]. But these theories are not rational with respect to the Virasoro algebra. If
the conformal field theory is invariant under an extension of the conformal algebra and one
enlarges the symmetry algebra in this manner, the theory still might be rational with respect
to that enlarged symmetry algebra. For example, degeneracies in the spectrum of conformal
dimensions can be resolved by the quantum numbers that correspond to the additional
symmetry. Alexander B. Zamolodchikov [Zam85] is respected to be the first who studied the
possibility of adding another primary field to the theory. He thus enlarged the symmetry
algebra by the modes of the additional primary field. These enlarged symmetry algebras
were thenceforward called W-algebras. In general, the keynote to this is that additional
field operators are introduced whose modes map between different representation modules
M(c, h) and by doing so, they rearrange several conformal families into a single one. When
rearranging infinitely many conformal families into a single family, one may hope to describe
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the field theory with finitely many of these bigger families, which results in the theory being
rational with respect to theW-algebra. The original approach used chirally non-local fields.
However, one would like to use better behaved chiral fields for such a mapping: The primary
local chiral fields.

A local chiral primary field Φ(z) =
∑

n−hΦ∈Z Φnz
−n−hΦ of conformal dimension hΦ ∈ Z≥0

2

is characterized by the commutator of its modes with the Virasoro algebra

[Ln, Φm] = (n(hΦ − 1)−m)Φn+m , (1.4.1)

which implies for the vacuum vector (cf. section 1.2.1)

Φn|0〉 = 0 ∀n > −hΦ (1.4.2)

Φ−hΦ
|0〉 = |hΦ〉 . (1.4.3)

The commutator (1.4.1) does not close in primary fields only but also produces quasi-primary
fields, which are defined in that they only need to satisfy (1.4.1) for m ∈ {−1, 0, 1}, i.e. the
global conformal group. There is the following general formula for the modes of two quasi-
primary local chiral fields Φi and Φj [Nah89]:

[Φi
n, Φ

j
m] = dijδn+m,0

(
n+ hΦi − 1

2hΦi − 1

)
+

∑

k∈I
h

Φk<hΦi+h
Φj

Ck
ijpijk(m,n)Φk

m+n . (1.4.4)

Note that the Virasoro algebra is contained in this commutator formula with hT = 2. The
structure constants dij and Cijk =

∑
l dklC

l
ij can be expressed in terms of the two- and

three-point functions

Cijk = 〈0|Φk
h

Φk
Φi
−h

Φk+h
Φj
Φj
−h

Φj
|0〉 (1.4.5)

dij = 〈0|Φi
h

Φi
Φj
−h

Φj
|0〉 (1.4.6)

and the universal polynomials are given by

pijk(m,n) =
∑

r,s∈N δr+s,hijk−1a
r
ijk

(
m+ n− hΦk

r

)(
hΦi −m− 1

s

)
(1.4.7)

with

ar
ijk =

(
2hΦk + r − 1

r

)−1(
hΦi + hΦk − hΦj + r − 1

r

)
. (1.4.8)

Furthermore, it is necessary to add a correction term to the usual normal ordered product
N(Φi, ∂nΦj) to be also valid for quasi-primary fields. The quasi-primary normal ordering
prescription N (Φi, ∂nΦj) then produces a field of dimension hΦi + hΦj + n.

Consequently, since rational conformal field theories with c > 1 can be constructed using
a W-symmetry algebra bigger than just the Virasoro algebra, it is to be expected that
these W-algebras are an important ingredient for the task of classification of all rational
conformal field theories. The presence of extra symmetry can make it possible to have a finite
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decomposition of the Hilbert space of physical states in terms of irreducible representations
of the extended algebra and thus to form rational conformal field theories.

A definition of what will be understood of a W-algebra is in order. One no longer has a
Lagrangian approach to the theory but instead defines it from its correlation functions, the
latter being the fundamental objects of a (chiral) conformal field theory. Given a complete
set of amplitudes, all data of a chiral conformal field theory can be reconstructed. This is
also the case for non-chiral theories [GK99, GG00].

A meromorphic conformal field theory [God89, BS93] is a quadruple (F ,H,V, T ) which
consists of a characteristic Hilbert space of states H (referred to as the vacuum module), a
dense subspace F , which is the Fock space of states of finite occupation number, a map |Φ〉 →
Φ(z), the so-called vertex operator map, from H into the space of fields, and furthermore a
distinguished state |T 〉 whose corresponding field T (z) is the traceless stress-energy tensor
of the theory. The modes Ln, n ∈ Z, of the stress-energy tensor form the Virasoro algebra.
The image of the vertex operator map, i.e. the space of fields, has to be a local system V.
Thus, the following conditions have to be fulfilled:

(i) There exists a unique state |0〉 ∈ F , the vacuum, such that Φ(z)|0〉 = ezL−1 |Φ〉.

(ii) 〈Φ1|Φ(z)|Φ2〉 is a meromorphic function of z.

(iii) 〈Φ1|Φ(z)χ(w)|Φ2〉 is a meromorphic function for |z| > |w|.

(iv) 〈Φ1|Φ(z)χ(w)|Φ2〉 = ǫΦχ〈Φ1|χ(w)Φ(z)|Φ2〉 by analytic continuation, where ǫΦχ = −1 if
both Φ and χ are fermionic and ǫΦχ = 1 otherwise.

Note that a function which is analytic everywhere in the finite plane (i.e. everywhere
except at ∞) except at a finite number of poles is called a meromorphic function.

A consequence of these axioms is that there is a one-to-one correspondence between the
states and the fields (cf. 1.2.1), i.e. the vertex operator map is an isomorphism. The locality
assumption also implies that only fields with integer (bosonic) or half-odd-integer (fermionic)
conformal weights h can occur in a meromorphic conformal field theory, since otherwise the
two-point function would have branch cuts.

AW-algebra is a meromorphic conformal field theory [God89] generated by a finite number
of distinguished simple (i.e. not a normal ordered product of other fields) quasi-primary
fields Φ1, Φ2, . . . , Φk of conformal dimensions hΦ1 , hΦ2, . . . , hΦk , respectively, where Φ1 is the
Virasoro stress-energy tensor. This algebra is then called W(2, hΦ2 , . . . , hΦk), where W(2)
denotes the Virasoro algebra. W-algebras are higher-spin bosonic extensions of the Virasoro
algebra. It can be shown from the definition that F is spanned by lexicographically ordered
states

Φi1
−m1−2Φ

i2
−m2−hΦ2

. . . Φin
−mn−hΦn

|0〉 (1.4.9)

where hΦij ≥ hΦij+1 , ij = ij+1 ⇒ mj ≥ mj+1 and mj ≥ 0. Conversely, if F is spanned
by states of this form then all the fields can be written as normal ordered products of the
Φi(z) and their derivatives. As has been proven in [EFH+92] by an analysis of character
asymptotics, W-algebra models can only be rational if the effective central charge is smaller
than the theory’s number of bosonic generators plus half its number of generating fermionic
fields. In the Virasoro case, this reduces to just the stress-energy tensor, which confirms that
Virasoro algebra models can only be rational if ceff < 1.
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1.4. W-Symmetry

In general, a rational meromorphic conformal field theory is a chiral algebra for which Zhu’s
algebra is finite-dimensional [Zhu96]. However, there are also theories which are non-chiral,
e.g. the series of triplet algebras discussed in section 1.4.3, the latter being logarithmic
theories that do not factorize into standard chiral theories. Non-meromorphic operator
products will become important then in order to construct a local logarithmic conformal
field theory [CF06, GG00, GK99]. Further information about W-symmetry may be found
in [BS93] and in the collection of reprints [BS95].

1.4.2. W-Algebras of Central Charge c = 1 − 24k

Case 2 from the classification of all possible structures of degenerate highest weight represen-
tations of the Virasoro algebra concerns the so-called parabolic models. The Hilbert space
of these theories decomposes into infinitely many Virasoro highest weight representations.
Thus, these theories are not rational with respect to the Virasoro algebra. However, one can
enlarge the theory’s underlying symmetry algebra and construct certain W-algebras, with
respect to which the Hilbert space decomposes into finitely many highest weight representa-
tions. Therefore, the theory then is rational with respect to this enlarged symmetry algebra.
In [BFK+90],W-algebras with one or two additional generators were constructed which exist
only for finitely many discrete values of the central charge. Among these discrete values are
two series of central charges, namely for a given δ either c = 1− 8δ or c = 1− 3δ. In these
cases, the additional primary field has conformal dimension δ = h2,2 or δ = h3,3, and thus the
two series correspond to the algebras W(2, δ). From the Kač determinant formula, one can
read off that these fields belong to degenerate Virasoro highest weight representations. Since

c is rational and since c 6= 1−6 (p−p′)2

pp′
for some coprime p and p′, these theories have to be of

the parabolic type, i.e. case two. To obtain a rational conformal field theory, it is necessary
to regroup the infinitely many Virasoro highest weight representations into finitely many
W-algebra representations. This is only possible [Fel89] with a non-trivial, local system of
chiral vertex operators, which implies that the difference between any two of the primary
fields has to be integer spaced. Local chiral operators then map between the corresponding
states [God89].

(1.2.23) implies that the pairwise difference between all of the highest weights hr,s(k) is

integer if s = ±r and k integer or half-integer (or k ∈ Z≥0

4
for r odd). Then, in particular,

hr,r = (r2 − 1)k and hr,−r = (r2 − 1)k + r2 (1.4.10)

either integer for all r if k integer or half-integer for all r if k half-integer. It is not possible
to form a local system of chiral vertex operators for other values of k [Flo93]. This local
system of chiral fields is generated by normal ordered products of (derivations of) the finitely
many simple primary fields, i.e. the field corresponding to h2,2 = 3k, in which case we get a
W(2, 3k), or the field h3,3 = 8k, in case of which we get a W(2, 8k). (A field is called simple
if it is not the normal ordered product of two other fields.)8

8The field corresponding to h3,3 is not simple when the field corresponding to h2,2 is also present in the
theory, since the former is the primary projection of the normal ordered product of the latter with its
2kth derivative. If one allows also non-simple fields to generateW-algebras, then one may also construct
a W(2, 3k, 8k).
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Chapter 1. Conformal Symmetry and W-Symmetry

1.4.3. Triplet W-Algebras

This infinite series of logarithmic conformal field theories is generated by the Virasoro stress-
energy tensor T (z) =

∑
n∈Z Lnz

−n−2, which is responsible for the conformal symmetry, and
by an SO(3)-triplet of primary fields W a(z) =

∑
n∈ZW a

nz
−n−(2p−1) with a ∈ {−1, 0, 1}.

These algebras are called W(2, 2p− 1, 2p− 1, 2p− 1), or also triplet algebras, and a triplet
algebra exists for any p ≥ 2 [Kau91]. As noted in chapter 1.3, for the values cp,p′ = 1 −
6 (p−p′)2

pp′
of the central charge, one has the series of minimal models, which are rational with

respect to even the Virasoro algebra only. It was noticed by Horst G. Kausch [Kau91]

that the W(2, 2p − 1, 2p − 1, 2p − 1) algebras have central charges cp,1 = 1 − 6 (p−1)2

p
. But

these are not Virasoro-minimal models, since for Virasoro minimal models, p and p′ both
have to be greater than one and coprime. However, the modular transformation S has
a finite-dimensional representation on the space of generalized character functions, as will
be described below. While the situation that S has a finite-dimensional representation on
the space of the characters is regarded as the definition of rational conformal field theories,
one cannot directly apply this terminology here, since one only has generalized character
functions including logarithmic terms. This stems from the fact that the triplet algebra
does not consist of irreducible modules alone, but also of reducible but indecomposable
representations, because it has more than one generator with the same h-value. Keeping
this situation in mind, one may still call the triplet algebra models rational. In [CF06],
the equivalence between so-called C2-cofiniteness and this generalized form of rationality is
conjectured, which expands the former conjecture by Dong and Mason [DM96], which turned
out to be wrong. Dong & Mason’s conjecture stated that C2-cofiniteness should be equivalent
to a theory having finitely many representations that are completely decomposable, i.e. that
are rational in the strong mathematical sense.

Let us now consider the case of p = 2, i.e. c = −2, in more detail. This model plays an
important role in the treatment of two-dimensional polymers and self-avoiding walks [DS87].
Its commutors can be calculated from (1.4.4) as

[Ln, Lm] = (n−m)Ln+m +
c

12
n2(n− 1)δn+m,0 (1.4.11)

[Ln,W
a
m] = (2n−m)W a

n+m (1.4.12)

[W a
n ,W

b
m] = gab

(
2(n−m)Λn+m +

1

20
(n−m)(2n2 + 2m2 − nm− 8)Ln+m (1.4.13)

− 1

120
n(n2 − 1)(n2 − 4)δn+m,0

)
(1.4.14)

+ fab
c

(
5

14
(2n2 + 2m2 − 3nm− 4)W c

n+m +
12

15
V c

n+m

)
(1.4.15)

with

Λ = N (T, T ) = N (2)(T, T )− 3

10
∂2T (1.4.16)

V a = N (W a, T ) = N (2)(W a, T )− 3

14
∂2W a , (1.4.17)
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1.4. W-Symmetry

where gab and fab
c are the metric and the structure constants of su(2), respectively. If an

orthonormal basis is chosen, then gab = δab and fab
c = iεabc. It is also possible to calculate the

coefficients for p > 2, but the resulting expressions would become too messy to be printed
here. But which representations actually are allowed in the triplet algebra case at p = 2?
The triplet algebra at c = −2 is associative because certain states in the vacuum represen-
tation are null that would otherwise violate associativity. Matthias Gaberdiel and Horst
Kausch [GK96] noted that the number of highest weight modules reduces from infinitely
many in the Virasoro case to four in the triplet algebra case, though in the latter case,
these are regarded as generalized highest weight modules. This comes about as follows: The
keynote is that if one has a vacuum representation and knows its null-vectors, then this puts
restrictions on the other representations: The latter have to be compatible with the vacuum
representation, meaning that any correlation function of any fields corresponding to states
of any representation, which also include the field corresponding to the null vector of the
vacuum representation, has to vanish. Otherwise, the structure of the vacuum representation
would have been modified by the other representations (see [GG00, Gab03a]). This implies
in particular that the zero modes of the null-states have to vanish on the highest weight
states of all representations. The action on those highest weight states can be expressed
through the fields in the theory. In the case of the c = −2 triplet algebra, this leads to the
constraint (

W a
0W

b
0 − gab 1

9
L2

0(8L0 + 1)− fab
c

1

5
(6L0 − 1)W c

0

)
|h〉 = 0 , (1.4.18)

where |h〉 is any highest weight state. From (1.4.18), it follows that

L2
0(8L0 + 1)(8L0 − 3)(L0 − 1)|h〉 = 0 . (1.4.19)

This, in turn, implies that L0 has to take the values h ∈ {−1
8
, 0, 3

8
, 1} on the highest weight

states. Four irreducible representations are allowed. But additionally, since it is only required
that L2

0 = 0, also a two-dimensional space of highest weight states is allowed:

L0ω = Ω , L0Ω = 0 . (1.4.20)

This corresponds to a reducible but indecomposable representation. In fact, there is even
another indecomposable representation which can not be detected by (1.4.19) since it is not
generated by a highest weight state. The presence of reducible but indecomposable represen-
tations implies a Jordan cell structure (see section 1.2.6) in L0, i.e. L0 is not diagonalizable
but necessarily has off-diagonal components. Since this finite set of highest weight repre-
sentations closes under fusion, the triplet algebra was called rational in [GK96]. Condition
(1.4.18) leads to the algebra of zero modes

[W a
0 ,W

b
0 ] =

2

5
(6h− 1)fab

c W
c
0 . (1.4.21)

The generators can be rescaled to get the well-known su(2) algebra. Because of that, just as
in the su(2) case, we can label the irreducible representations of the zero mode algebra (i.e.
of su(2)) by j and m. The Casimir operator

∑3
a=1(W

a
0 )2 then takes the value j(j + 1) on

the highest weight states and W 3
0 takes the value m. The operators which change the value
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Figure 1.6.: The two indecomposable representations of the triplet algebra at c = −2.

of m are then W±
0 = W 1

0 ± iW 2
0 . If we set a = b in (1.4.18), it follows that (W a

0 )2 acts the
same for all a ∈ {1, 2, 3} on the highest weight states, and thus

3∑

a=1

(W a
0 )2|h〉 = j(j + 1)|h〉 = 3m2|h〉 , i.e. j(j + 1) = 3m2 . (1.4.22)

The only solutions to this are j ∈ {0, 1
2
}. The result is that there are four irreducible

representations, namely for j = 0 there are singlet representations Vh with h ∈ {0,−1
8
} and

for j = 1
2

there are doublet representations Vh with h ∈ {3
8
, 1} [EHH93, GK96]. Note that a

more mathematically detailed analysis can be carried out and involves the concept of Zhu’s
algebra [Zhu96]. Formally, these highest weights can be read off the extended Kač table for
the ‘augmented minimal model’ [Flo97, EF06] M(3p, 3) which, of course, is not a minimal
model since 3p and 3 are not coprime.

When calculating the fusion products of these four irreducible representations, one finds
that the fusion algebra does not close, but that instead the two indecomposable represen-
tations R0 and R1 have to be included [GK96]. The latter two can be described by the
diagram 1.6, where each vertex denotes an irreducible representation V0 or V1 corresponding
to the highest weight vector written next to it. An arrow indicates the action of the triplet
algebra.

For example, the module with h = 1 has an irreducible submodule generated by a vector
ψ, but also another vector φ which does not belong to this submodule and which has the
property that

L0φ = φ+ ψ . (1.4.23)

In particular, R0 has the defining relations

L0ω = Ω W a
0 ω = 0 (1.4.24a)

L0Ω = 0 W a
0Ω = 0 (1.4.24b)

Lnω = 0 ∀n > 0 W a
nω = 0 ∀n > 0 , (1.4.24c)

where ω is the highest weight vector of R0, forming a Jordan cell with the vacuum vector
Ω. Both have highest weight h = 0. R0 includes the vacuum irreducible representation V0.
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1.4. W-Symmetry

Meanwhile, the defining relations of R1 are

L0ψ = ψ W a
0 ψ = 2taψ (1.4.25a)

L0ξ = 0 W a
0 ξ = 0 (1.4.25b)

L−1ξ = ψ W a
−1ξ = taψ (1.4.25c)

L1φ = −ξ W a
1 φ = −taξ (1.4.25d)

L0φ = φ+ ψ W a
0 φ = 2taφ , (1.4.25e)

with a doublet φ± of generating states forming an L0 Jordan cell with another doublet ψ±,
both corresponding to weight h = 1. However, note that φ± are not highest weight states:
The ground state doublet ξ± has h = 0. Thus, R1 is not a highest weight representation. All
the described representations together close under fusion, hence the theory may be called
rational (in the generalized sense discussed above).
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2. Modular Invariance

2.1. The Modular Group Γ

Conformal field theories may in general be defined on arbitrary Riemann surfaces. It is a
general result for a large class of conformal field theories that having crossing symmetry
of correlators on the complex plane and modular invariance of the partition function on
the torus is sufficient in constructing a consistent theory on arbitrary Riemann surfaces. A
Riemann surface (see e.g. [Jos02]) is a two-dimensional manifold together with a conformal
structure. A conformal structure is obtained by adding all compatible charts to a conformal
atlas. An atlas is said to be conformal if all the transition maps between the charts are
holomorphic.1 Recall that on a Riemann surface, if a map is analytic and its first derivative
does not vanish in a region R, then the map is conformal in R. Each Riemann surface has
a genus g, which corresponds loosely speaking to its number of ‘handles’. The conformal
field theory defined on that Riemann surface is then invariant under the Fuchsian group
corresponding to genus g, which in the string theory context corresponds to the number of
loops of a given Feynman diagram of its low-energy effective theory, i.e. quantum field theory.
Incoming and outgoing strings are described by tubes attached to the Riemann surface
which are effectively just replaced by punctures. The simplest Riemann surfaces would beC or open subsets of C. In the previous chapter, conformal field theories on the simplest
possible worldsheet, the cylinder, were considered. The cylinder was mapped by a conformal
transformation to the punctured complex plane. The most important example of a compact
Riemann surface is the Riemann sphere S2 ⊂ R3 which can be mapped conformally to the
extended complex plane C ∪ {∞}. The second most simple example of a compact Riemann
surface is the torus. If a conformal field theory is defined on a torus, i.e. periodic boundary
conditions are imposed, then it is invariant under the modular group Γ = PSL(2,Z), itself
being a special case of the general Fuchsian group.

It can be useful to put a conformal field theory on a torus: Statistical systems of finite
size with periodic boundary conditions are automatically defined on a torus if that area is
a parallelogram. Or, if there is a puncture on opposite sides of the torus, then it could be
the world-sheet of a closed string doing a one-loop process, just like a cylinder would be the
world sheet of a freely moving closed string.

A torus is the set T = C/L = {z | z ≃ z + nλ1 +mλ2} (2.1.1)

where L is the torus lattice and λ1 and λ2 are two linear independent lattice vectors, on
the complex plane represented by two complex numbers, called the periods of the lattice.
Thus, a torus is the complex plane modulo a lattice. It can be constructed by identifying
points that differ only by a combination of lattice vectors: Roll up the area whose corners

1The term analytic is used synonymously with holomorphic in the physics literature.
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Chapter 2. Modular Invariance

(a) a torus T (b) the torus lattice L

Figure 2.1.: The torus

are at 0, λ1, λ1 + λ2 and λ2 to get a cylinder and then bend it and glue the two ends of the
cylinder together to get a torus.2 Or, equivalently, a torus is a Riemann sphere with a hole
in it: Cut a circle around the north pole and a circle around the south pole and glue the two
boundaries together.

