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Abstract

I started my studies in the framework of this thesis with the aim to gain a better under-
standing of the algebraic structure of (logarithmic) conformal field theory. The theory of
vertex operator algebras soon was identified as the most promising and interesting setting,
and most of the outcome presented here is formulated in this language. One main result is a
proof of the existence and associativity of the nonmeromorphic operator product expansion
for an infinite family of vertex operator algebras that are also known to be the vacuum sec-
tors of logarithmic conformal field theories. Furthermore, all these vertex operator algebras
are shown to be C2-cofinite, and this important finiteness property is related to another
one called rationality. Finally, I try to explore the algebraic roots of logarithmic conformal
field theory in general and obtain some new but limited insight in logarithmic commutation
relations.

Before several aspects of the theory of vertex operator algebras and its physical relevance are
introduced and discussed systematically in chapter 2, the first chapter tries to sketch a bigger
picture, relating much of the material in the rest of this thesis to its historical and geometrical
origins and counterparts. In this way it serves as an introduction, but not one without
some technical details. After a very crude positioning of two-dimensional conformal field
theory within theoretical physics, the mathematical phenomenon of monstrous moonshine
is touched upon, which gave birth to the study of vertex operator algebras in the second
half of the last century. But vertex operator algebras are also intimately connected to the
geometry of interacting strings, which motivated the abstract definition of conformal field
theory by Segal and Vafa. The basic categorial and geometric ideas in these approaches are
explained, and the precise way Huang’s theory of geometric vertex operator algebras draws
a bow from geometry to algebra in conformal field theory is described.
The second chapter provides the necessary background in vertex operator algebra theory
which is needed to present and understand the main results in chapter 3, and it tries to
do so in a self-contained way. In section 2.1 basic notions such as vertex operator algebras,
modules, intertwining operators and fusion rules are introduced, and some of their relations
and properties are studied. An exhaustive presentation of the theory of vertex operator
algebras cannot be fit into one small chapter, and the focus is set on the particularly impor-
tant associativity and commutativity properties which are discussed in much detail. Then



in section 2.2, the notions of rationality, regularity, Cn-cofiniteness and the Zhu algebra are
introduced, and the relations among these finiteness properties for vertex operator algebras
are pointed out. A brief introduction to some aspects of W-algebras is also given in this
context. Finally in section 2.3, a skeleton of P (z)-tensor product theory is presented. This
theory allows to give conditions on the existence and associativity of the nonmeromorphic
operator product expansion such that if these conditions are satisfied, the nonmeromorphic
operator product expansion can be derived from first principles.
The third chapter combines results from sections 2.2 and 2.3 in a study of all triplet algebras
{W(2, (2p− 1)×3)}p∈Z≥2

. Most of the material in this chapter is an extended description of
the work published in [CF]. The triplet algebras are introduced and it is shown how the list
of properties sufficient for the existence and associativity of the nonmeromorphic operator
product expansion can almost be reduced to the C2-cofiniteness of the vertex operator al-
gebras W(2, (2p − 1)×3). A careful study of singular vectors and characters for the triplet
algebras is then applied to prove that they are indeed all C2-cofinite. This together with
the consequences for the nonmeromorphic operator product expansion is the main result in
my thesis. While the explicitly known singular vectors and commutation relations for the
triplet algebra W(2, 3×3) make the proof rather easy in this case, obtaining the result for all
other triplet algebras requires some subtle arguments. Chapter 3 ends with an application
of the study of singular vectors to establish an upper bound on the dimension of the Zhu
algebras for the triplet algebras.
The triplet algebras are all examples of logarithmic conformal field theories as follows from
their explicitly known characters. This fact is not stressed in chapter 3 since the arguments
used to establish its main results do not depend crucially on indecomposable structures –
even though the triplet algebras are the first family of logarithmic conformal field theories for
which C2-cofiniteness and nonmeromorphic operator product expansion are proven. Chap-
ter 4 on the other hand is devoted to the specific properties of logarithmic conformal field
theories. More precisely, the possibility of a generalized vertex operator algebraic approach
to logarithmic conformal field theory that places the defining features of such theories at
the most fundamental level is investigated. This is in contrast to known attempts to de-
scribe logarithmic conformal field theory in terms of vertex operator algebra theory, which
introduces the indecomposable structure and logarithms only at the level of modules and
intertwining operators. Part of the reason a more fundamental approach has not yet been
presented in the literature are certain expansion issues and difficulties to properly introduce
logarithms into the core structure of vertex operator algebras. I am not able to master all
these problems, but some results on logarithmic mode algebras are obtained which may help
to describe logarithmic conformal field theory in the indicated way in the future.
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Chapter 1