Two-dimensional general coordinate invariance (see section 1.1.2) may be used to straighten
the coordinate lines, translation invariance to fix one lattice point at the origin of the coor-
dinate system, and rotation invariance of the theory allows to align one of the lattice vectors
to the real axis. Furthermore, because of scale invariance of the conformal field theory, only
the ratio

τ =
λ1

λ2
∈ H ⊂ C (2.1.2)

is needed to distinguish between inequivalent tori, where H is the upper half-plane. Thus,
the two periods λ1 and λ2 are replaced simply by 1 and τ , as displayed in figure 2.1. The
entire lattice is described by just one complex number, which one conventionally chooses to
be from the upper half-plane, i.e. ℑ(τ) > 0.

A torus has to be invariant under certain transformations of the lattice vectors: Obviously,
choosing lattice vectors 1 and τ+1 instead of 1 and τ describes the same lattice, as is depicted
in figure 2.2. But there is another discrete symmetry that is not that obvious: One may
also interchange the two lattice vectors and describe the other lattice vector in terms of τ ,
as shown in figure 2.3. This can be achieved by first rotating the τ vector into the real axis
and doing a rescaling by the transformation τ 7→ 1

τ
(figure 2.3(b)) and in the end choosing

the new τ vector in the upper half-plane again which amounts to taking − 1
τ

(figure 2.3(c)).
These two discrete symmetries generate the modular group Γ and are denoted

T : τ → τ + 1 (2.1.3)

S : τ → −1

τ
. (2.1.4)

2Note by the way that if one of the ends of the cylinder is turned inside out and the two ends are then
glued together (obviously not possible with a real tube), then one obtains a Klein bottle. You can play
chess on a torus or a Klein bottle at http://www.geometrygames.org/TorusGames/index.html .
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2.1. The Modular Group Γ

(a) The torus lattice (b) The torus lattice after application of τ 7→
τ + 1

Figure 2.2.: The modular transformation T : τ 7→ τ + 1

They may be represented by 2× 2 matrices acting on
(

λ1
λ2

)
as

T =
(

1 1
0 1

)
and (2.1.5)

S =
(

0 1
−1 0

)
, (2.1.6)

a translation and a reflection, respectively. Then, the general modular transformation is
given by

U : τ → aτ + b

cτ + d
or in matrix form by (2.1.7)

U = (a b
c d) , (2.1.8)

where a, b, c, d ∈ Z, ad − bc = 1 (area preserving, i.e. guaranteeing that U has an integer
inverse) and (a b

c d) ≃ − (a b
c d) because an overall sign in the numerator and denominator of

(2.1.7) cancels. Thus, U ∈ PSL(2,Z). The two generators can easily be shown to satisfy
the relations

(ST )3 = S2 = id , (2.1.9)

that is, every element from PSL(2,Z) is a ‘word’ generated by S and T of the form

T n0ST n1ST n2 · · · (2.1.10)

where n0 ∈ {0, 1}, ni ≥ 1 and if ni = ni+1 = ni+2, then ni 6= 1. Note that the modular group
will keep τ on the upper half-plane.

n-point correlation functions of conformal field theories on the torus imply representation
spaces of the modular group. This is called modular covariance. The zero-point func-
tions,which are the characters of the theory (i.e. propagators which have been cut short,
the so-called vacuum bubbles), are especially interesting for us. If the characters form a
finite-dimensional representation of the modular group, the conformal field theory is said to
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Chapter 2. Modular Invariance

(a) The torus lattice (b) The torus lattice after application of a rota-
tion and a rescaling by means of τ 7→ 1

τ

(c) Choosing a new lattice vector τ ′ = − 1
τ

in the
upper half-plane

Figure 2.3.: The modular transformation S : τ 7→ − 1
τ
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be rational . Then

χh(−
1

τ
) =

∑

h′

Sh′

h χh′(τ) and (2.1.11)

χh(τ + 1) =
∑

h′

T h′

h χh′(τ) (2.1.12)

for h′ belonging to some finite set of weights. A given torus with its modular parameter τ is
invariant under S and T and hence under the whole modular group, since S and T generate
the modular group.

2.2. Fundamental Domain

Applying S and T just amounts to a different choice of fundamental domain. A fundamental
domain with respect to a set of mappings that make up identifications between different
elements of a given set consists of exactly those elements of the set such that it is not
possible to use one of the mappings to go from one element of the fundamental domain to
another. The fundamental domain for the identifications

τ ∼ τ + 1 (2.2.1)

τ ∼ −1

τ
(2.2.2)

is the set of all inequivalent tori. For the first identification, it would just be the infinite
strip

S0 :=

{
τ ∈ C | −1

2
< ℜ(τ) ≤ 1

2
, ℑ(τ) > 0

}
. (2.2.3)

Note that the left boundary is identified with the right one and hence not included in this
set.

The second identification identifies points within the unit circle with points outside the
unit circle. We choose the points outside the unit circle since it turns out that we still would
have a multiple counting if we chose the points inside the unit circle because, among other
problems, the corresponding unit circles to neighboring strips overlap. After all, it turns out
that a suitable fundamental domain3 for the modular group Γ = PSL(2,Z) is

F0 :=

{
τ ∈ C | −1

2
< ℜ(τ) ≤ 1

2
, ℑ(τ) > 0 ,

{
|τ | ≥ 1 if ℜ(τ) ≥ 0

|τ | > 1 if ℜ(τ) < 0

}
. (2.2.4)

It is displayed in figure 2.4. Knowledge of the fundamental domain is essential for string
perturbation theory : In general, string perturbation theory is a summation over all two-
dimensional surfaces, which splits as a sum over all different topologies (just like the loops
in Feynman graphs in quantum field theory) and integrations over all different moduli of
surfaces with a given topology. The topology of genus g = 1 corresponds to the torus, and
there is one complex modulus, namely the modular parameter τ discussed above. Therefore,
one has to make sure only to be integrating once over all possible tori.

3There is a fundamental domain drawer on the internet at http://www.math.lsu.edu/˜verrill/fundomain/.
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Chapter 2. Modular Invariance

(a) The fundamental domain of the modular group
Γ .

(b) Because of identifications on opposite edges,
the fundamental domain may be thought of as
rolled up.

Figure 2.4.: The fundamental domain

2.3. Modular Invariant Partition Function

It has proved interesting to study the dependence of various quantities in the conformal field
theory on τ . On a torus, there is the advantage that the operator content of the theory will
be constraint from the requirement that the partition function is independent of the choice of
λ1 and λ2, i.e. is invariant under modular transformations. Not every left-right combination
of highest weight modules will be physical. The partition function is formally defined as

Z = Tre−βH (2.3.1)

with H being the Hamilton operator, which is given by L0+L̄0 in a conformal field theory. In
the general case, the torus is being twisted before glued together since in general ℜ(τ) 6= 0,
so one has to take that into account. Space and time directions are defined to run along the
real and imaginary axes, respectively. The operator for translations of the system along λ2

over a distance d is

e
− d

|λ2|
(Hℑ(λ2)−iPℜ(λ2))

. (2.3.2)

On a cylinder of circumference L,

H =
2π

L
(L0 + L̄0 −

c

12
) and P =

2π

L
(L0 − L̄0) , (2.3.3)

where the constant c
12

has its origin in the transformation properties from the plane to the
cylinder (cf. section 1.1.6). H and P generate translations along the time and space axis,
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2.3. Modular Invariant Partition Function

respectively. Since λ1 = L and using a rescaling of the entire lattice by a factor of 2π to
match conventions, we have

Z = Treπi((τ−τ̄)(L0+L̄0− c
12

)+(τ+τ̄ )(L0−L̄0)) (2.3.4)

= Tre2πi(τ(L0− c
24

)−τ̄(L̄0− c
24

)) . (2.3.5)

By setting q = e2πiτ and q̄ = e2πiτ̄ , we can write the partition function as

Z(τ) = Tr
(
qL0− c

24 q̄L̄0− c
24

)
= (qq̄)−

c
24 Tr

(
qL0 q̄L̄0

)
. (2.3.6)

Conformal invariance implies that the Hilbert space of the conformal field theory splits as a
sum of representations of the conformal algebra. Accordingly, the torus partition function
is expressible as

Z(q) =
∑

h,h̄

χh(q)Nhh̄χh̄(q̄) , (2.3.7)

where χh(q) is the (Virasoro) character of the representation with highest weight h, defined
as

χh(q) = TrV (h,c)q
L0− c

24 , (2.3.8)

where χh(q) ∈ qhZ[[q]] or, for logarithmic theories, χh(q) ∈ qhZ[[q]][log(q)], if one chooses to
allow logarithmic terms in the character functions, and where the trace is over all (positive
norm) states in the representation corresponding to weight h. The coefficients Nhh̄ are all
integers and N00 = 1, since the vacuum is assumed to be unique. A symmetry algebra is
maximally extended if Nhh̄ is diagonal. In fact, Werner Nahm [Nah91] proved the statement
by John Cardy [Car86], which holds for diagonalizable L0, that conformal invariance of a
theory on S2 implies modular invariance of the theory’s partition function on the torus. But
it is assumed that this also holds for logarithmic theories with non-trivial Jordan cells, i.e.
where L0 is not diagonalizable. In any case, the so-called diagonal invariant Nij = δij, where
Nij := Nhih̄j

, is always a solution to the problem of determining a modular invariant partition
function. For example, a modular invariant partition function for the conformal field theory
at central charge c = 1

2
, which is a minimal model and has three Virasoro representations

– one each at h = 0, h = 1
2

and h = 1
16

– is obtained by choosing the three ground states
|h = 0, h̄ = 0〉, |1

2
, 1

2
〉 and | 1

16
, 1

16
〉. The three primary fields 1, ǫ and σ create these ground

states from the vacuum, respectively. This theory is the Ising model (cf. section 1.3.3).
The possible modular invariant torus partition functions for the minimal Virasoro models of

central charges cp,p′ = 1− 6 (p−p′)2

pp′
, p, p′ ∈ Z≥2 and coprime, have been classified in [CIZ87b].

This has been termed ADE classification since all solutions are labelled by simply-laced Lie
algebras. With this result, all unitary models of CFT with c < 1 are explicitly known. The
case c = 1, corresponding to the compactified free boson theories, also shows a connection
to the ADE classification [Gin88]. The classification of the c > 1 theories as well as the
non-minimal c < 1 theories, is still an open question. Most remarkably, ADE occurs also
in many other classification tasks, e.g. classification of modular invariants of conformal field
theories with Lie algebra symmetry, classification of the finite SU(2) subgroups. The ADE
algebras also directly turn up in the fermionic character expressions of rational conformal
field theories, as we will see later in this thesis. The origin of all this still remains a mystery.
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Chapter 2. Modular Invariance

2.4. Fusion Rules and the Verlinde Formula

In an operator product expansion, the constants Cijk, which are the same as in the three-
point function, satisfy certain selection rules imposed by the Virasoro algebra. These are
called fusion rules [BPZ84] and are written as

[i]× [j] =
∑

k

Nijk[k] , (2.4.1)

where [i] denotes the conformal family corresponding to the primary field Φi(z) and Nijk ∈Z≥0. The fusion rules thus determine which conformal families can occur in an operator
product expansion. In the case of the minimal models which consist of only a finite number
of primary fields, the sum on the right hand side of (2.4.1) is truncated to include only a
finite number of terms.

Erik Verlinde discovered a remarkable connection [Ver88] later proven by Moore and
Seiberg [MS88] between the coefficients Nijk and the representation of the modular trans-
formation S on the space of character functions, the so-called Verlinde formula

Nijk =
∑

l

SilSjlSkl

S0l
. (2.4.2)

It implies that the fusion rules are completely determined by the behavior of the characters
under transformations of the modular group and, conversely, that the modular properties of
the characters can be derived from the fusion rules. The matrix S simultaneously diagonalizes
the fusion rules (Ni)jk for all fields Φi. For logarithmic conformal field theories, things are
not that simple. Recently, progress has been made in this direction [Knu06, Knu07].

2.5. Θ- and η-functions and their Modular Transformation

Properties

The Jacobi-Riemann Θ-functions and the affine Θ-functions are defined by

Θλ,k(τ) =
∑

n∈Z q (2kn+λ)2

4k (2.5.1)

and

(∂Θ)λ,k(τ) =
∑

n∈Z(2kn + λ)q
(2kn+λ)2

4k (2.5.2)

with q = e2πiτ . λ ∈ Z
2

is called the index and k ∈ Z≥1

2
the modulus. The Θ-functions satisfy

the symmetries

Θλ,k = Θ−λ,k = Θλ+2k,k and (2.5.3)

(∂Θ)−λ,k = −(∂Θ)λ,k . (2.5.4)
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The Dedekind η-function is defined as

η(τ) = q
1
24

∞∏

n=1

(1− qn) . (2.5.5)

The Jacobi-Riemann Θ-functions and the Dedekind η-function are modular forms of weight
1/2, while the affine Θ-functions have modular weight 3

2
. A modular form of weight k is

defined by the relation

f

(
aτ + b

cτ + d

)
= ǫ(a, b, c, d)(cτ + d)kf(τ) (2.5.6)

for τ ∈ C and |ǫ(a, b, c, d)| = 1 and with (a b
c d) ∈ Γ and f being a holomorphic function on

the upper half-plane which is also holomorphic at the cusp, i.e. is holomorphic as τ → i∞.
The modular transformation properties of the Θ- and η-functions for those cases of λ and k
that are needed in this thesis are

Θλ,k(−
1

τ
) =

√
−iτ

2k

2k−1∑

λ′=0

eiπ λλ′

k Θλ′,k(τ) for λ ∈ Z (2.5.7)

Θλ,k(τ + 1) = eiπ λ2

2kΘλ,k(τ) for λ− k ∈ Z (2.5.8)

η(−1

τ
) =
√
−iτη(τ) (2.5.9)

η(τ + 1) = e
πi
12 η(τ) . (2.5.10)

The functions χλ,k =
Θλ,k

η
, which often turn up as summands in character functions in the

chapter 3.1, are thus modular forms of weight zero with respect to the main-congruence
subgroup Γ (N) of the modular group PSL(2Z). Meny details about Θ-functions may be
found in [Igu72, Akh90].
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3.1. General Virasoro Characters

The Hilbert space of the theory decomposes as

H =
⊕

h,h̄

V (h, c)⊗ V (h̄, c) . (3.1.1)

For simplicity, we consider only the holomorphic sector of the theory. If the antiholomorphic
sector is just a copy of the holomorphic one, the arguments given are the same for the
antiholomorphic sector. But it is also possible to have a theory where this is not the case.
For example, in the case of heterotic strings, both sectors are very different from each other.

The character of an indecomposable V-module V is defined by

χV (τ) := Tre2πiτ(L0− c
24

) . (3.1.2)

with c being the central charge and L0 the Virasoro zero mode. The characters of the rep-
resentations are an essential ingredient for a conformal field theory. Since L0 corresponds
to the Hamiltonian of the (chiral half of the) system, the energy spectrum (at least certain
sectors) is encoded in the character. The trace is usually taken over an irreducible high-
est weight representation and the factor q−

c
24 guarantees the needed linear behavior under

modular transformations. By setting q := e2πiτ , (3.1.2) leads to

χV (q) = q−
c
24

∑

h

qhdim eigenspace(Ld
0, h) , (3.1.3)

where Ld
0 is the diagonalizable summand of the possibly non-diagonalizable L0. To compute

the character of a Verma module, we have to compute the number of linear independent
states at a given level k. We can grade the Verma module by its L0 eigenvalue:

V (h, c) =
⊕

N

VN(h, c) (3.1.4)

with

Vn(h, c) =
〈{

L−n1L−n2 · · ·L−nk
|h〉 | k ∈ Z≥0, ni+1 ≥ ni,

∑k

i=1
ni = N

}〉
. (3.1.5)

Thus, the number of distinct, linear independent states at leven N is given by the number
p(N) of additive partitions of the integer N . The generating function for the number of
partitions is

1

φ(q)
≡

∞∏

n=1

1

1− qn
=

∞∑

n=0

p(N)qn , (3.1.6)
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Chapter 3. Characters

where φ(q) is the Euler function. Hence the character is given by

χV (h,c) = qh− c
24

∞∑

k=0

p(k)qk . (3.1.7)

Dedekind’s η function η(q) = q1/24φ(q) is conventionally used because it simplifies the anal-
ysis of a character function under modular transformations:

χV (h,c) =
q

1−c
24

η(q)
qh . (3.1.8)

This series is convergent if |q| < 1, i.e. τ ∈ H (upper half-plane). If V (h, c) already is
an irreducible representation, i.e. is non-degenerate, then this is its character. If not, the
characters χr,s of irreducible representations M(hr,s, c) can be read off the above embedding
structure.

3.2. Bosonic and Fermionic Expressions for Characters

There is more than one way to write a character in a closed form. Among these are the so-
called bosonic and fermionic character representations. 1

(q)∞
is just the character of a free,

chiral boson with momenta p ∈ Z≥1. If the representation space is truncated by a subsequent
subtraction and addition of singular vectors, it well be encoded in the numerator. Thus, these
character expressions have been termed bosonic. Aside from the bosonic expressions, there
are the fermionic quasi-particle sum representations for a character, also called fermionic
expressions, which first appeared under this name in [KM93]. These are interesting from
both a mathematical and a physical point of view and first occured in an especially simple
form in the context of the Rogers-Schur-Ramanujan identities [Rog94, Sch17, RR19] (for
a ∈ {0, 1})

∞∑

n=0

qn(n+a)

(q)n
=

∞∏

n=1

1

(1− q5n−1−a)(1− q5n−4+a)
(3.2.1)

with the so-called q-analogues

(x; q)n :=

n−1∏

i=0

(1− qix) and (q)n := (q; q)n =

n∏

i=1

(1− qn) (3.2.2)

of the Pochhammer symbol and the classical factorial function, respectively, and by definition

(q)0 := 1 and (q)∞ := lim
n→∞

(q)n , (3.2.3)

the latter being the q-analogues of the classical gamma function. Note that (q)∞ is up to

factor of q
1
24 the modular form η(τ) with q = e2πiτ , the Dedekind η-function. These identities

coincide with the two characters of the minimal modelM(2, 5) with central charge c = −22
5
,

which represents the Yang-Lee model (up to an overall factor of qα for some α ∈ C). It
is the smallest minimal model and contains only two primary operators: the identity 1 of
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3.2. Bosonic and Fermionic Expressions for Characters

dimension (h, h̄) = (0, 0) and another operator Φ of dimension (−1
5
,−1

5
). By using Jacobi’s

triple product identity [Jac29], defined for z 6= 0 and |q| < 1 (see appendix B or [And84]) as

∞∑

n=−∞
znqn2

=
∞∏

n=1

(1− q2n)(1 + zq2n−1)(1 + z−1q2n−1) , (3.2.4)

the r.h.s. of (3.2.1) can be transformed to give a simple example of what is called a bosonic-
fermionic q-series identity :

∞∑

n=0

qn(n+a)

(q)n

=
1

(q)∞

∞∑

n=−∞
(qn(10n+1+2a) − q(5n+2−a)(2n+1)) (3.2.5)

An instructive proof of the Jacobi triple product identity is given in appendix B by com-
parison of the characters computed from a fermionic basis of the irreducible vacuum repre-
sentation of charged free fermion system with the character computed from a bosonic basis
of the same representation obtained by bosonization.

In general, it is always possible to write a minimal model character in a product form
and thus to obtain a Rogers-Ramanujan-type identity if p = 2s or p′ = 2r, as has been
demonstrated by Philippe Christe in [Chr91]. To see this, one employs the Jacobi triple

product identity (3.2.4) with the replacements q 7→ q
pp′

2 and z 7→ −qrs− pp′

4 . Product forms
are also possible in the case p = 3s or p′ = 3r, but to show this, the so-called Watson identity
[Wat29] (see also [GR90, ex. 5.6]) has to be used instead of the Jacobi identity. Christe also
proved in the same article that for other minimal model characters, no product forms of this
type exist.

The bosonic expressions on the r.h.s. of (3.2.5) correspond to two special cases of the
general character formula (3.4.10) for minimal models by Rocha-Caridi [RC84]. Explictly,
they are given by

χ5,2
1,1 =1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10

+ 4q11 + 6q12 + 6q13 + 8q14 + 9q15 + 11q16 + 12q17 + 15q18 + 16q19 + 20q20 + . . .

and

χ5,2
1,2 =1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 5q9 + 6q10

+ 7q11 + 9q12 + 10q13 + 12q14 + 14q15 + 17q16 + 19q17 + 23q18 + 26q19 + 31q20 + . . . .

Note that the coefficient of q is zero because the vacuum is invariant under Ln, n ∈ {−1, 0, 1}.
Since the right hand side of (3.2.5) is computed by eliminating null states from the Hilbert
space of a free chiral boson [FF83], it is referred to as bosonic form. Its signature is the
alternating sign, which reflects the subtraction of null vectors. The factor (q)∞ keeps track
of the free action of the Virasoro ’raising’ modes. Furthermore, it can be expressed in terms
of Θ-functions (cf. 2.5), which directly point out the modular transformation properties of
the character.

On the other hand, the left-hand side of (3.2.1) has a direct fermionic quasi-particle in-
terpretation for the states and hence is called fermionic sum representation. In the first
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Chapter 3. Characters

systematic study of fermionic expressions [KKMM93b], sum representations for all charac-
ters of the unitary Virasoro minimal models and certain non-unitary minimal models were
given. The list of expressions was augmented to all p and p′ and certain r and s in [BMS98].
Eventually, the fermionic expressions for the characters of all minimal models were summa-
rized in [Wel05]. Such a fermionic expression, which is a generalization of the left hand side
of (3.2.1), is a linear combination of fundamental fermionic forms. A fundamental fermionic
form [BMS98, Wel05, DKMM94] is

∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

∏j
i=1(q)i

r∏

i=j+1

[
g(~m)

mi

]

q

(3.2.6)

with A ∈ Mr(Q), ~b ∈ Qr, c ∈ Q, 0 ≤ j ≤ r, g a certain linear, algebraic function in the
mi, 1 ≤ i ≤ r, and the q-binomial coefficient defined as

[
n
m

]

q

=

{
(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
. (3.2.7)

The sum over ~m is an abbreviation and implies that each component mi of ~m is to be
summed over independently.1

Fermionic character expressions in conformal field theory have various origins. Aside from
the Rogers-Ramanujan identities, they first appeared in the representation theory of Lie alge-
bras as the Lepowsky-Primc formulae [LW81b, LW81a, LW84, LW85, LP85, FZ85, FNO92]
and Andrews-Gordon identities [And74, NRT93]. They also arise from thermodynamic Bethe
ansatz analysis of integrable perturbations of conformal field theory [KM90, KM92] resulting
in dilogarithm identities (cf. chapter 4) which may be lifted back [Ter92] to fermionic ex-
pressions, from the scaling limit of spin chains and ADE generalizations of Lepowsky-Primc
[KM93, DKMM94] and from spinon bases for WZW models [BPS94, BLS95a, BLS95b]. All
these different origins will be discussed in detail in the following sections.

3.3. Nahm’s Conjecture

The question of how q-hypergeometric series (i.e. series of the form
∑∞

n=0An(q) where A0(q)
is a rational function and An(q) = R(q, qn)An−1(q)∀n ≥ 1 for some rational function R(x, y)
with limx→0 limy→0R(x, y) = 0) are related to modular forms or modular functions is an
almost completely unsolved problem. But there is a conjecture by Werner Nahm (see e.g.
[Nah04]), which involves dilogarithms and torsion elements of the so-called Bloch group as
well as rational conformal field theories. If j = r in (3.2.6), then the fundamental fermionic
form reduces (with a rescaling A 7→ 1

2
A)2 to the q-hypergeometric series

fA,~b,c(τ) =
∑

~m∈(Z≥0)r

restrictions

q
1
2

~mtA~m+~bt ~m+c

(q)~m
. (3.3.1)

1The constant c is not to be confused with the central charge cp,p′ .
2This rescaling has only been done in this section, since it makes the discussion of matrices A and their

inverses easier. For the rest of this thesis, this rescaling is not necessary.
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3.3. Nahm’s Conjecture

Nahm’s conjecture has no complete answer to this, but it makes a prediction which matrices
A ∈ Mr(Q) can occur such that (3.3.1) is a modular function, i.e. whether there exist suitable
~b ∈ Qr and c ∈ Q for a given matrix A. In particular, such a function can only be modular
when all solutions to a certain system of algebraic equations depending on the coefficients
of A, namely

1− xi =
r∏

j=1

x
Aij

j ⇐⇒
r∑

j=1

Aij log(xj) = log(1− xi) (3.3.2)

(the same we will also encounter in chapter 4), yield elements
∑

i[xi] of finite order in the
Bloch group of the algebraic numbers [Nah04].

The physical significance of this is that one expects that all the q-hypergeometric series
which are modular functions are characters of rational conformal field theories. Given a
matrix A, the modular forms for the predicted possible combinations of vectors and constants
span a finite-dimensional vector space that is invariant under SL(2,Z) for bosonic CFTs (or
under Γ0(2) = {(a b

c d) ∈ SL(2,Z) | c ∈ 2Z} for fermionic CFTs), i.e. the set of characters
generated in this way forms a finite-dimensional representation of the modular group, which
is just the definition of rationality of a conformal field theory. Indeed, this is just what we
will find in the subsequent analysis in this thesis: The admissible matrices of rank one and
two correspond to rational theories, most of them to the minimal models.

In general, there exist fermionic expressions for all characters of the minimal models.
However, all but a finite number are not known to be of the type (3.3.1). Instead, they
consist of finite linear combinations of fundamental fermionic forms (3.2.6), i.e. they involve
finite q-binomial coefficients. But nevertheless, it is usually possible to express all characters
of a given minimal model in terms of the same matrix A, albeit the choice of the matrix for
that given model is in general not unique. We will comment more on that in the subsequent
sections.

Note furthermore that the series of so-called triplet W-algebras, which are logarithmic
conformal field theories to be discussed later in this thesis, was shown to be rational (in a
broader sense to be defined later) with respect to its extended W-symmetry algebra. These
theories are not rational with respect to the Virasoro algebra alone as the symmetry algebra.
By presenting fermionic sum-representations of Nahm type (3.3.1) for the characters of the
whole series of W(2, 2p − 1, 2p − 1, 2p − 1) triplet algebras (p ≥ 2), thus leading to a new
infinite set of bosonic-fermionic q-series identities, we further support Nahm’s conjecture and
provide further evidence that the triplet algebra series are well-defined new animals in the
zoo [Flo03] of rational conformal field theories.

There are also fermionic expressions for characters of other theories than the above men-
tioned, including for example the Kač-Peterson characters of the affine Lie algebra A

(1)
1

[KP84], which we will also discuss later and for which we also present new fermionic expres-
sions.

A lot of matrices A, among them in particular one infinite series, have been found for which
Nahm’s conjecture suggests that they should lead to modular forms. However, a complete
search has only been achieved for rank one and two matrices. Some of them are related to
the Dynkin diagrams of the type A, D, E or T , corresponding to the simple Lie algebras.3

3Watch the notation problem: The matrix in the exponent of the fermionic character expression is conven-
tionally labeled A. This is not to be confused with the A series of Dynkin diagrams.
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These diagrams, as shown in fig. 3.1, have r vertices if they are called Xr, where X is to be
replaced by A, D, E or T . In many cases, the matrix A in the quadratic form in (3.3.1) is just
twice the inverse Cartan matrix of a Dynkin diagram. On the other hand, it may also be half
the Cartan matrix itself. These two cases are to be regarded as the special cases of another
class, namely A = CXr ⊗ C−1

Ys
, where Xr, Ys ∈ {A,D,E, T}. Note that the Cartan matrix

is in one-to-one correspondence with a Dynkin diagram: For each vertex i that is connected
to a vertex j (i, j ∈ {1, . . . , r}), set AijAji equal to the number of lines connecting these two
vertices with the restriction that Aij, Aji ∈ Z≤1, set Aii = 0 ∀i ∈ {1, . . . , r}. All the other
entries are zero. An exception to this is CTr , which is equal to CAr in all components but in
the lower right one: (CTr)rr = 1. Tr is the so-called tadpole graph corresponding to A2r folded
in the middle such that vertices are pairwise identified. Many ADE related matrices of rank
greater than two have also been found to correspond to rational conformal field theories,
especially the inverse Cartan matrices. Examples of this kind will be discussed in section
3.5. Modular forms with matrices of the second class can be found e.g. in Kač-Peterson
characters later in this thesis, while the first class is common to minimal models. But there
are also other types, some of which don’t seem to fit in this pattern.

The following is a list of the matrices of rank one and two which lead to modular forms
when inserted into (3.3.1):

Rank r = 1: Two following combinations yield modular forms:

A = 2: ~b = 0, c = − 1
60

or ~b = 1, c = 11
60

.

A = 1: ~b = 0, c = − 1
48

or ~b = 1
2
, c = 1

24
or ~b = −1

2
, c = 1

24
.

A = 1
2
: ~b = 0, c = − 1

40
or ~b = 1

2
, c = 1

40
.

Rank r = 2: The following matrices A fulfill the condition of Nahm’s conjecture4 and indeed,
for each of those, there are several ~b and c that constitute modular forms:

(
α 1−α

1−α α

)
, (2 1

1 1) , (4 1
1 1) , (4 2

2 2) ,
(

2 1
1 3

2

)
,
(

4
3

2
3

2
3

4
3

)
(3.3.3)

corresponding respectively to effective central charges 1, 3
4
, 7

10
, 4

7
, 5

7
, 4

5
as well as the

inverses of these matrices, having ceff(A
−1) = r − ceff(A). The central charges can be

computed via the sum of dilogarithm functions evaluated at the solutions of (3.3.2),
see chapter 4.

For level three, the classification is still an unsolved task. However, Don Zagier [Zag06]
searched positive definite 3×3 matrices with integer coefficients which smaller than or equal
to ten and found about forty matrices which satisfy the conditions of Nahm’s conjecture.

3.4. Characters of Minimal Models

3.4.1. Bosonic Character Expressions for Minimal Models

To compute the characters for a given minimal model, one needs to know the embedding
structure of the irreducible representations, which is given in section 1.2.5. The highest

4Don Zagier states [Zag06] that he tested matrices A = 1
m

(
a b
b c

)
with integers a, b, c, m ≤ 100 and found no

other matrices than the ones listed here.
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weights of the model (which correspond to the conformal dimensions of the primary fields)
can be read off the Kač table. As can be seen by the Kač determinant formula and the
embedding structure in the case of minimal models, the irreducible representations are given
by

Mr,s = Vr,s/(Vr,−s + Vr,2p−s) (3.4.1)

To compute the Virasoro character, one has to further investigate the sum of the two submod-
ules. In each of the two submodules, there are another two submodules. By the symmetry
property

hr,s = hp′−r,p−s (3.4.2)

it turns out that the pair of submodules in Vr,−s (see (1.2.24)) is identical to the pair of
submodules in Vr,2p−s. This means

(Vr,−s + Vr,2p−s) = (Vr,s ∪ Vr,2p−s)/(Vr,s+2p + Vr,s−2p) (3.4.3)

When iterating this procedure, it turns out that Mr,s is given by an infinite subtraction and
addition of submodules

Mr,s = Vr,s − (Vr,−s ∪ Vr,2p−s) + (Vr,s+2p ∪ Vr,s−2p)− . . . . (3.4.4)

Since the Virasoro character is

χV (h,c) =
q

1−c
24

η(q)
qh , (3.4.5)

as shown above, one has to subtract and add an infinite number of terms. If there was just
one submodule in the original Verma module which would contain a singular vector whose
Verma module would in turn contain a singular vector and so on, then one would just have
to subtract a single term, as in the case of the logarithmic models. In the case of the minimal
models, it is necessary to subtract two terms, because there are two singular vectors. But
since the pairs of submodules of each submodule are identical, these are doubly subtracted.
Hence, one then has to correct this and add the two terms corresponding to one of those
pairs again, and so on. It is possible to set up a formula for the character of the highest
weight representations of a minimal model as an infinite series of additions and subtractions
of Virasoro characters, the Rocha-Caridi character [RC84]

χp,p′

r,s (q) =
q

1−c
24

η(q)

(
qhr,s − (qhr,−s + qhr,2p−s) + (qhr,s+2p + qhr,s−2p)− . . .

)
(3.4.6)

=
q

1−c
24

η(q)

∑

n∈Z (qhr,s+2np − qhr,2np−s
)

(3.4.7)

=
1

η(q)

∑

n∈Z(q (pr−p′s−2npp′)2

4pp′ − q
(pr+p′s−2npp′)2

4pp′

)
(3.4.8)

=
1

η(q)

∑

n∈Z(q (2kn+λ)2

4k − q (2kn+λ′)2

4k

)
(3.4.9)

with λ = pr − p′s, λ′ = pr + p′s and k = pp′. In terms of theta functions (see 2.5),

χλ,k =
Θλ,k −Θλ′,k

η
. (3.4.10)
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The Rocha-Caridi characters have the symmetries

χp,p′

r,s = χp′,p
s,r = χp,p′

p′−r,p−s , (3.4.11)

corresponding to symmetries of the Kač table, and

χp,αp′

αr,s = χαp,p′

r,αs α ∈ Z≥1 , 〈p, αp′〉 = 〈αp, p′〉 = 1 . (3.4.12)

3.4.2. Fusion in Minimal Models

Since the space of characters of the irreducible modules forms a natural representation of
the modular group, the minimal models are rational in the sense that the representation
of the modular group PSL(2,Z) on the characters is finite-dimensional. The property that
the space of characters forms a finite-dimensional representation of the modular group is
regarded as a definition of rational conformal field theories. In particular, the partition
function

Z(τ) :=
∑

i,j

Ni,jχ
∗
hi

(τ)χhj
(τ) (3.4.13)

of the complete theory is modular invariant if the integers are chosen appropriately. The
‘diagonal’ choice Ni,j ∼ δi,j is always a solution. For a rational conformal field theory, the
operator product expansion of fields in the complete theory closes in finitely many families.
Namely, the fusion rules (cf. section 2.4) reduce to [BPZ84]

[hr,s]× [ht,u] =

mmax∑

m=1+|r−t|
m+r+t≡1 (mod 2)
m∈(2Z+1+|r−t|)

nmax∑

n=1+|s−u|
n+s+u≡1 (mod 2)
n∈(2Z+1+|s−u|)

[hm,n] (3.4.14)

with

mmax = min{r + t− 1, 2p′ − 1− r − t} (3.4.15)

nmax = min{s+ u− 1, 2p− 1− s− u} . (3.4.16)

3.4.3. Fermionic Expressions for Minimal Model Characters

The matrices of the rank one and two case of section 3.3 can be associated with the characters
of certain minimal models via the fermionic form (3.3.1). For example, the characters of the
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critical Ising model (cf. section 1.3.3)M(4, 3) have the fermionic expressions

χ4,3
1,1 =

∞∑

m=0
m≡0 (mod 2)

q
m2

2
− 1

48

(q)m
=
Θ1,12 − Θ7,12

η
(3.4.17)

χ4,3
2,1 =

∞∑

m=0
m≡1 (mod 2)

q
m2

2
− 1

48

(q)m
=
Θ5,12 − Θ11,12

η
(3.4.18)

χ4,3
1,2 =

∞∑

m=0

q
m2

2
+ m

2
+ 1

24

(q)m
=
Θ−2,12 − Θ10,12

η
(3.4.19)

=

∞∑

m=0
m≡a (mod 2)

q
m2

2
−m

2
+ 1

24

(q)m
, a ∈ {0, 1} (3.4.20)

whereas M(5, 3), which describes the continuum limit of the critical O(n) model (a gener-
alization of the Ising model analytically continued to n = −1) [Nie84, DFSZ87a, DFSZ87b]
has the fermionic character expressions

χ5,3
1,1 =

∞∑

m=0
m≡0 (mod 2)

q
m2

4
+ m

2
+ 1

40

(q)m
=
Θ2,15 − Θ8,15

η
(3.4.21)

χ5,3
2,1 =

∞∑

m=0
m≡1 (mod 2)

q
m2

4
+ m

2
+ 1

40

(q)m

=
Θ7,15 − Θ13,15

η
(3.4.22)

χ5,3
1,2 =

∞∑

m=0
m≡0 (mod 2)

q
m2

4
− 1

40

(q)m

=
Θ−1,15 − Θ11,15

η
(3.4.23)

χ5,3
1,3 =

∞∑

m=0
m≡1 (mod 2)

q
m2

4
− 1

40

(q)m

=
Θ−4,15 − Θ14,15

η
(3.4.24)

and the minimal modelM(5, 2) corresponding to the Yang-Lee model [Fis78, Car85] has

χ5,2
1,1 =

∞∑

m=0

qm2+m+ 11
60

(q)m

=
Θ3,10 −Θ7,10

η
(3.4.25)

χ5,2
1,2 =

∞∑

m=0

qm2− 1
60

(q)m

=
Θ1,10 −Θ9,10

η
. (3.4.26)
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In the rank two case, the minimal modelM(7, 2) has the characters

χ7,2
1,1 =

∑

~m∈(Z≥0)2

q ~mt(2 1
1 1)~m+(2

1)
t
~m+ 17

42

(q)~m

(3.4.27)

χ7,2
1,2 =

∑

~m∈(Z≥0)2

q ~mt(2 1
1 1)~m+(1

0)
t
~m+ 5

42

(q)~m
(3.4.28)

χ7,2
1,3 =

∑

~m∈(Z≥0)2

q ~mt(2 1
1 1)~m− 1

42

(q)~m
(3.4.29)

andM(8, 3) has characters

χ8,3
1,1 =

∑

~m∈(Z≥0)2

m2≡0 (mod 2)

q
1
2

~mt(2 1
1 1)~m+(11)

t
~m− 7

32

(q)~m

(3.4.30)

χ8,3
1,2 =

∑

~m∈(Z≥0)2

m1≡0 (mod 2)

q
1
2

~mt(2 1
1 1)~m+ 1

2(
0
1)

t
~m

(q)~m
(3.4.31)

χ8,3
1,3 =

∑

~m∈(Z≥0)2

m2≡0 (mod 2)

q
1
2

~mt(2 1
1 1)~m− 1

32

(q)~m

(3.4.32)

χ8,3
1,4 =

∑

~m∈(Z≥0)2

q
1
2

~mt(2 1
1 1)~m+ 1

2(
2
1)

t
~m+ 1

8

(q)~m
(3.4.33)

χ8,3
1,5 =

∑

~m∈(Z≥0)2

m2≡1 (mod 2)

q
1
2

~mt(2 1
1 1)~m− 1

32

(q)~m

(3.4.34)

χ8,3
2,2 =

∑

~m∈(Z≥0)2

m1≡1 (mod 2)

q
1
2

~mt(2 1
1 1)~m+ 1

2(
0
1)

t
~m

(q)~m
(3.4.35)

χ8,3
2,1 =

∑

~m∈(Z≥0)2

m2≡1 (mod 2)

q
1
2

~mt(2 1
1 1)~m+(11)

t
~m− 41

32

(q)~m

. (3.4.36)

One can observe something which appears to hold for any conformal field theory for which
fermionic character expressions are known: ~b is zero for the character corresponding to the
smallest of the dimensions of the primary fields, hmin. A = 2

3
(2 1
1 2) is related to the Z3

parafermionic theory [FZ85], A = 1
2
(3 2
2 4) corresponds to M(7, 3), and A = (4 1

1 1) is known
to correspond to the tricritical Ising model which has been identified with the minimal
model M(5, 4) of effective central charge c5,4

eff = 7
10

[FQS85], although it is not known to
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3.4. Characters of Minimal Models

correspond to the vacuum character χ5,4
1,1. But there is another way to express the vacuum

character (and the others as well) of the minimal modelM(5, 4) in a fermionic way. Trevor
A. Welsh quite recently gave instructions on how to compute the fermionic expressions for
all characters of all minimal modelsM(p, p′) [Wel05]. These instructions however, are quite
lengthy and computing the fermionic character expressions can be a very tedious task, though
in principle not very difficult. The construction is based on continuous fractions and on tools
like lattice paths, finitized characters, Takahashi trees and lengths and is an extension of the
work of Alexander Berkovich, Barry McCoy and Anne Schilling [BMS98]. However, most
of the results will not be of the form given in Nahm’s conjecture, but will just be a linear
combination of fundamental fermionic forms. For example, the vacuum character for the
minimal modelM(5, 4) according to Welsh would be

χ5,4
1,1 =

∑

~m∈(Z≥0)2

m1,m2≡0 (mod 2)

q
1
4

~mt
“

2 −1
−1 2

”

~m− 7
240

(q)m1

[m1

2

m2

]

q

, (3.4.37)

which is a special case of the general fermionic expression for unitary minimal modelM(p+
1, p) characters

qαχp+1,p
1,1 =

∑

~m∈(Z≥0)p−2

mi even

q
1
4

~mtCAp−2
~m

(q)m1

p−2∏

i=2

[
((1− 1

2
CAp−2)~m)i

mi

]

q

. (3.4.38)

This can be computed by the methods of Welsh for all possible combinations of r and s,
but for simplicity, only the vacuum character is given here. In general, a ’finite’5 q-binomial
coefficient will always occur in a fermionic character expression of a minimal modelM(p, p′)
when

n∑

i=1

ci > 3 , (3.4.39)

where the ci are determined by the continued fraction

p

p′
= c0 +

1

c1 +
1

...

cn−2+
1

cn−1 +
1

cn

. (3.4.40)

In the case ofM(5, 4), c1 = 4, so the fermionic character expressions according to Welsh will
contain q-binomial coefficients, the number of which being determined by the values of p, p′

and also r and s. But since fermionic expressions for a character are not unique, i.e. there are
different fermionic expressions for the same character, there may also be simpler fermionic
expressions for a given character out there than those given in [Wel05]. It is conjectured that

5Note that limN ′→∞

[
N ′+M

M

]
q

= 1
(q)M

.
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the fact that there are different fermionic representations for the same character may point
to the various integrable massive perturbations of the conformal field theory [KM90, KM92].