A Bigger Conformal Picture

Two-dimensional conformal (quantum) field theory is very special. While in more than
two spacetime dimensions d, the group of transformations which leave angles invariant in
Minkowski space is isomorphic to the group of Poincaré transformations in d+2 dimensions
and is thus finite-dimensional, the symmetry algebra corresponding to conformal transforma-
tions in two dimensions is infinite-dimensional. This high degree of symmetry imposes many
natural restrictions such that any field theory in two dimensions with conformal symmetry
has a structure that makes it particularly clearly arranged. In many cases, such theories
are completely solvable in the sense that all correlation functions, from which observable
quantities are obtained in field theories, can be computed accurately in principle. It is a
very satisfying result to be (at least sometimes) in a position to make exact statements in
nontrivial situations instead of relying on the mysteries of perturbation theory.
All this is true, but one might object that two dimensions are not quite enough to describe
what seems to be the “real world” in four spacetime dimensions. This raises the question
of the significance of two-dimensional conformal field theory in physics as a language and
structure to describe and substantiate measurable processes, respectively. To my knowledge,
there are three main answers to this question.
Firstly, there are many established theories and models that describe physical processes that
take place effectively in two dimensions. In particular, this is often the case in statistical
physics and especially condensed matter physics. For example, one might be interested in
phenomena that are confined to the two-dimensional surface of a three-dimensional object,
or a system with one spatial dimension that evolves in time. If such situations come along
with the manifestation of certain symmetries, the most important of which here is scale
invariance, the power of two-dimensional conformal field theory may be utilized. A famous
example is the critical Ising model whose continuum limit is described by a two-dimensional
conformal field theory of central charge c = 1

2
.

Secondly, perturbative string theory is intimately connected to, in a sense even identical
with a two-dimensional conformal field theory. String theory is the candidate for a theory
that describes all known physical interactions in a unified manner that receives by far the
most attention. It can be formulated in terms of an action principle, where the action is an
integral over the two-dimensional surface swept out by the superstring as it propagates in
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Aspects of Indecomposable Vertex Operator Algebras

space and time. This action is invariant under conformal transformations of the worldsheet
coordinates and Weyl transformations of the worldsheet metric, and this implements the
conformal symmetry.
Finally, two-dimensional conformal field theory is one of the few direct contacts between
physics and mathematics. As most of physics is formulated in some kind of mathematical
language, this statement might seem nearly tautological, but it is meant in the stronger sense
that representatives of both sciences actually come together and pursue common research
with a rather open mind for the views and ideas of the other side. This is very precious. For
mathematics, the intuition and insight of physicists can be an inspiring motivation to discover
and develop new interesting structures or gain a deeper appreciation of known ones. On the
other hand, it is desirable not only to have a merely intuitive and vague comprehension
of some more or less specific physical system, but also to have a consistent language to
communicate this understanding which also gives it an exact meaning and uncovers its
fundamental structure, otherwise it should not be spoken of true understanding. This is
why a clear formulation of physical theories with mathematical rigour should always be a
goal. While in most other quantum theories mathematicians find it very hard to make sense
of the concepts employed by physicists, this goal is much nearer in two-dimensional conformal
field theory. And once the physics of conformal fields is understood mathematically, there
is hope that at least some of the structure found can be transported or adapted to other
relevant theories.

I will not attempt to give an introduction to conformal field theory as a whole here. Among
the introductory expositions of conformal field theory that I have (partly) studied are [Gi],
[Scho], [Sche] [Fu], [DFMS], [GG], [Gab1], [Gab3], [Nah1], [Gab4], [C] and [Gab5]. Such
background and the application in string theory in mind, some of the mathematical structure
will be explored and interpreted physically in this thesis.
In particular, the presence of conformal symmetry in field theory alluded to above mani-
fests itself in the way its fundamental objects, e.g. primary fields, behave under conformal
transformations, and the behaviour of less fundamental objects can be inferred. This can
be translated into algebraic relations in the precise mathematical description, e.g. among
the modes of a Laurent expansion of the primary fields. Making full use of the algebraic
approach to conformal field theory in a consistent and appealing framework amounts to
working with some variant of the notion of a vertex operator algebra. The theory of vertex
operator algebras is the topic of the next chapter. Here, a brief summary will be given of
how it arose historically, drawing from the material in [FLM], [Bo2], [Gan1], [Gan2] and
[LL].

The Monster. The original reason to introduce the notion of a vertex operator algebra
does not have an obvious connection to conformal field theory, but rather to a special part
of group theory. About 25 years ago the task of classifying all finite simple groups neared
its completion. This classification asserts that the following list comprises all such groups:
a family of cyclic groups Zp with p a prime number, a family of alternating groups or even
permutation groups Am with m ∈ Z≥5, 16 families of Lie type, and 26 additional finite simple
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1. A Bigger Conformal Picture

groups that are not part of an infinite family and are called sporadics. The smallest of these
is the Mathieu group M11 whose order is 7920, and the largest sporadic simple group is the
so-called Monster M with

|M| = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71

= 808 017 424 794 512 875 886 459 904 961 710 757 005 754 368 000 000 000

≈ 8 · 1053 .

The monster has a surprising relation to modular functions, i.e. functions defined on the
upper-half plane H = {τ ∈ C | Im(τ) > 0} that are invariant under the modular group
SL(2,Z) which acts on such functions via

(
a b
c d

)
· τ = aτ+b

cτ+d
for all

(
a b
c d

)
∈ SL(2,Z). The

elliptic modular function

j(τ) =
(ΘE8(τ))

3

(η(τ))24 = q−1 + 744 + 196 884q + 21 493 760q2 + . . . with q = e2πiτ ,

where ΘE8 is the theta function of the root lattice of the exceptional Lie algebra E8 and
η is the Dedekind eta function, is the simplest modular function in the sense that any
modular function can be written as a rational function of j. McKay and Thompson made
the astonishing observation that

1 = 1 ,

196 884 = 196 883 + 1 ,

21 493 760 = 21 296 876 + 196 883 + 1 ,

where the first nonvanishing coefficients of the expansion of j on the left-hand side are
equated to (sums of) the dimensions of the smallest irreducible representations of the Monster
M on the right-hand side. This unexpected relation between group theory and number theory
was termed “monstrous moonshine”, using the English idiom to express doubts that the
relation was really profound. McKay and Thompson suggested that this “numerology” is no
coincidence but stems from the fact that there is an infinite-dimensional graded vector space
on which the Monster acts as its symmetry group, and its homogeneous subspaces are sums
of irreducible representations of M. It was shown by Frenkel, Lepowsky and Meurman that
there really is such a vector space which they called the “moonshine module” V ♮. Motivated
by his study of finite groups and Kac-Moody algebras, Borcherds introduced the notion of
vertex algebras and stated that V ♮ actually is an example of such a structure. This was
proven by Frenkel, Lepowsky and Meurman. In fact, they proved that V ♮ has an even more
elaborate structure that also encompasses a representation of the Virasoro algebra, which
they called a vertex operator algebra.
In this language, the relation between the Monster M and the elliptic modular function j is
explained by the fact that V ♮ is a vertex operator algebra V ♮ =

∐
m∈N V ♮

(m) of central charge
c = 24 whose graded dimension satisfies the relation

∑

m∈N qmdimV ♮
(m) = q (j(τ) − 744) .
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Aspects of Indecomposable Vertex Operator Algebras

Substracting the constant 744 from j(τ) does not change its invariance under modular trans-
formations and thus does hardly change its nature. Furthermore, the Monster M is the
automorphism group for V ♮, i.e.

gY (v, x)g−1 = Y (gv, x) for all g ∈ M and all v ∈ V ♮ .

Soon after this description by mathematicians, Dixon, Ginsparg and Harvey interpreted the
moonshine module in terms of string theory: V ♮ can be viewed as a Z2-orbifold theory of
free bosons compactified on R24/Λ24, where Λ24 is the Leech lattice.

Segal’s definition of conformal field theory. String theory was also the motivation
for Segal to give his abstract definition of conformal field theory in [S]. His work has been
highly influential for many mathematicians working on conformal field theory, including in
particular vertex operator algebras.

In perturbative string theory, interactions of closed strings are pictured as Riemann surfaces
with boundaries. The connected boundary components are one-real-dimensional manifolds
and represent the incoming and outgoing strings. This setting is supposed to be a two-
dimensional generalization of the Feynman diagram formalism in perturbative quantum field
theory. An important difference is that while in quantum field theory the Feynman rules
can be derived from first principles, this does not seem to be the case in string theory so far
and the approach in perturbation theory should be seen as a postulate here.
In addition to the geometrical picture of strings propagating in spacetime, there is the
description of physical states in terms of elements of vector spaces, and to each incoming
or outgoing string state such a vector should correspond. Furthermore, probabilities for
physical processes are typically computed in terms of quantum amplitudes, and these in
turn are often given by path integrals by physicists. But it seems very difficult to talk about
path integrals rigorously, and Segal tried to extract their basic properties and put them into
a consistent framework to define conformal field theory. This will now be described, mostly
following [S] and [Hua6].
The first step into this direction is to consider the above-mentioned string interactions from
a slightly different point of view: (after a homotopic transformation) the closed strings are
given by copies of circles S1 and their combined worldsheets are imagined to represent the
interaction between the strings. In more precise words, this defines a symmetric monoidal
category C whose objects are finite ordered sets of copies of S1, and whose morphisms are
conformal equivalence classes [Σ] of Riemann surfaces with oriented and ordered boundary
components with analytic parametrization. For any two objects in C a morphism between
them must be such that the copies of S1 in the domain and codomain parametrize the
negatively and positively oriented boundary components, respectively. Loosely speaking this
says that the incoming and outgoing strings can fit on the boundary of any representative
of [Σ]. The composition of two morphisms is given by the sewing of the associated Riemann
surfaces; this will be explained in more detail below.
The next idea is to assign a suitable vector space V to each string described by a copy of
S1 and an operator U[Σ] : VC1 → VC2, corresponding to an interaction, to each equivalence
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1. A Bigger Conformal Picture