For example, A = (4 1
1 1) corresponds to M(5, 4), as mentioned above. Although it is not

known to correspond to the vacuum character6 χ5,4
1,1, it is known [Byt99a] to correspond to

two other characters of this model, namely χ5,4
2,1 and χ5,4

2,2. The latter two characters have at
least four fermionic representations:

χ5,4
2,2 =

∑

~m∈(Z≥0)2

q
1
4

~mt(2 1
1 1)~m+ 1

2(0
1)

t
~m+ 1

120

(q)~m
(3.4.41)

=
∑

~m∈(Z≥0)2

m1≡1 (mod 2)
m2≡0 (mod 2)

q
1
4

~mt
“

2 −1
−1 2

”

~m− 1
2(

1
0)

t
~m+ 1

120

(q)m1

[m1+1
2

m2

]

q

(3.4.42)

=
∑

~m∈(Z≥0)2

q
1
4

~mt(2 0
0 1)~m+ 1

2(
0
1)

t
~m+ 1

120

(q2)m1(q)m2

(3.4.43)

=
∑

~m∈(Z≥0)3

(−1)m3q
1
2

~mt

„

1 0 0
0 1 1
0 1 1

«

~m+ 1
2

„

1
0
0

«t

~m+ 1
120

(q)~m
(3.4.44)

and similarly for χ5,4
2,1, although the last two expressions can be called fermionic only in a

broader sense, sometimes referred to as anyonic interpretation of Virasoro characters [BF98].
Since only two characters have been found in this way, there may exist another model with
ceff = 7

10
that shares some of the characters ofM(5, 4) and for which all characters including

the vacuum character sport the matrix A = 1
2
(4 1
1 1). Conversely,

χ5,4
1,1 =

∑

~m∈(Z≥0)7

m1+m3+m6≡0 (mod 2)

q ~mtC−1
E7

~m− 7
240

(q)~m

(3.4.45)

with

C−1
E7

=




3
2

1 3
2

2 2 5
2

3
1 2 2 2 3 3 4
3
2

2 7
2

3 4 9
2

6
2 2 3 4 4 5 6
2 3 4 4 6 6 8
5
2

3 9
2

5 6 15
2

9
3 4 6 6 8 9 12




(3.4.46)

being the inverse Cartan matrix of the simply-laced Lie algebra E7. However, only the
vacuum character and χ5,4

3,1 are known to correspond to C−1
E7

.

6M(5, 4) does belong to the unitary seriesM(p + 1, p) of minimal models, and thus hmin = 0.
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3.5. ADET Classification

Even more peculiar is the following additional fermionic expression for the vacuum char-
acter of the Ising model discussed above, featuring the inverse Cartan matrix of E8:

χ4,3
1,1 =

∞∑

m=0
m≡0 (mod 2)

q
m2

2
− 1

48

(q)m

(3.4.47)

=
∑

~m∈(Z≥0)8

q ~mtC−1
E8

~m+ 1
48

(q)~m

(3.4.48)

with

C−1
E8

=




2 2 3 3 4 4 5 6
2 4 4 5 6 7 8 10
3 4 6 6 8 8 10 12
3 5 6 8 9 10 12 15
4 6 8 9 12 12 15 18
4 7 8 10 12 14 16 20
5 8 10 12 15 16 20 24
6 10 12 15 18 20 24 30




. (3.4.49)

When we discuss the quasi-particle interpretation of the fermionic character expressions, this
will become interesting. However, this is the only explicit fermionic expression for any of the
M(4, 3) characters that is known corresponding to E8, albeit there are linear combinations
of Ising characters which can be represented in this form. A proof of the expression in terms
of E8 is given in [WP94].

The key to this is that the last two expressions belong to the coset construction models
(G

(1)
r )1×(G

(1)
r )1

(G
(1)
r )2

[GKO85, KKMM93a], some of which being isomorphic to minimal models,

where Gr is a simply-laced Lie algebra of rank r. The next section will provide detailed
information on the ADET related cases.

In general, the known cases indicate that for a fermionic character expression which in-
cludes finite q-binomial coefficients, there exists another fermionic expression which is of
Nahm type (3.3.1), i.e. without finite q-binomial coefficients, and which sports a matrix of
a higher rank.

3.5. ADET Classification

The possibility of classifying fermionic character expressions according to simple Lie algebras
is investigated further in this section.

All possible simple Lie algebras have been classified by Eugene Borisovich Dynkin. Geo-
metric constraints imply that there are only four infinite families or five exceptional cases.
The infinite families are labeled by An, Bn, Cn or Dn and the exceptional cases by G2, F4,
E6, E7 and E8, where n is the number of nodes of the corresponding Dynkin diagram. Each
of the above Lie algebras is assigned a Dynkin diagram, and the set of Dynkin diagrams
is in one-to-one correspondence with the set of Cartan matrices. If one labels the nodes
of a Dynkin diagram by a ∈ {1, 2, . . . , n}, one can construct its Cartan matrix by setting
(CXn)ab(CXn)ba to the number of connecting lines between the nodes a and b of the Dynkin
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h h h· · · h h

1 2 3 n−1 n

(a) An

h h h· · · h

h

h

��
@@1 2 3 n−2

n−1

n

(b) Dn

h h h h h

h

1 2 3 4 5

6

(c) E6

h h h h h h

h

1 2 3 4 5 6

7

(d) E7

h h h h h h h

h

1 2 3 4 5 6 7

8

(e) E8

h h h· · · h h

1 2 3 n−1 n

(f) Tn = A2nZ2

Figure 3.1.: (a)-(e): Dynkin diagrams for simple Lie algebras; (f): The ‘tadpole’ diagram

diagram to the Lie algebraXn and demanding that (CXn)ab ≤ 0 and integer, and furthermore
(CXn)aa = 2.

The ADE graphs play an important role in many places in mathematics and physics. In
conformal field theory, for example, they can be used to classify modular invariant partition
functions [CIZ87b] and, furthermore, the Cartan matrices also appear in the quadratic form
in the exponent of the fermionic character expressions.

In the following, the conformal field theories whose fermionic character expressions corre-
spond to the ADE graphs are reported as well as the additional artificial series of so-called
tadpole graphs, which also appear in fermionic expressions. The corresponding Dynkin dia-
grams are displayed in figure 3.1. When the matrix A in the quadratic form is mentioned,
the reader is always referred to (3.2.6).7

The An series corresponds to the unitary Zn+1 parafermionic theories with central charge
cn = cneff = 2n

n+3
[FZ85, FL88]. James Lepowsky and Mirko Primc in 1985 [LW81a,

7Upon comparing (3.2.6) with (3.3.1), one notices that the exponents differ by a factor of 1
2 in the definition

of the matrix A. Strictly speaking, one should write 1
2A in the exponent of every fermionic form, since

in general A = CXr
⊗C−1

Ys
for some Xr, Ys ∈ {A, D, E, T } (as discussed in section 3.3) and in most cases

occuring in this thesis Xr = A1 and thus A = 2C−1
Ys

. Therefore, since in most cases the factors 2 and
1
2 cancel, the general fundamental fermionic form (3.2.6) is referred to in this thesis except in the single
section 3.3 and where explicitly stated.
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3.5. ADET Classification

LP85] found fermionic expressions with sum restrictions for the Zn+1 characters, the
latter consisting of the A1 string functions of level k by Kač and Peterson [KP84].

Moreover, A1 corresponds to characters of the Ising model, namely (3.4.17) and (3.4.18)
and A2 corresponds to the characters ofM(6, 5), namely

χ6,5
1,1 + χ6,5

1,5 =
∑

~m∈(Z≥0)2

m1+2m2≡0 (mod 3)

q ~mtC−1
A2

~m− 1
30

(q)~m

(3.5.1)

and

χ6,5
1,3 =

∑

~m∈(Z≥0)2

m1+2m2≡a (mod 3)

q ~mtC−1
A2

~m− 1
30

(q)~m
, a ∈ {−1, 1} . (3.5.2)

Additionally, via A = CAn ⊗ C−1
T1

= CAn, this series also corresponds to the unitary
series of minimal models (3.4.38).

The Dn series corresponds to the unitary theory of a free boson compactified on a torus
of radius R =

√
n
2

with central charge c = ceff = 1. This theory has characters
Θλ,k

η

for λ ∈ {−k + 1, . . . , k} with λ = 0 denoting the vacuum character. The fermionic
expressions for these characters can be all be written with the inverse Cartan matrix of
Dn in the quadratic form. We will discuss this later on, when we derive the fermionic
expressions for the cp,1 series of logarithmic conformal field theories, where we will see
that the whole cp,1 series corresponds to the Dn series, i.e. the quadratic form in the
fermionic character expressions is

~mtC−1
Dp
~m (3.5.3)

for all characters of the cp,1 model. The sum restrictions state that the sum mn−1 +mn

has to be either even or odd, depending on the chosen character of the model. For the
subset of characters that are of the form

Θλ,k

η
, both restrictions admit a realization.

Note furthermore that due to the coincidence D3 = A3, some character functions
corresponding to these two series are related.

The exceptional algebra E6 corresponds to the unitary minimal modelM(7, 6) that is the
tricritical three-state Potts model [FZ87] with central charge c = 6

7
, namely

χ7,6
1,1 + χ7,6

5,1 =
∑

~m∈(Z≥0)6

m1−m2+m4−m5≡0 (mod 3)

q ~mtC−1
E6

~m− c
24

(q)~m
(3.5.4)

and

χ7,6
3,1 =

∑

~m∈(Z≥0)6

m1−m2+m4−m5≡a (mod 3)

q ~mtC−1
E6

~m− c
24

(q)~m

, a ∈ {−1, 1} (3.5.5)
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with

C−1
E6

=




4
3

2
3

1 4
3

5
3

2
2
3

4
3

1 5
3

4
3

2
1 1 2 2 2 3
4
3

5
3

2 10
3

8
3

4
5
3

4
3

2 8
3

10
3

4
2 2 3 4 4 6




. (3.5.6)

By adding a suitable vector~b to the exponent in the fermionic expression or by changing
the sum restrictions, the other characters of M(7, 6) might also be found to have
fermionic representations of this type, but so far, none are known.

The exceptional algebra E7 corresponds to the tricritical Ising unitary modelM(5, 4) with
central charge c = 7

10
mentioned in the previous section. Here,

χ5,4
1,1 =

∑

~m∈(Z≥0)7

m1+m3+m6≡0 (mod 2)

q ~mtC−1
E7

~m− c
24

(q)~m

(3.5.7)

and

χ5,4
3,1 =

∑

~m∈(Z≥0)7

m1+m3+m6≡1 (mod 2)

q ~mtC−1
E7

~m− c
24

(q)~m
. (3.5.8)

The exceptional algebra E8 corresponds to the Ising modelM(4, 3) and, as also mentioned
in the previous section,

χ4,3
1,1 =

∑

~m∈(Z≥0)8

q ~mtC−1
E8

~m− 1
48

(q)~m
. (3.5.9)

The Tn series , often called A2nZ2
, corresponds to the series of non-unitary Virasoro minimal

models M(2n+ 3, 2) with effective central charge ckeff = 2n
2n+3

. Their characters admit
a product form [ABS90, FNO92], which is one side of the Andrews-Gordon identities
[Gor61, And74, Bre80, And84] (see also appendix A)

∞∑

m1,...,mn=0

qM2
1 +...+M2

n+Ma+...+Mn

(q)m1 · · · (q)mn

=
∏

m6≡0 (mod 2n+3)
m6≡±a (mod 2n+3)

(1− qm)−1 (3.5.10)

withMk := m1+. . .+mk. Basil Gordon gave the combinatorial and George E. Andrews
the analytical proof. The other side consists of the fermionic sum representations for
the characters ofM(2n+ 3, 2). This original formulation can be rewritten in order to
match the fermionic forms as

χ2n+3,2
1,j (q) = qh2n+3,2

1,j − c2n+3,2
24

∑

~m∈(Z≥0)n

q ~mtC−1
Tn

~m+~bt
Tn

~m

(q)~m

(3.5.11)
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with CTn being the Cartan matrix of the tadpole graph which differs from CAn only

by a 1 instead of a 2 in the component (CTn)nn and ~btTn
= (0, . . . , 0︸ ︷︷ ︸

n times

, 1, 2, . . . , k − n).

Note that the Andrews-Gordon identities reduce to the Rogers-Ramanujan identities
for n = 1 and a ∈ {1, 2}, i.e. forM(5, 2).

Most of these expressions were found and verified by using Mathematica and explicit
proofs were lacking for most of them [KKMM93a]. But that situation changed during the
following years. A particular example is the fermionic character expression for χ4,3

1,1 related to
E8, for which S. Ole Warnaar and Paul A. Pearce found a proof based on the so-called dilute
A3 model [WP94]. A different direction that allowed for many of the identities to be proven
was found by Melzer [Mel94]. He observed that Virasoro characters have a natural finitized
version in terms of so-called path spaces or corner-transfer matrix sums in the rough solid-
on-solid (RSOS) model [ABF84]. This method of proving the identities has been extended
in [Ber94] and references therein. The fact that there are different fermionic expressions
for a single character (in the sense that the matrix A in the quadratic form is different) is
demonstrated impressively by the vacuum character χ4,3

1,1 of the Ising model. There is a sum
representation related to A1 and a sum representation related to E8. Let us discuss this.
In [KM90], Timothy Klassen and Ezer Melzer investigated integrable massive scattering
theories. There, the ADE algebras describe certain perturbations of coset conformal field
theories [GKO85] related to ADE. These algebras are the same. For example, the energy
perturbation of the Ising model, which is called Ising field theory , corresponds to A1 and to
the conformal limit of Kaufman’s representation of the general Ising model in the absence of
a magnetic field in terms of a single, free fermion [Kau49], while the magnetic perturbation
corresponds to a scattering theory of eight different particle species [Zam89]. Later on in
this thesis, when we demonstrate the quasi-particle interpretation of the fermionic character
expressions, we will see that the E8 character corresponds also to a system of eight quasi-
particle species with exactly the charges in [Zam89] reproduced by the sum restrictions.
This is another example that different fermionic expressions for the same character point to
different integrable perturbations of the conformal field theory in consideration.

Furthermore, symmetries of the character χp,p′

r,s with repect to its parameters (see (3.4.11)
and (3.4.12)) add to the non-uniqueness of a fermionic character expression. For instance,

χp,αp′

αr,s = χαp,p′

r,αs α ∈ Z≥1 , 〈p, αp′〉 = 〈αp, p′〉 = 1 (3.5.12)

implies that the characters ofM(6, 5) are related to those ofM(10, 3).

3.6. Characters of SU(2) Level k WZW Models

3.6.1. Bosonic Character Expressions

In this section, bosonic and fermionic character expressions for SU(2)k WZW models are
displayed and new fermionic expressions are given, based on our recent article [FGK07].
The original bosonic expressions have been obtained by Kač and Peterson [KP84] for the

characters of the affine Lie algebra A
(1)
1 for integrable representations (integer or half-integer
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spin l ≤ k
2
) (in short, affine characters) of level k and spin l as

χaff
λ,k(τ) =

1

η3(τ)

∞∑

n=−∞
(nN + λ)eiπτ

(nN+λ)2

N (3.6.1)

with N = 2(k+ 2) and λ = 2l+ 1, which can be rephrased in terms of the affine Θ-function
(cf. section 2.5) as

χaff
λ,k−2 =

(∂Θ)λ,k

η3
(3.6.2)

for 0 < λ < k.

3.6.2. Fermionic Character Expressions from Spinon Bases

The ADET pattern does not obviously appear to exhaust the spectrum of fermionic character
expressions. For example, there is also a quite different source for fermionic character sums:
It was observed that a ‘discretization’ [HHT+92] of the ŝu(N)1 Wess-Zumino-Witten (WZW)
model is connected to the su(N) Haldane-Shastry model [Hal88, Sha88], the latter being the
integrable model of a spin chain with long-range interaction, whose elementary excitations
can be described in terms of spinons , free particles obeying fractional statistics, i.e. the
fundamental excitations (quasi-particles) over a many-body ground state carry quantum
numbers which are fractions of the quantum numbers carried by the microscopic degrees of
freedom in the system (e.g. Laughlin quasi-particles in the fractional quantum Hall effect ,
which have fractional charge [Lau83, TSG82, SGJE97]). In other words, the conformal limit
of the su(N) spin chain with long-range interaction is the su(n) level one WZW model.
(Most properties of the spin chain still apply to this limit.) This leads to a description of
the basis of states of the WZW model in terms of spinons, and from these spinons, fermionic
sum representations for the characters may be obtained [BPS94, BLS94b, BLS95a]. The
quasi-particle description corresponding to fermionic sum representations for characters is
investigated in detail in chapter 5. Based on this, Schoutens then proposed a very general
method for investigating the exclusion statistics of quasi-particles in conformal field theory
spectra [Sch97] (see also [BS99]), employing recursion relations for truncations of the chiral
conformal field theories spectrum. This approach includes Haldane’s fractional exclusion
statistics in special cases: The exclusion statistics of CFT quasi-particles obtained from
the recursion method agree with the fractional exclusion statistics by Haldane. Then, the
quasi-particle character formulae take the form of the fermionic sum representations. This
correspondence between fermionic sum representations of characters and Haldane’s statistics
was discussed in [BM98, Sch99].

In this section, we are concerned about fermionic character expressions for the irreducible
integrable representations of A

(1)
1 at level k− 2. A spinon basis for the su(2)k spectrum was

constructed in [BLS95a] and the corresponding statistics were described in [FS98].
The Haldane-Shastry long-range spin chain is integrable and has Yangian symmetry , as

well as the SU(2) level one WZW model. The chiral symmetry algebra of the latter is ŝℓ2,
the affine Lie algebra corresponding to sℓ2. The Yangian Y (sℓ2) is another, highly non-trivial
symmetry structure of the theory, which is natural in a spinon formulation. This algebra can
be represented on the Hilbert space of the SU(2)1 WZW model. While the description of that

Hilbert space in terms of ŝℓ2 is difficult due to the existence of singular vectors, it was found
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to be simple in terms of the Yangian symmetry algebra: It can be constructed as a Fock space
of massless spinons satisfying generalized commutation relations. From this, fermionic quasi-
particle sum representations for the characters have been derived [BLS94a]. In [BLS95a],
this procedure has been generalized to levels greater than one. A spinon basis for the su(2)k

spectrum was proposed and fermionic character expressions were obtained, which have been
verified to high order. However, these fermionic formulae are not of fundamental fermionic
form type (cf. (3.2.6)). In particular, they consist of finite q-binomial coefficients. But for
special cases, there are different fermionic expressions which are of fundamental fermionic
form type [FS93]. We display at first the known fermionic expressions of both types and
then present new fermionic expressions of fundamental fermionic form type below, based on
our recent article [FGK07]. The spinon Fock space of the SU(2) WZW model at level k

decomposes into a direct sum of integrable highest weight modules of (ŝℓ2)k. The fermionic

character expressions for the irreducible integrable representations of A
(1)
1 = ŝℓ2 at level k−2

[BLS95a] are given by

χaff
λ,k−2 =

(∂Θ)λ,k(τ)

η3(τ)
=

∞∑

m1,...,mk−1=0

(~m′)i≡(~Q(λ))i (mod 2)

q ~mtBk ~m+c♯
λ,k

(q)m1(q)m2

k−1∏

i=3

[
⌈(1

2
(2− CAk−2

)~m′)i−1⌉
mi

]

q

(3.6.3)

for 0 < λ < k with ~m′t = (m1 +m2, m3, m4, . . . , mk−1) and

4Bk = Ck + CAk−1
, (Ck)ij =





−1 if i+ j is even and i+ j ≤ 4

2 if i+ j is odd and i+ j ≤ 4

0 if i+ j > 4

, (3.6.4)

where CAk
is the Cartan matrix of the Lie algebra Ak

∼= sℓk+1 and c♯λ,k = 2λ2+k−2kλ
8k

. Given
any x ∈ R, ⌈x⌉ and ⌊x⌋ mean the next integer greater than or equal to x and the next
integer less than or equal to x, respectively. The following restrictions hold for the sum

variables: (~m′)i = ( ~Q(λ))i (mod 2) with ~Q(λ) = ((
∑⌊λ

2
−1⌋

j=0 δi,λ−(2j+1))i : i ∈ {1, . . . , k− 2}) ∈
(Z2)

k−2, i.e. ~Q(λ) is either of the form (1, 0, 1, 0, . . . , 1, 0, 0, 0, . . . , 0) if λ is odd or of the form
(0, 1, 0, 1, . . . , 1, 0, 0, 0 . . . , 0) if λ is even.8 We see from (3.6.3) that the module at level zero
is trivial, its character being

(∂Θ)1,2(τ)

η(τ)3
= 1 . (3.6.5)

For λ = 1 and λ = k − 1, there exists another expression. In both cases, it consists of a
single fundamental fermionic form without sum restrictions and has 2(k − 2) different sum
indices.

The expression for λ = 1 was given without proof (except for level 1, see below) by Feigin
and Stoyanovsky using a flag manifold approach [FS93] and reads

(∂Θ)1,k(τ)

η3(τ)
=

∑

~m∈(Z≥0)2(k−2)

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+c♭

1,k

(q)~m
, (3.6.6)

8The number and the placement of entries 1 in the latter vector may be changed in certain ways, but then
an inner product ~bt ~m with the k − 1-component vector ~bt = (1

2 ,− 1
2 , 0, . . . , 0) has to be added to the

quadratic form in the numerator of (3.6.3).
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where CA2 is as above, C−1
Tk

is the inverse of the k × k Cartan matrix of the tadpole graph9

and the constant c♭λ,k = λ2

4k
− 1

8
.

For λ = k − 1, we present in [FGK07] the following fermionic expression:

(∂Θ)k−1,k(τ)

η3(τ)
=

∑

~m∈(Z≥0)2(k−2)

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+(~a2⊗~bk−2)

t ~m+c♭
k−1,k

(q)~m

(3.6.7)

with ~at
2 = (1,−1) and ~btk = (1, 2, 3, . . . , k). It has been checked numerically up to k = 4 and

high order and is assumed to hold for higher values of k.
For example,

(∂Θ)3,4(τ)

η3(τ)
=

∑

~m∈(Z≥0)3

m1+m2≡0 (mod 2)
m3≡1 (mod 2)

q
1
4

~mt

„ 1 1 −1
1 1 −1

−1 −1 2

«

~m− 1
16

∏2
i=1(q)mi

[
m1+m2

2

m3

]

q

(3.6.8)

or, equivalently,

(∂Θ)3,4(τ)

η3(τ)
=

∑

~m∈(Z≥0)4

q

1
2

~mt

0

@

2 −1 2 −1
−1 2 −1 2

2 −1 4 −2
−1 2 −2 4

1

A~m+

0

@

1
−1

2
−2

1

A

t

~m+ 17
48

(q)~m

. (3.6.9)

For level 1, i.e. k = 3, both types of fermionic expressions, (3.6.3) and (3.6.6), can be shown
to be equivalent:

(∂Θ)1,3(τ)

η3(τ)
=

∞∑

~m=0

q
1
2

~mt
“

2 −1
−1 2

”

~m− 1
24

(q)~m
(3.6.10)

=
∞∑

m1,m2≥0

qm2
1+m2

2−m1m2− 1
24

(q)m1(q)m2

= q−
1
24

∑

m∈Z qm2
∑

m1,m2≥0
m1−m2=m

qm1m2

(q)m1(q)m2

(3.6.11)

=
∑

m∈Z qm2

η(q)
=
Θ0,1(q)

η(q)
(3.6.12)

=

∞∑

~m
m1+m2≡0 (mod 2)

q
1
4

~mt(1 1
1 1)~m

(q)~m
, (3.6.13)

where for the fourth equality we have made use of the Durfee rectangle identity (3.7.15) (see
e.g. [And84]) and for the last equality, we used a relation that will be proven in 3.7.2.

9The CTk
Cartan matrix differs from the CAk

Cartan matrix only by a 1 instead of a 2 in the lower right
corner.
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3.7. Characters of the Triplet Algebras

W(2, 2p − 1, 2p − 1, 2p − 1)

3.7.1. Characters in Bosonic Form

The triplet W algebras are rational conformal field theories10[GK96, Flo96, CF06], i.e. the
number of highest weight representations of the W-algebra is finite, and the generalized
character functions span a finite dimensional representation of the modular group. Knowing
the vacuum character is sufficient in proving rationality of the theory.

One can calculate the W character of the vacuum representation by summing up all the
Virasoro characters of the highest weight representations corresponding to integer values of
h, the latter being given by

h2k+1,1 = k2p+ kp− k . (3.7.1)

All the corresponding primary fields belong to degenerate conformal families. By means
of a standard free-field construction [BPZ84, DF84, DF85a, DF85b], it turns out that the
representations with these highest weights h2k+1,1 correspond to a set of relatively local chiral
vertex operators Φ2k+1,1. It follows that the local chiral algebra can be extended by them.
The conditions for the existence of well-defined chiral vertex operators [Kau95, Kau00] result
in abstract fusion rules which imply that the local chiral algebra generated by only the stress-
energy tensor and the field Φ3,1 closes. Repeated application of the so-called screening charge
operator Q [Fel89] on Φ3,1 generates a multiplet structure. Thus, one also has to take care of
the su(2) symmetry of the triplet of fields, which results in the multiplicity of the Virasoro
representation |h2k+1,1〉 being 2k+1. E.g., since h3,1 = 2p− 1 and its multiplicity is three, it
matches the fact that we have a triplet of fields in the algebraW(2, 2p−1, 2p−1, 2p−1). The
vacuum representation of theW-algebra can then be written as the following decomposition
of the Hilbert space:

H|0〉 =
⊕

k∈Z(2k + 1)HVir
|h2k+1,1〉 . (3.7.2)

The embedding structure of Feigin and Fuks [FF83] (see section 1.2.5) in the case of
p′ = 1 implies that the Virasoro characters corresponding to h2k+1,1 – these are the only
integer-valued for all p – are given by

χVir
2k+1,1 =

q
1−cp,1

24

η(q)

(
qh2k+1,1 − qh2k+1,−1

)
. (3.7.3)

10They are rational in the generalized sense discussed in section 1.4.3, since indecomposable representations
occur.
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It is thus possible to compute the vacuum character as

χW
0 (q) =

∑

k∈Z≥0

(2k + 1)χVir
2k+1,1(q)

=
q

1−cp,1
24

η(q)


 ∑

k∈Z≥0

(2k + 1)qh2k+1,1 −
∑

k∈Z≥0

(2k + 1)q2k+1,−1




=
q

(p−1)2

4p

η(q)


 ∑

k∈Z≥0

(2k + 1)qh2k+1,1 −
∑

k∈Z≥1

(2k − 1)q−2k+1,1




=
q

(p−1)2

4p

η(q)


 ∑

k∈Z≥0

(2k + 1)qh2k+1,1 +
∑

k∈Z≤1

(2k + 1)q2k+1,1




=
q

(p−1)2

4p

η(q)

(∑

k∈Z(2k + 1)qh2k+1,1

)

=
1

η(q)

(∑

k∈Z(2k + 1)qpk2+kp−k+ (p−1)2

4p

)

=
1

pη(q)

(∑

k∈Z(2pk + p)q
(2pk+(p−1))2

4p

)

=
1

pη(q)
((∂Θ)p−1,p(q) +Θp−1,1(q)) , (3.7.4)

where the symmetry property hr,s = h−r,−s has been used and the Θ-functions as defined in
2.5. The h-values of a givenW-algebra can be calculated by use of the free-field construction,
using Jacobi identities and null field constraints (cf. section 1.4.3). The corresponding
characters may be calculated as follows: The so-called modular differential equation (see e.g.
[Flo96]) may be used to compute as many terms of the q-expansion of the character as are
necessary to unambigiously identify the corresponding function, because the requirement of
that function to be a modular form implies strong restrictions on that function. It turns
out that if we assume that c3p,3 = cp,1 corresponds to a minimal model, which of course it
doesn’t since 3p and 3 are not coprime, it is possible to read the resulting h-values of the
given cp,1 theory off that enlarged Kač table.

Θλ,k(τ)

η(τ)
is a modular form of weight zero with respect to the generators T : τ 7→ τ + 1

and S : τ 7→ − 1
τ

of the modular group PSL(2,Z). But since
(∂Θ)λ,k(τ)

η(τ)
is a modular form

of weight one with respect to S (cf. section 2.5), some of the above character functions are
of inhomogeneous modular weight, thus leading to S-matrices with τ -dependent coefficients.
However, adding

(∇Θ)λ,k(τ) =
log q

2πi

∑

n∈Z(2kn+ λ)q
(2kn+λ)2

4k , (3.7.5)

one finds a closed finite-dimensional representation of the modular group with constant S-
matrix coefficients.
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After all, it turns out that a complete set of character functions for the cp,1 models that
is closed under modular transformations [Flo97] is given by:

χ0,p =
Θ0,p

η
representation to hp,1

1,p (3.7.6a)

χp,p =
Θp,p

η
hp,1

1,2p (3.7.6b)

χ+
λ,p =

(p− λ)Θλ,p + (∂Θ)λ,p

pη
hp,1

1,p−λ (3.7.6c)

χ−
λ,p =

λΘλ,p − (∂Θ)λ,p

pη
hp,1

1,3p−λ (3.7.6d)

χ̃+
λ,p =

Θλ,p + iαλ(∇Θ)λ,p

η
hp,1

1,p+λ (3.7.6e)

χ̃−
λ,p =

Θλ,p − iα(p− λ)(∇Θ)λ,p

η
hp,1

1,p+λ (3.7.6f)

where 0 < λ < k, k = pp′ = p, λ = pr−p′s = pr−s and with the Jacobi-Riemann Θ-function
and the affine Θ-function defined as in 2.5.

Note that (3.7.6e) and (3.7.6f) are not characters of representations in the usual sense.
Actually, these are regularized character functions and the α-dependent part has an interpre-
tation as torus vacuum amplitudes [FG06]. In the limit α→ 0, they become the characters
of the full reducible but indecomposable representations.

3.7.2. Fermionic Character Expressions for W(2, 3, 3, 3)

Fermionic sum representation for the cp,1 models had not been found before. They are
presented in this work and our corresponding publication [FGK07]. In this section, the
fermionic formulae for the case of p = 2 are derived. The expressions for p > 2 will follow
later.

In the case of p = 2, the bosonic characters read:

χ+
1,2 =

Θ1,2 + (∂Θ)1,2

2η
vacuum irrep V0 to h1,1 = 0 (3.7.7a)

χ0,2 =
Θ0,2

η
irrep to h1,2 = −1

8
(3.7.7b)

χ1,2 =
Θ1,2

η
indecomp. rep R0(⊃ V0) to h1,3 = 0 (3.7.7c)

χ2,2 =
Θ2,2

η
irrep to h1,4 = 3

8
(3.7.7d)

χ−
1,2 =

Θ1,2 − (∂Θ)1,2

2η
irrep to h1,5 = 1. (3.7.7e)

When α→ 0, the general forms (3.7.6e) and (3.7.6f) lead to the character expression (3.7.7c)
[Kau95, Flo97]. Actually, there exist two indecomposable representations, R0 and R1 (cf.
section 1.4.3), which, however, are equivalent and thus share the same character.
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Explicitly,

q−
1
12χ+

1,2 =1 + q2 + 4q3 + 5q4 + 8q5 + 10q6 + 16q7 + 22q8 + 32q9

+ 47q10 + 64q11 + 88q12 + 120q13 + 161q14 + 212q15

+ 282q16 + 368q17 + 480q18 + 620q19 + 798q20 + . . . (3.7.8)

q
1
24χ0,2 =1 + q + 4q2 + 5q3 + 9q4 + 13q5 + 21q6 + 29q7 + 46q8 + 62q9

+ 90q10 + 122q11 + 171q12 + 227q13 + 311q14 + 408q15

+ 545q16 + 709q17 + 933q18 + 1198q19 + 1555q20 + . . . (3.7.9)

q−
1
12χ1,2 =1 + 2q + 3q2 + 6q3 + 9q4 + 14q5 + 22q6 + 32q7 + 46q8 + 66q9

+ 93q10 + 128q11 + 176q12 + 238q13 + 319q14 + 426q15

+ 562q16 + 736q17 + 960q18 + 1242q19 + 1598q20 + . . . (3.7.10)

q−
11
24χ2,2 =2 + 2q + 4q2 + 6q3 + 12q4 + 16q5 + 26q6 + 36q7 + 54q8 + 74q9

+ 106q10 + 142q11 + 200q12 + 264q13 + 358q14 + 470q15

+ 626q16 + 810q17 + 1062q18 + 1362q19 + 1760q20 + . . . (3.7.11)

q−
1
12χ−

1,2 =2q + 2q2 + 2q3 + 4q4 + 6q5 + 12q6 + 16q7 + 24q8 + 34q9

+ 46q10 + 64q11 + 88q12 + 118q13 + 158q14 + 214q15

+ 280q16 + 368q17 + 480q18 + 622q19 + 800q20 + . . . . (3.7.12)

In the following, the fermionic expressions for
Θλ,2(τ)

η(τ)
, 0 ≤ λ ≤ 2, are being calculated

at first. In this case, the bosonic expressions can be straightforward transformed to the
fermionic ones: At first,

Θλ,k

(q)∞
=

+∞∑

n=−∞

q
(2kn+λ)2

4k

(q)∞
(3.7.13)

=
1

(q)∞

(
q

λ2

4k +

∞∑

n=1

q
(2kn−λ)2

4k +

∞∑

n=1

q
(2kn+λ)2

4k

)
. (3.7.14)

Then, an identity
∞∑

n=0

qn2+nk

(q)n(q)n+k

=
1

(q)∞
(3.7.15)

that can be proven using Durfee squares or the q-analogue of Kummer’s theorem (see e.g.
[And84, pp. 21,28]) is employed to turn (3.7.13) into

∞∑

m=0

qm2

(q)2
m

+
∞∑

n1=1

∞∑

m1=0

qm2
1+m1(2n1)+

(k(2n1)−λ)2

4k

(q)m1(q)m1+2n1

+
∞∑

n2=1

∞∑

m2=0

qm2
2+m2(2n2)+

(k(2n2)+λ)2

4k

(q)m1(q)m1+2n2

. (3.7.16)

Setting n1 = m2−m1

2
and n2 = m1−m2

2
leads to

∞∑

m=0

qm2

(q)2
m

+
∞∑

0≤m1<m2=0
m1+m2≡0 (mod 2)

∞∑

0≤m2<m1=0
m1+m2≡0 (mod 2)

q
k
4
(m2

1+m2
2)+ 2−k

2
m1m2+ λ

2
(m1−m2)+

λ2

4k

(q)m1(q)m2

. (3.7.17)
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On the other hand,

Θλ,k

(q)∞
=

+∞∑

n=−∞

q
(2kn+λ)2

4k

(q)∞

=
∞∑

n1=1

∞∑

m1=0

qm2
1+m1(2n1−1)+

−2k(k−λ)(2n1−1)+(k−λ)2+k2(2n1−1)2

4k

(q)m1(q)m1+2n1−1

(3.7.18)

+

∞∑

n2=1

∞∑

m2=0

qm2
2+m2(2n2−1)+

2k(k−λ)(2n2−1)+(k−λ)2+k2(2n2−1)2

4k

(q)m2(q)m2+2n2−1
.

Setting n1 = m2−m1+1
2

and n2 = m1−m2+1
2

implies

∞∑

0≤m1<m2=0
m1+m2≡1 (mod 2)

∞∑

0≤m2<m1=0
m1+m2≡1 (mod 2)

q
k
4
(m2

1+m2
2)+ 2−k

2
m1m2+ k−λ

2
(m1−m2)+ (k−λ)2

4k

(q)m1(q)m2

. (3.7.19)

Thus, from (3.7.17) and (3.7.19),

Λλ,k(τ) =
Θλ,k(τ)

η(τ)

=

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

λ
−λ

”t
~m+ λ2

4k
− 1

24

(q)~m
(3.7.20a)

=

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

„

−(k−λ)
k−λ

«t

~m+
(k−λ)2

4k
− 1

24

(q)~m
. (3.7.20b)

This two-fold q-hypergeometric series has been given without explicit proof in [KMM93].11

These are fermionic expressions for (3.7.7b) to (3.7.7d). We obtained the fermionic expres-
sions of the remaining two characters, which were unknown so far, as follows: Note that
(∂Θ)1,2

η3(q)
= 1 and hence

χ±
1,2 =

Θ1,2

2η
± 1

2
η2 . (3.7.21)

We then use an identity

η(q) = q
1
24

∞∑

n=0

(−1)nq(
n+1

2 )

(q)n

(3.7.22)

by Euler (cf. [Zag06] for a simple proof). This identity may be squared, leading to

η2(q) = η̃2(q,−1) with η̃2(q, z) =

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m+ 1

12 zm1+m2

(q)~m
. (3.7.23)

11Note that (3.7.20) is not unique just as (2.5.1): According to (2.5.3) the vector may be changed in certain
ways along with the constant.
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It is possible to transform the fermionic expression of χ1,2 which was obtained in (3.7.20)
into

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m

(q)~m
=

1

2

∞∑

~m=0
m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m

(q)~m
(3.7.24)

+
1

2

∞∑

~m=0
m1+m2≡1 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m

(q)~m

=

( ∞∑

m1=0

q
m2

1−m1
2

(q)m1

)( ∞∑

m2=0
m2≡m1 (mod 2)

q
m2

2+m2
2

(q)m2

)
(3.7.25)

+

( ∞∑

m1=0

q
m2

1−m1
2

(q)m1

)( ∞∑

m2=0
m2≡m1+1 (mod 2)

q
m2

2+m2
2

(q)m2

)
.

By using

∞∑

m=0

q
m2

2+m2
2

(q)m
=

1

2

∞∑

m=0

q
m2

2+m2
2

(q)m
, (3.7.26)

which holds because

∞∑

m=0

q
m2

2+m2
2

(q)m
=

∞∑

m=0

q
m2

2+m2
2 (1− qm+1)

(q)m+1

=

∞∑

m=0

q
m2

2+m2
2

(q)m+1
−

∞∑

m=0

q
m2

2+m2
2

+m+1

(q)m+1
(3.7.27)

=
∞∑

m=1

q
m2

2−m2
2

(q)m

−
∞∑

m=1

q
m2

2+m2
2

(q)m+1

,

χ1,2 may be written as

q
1
24χ1,2 =

( ∞∑

m1=0

q
m2

1+m1
2

(q)m1

)( ∞∑

m2=0
m2≡m1 (mod 2)

q
m2

2+m2
2

(q)m2

)

+

( ∞∑

m1=0

q
m2

1+m1
2

(q)m1

)( ∞∑

m2=0
m2≡m1+1 (mod 2)

q
m2

2+m2
2

(q)m2

)

=

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m

(q)~m
, (3.7.28)
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finally leading to

q
1
24χ±

1,2 =
Θ1,2

2η
± η2

2

=
1

2

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1

1 )
t
~m

(q)~m

± 1

2

∞∑

~m=0

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m+ 1

12 (−1)m1+m2

(q)~m

=
∞∑

~m=0
m1+m2≡a (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m

(q)~m

(3.7.29)

with a = 0 if the plus sign is chosen and a = 1 if the minus sign is chosen.
Thus, also the remaining two characters yield expressions which consist of only one fun-

damental fermionic form.
The following is a list of the fermionic expressions for all five characters of the logarithmic

conformal field theory model corresponding to central charge c2,1 = −2 that we presented in
our recent article [FGK07]:

χ+
1,2 =

∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m+ 1

12

(q)~m
(3.7.30a)

χ0,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m− 1

24

(q)~m

(3.7.30b)

χ1,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“

1
−1

”t
~m+ 1

12

(q)~m
(3.7.30c)

χ2,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+

“

1
−1

”t
~m+ 11

24

(q)~m

(3.7.30d)

χ−
1,2 =

∑

~m∈(Z≥0)2

m1+m2≡1 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m+ 1

12

(q)~m
(3.7.30e)

and also

χ1,2 =
∑

~m∈(Z≥0)2

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m

(q)~m
. (3.7.31)

Using the equality to the bosonic representation of the characters, these give bosonic-
fermionic q-series identities generalizing the left and right hand sides of (3.2.5). In (3.7.30b)
to (3.7.30d), also the last line of (3.7.20) may be used, where m1 +m2 ≡ 1 (mod 2).

It is remarkable that, although two of the characters have inhomogeneous modular weight,
there is a uniform representation for all five characters with the same matrix A in every
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h h

1 2

Figure 3.2.: The Dynkin diagram of D2

case. But on the other hand, this is a satisfying result, since this is also the case for all other
models for which fermionic character expressions are known: Their different modules are
only distinguished by the linear term in the exponent, not by the quadratic one. Note that
the fact that the quadratic form is diagonal goes well with the description of the c = −2
model in terms of symplectic fermions [Kau95, Kau00], see section 5.4.1.

The results are also in agreement with Nahm’s conjecture (see section 3.3), which predicts
that for a matrix of the form A =

(
α 1−α

1−α α

)
with rational coefficients, there exist a vector

~b ∈ Qr and a constant c ∈ Q such that fA,~b,c(τ) =
∑∞

~m∈(Z≥0)r
q

1
2 ~mtA~m+~bt ~m+c

(q)~m
is a modular

function.

3.7.3. Fermionic Character Expressions for

W(2, 2p − 1, 2p − 1, 2p − 1)

The matrix 1
2
(1 0
0 1) was found in the quadratic form of the fermionic expressions for the

W(2, 3, 3, 3) model at c = −2 in the previous section. A generalization to W(2, 2p− 1, 2p−
1, 2p− 1) is possible by recognizing that the matrix in the case of p = 2 is just the inverse
of the Cartan matrix of the degenerate case D2 = so(4) = A1 × A1 of the Dn = so(2n)
series of simple Lie algebras, where the corresponding Dynkin diagram consists just of two
disconnected nodes, as shown in figure 3.7.3. Consequently, one may try the inverse Cartan
matrices

CD−1
p

=




1 1 · · · 1 1
2

1
2

1 2 · · · 2 1 1
...

...
. . .

...
...

...
1 2 · · · p− 2 p−2

2
p−2
2

1
2

1 · · · p−2
2

p
4

p−2
4

1
2

1 · · · p−2
2

p−2
4

p
4




(3.7.32)

of Dp = so(2p), p > 2, for the fermionic expressions of the characters of the cp,1 models
in the case of p > 2. The first thing we noticed by comparing expansions when we tried
these matrices in (3.3.1) is that ~b = 0 leads to a fermionic expression for

Θ0,p

η(q)
. However, the

restriction m1 + m2 ≡ 0 (mod 2) has to be changed to mp−1 + mp ≡ 0 (mod 2) implying
that particles of the two species corresponding to the two nodes labeled by n − 1 and n
in the Dn dynkin diagram (see figure 3.7.3), which are both connected to the node labeled
by n − 2, may only be created in pairs, as will be shown in detail in chapter 5. These
expressions coincide with the ones found in [KKMM93a] (but only the ones with ~b = 0),
since the characters of the free boson with central charge c = 1 and compactification radius
r =

√
p
2

[Gin88] equal some of the characters of the cp,1 models. We now used our experience
on fermionic character expressions to guess the vectors for the rest of the characters of the
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Figure 3.3.: The Dynkin diagram of Dn

other representations for each given cp,1 model. The expressions for
Θλ,p

η(q)
have +λ

2
and −λ

2

in the last two entries of ~b and zero in the other components as is the case for the other,
strictly two-dimensional fermionic expression for

Θλ,p

η(q)
given earlier in (3.7.20).

Still missing now are fermionic expressions for those characters whose bosonic form is of
inhomogeneous modular weight, i.e. which consist of theta and affine theta functions. For
the vacuum character of c = −2 the vector is ~b = 1

2
(1
1). Based on our experience with

fermionic expressions for other models, we guessed that the vector for the inhomogeneous
characters of any cp,1 model will have +λ

2
in both its last components and the rest of the

k−2 components will increase in integer steps from top to bottom, starting with zero at the
component number i. The value of i depends on the values of λ and k. All components above
the component number i are zero, too. The detailed description of this vector in dependence
of λ and k is given below. In this way, we found the fermionic expressions for all characters
of all cp,1 models and thus a whole new, infinite set of bosonic-fermionic q-series identities,
given below. In section 5.4.1 and 5.4.2, we will propose a physical interpretation in terms of
quasi-particles. Expanding the new fermionic character expressions in q, one may convince
himself that all coefficients match those of the bosonic character expressions. We checked it
up to k = 5 and high order.

In short, the fermionic sum representations for all characters of theW(2, 2p−1, 2p−1, 2p−
1), p ≥ 2, series of triplet algebras corresponding to central charge cp,1

12 can be expressed as
follows and indeed equal the bosonic ones (cf. (3.7.6a)-(3.7.6f)), the latter being redisplayed
on the right hand side for convenience:

χλ,k =
∑

~m∈(Z≥0)k

mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~bt

λ,k ~m+c⋆
λ,k

(q)~m
=
Θλ,k

η
(3.7.33a)

χ+
λ′,k =

∑

~m∈(Z≥0)k

mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~b′

+t

λ′,k ~m+c⋆
λ′,k

(q)~m
=

(k − λ′)Θλ′,k + (∂Θ)λ′,k

kη
(3.7.33b)

χ−
λ′,k =

∑

~m∈(Z≥0)k

mk−1+mk≡1 (mod 2)

q
~mtC−1

Dk
~m+~b′

−t

λ′,k ~m+c⋆
k−λ′,k

(q)~m
=
λ′Θλ′,k − (∂Θ)λ′,k

kη
(3.7.33c)

for 0 ≤ λ ≤ k and 0 < λ′ < k, where k = p since p′ = 1 and (~bλ,k)i = λ
2
(±δi,k−1 ∓ δi,k)

for 1 ≤ i ≤ k, (~b′
+

λ′,k)i = max{0, λ′ − (k − i − 1)} for 1 ≤ i < k − 1 and (~b′
+

λ′,k)i = λ′

2
for

12This means the characters and not the torus vacuum amplitudes (3.7.6e) and (3.7.6f). Note that lim
α→0

χ̃+
λ,k =

lim
α→0

χ̃−

λ,k = χλ,k for 0 < λ < k.
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k − 1 ≤ i ≤ k, (~b′
−
λ′,k)i = (~b′

+

k−λ′,k)i and c⋆λ,k = λ2

4k
− 1

24
.13 Thus, as in the previous section,

the p× p matrix A = C−1
Dp

is the same for all characters corresponding to a fixed p, i.e. for
a fixed model. This is in agreement with previous results on fermionic expressions, since it
is known to also be the case for the characters of a given minimal model (see e.g. [Wel05]).

For example, the fermionic expression of the vacuum character of the theory corresponding
to central charge c5,1 = −18, 2 would be

χ+
4,5 =

Θ4,5 + (∂Θ)4,5

5η
=

∑

~m∈(Z≥0)5

m4+m5≡0 (mod 2)

q
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1 1 1 1
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3
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1
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5
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C

A

~m+

0
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@

1
2
3
2
2

1

C

A

t

~m+ 91
120

(q)~m
. (3.7.34)

3.8. Characters of W(2, 3k)

3.8.1. Bosonic Character Expressions

One obtains the W-character by summing up the Virasoro characters of all the degenerate
representations corresponding to the primary fields that make up the local system of chiral
vertex operators, as discussed in section 1.4.2, i.e. the representations corresponding to
those fields where the dimensions hr,r∀r ∈ Z≥0 of any two primary fields differ by integers.
Since the general Virasoro character for degenerate representations corresponding to highest
weight hr,r is given by

χr,r := χVir
|hr,r ,c〉(q) =

q
1−c
24

η(τ)

(
qhr,r − qhr,−r

)
=

1

η(τ)

(
qn2k − qn2(k+1)

)
, (3.8.1)

one can calculate the W-character of the vacuum representation as

χW
0 (τ) =

∑

r∈Z≥0

χr,r(τ)

=
1

2η(τ)

∑

r∈Z (qn2k − qn2(k+1)
)

=
1

2η(τ)
(Θ0,k(τ)− Θ0,k+1(τ)) . (3.8.2)

By the properties of the Jacobi-Riemann Θ-functions under modular transformations (see

2.5), one can read off that the functions
Θλ,k

η
span a finite-dimensional representation of

the modular group. Hence, W(2, 3k) is a rational conformal field theory. Knowing the

13Note that in (3.7.33a), also mk−1 + mk ≡ 1 (mod 2) may be used as restriction, but then the vector and

the constant change to ~bk−λ,k and c⋆
k−λ,k, respectively (cf. (3.7.20)).
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vacuum character is sufficient for determining all other characters of the theory as well. The
characters of W(2, 3k) with central charge c = 1− 24k are given by

χW
(−1)ǫλ =

Θλ,k+ǫ

η
representations to h λ

2(k+ǫ)
,
(−1)ǫλ
2(k+ǫ)

, w = 0 (3.8.3a)

χW
0 =

1

2η
(Θ0,k − Θ0,k+1) vacuum representation h1,1 = 0, w = 0 (3.8.3b)

χW
k+1 =

1

2η
(Θ0,k +Θ0,k+1) rep. of lowest energy h0,0 = −k, w = 0 (3.8.3c)

χW
(−1)ǫ(k+ǫ),± =

Θk+ǫ,k+ǫ

η
reps with same energy h 1

2
,(−1)ǫ 1

2
,±w,w 6= 0 (3.8.3d)

for ǫ ∈ {0, 1} and 1 ≤ λ < k+ǫ [Flo93]. Since h0,0 < h1,1, these theories are non-unitary. The
computation of the characters for W(2, 8k) is analogous and can also be found in [Flo93].

3.8.2. Fermionic Sum Representations

The fermionic character representations for W(2, 3k) and W(2, 8k) have already been given
in this thesis, by either (3.7.20) or (3.7.33a):

Λλ,k(τ) =
Θλ,k(τ)

η(τ)

=
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

“

λ
−λ

”t
~m+ λ2

4k
− 1

24

(q)~m

=
∑

~m∈(Z≥0)2

m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”

~m+ 1
2

„

−(k−λ)
k−λ

«t

~m+ (k−λ)2

4k
− 1

24

(q)~m

(3.8.4)

or

χλ,k =
∑

~m∈(Z≥0)k

mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~bt

λ,k ~m+c

(q)~m
. (3.8.5)

However, the vacuum character and the character to the lowest energy representation both
involve Θ-functions with different moduli, so we can just give a linear combination of funda-
mental fermionic forms for these. It is not known if there exists a set of fermionic expressions
for all characters of W(2, 3k) which all feature the same matrix A in their quadratic forms,
as is expected [NRT93] to be the case for rational conformal field theories. This is also the
case for the twisted bosonic W(2, 3k) theories [Flo93], albeit no linear combination of more
than one fundamental fermionic form is necessary in that case, since the characters for a
given model involve either

Θλ,k

η
or

Θλ,k+1

η
.
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4. Dilogarithm Identities

4.1. The Rogers Dilogarithm

Dilogarithm identities are relations of the form

1

L(1)

N∑

i=1

L(xi) = d (4.1.1)

with xi an algebraic, d a rational number, N being the size of the matrix A in the fermionic
form, and L being the Rogers dilogarithm (see e.g. [Lew58, Lew81]), defined for 0 < x < 1
by

L(x) = Li2(x) +
1

2
log(x) log(1− x) . (4.1.2)

with

Lik(x) =
∞∑

n=1

xn

nk
(4.1.3)

being the polylogarithm function defined for 0 ≤ x ≤ 1. The polylogarithm arises e.g. in the
computation of quantum electrodynamics corrections to the electrons gyromagnetic ratio. It
admits analytic continuation to the complex plane as a multi-valued analytical function of
x. The Euler dilogarithm function Li2(x) (Euler 1768) has the integral representation

Li2(x) = −
∫ x

0

dt
log(1− t)

t
. (4.1.4)

Note that the connection to the usual logarithm function is given by − log(1− x) = Li1(x).
The Rogers dilogarithm satisfies L(1) = π2

6
as well as the five term relation

L(w) + L(z) + L(1− wz) + L(
1− w
1− wz ) + L(

1− z
1− wz ) = 3 L(1) , (4.1.5)

from which it follows that

L(1− z) = L(1)− L(z) , (4.1.6)

L(z2) = 2 L(z)− 2 L(
z

1 + z
) . (4.1.7)

L(z) may be extended consistently to real z > 1 with the help of

L(z) = 2 L(1)− L(
1

z
) . (4.1.8)
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(a) The Rogers dilogarithm for 0 ≤ x ≤ 1
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(b) The single-valued Rogers dilogarithm continued
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Figure 4.1.: The Rogers dilogarithm

Moreover, it is possible to continue the Rogers dilogarithm to x ∈ R∪{±∞} by the following
rules:

Lsv(x) =

{
π2

3
− L( 1

x
) if x > 1

L( 1
1−x

)− π2

6
if x < 0

, (4.1.9a)

L(0) = 0 , L(1) =
π2

6
, L(+∞) =

π2

3
, L(−∞) = −π

2

6
(4.1.9b)

This is called single-valued Rogers dilogarithm, displayed graphically in 4.1(b). Note that
this construction does satisfy the relation (4.1.6), but in general not the five term relation
(4.1.5), for instance not in the case x < 0, y < 0 and xy > 1. Note also that if a function
f(x) is three times differentiable for 0 < x < 1 and satisfies the five term relation, then it
must be the Rogers dilogarithm function (Rogers 1907). It is visualized in figure 4.1(a). The
Rogers dilogarithm admits an analytic continuation to the complex plane cut along the real
axis from −∞ to 0 and from 1 to +∞.

The dilogarithm and its generalization, the polylogarithm, appear in a lot of branches
of mathematics and physics (see e.g. [Kir95]). The Rogers dilogarithm (in the following
synonymously just referred to as dilogarithm) is interesting for number theory including
algebraic K-theory, geometry of hyperbolic 3-manifolds and even Grothendieck’s theory
of motives. In physics, it occurs for example in the context of integrable 2-dimensional
quantum field theories and lattice models: The UV limit or the critical behavior of such
systems is typically investigated by methods involving the thermodynamic Bethe ansatz
[Bet31, KM90, KM92, KNS93, Zam90]. The central charge of the conformal field theory
corresponding to that system can be expressed through the dilogarithm evaluated at certain
algebraic numbers.

However, it was demonstrated by e.g. [NRT93, DKK+93, KKMM93a, KKMM93b, Ter92,
Ter94] that there is no need to such a physical background of a conformal field theory –
dilogarithm identities already arise from the asymptotics of fermionic character expressions
using the Richmond-Szekeres method [RS81] and the Kač-Wakimoto theorem. This ap-
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proach has thenceforward been used to prove some of the various conjectures on dilogarithm
identities stated previously in the literature (see [Kir95] for an overview of the identities).
In [NRT93], it has been used on the fermionic character expressions for the c2p+1,2 mini-
mal Virasoro models (p ∈ Z≥1) In that case, the fermionic expressions are the Andrews-
Gordon identities. Applied to the logarithmic conformal field theories corresponding to the
W(2, 2p−1, 2p−1, 2p−1) series of triplet algebras, this approach will in detail be investigated
further in this chapter.

4.2. Dilogarithm Identities from Saddle-Point Analysis

If a fermionic sum representation for a character and its effective central charge ceff are
known, these will give rise to dilogarithm identities. But furthermore, if one has a q-series
expressed as a fermionic sum which is not known to correspond to any conformal field theory
and thus no effective central charge may be used, it is still possible to extract dilogarithm
identities if a product form for that q-series is known. The first case is considered here in
detail, for the case of the series of triplet algebras W(2, 2p− 1, 2p− 1, 2p− 1) ∀p ≥ 2.

Dilogarithm identities for the effective central charges (and conformal dimensions) exist
for at least large classes of rational conformal field theories. It is conjectured [NRT93] that
all values of the effective central charges occurring in non-trivial rational conformal field
theories can be expressed as one of those rational numbers that consist of a sum of an
arbitrary number of dilogarithm functions evaluated at algebraic numbers from the interval
(0, 1). Thus, the study of dilogarithm identities arising from conformal field theories, e.g.
the set of effective central charges that can be expressed with a fixed number N in (4.1.1),
gives further insight into the classification of all rational ones.

The place of the constant d in (4.1.1) is then taken by the effective central charge of the
conformal field theory. The keynote is that the effective central charge can be determined
in different ways: On the one hand, it is fixed by the properties of the character χ(q) with
respect to modular transformations. On the other hand, that number can also be obtained
from fermionic character representations by saddle point analysis. Equality of those two
expressions results in the often non-trivial dilogarithm identities.

The first way is as follows: The set of character functions of a given rational theory
forms a representation of the modular group and under the transformation S, the characters
transform [DV88, Kac90] like

χj(τ) =
∑

l

Sj,lχl(−
1

τ
) , (4.2.1)

implying that

χj(τ) = Sj,mine
πceff
12t

[
1 +

∑

k 6=min

Sj,k

Sj,min
e−

2π(hk−hmin)

t + . . .

]
(4.2.2)

when t = −iτ → 0+ (i.e. q → 1−). The value of ceff in the above relation determines the
effective central charge and is given by

ceff = c− 24hmin , (4.2.3)

where hmin is the smallest of the conformal dimensions of all the fields in the theory.
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Here, S represents the modular transformation S : τ 7→ − 1
τ

on the space of the character

functions, as given in section 2.1. The quotients
Sj,i

Sj,min
= D(i)

j in the above expression are

called generalized quantum dimensions.
The second way involves a saddle-point analysis of the fermionic character expressions:

Since the leading order of the asymptotic growth of the coefficients aM in

χj(τ) = qhj− c
24

∞∑

M=0

aMq
M (4.2.4)

is the same for all characters of a given cp,1 model, choose (for simplicity) the character χ0,p

of the representation corresponding to hmin with ~b = 0

∞∑

M=0

aMq
M =

∑

~m∈∈(Z≥0)p

mk−1+mk≡0 (mod 2)

q ~mtB ~m

(q)~m

, (4.2.5)

where ~mt = (m1, . . . , mp) and B := C−1
Dp

is the inverse of the Cartan matrix of Dp (cf. section
3.7.3).

By Cauchy’s theorem, it follows that

aM−1 =

∮
dq

2πi

∑

~m∈∈(Z≥0)p

mp−1+mp≡0 (mod 2)

q ~mtB ~m

(q)~m
, (4.2.6)

where the sum restrictions won’t affect the result and hence are omitted.
It is possible to roughly approximate the integral through a method called saddle-point

approximation, where the integrand is being evaluated at its saddle-point. This is done
as follows: At first, replace the summation in the integrand by an integration over dmp,
where the mi are being treated as continuous variables. In order to find the saddle point,
the partial derivatives of the integrand f(q, ~m) are being set to zero. Since the logarithm
is strictly monotone, one may also use the logarithm of the integrand which will make the
evaluation easier:

log f(q, ~m) ≃ (~mtB~m−M) log q −
p∑

i=1

∫ mi

0

dp log(1− qp) , (4.2.7)

where

log(q)mi
≃
∫ mi

0

dp log(1− qp) . (4.2.8)

Here, use has been made of the Euler-Maclaurin formula, a powerful connection between
integrals and sums. Now the saddle point conditions

∂mi
log f(q, ~m) = (

∑

j

Bijmj +Bjimj) log q − log(1− qmi) = 0 (4.2.9)

are being applied, where
∫

dp log(1− qp) = −Li2(q
p)

log q
, (4.2.10)
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and thus

∂mi

∫ mi

0

dp log(1− qp) = log(1− qmi) . (4.2.11)

Exponentiating this expression implies

q

P

j(Bij+Bji)mj

1−qmi = 1 =

∏p
j=1 q

(Bij+Bji)mj

1− qmi
(4.2.12)

and, consequently,

1− qmi =

p∏

j=1

qmj(Bij+Bji) . (4.2.13)

Or, in more conventional notation,

δi =

p∏

j=1

(1− δj)2Bij , (4.2.14)

since B is symmetric. Moreover, δi = 1− qmi . Substituting this into log f(q, ~m) then leads
to

log f(q, ~m) = −M log q −
∑

i

mi

log(1− δi)
L(δi) (4.2.15)

and thus

log f(q, ~m) = −M log q − 1

log q

p∑

i=1

L(δi) , (4.2.16)

since by (4.1.2) and (4.1.6)

∫ mi

0

dp log(1− qp) =
π2

6
− Li2(q

mi)

log q
=

L(1− qmi) + 1
2
log(1− qmi) log(qmi)

log q
. (4.2.17)

The partial derivative ∂q log f = 0 now fixes the saddle point

(log q)2 =
1

M

p∑

i=1

L(δi) (4.2.18)

with

q = e
√

1
M

P

i L(δi) . (4.2.19)

Substituting this result into (4.2.16) and again exponentiating, one may evaluate the inte-
grand at its saddle point and find

f(q, ~m) ⇂saddle point= e−2
√

M
P

i L(δi) , (4.2.20)
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implying that the asymptotic behavior of aM is given by

aM ≃= e−2
√

M
P

i L(δi) . (4.2.21)

Now, considering the character

χj(τ) = qhj− c
24

∞∑

M=0

aMq
M , (4.2.22)

one can approximate its q-series as

∑

M

aMq
M ≃

∫
dMaMq

M = 2e
P

i L(δi)

2πt

∫ ∞

0

dx xe−2πt(x−
√

P

i L(δi)

2πt
)2 ∼ e

P

i L(δi)

2πt . (4.2.23)

Finally, upon comparison of this expression with (4.2.2), it is possible to read off that the
effective central charge must be given by

ceff =

∑k
i=1 L(δi)

L(1)
. (4.2.24)

It is thus possible to extract dilogarithm identities from the set of algebraic equations (4.2.14).

4.3. The Identities Corresponding to the Triplet

W-Algebras

To support the fermionic character expressions we derived in section 3.7.3, we show in
this section that it is possible to correctly extract dilogarithm identities from them. The
effective central charge of the given logarithmic W(2, 2p− 1, 2p− 1, 2p− 1) model should be
expressible as a sum of dilogarithm functions evaluated at certain algebraic numbers, where
these numbers are determined by the matrix A in the quadratic form in the exponent of the
fermionic character expression.

The effective central charge of the logarithmic conformal field theories corresponding to
central charge cp,1 (p ≥ 2) is given by

cp,1
eff = cp,1 − 24hp,1

min = 1 . (4.3.1)

It is remarkable that, although those cp,1 theories are non-minimal models on the edge of
the conformal grid, it is still possible (numerically solving (4.2.14)) to correctly extract the
well-known infinite set of dilogarithm identities

2L(
1

p
) +

p−1∑

j=2

L(
1

j2
) = L(1) ∀ p ≥ 2 . (4.3.2)

This set of identities can also be found in e.g. [KM90, Kir92] and references therein and
can be proved using the five term relation which means that it is accessible a fact that
supports the fermionic sum representations presented in section 3.7.3 for the characters of
the W(2, 2p− 1, 2p− 1, 2p− 1) triplet algebras.

Note that when p = 2, this reduces to (4.1.6).
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4.4. Other Dilogarithm Identities

The calculation done in the previous section is based on the cp,1 series of logarithmic con-
formal field theories. But it is possible to do a similar derivation of dilogarithm identities
with the same method for any conformal field character if a fermionic sum representation
for that character is known. Examples of other dilogarithm identities which have been ob-
tained in this manner can be found in e.g. [NRT93, Byt99b]. Some of them are obtained
from fermionic expressions for linear combinations of Virasoro characters and are related to
the so-called secondary effective central charge. An extensive list of dilogarithm identities is
given by Anatol Kirillov in [Kir95].
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5. Quasi-Particle Interpretation

Non-unique bases of the Hilbert spaces in two-dimensional conformal field theories establish
the existence of several alternative character formulae.

The original formula, the so-called bosonic representation (cf. section 3.2), which traces
back to Feigin and Fuks [FF83] and Rocha-Caridi [RC84], is directly based upon the structure
of null vectors, i.e. the invariant ideal is divided out. The occurrence of a factor (q)∞ in the
denominator arises naturally in the construction of Fock spaces using bosonic generators.
Indeed, the character of a free chiral boson is given by

χB =

∞∑

n=0

p(n)qn =

∞∏

n=1

(1− qn)−1 =
1

(q)∞
, (5.0.1)

where p(n) is the number of additive partitions of the integer n into integer parts greater
than zero which don’t have to be distinct. Encoded by the numerator, these spaces are then
truncated in a particular way in the general bosonic character expression. The interpretation
as partition functions requires these expressions to be modular covariant, which is easily
checked when expressing the characters in terms of Θ-functions (cf. section 2.5).

In contrast, the fermionic representations possess a remarkable interpretation in terms of
quasi-particles for the states, obeying Pauli’s exclusion principle. The character of a free
chiral fermion with periodic or anti-periodic boundary conditions is given respectively by

χF,P =

∞∑

n=0

q
1
2
m2− 1

2
m

(q)m
or (5.0.2a)

χF,A =

∞∑

n=0

q
1
2
m2

(q)m
. (5.0.2b)

In the following section, it will be discussed how this comes about.
The bosonic representations are in general unique, since a natural level gradation in terms

of the eigenvalue of L0 is induced by the operators Ln. Although the fermionic ones are
also obviously graded by their L0 eigenvalue, there is in general more than one fermionic
expression for the same character, since different types of generalized exclusion statistics may
be imposed which might force different quasi-particle systems to lead to the same fermionic
character expression.

5.1. Quasi-Particle Representation of Fundamental

Fermionic Forms

The general fermionic character expression is a linear combination of fundamental fermionic
forms. The characters of various series of rational CFTs, including the cp,1 series, can
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Chapter 5. Quasi-Particle Interpretation

be represented as a single fundamental fermionic form [Wel05, BMS98, DKMM94]. For
simplicity, we won’t deal with the most general case here, but with a certain specialization.1

Fermionic sum representations for characters admit an interpretation in terms of fermionic
quasi-particles, as shown in [KM93] (see also [KKMM93a]). This can be easily seen from
the fundamental fermionic form2

χ(q) =
∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m
r∏

a=1

[
((1− 2A)~m+ ~u)a

ma

]

q

, (5.1.1)

with the help of combinatorics: The number of additive partitions PM(N,N ′) of a positive
integer N into M distinct non-negative integers which are smaller than or equal to N ′ is
stated by [Sta72, p. 23]

∞∑

N=0

PM(N,N ′)qN = q
1
2
M(M−1)

[
N ′ + 1
M

]

q

, (5.1.2)

which in the limit N ′ →∞ takes the form

lim
N ′→∞

∞∑

N=0

PM(N,N ′)qN = q
1
2
M(M−1) 1

(q)M

. (5.1.3)

This formula is tailored to our needs, because the requirement of distinctiveness expresses
the fermionic nature of the quasi-particles, i.e. Pauli’s exclusion principle. To make use of
(5.1.3), (5.1.1) can be reformulated to

χ(q) =
∞∑

~m∈(Z≥0)r

restrictions

q
1
2

Pr
i=1(m

2
i −mi)+

Pr
i=1(bi+

1
2
)mi+

Pr
i,j=1 Aijmimj− 1

2

Pr
i=1 m2

i

r∏

a=1

[
((1− 2A)~m+ ~u)a

ma

]

q

(5.1.4)

=
r∏

i=1




∞∑

mi
restrictions

q
1
2

Pr
i=1(m

2
i −mi)+(bi+

1
2
)mi+

Pr
j=1 Aijmimj− 1

2
m2

i




r∏

a=1

[
((1− 2A)~m+ ~u)a

ma

]

q

.

(5.1.5)

Applying (5.1.3) to the fundamental fermionic form (5.1.1) leads to

r∏

i=1




∞∑

mi
restrictions

∞∑

N=0

Pmi
(N, ((1− 2A)~m+ ~u)a − 1)qN+(bi+

1
2
)mi+

Pr
j=1 Aijmimj− 1

2
m2

i


 . (5.1.6)

We can then make use of the relation

∞∑

N=0

P 0
M(N,N ′)qN+kM =

∞∑

N=0

P k
M(N,N ′ + k)qN , (5.1.7)

1This specialization is also called fundamental fermionic form in [BMS98].
2A possible constant c has been omitted, since it would just result in an overall shift of the energy spectrum

of the resulting quasi-particles.
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where we defined P k
M(N,N ′) like PM(N,N ′) but with the additional requirement that all

the integers that make up a partition have to be greater than or equal to k. This relation
is obvious since it is a one-to-one mapping of partitions and thus nothing more than just
a mere shift of the partitions: Each part of a given partition of N into M distinct parts is
increased by k, which turns N into N +Mk. (5.1.7) allows us to rewrite (5.1.6) into

r∏

i=1




∞∑

mi
restrictions

∞∑

N=0

P
bi+

1
2
+((A− 1

2
1)~m)

i
mi (N,−(A− 1

2
1)~m)a +~ba −

1

2
+ ~ua)q

N


 . (5.1.8)

For the quasi-particle interpretation, the characters are regarded as partition functions Z
for left-moving excitations with the ground-state energy scaled out

χ ∼ Z =
∑

states

e−
Estates

kT =

∞∑

l=0

P (El)e
− El

kT (5.1.9)

with T being the temperature, k the Boltzmann’s constant, El the energy and P (El) the
degeneracy of the particular energy level l.

The energy spectrum consists of all the excited state energies (minus the groundstate
energy) that are given by

El = Eex − EGS =
r∑

i=1

mi∑

α=1
restrictions

ei(p
i
α) , (5.1.10)

and the corresponding momenta of the states are given by

Pex =

r∑

i=1

mi∑

α=1
restrictions

pi
α , (5.1.11)

where r denotes the number of different species of particles, mi the number of particles of
species i in the state, ei(p

i
α) the single-particle energy of the quasi-particle particle α of

species i and the subscript ’restrictions’ indicates possible rules under which the excitations
may be combined. (5.1.10) is referred to as a quasi-particle spectrum in statistical mechanics
(naja: see e.g. [McC94]). Quasi means in this context that for example magnons or phonons
have other properties than real particles like protons or electrons. And in addition, the
spectrum above may contain single-particle energy levels that are different from the form in
relativistic quantum field theory eα(p) =

√
M2

α + p2. This means that if we assume massless
single-particle energies

ei(p
i
α) = e(pi

α) = vpi
α (5.1.12)

(v referred to as the fermi velocity, spin-wave velocity, speed of sound or speed of light),
where pi

α denotes the quasi-particle α of ’species’ i (1 ≤ i ≤ r), and if in (5.1.8) we set

q = e−
v

kT , (5.1.13)

we can read off that the partition function corresponds to a system of quasi-particles that
are of r different species and which obey the Pauli exclusion principle

pi
α 6= pi

β for α 6= β and all i , (5.1.14)
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in order to satisfy Fermi statistics, but whose momenta pi
α are otherwise freely chosen from

the sets
Pi =

{
pi

min, p
i
min + 1, pi

min + 2, . . . , pi
max

}
(5.1.15)

with minimum momenta

pi
min(~m) =

[
((A− 1

2
)~m)i + bi +

1

2

]
(5.1.16)

and with the maximum momenta

pi
max(~m) = −((A− 1

2
1)~m)i + (~b)i −

1

2
+ (~u)i = −pi

min(~m) + 2(~b)i + (~u)i . (5.1.17)

Thus, pi
max either infinite if (~u)i is infinite or finite and dependent on ~m, A, (~b)i and (~u)i.

Note that if (~u)i is infinite for all i ∈ {1, . . . , r}, then (5.1.1) reduces to the form (3.3.1) of
Nahm’s conjecture. Of course, (5.1.1) is only an often encountered specialization of the most
general fundamental fermionic form, since the components of the q-binomial coefficient may
be of a different shape than that given in (5.1.1), but the generalization of the previous steps
is obvious. To sum up, this means that a multi-particle state with energy El may consist
of exactly those combinations of quasi-particles of arbitrary species i, whose single-particle
energies e(pi) add up to El and where Pauli’s principle holds for any two quasi-particles of
that combination which belong to the same species. Possible sum restrictions then result
in the requirement that certain particles may only be created in conjunction with certain
others. Thus, the characters (5.0.2a) and (5.0.2b) of the free chiral fermion with respectively
periodic or anti-periodic boundary conditions are obtained in the case of r = 1, pmax = ∞,
p

(P )
min = 0 and p

(A)
min = 1

2
. On the other hand, the character (5.0.1) of a free chiral boson is

obtained by setting r = 1, pmin = 1 and pmax = ∞ and simply not imposing any exclusion
rules, i.e. not using (5.1.2).

Although the upper momentum boundaries may seem artificial, the phenomenon that the
momenta pα

iα for 2 ≤ α ≤ n are restricted to take only a finite number of values for given ~m
is a common occurence in quantum spin chains.

5.2. Quasi-Particle Interpretation of Unitary Minimal

Models

As we discussed in section 3.4.3, the fermionic expressions for the vacuum characters of the
unitary series of minimal models M(p, p + 1), p ≥ 2, can in general be determined to be
[BMS98, Wel05]

qαχp+1,p
1,1 =

∑

~m∈(Z≥0)p−2

mi even

q
1
4

~mtCAp−2
~m

(q)m1

p−2∏

i=2

[
((1− 1

2
CAp−2)~m)i

mi

]

q

(5.2.1)

with α ∈ Q some constant depending on the parameters of χ. Thus, the unitary minimal
modelM(p, p+1) can be represented by a system of p− 2 quasi-particle species which have
the minimum momenta

pi
min(~m) =

1

4
((CAp−2 − 21)~m)i +

1

2
. (5.2.2)
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Here, the first species is dominant, its spectrum being unbounded from above. The momenta
of the other quasi-particle species are restricted to have maximum momenta

pi
max(~m) = −pi

min(~m) for 2 ≤ i ≤ p− 2 . (5.2.3)

5.3. The Different Quasi-Particle Interpretations of the

Ising Model

As shown in section 1.3.3, the Ising model corresponds to the minimal modelM(4, 3). When
comparing the fermionic expression

q
1
48χ4,3

1,1 =

∞∑

m=0
m even

q
1
2
m2

(q)m
(5.3.1)

from the previous section (see also (3.4.17)) with the fermionic expression

q
1
48χ4,3

1,1 =
∑

~m∈(Z≥0)8

q ~mtC−1
E8

~m

(q)~m
(5.3.2)

from section 3.5, we find two different systems of quasi-particles which both realize the Ising
model. The first system (A1) consists of just one quasi-particle species whose specimen may
only be created in pairs and the second system (E8) consists of eight quasi-particle species
whose members may combined freely – nevertheless obeying Pauli’s exclusion principle in
both cases, of course. For the A1 system, the minimum momentum is given simply by

pmin =
1

2
, (5.3.3)

whereas the minimum momenta for the E8 system are given by

pi
min = ((C−1

E8
− 1

2
1)~m)i +

1

2
, (5.3.4)

i.e. p8
min = 6m1 + 10m2 + 12m3 + 15m4 + 18m5 + 20m6 + 24m7 + 59

2
m8 + 1

2
.

5.4. Quasi-Particle Interpretation of the Triplet

W-Algebras

In section 3.7.3, we reported about the fermionic character expressions, which we presented
in [FGK07], for the series of triplet W-algebras. In this section, we discuss the quasi-
particle content, which one can derive from the fermionic expressions, of the cp,1 logarithmic
conformal field theories, which have W(2, 2p− 1, 2p− 1, 2p− 1) as symmetry algebras.
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5.4.1. The c = −2 Model

We start with the case p = 2, i.e. c2,1 = −2. In contrast to the characters for e.g. the
minimal models, these characters are the traces over the representation modules of the
triplet W-algebra, instead of the Virasoro algebra only. However, although highest weight
states are labeled by two highest weights in this case, h and w as the eigenvalues of L0 and
W0 respectively, we consider only the traces of the operator qL0− c

24 . It turns out that these
W-characters are given as infinite sums of Virasoro characters, for example [Flo96]

χ|0〉 =

∞∑

k=0

(2k + 1)χVir
|h2k+1,1〉 . (5.4.1)

Let us now come to the vacuum character (3.7.30a) for the c2,1 model, which features the
interesting sum restriction m1 +m2 ≡ 0 (mod 2) expressing the fact that particles of type 1
and 2 must be created in pairs. Thus, the existence of one-particle states for either particle
species is prohibited. Therefore, the single-particle energies must be extracted out of the
observed multi-particle energy levels.

Applying (5.1.3) to the fermionic sum representation (cf. also (3.7.30a))

q−
1
12χ+

1,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(
1
1)

t
~m

(q)~m
(5.4.2)

of the vacuum character leads to

χ+
1,2 =

( ∞∑

m1=0

∞∑

N=0

Pm1(N)qN+m1

)( ∞∑

m2=0
m2≡m1 (mod 2)

∞∑

N=0

Pm2(N)qN+m2

)
, (5.4.3)

where the constant c has been omitted, since it would just result in an overall shift of the
energy spectra. Using massless single-particle energies (5.1.12) and setting (5.1.13) in (5.1.8)
then results in the partition function (5.1.9) corresponding to a system of two quasi-particle
species, with both species having the momentum spectrum N≥1, i.e. a multi-particle state
with energy El may consist of exactly those combinations of an even number of quasi-
particles, having momenta pi

α (i ∈ {1, 2}), whose single-particle energies e(pi
α) add up to El

and where the momenta pi
α ∈ N≥1 of each two of the quasi-particles in that combination

are distinct unless they belong to different species, i.e. they respect the exclusion principle.
Formally, these spectra belong to two free chiral fermions with periodic boundary conditions.
Note in this context the physical interpretations in [Kau95, Kau00], in which the CFT for
c2,1 = −2 is generated from a symplectic fermion, a free two-component fermion field of spin
one.

5.4.2. The p> 2 Relatives

Besides the best understood LCFT with central charge c2,1 = −2, we now have a look at the
quasi-particle content of its cp,1 relatives.

The restrictions mp−1 + mp ≡ Q (mod 2) (Q can be thought of as denoting the total
charge of the system) in (3.7.33a) to (3.7.33c) imply that the quasi-particles of species p− 1
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and p are charged under a Z2 subgroup of the full symmetry of the Dp Dynkin diagram
[KKMM93a], while all the others are neutral. This charge reflects the su(2) structure carried
by the triplet W-algebra such that all representations must have ground states, which are
either su(2) singlets or su(2) doublets. In comparison to the c2,1 = −2 model, there exist p
quasi-particles in each member of the cp,1 series, exactly two of which can only be created in
pairs, while the others do not have this restriction. These observations suggest the following
conjecture: The cp,1 theories might possess a realization in terms of free fermions such
that they are generated by one pair of symplectic fermions and p − 2 ordinary fermions.
Realizations of that kind are unknown so far, except for the well-understood case p = 2, and
are a very interesting direction of future research.

Contrary to the case of p = 2, the quasi-particles do not decouple here: The minimal
momenta for the quasi-particle species can be read off (5.1.16) and are given by

pi
min(~m) =





−1
2
mi +

∑i
j=1 jmj +

∑p−2
j=i+1 imj + i

2
(mp−1 +mp) + i+ 1

2
for 1 ≤ i ≤ p− 2

−1
2
mi +

∑p−2
j=1

j
2
mj + p−1

2
+ 1

2
+

{
(p

4
mp−1 + 2−p

4
mp) for i = p− 1

(2−p
4
mp−1 + p

4
mp) for i = p

.

(5.4.4)
Hence, they depend on the numbers of quasi-particles of the different species in the state.
But as in the case of p = 2, the momentum spectra are not bounded from above.

5.5. Quasi-Particle Interpretation of the SU(2) WZW

Model

In [FGK07], we presented the following fermionic sum representation for the character of the
SU(2) WZW model at level k − 2, which we reported about in section 3.6.2:

(∂Θ)k−1,k(τ)

η3(τ)
=

∑

~m∈(Z≥0)2(k−2)

q
~mt(CA2

⊗C−1
Tk−2

)~m+(~a2⊗~bk−2)t ~m+c♭
k−1,k

(q)~m

(5.5.1)

with ~at
2 = (1,−1) and ~btk = (1, 2, 3, . . . , k), and with integer or half-integer spin l ≤ k

2
,

λ = k − 1 = 2l + 1, i.e. l = k
2
− 1. If we apply the quasi-particle interpretation that was

introduced in section 5.1 to this character expression, then we obtain a system of 2(k − 2)
different quasi-particle species for which Pauli’s exclusion principle holds. The momentum
spectrum of each particle species is unbounded from above and the minimum momenta are
given by (5.1.16).
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The W-character functions of the c2,1 = −2 logarithmic conformal field theory model are
somewhat unusual because indecomposable representations are involved. The aim of this
work was to investigate whether there exist so-called fermionic sum representations for these
W-characters, which admit a realization of the underlying theory in terms of a system of
different fermionic quasi-particle species. Such representations were unknown, but because
it was found out that the cp,1 theories constitute rational3 theories with respect to the
maximally extended symmetry algebra [GK96, CF06], and since there is a conjecture by
Werner Nahm that the characters of all rational conformal field theories have a fermionic
sum representation [NRT93], it was hoped for that a uniform fermionic expression for all
characters of a given cp,1 model does exist.

Indeed, we found a uniform fermionic expression for all characters of the c2,1 model and
were able to prove the resulting new set of bosonic-fermionic q-series identities in section
3.7.2. But we found much more than that.

Our main achievement is that we found fermionic expressions for all characters of each
cp,1 model, admitting an interpretation in terms of p fermionic quasi-particle species and thus
providing further evidence for the well-definedness of the logarithmic conformal field theories
corresponding to central charge cp,1, leading to an infinite set of new bosonic-fermionic q-
series identities generalizing (3.2.5). These expressions were unknown so far and are given
in section 3.7.3. We reported the results in our recent article Fermionic Expressions for the
Characters of cp,1 Logarithmic Conformal Field Theories [FGK07], which has been accepted
for publication in the journal Nuclear Physics B.

Despite the inhomogeneous structure of the bosonic character expressions in terms of
modular forms, there exist fermionic quasi-particle sum representations with the same matrix
A (cf. (3.3.1)) for all characters of each cp,1 model. In particular, the matrix A turned out
to be the inverse of the Cartan matrix of the simply-laced Lie algebra Dp, where p = 2 can
be understood as the degenerate case that is isomorphic to two times the Lie algebra A1.
Therefore, those expressions fit well into the known scheme of fermionic character expressions
for other (standard) conformal field theories.

As discussed in section 5.1, fermionic character expressions imply a realization of the
underlying theory in terms of systems of fermionic quasi-particles. The case of theW(2, 2p−
1, 2p − 1, 2p − 1) series of triplet algebras has been detailed in sections 5.4.1 and 5.4.2. In
the c2,1 = −2 model, i.e. p = 2, the quasi-particle interpretation with the sum restriction
m1 + m2 ≡ Q (mod 2) (Q ∈ {0, 1}) implies that there exist two fermionic quasi-particle
species whose members may only be created in pairs, i.e. either a pair of particles from
the same species or one particle from each species. This goes well with the realization of
the c = −2 theory in terms of a pair of symplectic fermions [Kau95, Kau00], which is a
free two-component fermion field of spin one. In the general cp,1 model, it turns out there

3in the generalized sense discussed in section 1.4.3
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is a set of p − 2 fermionic quasi-particle species, the members of which may – aside from
Pauli’s exclusion principle – be combined freely in building an arbitrary multi-particle state,
and additionally a set of two species, the members of which may only be created in pairs,
with the total charge Q depending on the sector of the theory. This interpretation suggests
that the cp,1 theories might possess a realization in terms of free fermions such that they are
generated by p− 2 ordinary fermions and one pair of symplectic fermions. Such realizations
are unknown so far, except for the well-understood case p = 2, and are a very interesting
direction of future research.

In all cases except p = 2, the possible quasi-particle momenta obey non-trivial restrictions
(5.1.16) for their minimum momenta, depending on the numbers of quasi-particles of each
species in the state. Moreover, since the fermionic character expressions are of the form
(3.3.1) for all p ≥ 2, the momentum spectra are unbounded from above.

Since they correspond to rational conformal field theories, it is furthermore satisfying that
the obtained fermionic character expressions for the W(2, 2p − 1, 2p− 1, 2p− 1) theories –
although the latter constitute non-minimal models on the edge of the conformal grid – lead
correctly to a well-known infinite set of dilogarithm identities, which strongly supports the
obtained fermionic expressions. This derivation is explained in detail in chapter 4.

Aside from that, we found a new fermionic expression for the Kač-Peterson [KP84] char-
acters of the SU(2) Wess-Zumino-Witten model at level k which implies an interpretation
in terms of 2(k − 2) different quasi-particle species obeying non-trivial restrictions for their
minimum momenta, as argued in sections 3.6.2 and 5.5.

In all cases, it is a remarkable fact that many matrices A that occur in fermionic character
expressions of the type (3.2.6) are related to the ADE series of simple Lie algebras. In many
cases, A is simply the inverse Cartan matrix or, more generally, the tensor product of a
Cartan matrix and an inverse Cartan matrix. However, the origin of this connection is still
not understood, indicating that there is a bigger picture which is waiting to be unravelled.

It is worth mentioning that there are also numerous other avenues towards finding fermionic
expressions than the ones used in this thesis, among these are Bailey’s lemma [Bai49],
thermodynamic Bethe ansatz [KNS93], Kostka Polynomials and Hall-Littlewood Functions
[SW99, DLT94, AKS05, War02, Mac79, Mac97].

A specific new technique involves quantum groups, crystal bases and finite paths [HKK+98,
HKO+99, HKO+01, Dek06]. The so-called quantum groups [Kas90, Kas95, HK02, SKAO96]
deepen the understanding of symmetry in systems with an infinite number of degrees of
freedom. In general, the connection of quantum groups to conformal field theory is given
by the Kazhdan-Lusztig correspondence which conjectures the equivalence of integral parts
of a conformal field theory and corresponding quantum groups. In particular, the Kazhdan-
Lusztig-dual quantum group to the logarithmic W-algebras is identified (see e.g. [FGST05,
FGST06c, FGST06a, FGST06b]).

As discussed in section 3.4.3, fermionic character expressions are not unique: In general,
there exist more than one fermionic expression of the type (3.2.6) for a given character,
sporting different matrices A in their quadratic forms. Different expressions imply differ-
ent quasi-particle interpretations. For example, as argued in section 3.5, the Ising model is
expressible in terms of one quasi-particle species and also in terms of eight quasi-particle
species. But the different fermionic expressions have more than just a mathematical rele-
vance, e.g. the different quasi-particle interpretations of the Ising model characters fit well
into different known physical interpretations, as discussed in section 3.5. This indicates
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that different fermionic expressions might point to different integrable massive extensions of
conformal field theories.

However, if one tries to give physical meaning to the generalized quasi-particle momentum
restrictions, conventional second quantizations fails, as argued by Laughlin in the context
of the fractional quantum hall effect [Lau83, TSG82]. As discussed in section 3.6.2, Hal-
dane [Hal91] put up generalized exclusion statistics in terms of spinons which can not be
described by second quantization. But these shortcomings are not restricted to condensed
matter physics. In particle physics, it is long known that the conventional second quan-
tization in quantum field theory has some major drawbacks. String theory was originally
introduced in trying to understand the strong interactions, albeit this later became known
as the confining phase of quantum chromodynamics. Thus, the limits of second quantiza-
tion become more and more apparent. As Barry McCoy wrote in [KMM93], “the fact that
mathematicians, high-energy physicists, condensed matter physicists and physicists studying
statistical mechanics are all contemplating the same abstract object is a truly remarkable
demonstration that the whole is much more than the sum of its parts. The synthesis will be
achieved when language can be developed that incorporates all aspects of the phenomena at
the same time.”
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A. Rogers-Ramanujan and
Andrews-Gordon Identities

Prof Hardy, who got the very talented mathematician Srinivasa Ramanujan Aiyangar from
India to England, said about the Rogers-Ramanujan identities that they are “as remarkable
as any which Ramanujan ever wrote down“. A detailed biography of the remarkable life of
the commonly acclaimed mathematical genius has been written by Robert Kanigel [Kan91]
and a reprint of fotographs of some of his notes is published in [RA88]. As of this writing,
two movies are being planned about Ramanujan.

Rogers, Ramujan and Schur discovered independently the analytical statement of the
Rogers-Ramanujan identities

1∏
n>=1

(1− q5n−1)(1− q5n−4)
= 1 +

∞∑

n=1

qn2

(1− q) . . . (1− qn)
(A.1)

= 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + 3q7 + 4q8 + 5q9 + 6q10 + 7q11 + 9q12

+10q13 + 12q14 + 14q15 + 17q16 + 19q17 + 23q18 + 26q19 + 31q20 + . . .

and

1∏
n>=1

(1− q5n−2)(1− q5n−3)
= 1 +

∞∑

n=1

qn2+n

(1− q) . . . (1− qn)
(A.2)

= 1 + q2 + q3 + q4 + q5 + 2q6 + 2q7 + 3q8 + 3q9 + 4q10 + 4q11 + 6q12

+6q13 + 8q14 + 9q15 + 11q16 + 12q17 + 15q18 + 16q19 + 20q20 + . . . .

In 1894, Leonard James Rogers (1862-1933) also derived a number of other identities of
this kind [Rog94]. W.N. Bailey developed new methods to obtain new identities, the so-
called Bailey flow [Bai47, Bai49]. In 1952, L.J. Slater gave a comprehensive list of about 130
identities of the Rogers-Ramanujan type [Sla51, Sla52].

On the other hand, a combinatorial statement would be given as follows: Euler found
the generating function of (additive) partitions p(n) of an integer n ≥ 0 into an arbitrary
number of summands, each greater than or equal to one (and ordered by their size),

∞∏

n=1

(1− qn)−1 =

∞∑

n=0

p(n)qn . (A.3)

Moreover,
∞∏

n∈H

(1− qH)−1 =

∞∑

n=0

pH(n)qn (A.4)
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is the generating function for the number of partitions of n ≥ 0 into summands from the set
H , where the same summand may also appear more than once. This means that the left hand
sides of the Rogers-Ramanujan identities have the following combinatorial interpretation:
(A.1) is the generating function for the number of partitions of n into parts from the set H =
{1, 4, 6, 9, 11, 14, 16, . . .} and (A.2) is the generating function for the number of partitions of
n into parts from H = {2, 3, 7, 8, 12, 13, 17, . . .}. The right hand sides have the intepretation:
(A.1) generates the number of partitions of an integer n in which the difference between any
two parts of a partition is greater than or equal to two, while (A.2) generates the number
of partitions of n in which the difference of any two parts of a partition is greater than or
equal to two and in which each part is greater than one.

In this aspect, finding more identities of the Rogers-Ramanujan type amounts to finding
combinatorial identities of the general form: For all positive integers n, the partitions of n
into parts from a set of residue classes are equinumerous with the partitions of n into parts
subject to some restrictions on the difference between parts. [Bre80]

However, using the method from 5.1, it is also possible to interpret the Rogers-Ramanujan
identities in terms of fermionic quasi-particles. The minimum momenta (5.1.16) are pmin =
m+1

2
for (A.1) and pmin = m+3

2
for (A.2). Then, the quasi-particle statement for the right-

hand sides of (A.1) and (A.2) would be a system of all multi-particle states of all numbers
m ∈ Z≥0 of particles of one species whose momenta add up to n and where a given multi-
particle state obeys Pauli’s exclusion principle, i.e. any two particles must have different
momenta from the set Z≥0 + pmin.

A generalization of the Rogers-Ramanujan identities is stated by the Andrews-Gordon
identities

∞∑

n1,...,nk=0

qN2
1 +...+N2

k+Na+...+Nk

(q)n1 · · · (q)nk

=
∏

n 6≡0 (mod 2k+3)
n 6≡±a (mod 2k+3)

(1− qn)−1 (A.5)

=
1

(q)∞

∑

m∈Z(−1)mq
1
2
(m(m+1)(2k+3)−am) (A.6)

by George E. Andrews and Basil Gordon, where Ni = ni + . . . + nk, (q)n := (q; q)n and
(x; q)n :=

∏n−1
i=0 (1 − qix). This identity can be interpreted combinatorially as a straight-

forward generalization in the same way as the Rogers-Ramanujan identities, which can be
obtained from the Andrews-Gordon identities by setting k = 1 and a = 1 or a = 2 in (A.5).
There are different approaches to the Andrews-Gordon identities. Four different proofs exist:
an analytic, an algebraic, a combinatorial and a group-theoretical one. A short analytical
proof was given by David Bressoud [Bre80]. Comprehensive introductions to number theory
and the theory of partitions can be found in [And84, Har79].
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B. The Jacobi Triple Product Identity

This section provides a proof of the Jacobi triple product identity by comparison of the
character of the irreducible vacuum representation of a system of charged free fermions
computed from a fermionic basis with the character of the bosonized system computed from
a bosonic basis. For more details, the reader is referred to [Kac96].

A system of so-called charged free fermions can be described by the formal distributions
ψ±(z) =

∑
n∈Z+ 1

2
ψ±

n z
−n− 1

2 with operator product expansions

ψ±(z)ψ∓(w) =
1

z − w and ψ±(z)ψ±(w) = 0 (B.1)

corresponding to commutation relations

[ψ±
m, ψ

∓
n ] = ±δm+n+1,0 and [ψ±

m, ψ
±
n ] = 0 . (B.2)

On the vacuum vector,

ψ±
n |0〉 = 0 ∀ n > 0 . (B.3)

The system admits a one-parameter family of Virasoro fields (i.e. stress-energy tensors)
Lλ(z) =

∑
n∈Z Lλ

nz
−n−2 (λ ∈ C)

Lλ(z) = (1− λ)N(∂ψ+(z)ψ−(z)) + λN(∂ψ−(z)ψ+(z)) , (B.4)

which satisfy the commutation relations

[Lλ
0 , ψ

+
m] = (−m− 1 + λ)ψ+

m and (B.5)

[Lλ
0 , ψ

−
m] = (−m− λ)ψ−

m . (B.6)

ψ±(z) have conformal dimensions 1
2

with respect to the stress-energy tensor. N means the
normal ordering prescription. The free charged fermions system may be bosonized by

α(z) = N(ψ+ψ−) , (B.7)

which results in α(z) being a field of conformal weight 1. If α(z) =
∑

n∈Z αnz
n−1 then

[αm, αn] = mδm+n,0 (B.8)

[αm, ψ
±
n ] = ±ψ±

m+n , (B.9)

where α0 is called the charge operator and the stress-energy tensor can be expressed in the
bosonic field as

Lλ(z) =
1

2
N(α(z)α(z)) + (

1

2
− λ)∂α(z) . (B.10)
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The irreducible representation M constructed on |0〉 by action of the modes of the free
charged fermions has the ‘fermionic’ basis

{ψ−
jt
· · ·ψ−

j1
ψ+

is
· · ·ψ+

i1
|0〉 | 0 > i1 > i2 > . . . , 0 > j1 > j2 > . . .} , (B.11)

which consists of eigenvectors to the charge operator α0 with eigenvalues s−t, called charges.
The character

χM = TrM(qLλ
0zα0) (B.12)

of M can be computed as

χM =
∞∏

j=1

(1 + zqλ+j−1)(1 + z−1q−λ+j) , (B.13)

where the coefficient of zkqn is the number of different states in M with charge k and energy
n.

On the other hand, one might as well choose a ‘bosonic’ basis of M : If M is decomposed
into a direct sum of eigenspaces of the charge operator α0 as M =

⊕
m∈ZMm with the m-th

charged vacua introduced as

|m〉 = ψ+
−m · · ·ψ+

−2ψ
+
−1|0〉 if m ≥ 0 and (B.14)

|m〉 = ψ−
m · · ·ψ−

−2ψ
−
−1|0〉 if m ≤ 0 , (B.15)

then
{αjs · · ·αj1|m〉 | 0 > j1 ≥ j2 ≥ . . .} (B.16)

forms a ‘bosonic’ basis of Mm with energy eigenvalues 1
2
m2 + (λ− 1

2
)m+ j1 + . . .+ js. Since

the representation of the oscillator algebra consisting of the modes of the bosonic field is
irreducible in each Mm, the bosonic character can be computed as

χM =
∑

m∈Z zmq
1
2
m2+(λ− 1

2
)m

(q)∞
= q−

(λ−1
2 )2

2
+ 1

24

Θλ− 1
2
, 1
2

η(q)
. (B.17)

Equality of (B.13) and (B.17) results in

∞∏

j=1

(1− qj)(1 + zqλ+j−1)(1 + z−1q−λ+j) =
∑

m∈Z zmq
1
2
m(m−1)+mλ , (B.18)

which reduces to just another form of the Jacobi triple product identity (3.2.4) [Jac29] (see
also [And84, GR90]) for λ = 0. The Jacobi triple product identity is also a special case of
the Cauchy identity or of another identity by Euler (see e.g. [Kir95, p. 36] or [And84, p.
19], respectively). As an aside, note that setting in (B.18) λ = 1

3
, z = −1 and replacing q

by q3 results in the Euler identity

(q)∞ =

∞∏

j=1

(1− qj) =
∑

m∈Z(−1)mq
3
2
m2+ 1

2
m , (B.19)

whereas setting λ = 1
2
, z = −1 and replacing q by q2 leads to the Gauss identity

∞∏

j=1

1 + qj

1− qj
=
∑

m∈Z qm2

. (B.20)
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(Springer, 1999).

[DFSZ87a] P. Di Francesco, H. Saleur and J. B. Zuber Modular Invariance in
Nonminimal Two-Dimensional Conformal Theories Nucl. Phys. B285 (1987)
454.

105



Bibliography

[DFSZ87b] P. Di Francesco, H. Saleur and J. B. Zuber Relations Between the
Coulomb Gas Picture ans Conformal Invariance of Two-Dimensional Critical
Models J. Stat. Phys. 49 (1987) 57 sACLAY-SPH-T-87-031.

[DKK+93] S. Dasmahapatra, R. Kedem, T. R. Klassen, B. M. McCoy and
E. Melzer Quasiparticles, Conformal Field Theory, and q-Series Int. J. Mod.
Phys. B7 (1993) 3617–3648 [hep-th/9303013].

[DKMM94] S. Dasmahapatra, R. Kedem, B. M. McCoy and E. Melzer Virasoro
Characters from Bethe Equations for the Critical Ferromagnetic Three-State
Potts Model J. Stat. Phys. 74 (1994) 239 [hep-th/9304150].

[DLT94] J. Désarménien, B. Leclerc and J.-Y. Thibon Hall-Littlewood
Functions and Kostka-Foulkes Polynomials in Representation Theory
http://www.mat.univie.ac.at/ slc/opapers/s32leclerc.html (1994).

[DM96] C. Dong and G. Mason Vertex Operator Algebras and Moonshine: A Survey
Advanced Studies in Pure Mathematics 24 (1996) 101.

[DS87] B. Duplantier and H. Saleur Exact Critical Properties of Two-
Dimensional Dense Self-Avoiding Walks Nucl. Phys. B290 (1987) 291.

[DV88] R. Dijkgraaf and E. P. Verlinde Modular Invariance and the Fusion
Algebra Nucl. Phys. Proc. Suppl. 5B (1988) 87–97.

[EF06] H. Eberle and M. Flohr Virasoro Representations and Fusion for General
Augmented Minimal Models (2006) [hep-th/0604097].

[EFH+92] W. Eholzer, M. Flohr, A. Honecker, R. Huebel, W. Nahm and
R. Varnhagen Representations ofW-Algebras with Two Generators and New
Rational Models Nucl. Phys. B383 (1992) 249–290.

[EFH98] W. Eholzer, L. Feher and A. Honecker Ghost Systems: A Vertex Alge-
bra Point of View Nucl. Phys. B518 (1998) 669–688 [hep-th/9708160].

[EHH93] W. Eholzer, A. Honecker and R. Huebel How Complete is the Classifi-
cation ofW-Symmetries? Phys. Lett. B308 (1993) 42–50 [hep-th/9302124].

[Fel89] G. Felder BRST Approach to Minimal Models Nucl. Phys. B 317 (1989)
215–236.

[FF82] B. Feigin and D. Fuks Invariant Skew-Symmetric Differential Operators on
the Line and Verma Modules over the Virasoro Algebra Funct. Anal. and Appl.
16 (1982) 114–126.

[FF83] B. Feigin and D. Fuks Verma Modules over the Virasoro Algebra Funct.
Anal. and Appl. 17 (1983) 241–242.

[FG06] M. Flohr and M. R. Gaberdiel Logarithmic Torus Amplitudes J. Phys.
A39 (2006) 1955–1968 [hep-th/0509075].

106



Bibliography

[FGK07] M. Flohr, C. Grabow and M. Koehn Fermionic Expressions for the Char-
acters of c(p,1) Logarithmic Conformal Field Theories Nucl. Phys. B 768
(2007) 263–276 [hep-th/0611241].

[FGST05] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov and I. Y.

Tipunin Kazhdan–Lusztig Correspondence for the Representation Category
of the Triplet W-Algebra in Logarithmic Conformal Field Theory (2005)
[math.qa/0512621].

[FGST06a] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov and I. Y. Tipunin

Kazhdan-Lusztig–Dual Quantum Group for Logarithmic Extensions of Vira-
soro Minimal Models (2006) [math.qa/0606506].

[FGST06b] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov and I. Y. Tipunin

Logarithmic Extensions of Minimal Models: Characters and Modular Trans-
formations (2006) [hep-th/0606196].

[FGST06c] B. L. Feigin, A. M. Gainutdinov, A. M. Semikhatov and I. Y. Tipunin

Modular Group Representations and Fusion in Logarithmic Conformal Field
Theories and in the Quantum Group Center Commun. Math. Phys. 265
(2006) 47–93 [hep-th/0504093].

[Fis78] M. E. Fisher Yang-Lee Edge Singularity and ϕ3 Field Theory Phys. Rev.
Lett. 40 (1978) 1610–1613.

[FL88] V. A. Fateev and S. L. Lykyanov The Models of Two-Dimensional Confor-
mal Quantum Field Theory with Zn Symmetry Int. J. Mod. Phys. A3 (1988)
507.

[FLN06] E. Frenkel, A. Losev and N. Nekrasov Instantons Beyond Topological
Theory I (2006) [hep-th/0610149].

[Flo93] M. Flohr W-Algebras, New Rational Models and Completeness of the c=1
Classification Commun. Math. Phys. 157 (1993) 179–212 [hep-th/9207019].

[Flo96] M. Flohr On Modular Invariant Partition Functions of Conformal Field The-
ories with Logarithmic Operators Int. J. Mod. Phys. A11 (1996) 4147–4172
[hep-th/9509166].

[Flo97] M. Flohr On Fusion Rules in Logarithmic Conformal Field Theories Int. J.
Mod. Phys. A12 (1997) 1943–1958 [hep-th/9605151].

[Flo03] M. Flohr Bits and Pieces in Logarithmic Conformal Field Theory Int. J.
Mod. Phys. A18 (2003) 4497–4592 [hep-th/0111228].

[FNO92] B. L. Feigin, T. Nakanishi and H. Ooguri The Annihilating Ideals of
Minimal Models Int. J. Mod. Phys. A7S1A (1992) 217–238.

[FQS84] D. Friedan, Z.-a. Qiu and S. H. Shenker Conformal Invariance, Unitarity
and Critical Exponents in Two Dimensions Phys. Rev. Lett. 52 (1984) 1575–
1578.

107



Bibliography

[FQS85] D. Friedan, Z.-a. Qiu and S. H. Shenker Superconformal Invariance in
Two Dimensions and the Tricritical Ising Model Phys. Lett. B151 (1985)
37–43.

[FS93] B. L. Feigin and A. V. Stoyanovsky Quasi-Particles Models for the
Representation of Lie Algebras and geometry of Flag Manifold (1993)
[hep-th/9308079].

[FS98] H. Frahm and M. Stahlsmeier Spinon Statistics in Integrable Spin-S
Heisenberg Chains Phys. Lett. A 250 (1998) 293 [cond-mat/9803381].

[FSQ86] D. Friedan, S. H. Shenker and Z.-a. Qiu Details of the Non-Unitarity
Proof for Highest Weight Representations of the Virasoro Algebra Commun.
Math. Phys. 107 (1986) 535.

[FZ85] V. A. Fateev and A. B. Zamolodchikov Nonlocal (Parafermion) Currents
in Two-Dimensional Conformal Quantum Field Theory and Self-Dual Critical
Points in Zn-Symmetric Statistical Systems Sov. Phys. JETP 62 (1985)(2)
215–225.

[FZ87] V. A. Fateev and A. B. Zamolodchikov Representations of the Algebra
of ’Parafermion Currents’ of Spin 4/3 in Two-Dimensional Conformal Field
Theory. Minimal Models and the Tricritical Potts Z3 Model Theor. Math. Phys.
71 (1987) 451–462.

[Gab00] M. R. Gaberdiel An Introduction to Conformal Field Theory Rept. Prog.
Phys. 63 (2000) 607–667 [hep-th/9910156].

[Gab03a] M. R. Gaberdiel An Algebraic Approach to Logarithmic Conformal Field
Theory Int. J. Mod. Phys. A18 (2003) 4593–4638 [hep-th/0111260].

[Gab03b] M. R. Gaberdiel Konforme Feldtheorie (2003).

[Geo99] H. Georgi Lie Algebras in Particle Physics (Westview Press, 1999).

[Gep87] D. Gepner Exactly Solvable String Compactifications on Manifolds of SU(N)-
Holonomy Phys. Lett. B199 (1987) 380–388.

[Gep88] D. Gepner Space-Time Supersymmetry in Compactified String Theory and
Superconformal Models Nucl. Phys. B296 (1988) 757.

[GG00] M. R. Gaberdiel and P. Goddard Axiomatic Conformal Field Theory
Commun. Math. Phys. 209 (2000) 549–594 [hep-th/9810019].

[Gin88] P. H. Ginsparg Curiosities at c = 1 Nucl. Phys. B295 (1988) 153–170.

[GK96] M. R. Gaberdiel and H. G. Kausch A Rational Logarithmic Conformal
Field Theory Phys. Lett. B386 (1996) 131–137 [hep-th/9606050].

[GK99] M. R. Gaberdiel and H. G. Kausch A Local Logarithmic Conformal Field
Theory Nucl. Phys. B538 (1999) 631–658 [hep-th/9807091].

108



Bibliography

[GKO85] P. Goddard, A. Kent and D. I. Olive Virasoro Algebras and Coset Space
Models Phys. Lett. B152 (1985) 88.

[God89] P. Goddard Meromorphic Conformal Field Theory in V. Kac (ed.) Infinite
Dimensional Lie Algebras and Lie Groups, Proc. CIRM-Luminy, Marseille
Conf. 1988 (World Scientific, 1989) 556–587.

[Gor61] B. Gordon A Combinatorial Generalization of the Rogers-Ramanujan Iden-
tities Amer. J. Math. 83 (1961) 393–399.

[GR90] G. Gasper and M. Rahman Basic Hypergeometric Series volume 35 of En-
cyclopedia of Mathematics and its Applications (Cambridge University Press,
1990).

[GSW87] M. B. Green, J. H. Schwarz and E. Witten Superstring Theory (2 Vol-
umes) (Cambridge University Press, 1987).

[Gur93] V. Gurarie Logarithmic Operators in Conformal Field Theory Nucl. Phys.
B410 (1993) 535–549 [hep-th/9303160].

[Hal88] F. D. M. Haldane Exact Jastrow-Gutzwiller Resonating Valence Bond
Ground State of the Spin 1

2
Antiferromagnetic Heisenberg Chain with 1

r2 Ex-
change Phys. Rev. Lett. 60 (1988) 635.

[Hal91] F. D. M. Haldane Fractional Statistics in Arbitrary Dimensions: A Gener-
alization of the Pauli Principle Phys. Rev. Lett. 67 (1991) 937–940.

[Har79] W. E. Hardy, G.H. An Introduction to the Theorty of Numbers (Oxford
University Press Inc., New York, 1979).

[HHT+92] F. D. M. Haldane, Z. N. C. Ha, J. C. Talstra, D. Bernard and
V. Pasquier Yangian Symmetry of Integrable Quantum Chains with Long-
Range Interactions and a New Description of States in Conformal Field Theory
Phys. Rev. Lett. 69 (1992) 2021–2025.

[HK02] J. Hong and S.-J. Kang Introduction to Quantum Groups and Crystal Bases
volume 42 of Graduate Studies in Mathematics (American Mathematical So-
ciety, Providence RI, USA, 2002).

[HKK+98] G. Hatayama, A. N. Kirillov, A. Kuniba, M. Okado, T. Takagi and
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