class of Riemann surfaces [Σ] with ∂Σ = C1 ⊔ C2 for some representative Σ, where C1 and
C2 denote the sets of incoming and outgoing strings, respectively. To make this assignment,
a symmetric tensor category V is introduced whose objects are complete locally convex
topological C-vector spaces with a nondegenerate bilinear form ( · , · ), and a projective
functor from C to V is considered. This is a functor from C to the projective category whose
objects are the objects of V and whose morphisms are one-dimensional spaces of morphisms
of V . The reason that the functor should be projective is that the above operator U[ · ] should
have the property that U[Σ1⊔Σ2] is proportional but not necessarily equal to U[Σ2]◦U[Σ1]. Also,
it follows from the tensor property of V that if the image of one copy of S1 under the functor
is the vector space V , then the image of m copies of S1 is equal to V ⊗m. With this notation,
the following definition can be given.

Definition. A conformal field theory in the sense of Segal is a projective functor T from
C to V subject to the following axioms:

(S1) For any morphism [Σ] in C from m ordered copies of S1 to n ordered copies of S1,
let [Σci,j ] be the morphism from m− 1 ordered copies of S1 to n− 1 ordered copies

of S1 obtained from [Σ] by identifying the boundary component of Σ parametrized
by the i-th copy of S1 in the domain of [Σ] with the boundary component of Σ
parametrized by the j-th copy of S1 in the codomain of [Σ]. Then the trace between
the i-th tensor factor in the domain and the j-th tensor factor in the codomain of
T ([Σ]) exists and is equal to T ([Σci,j ]).

(S2) For any morphism [Σ] in C from m ordered copies of S1 to n ordered copies of S1,
let [Σi→n+1] be the morphism from m − 1 ordered copies of S1 to n + 1 ordered
copies of S1 obtained by changing the i-th copy of S1 of the domain of [Σ] to the
(n + 1)-th copy of S1 of the codomain of [Σi→n+1]. Then T ([Σ]) and T ([Σi→n+1])
are related by the map from Hom(V ⊗m, V ⊗n) to Hom(V ⊗(m−1), V ⊗(n+1)) obtained
using the map V → V ∗ corresponding to the bilinear form ( · , · ).

While the second axiom simply formally captures the idea familiar from basic quantum
theory that the relation between incoming and outgoing states is reflected by the relation
between a vector space and its dual, the first axiom deserves a more detailed motivation.
Perturbative string theory is described by a quantum field theory with fields Φ on Riemann
surfaces, which represent the worldsheets of strings. In the path integral approach, the parti-
tion function for a quantum field theory on a Riemann surface Σ with boundary components
Ck, which correspond to incoming and outgoing strings and on which the fields have fixed
boundary values φk, is given by

∫

Φ|Ck=φk

DΦ e−SΣ[Φ] ,

where SΣ is the action on Σ. The postulate is that this integral can be computed iteratively
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in the sense that if Σ is sewn with itself to Σci,j as indicated in the above definition, then

∫

Φ|Ck=φk, k 6=i,j

DΦ e
−SΣ

ci,j
[Φ]

=

∫
Dφ0




∫

Φ|Ck
=φk, k 6=i,j

Φ|Ci
=φ0=Φ|Cj

DΦ e−SΣ[Φ]





must hold true. The first axiom above tries to state this property in terms of well-defined
quantities.
Segal’s definition concerns the full conformal field theory as opposed to the “chiral halves”
in which the fields depend only on one variable and not also on its conjugate. But many
interesting results follow already from a study of the chiral theory, and Segal also gives a
corresponding definition of weakly conformal field theories in terms of modular functors and
states under which conditions full theories can be constructed from weakly conformal field
theories. The precise definition is as abstract as the above one and bears similarly little
resemblance to vertex operator algebras, which will be introduced and studied in later chap-
ters. Since the view on conformal field theory of many physicists is deeply influenced by
concepts that also play a key role in vertex operator algebra theory, the connections between
this theory and Segal’s approach of sewing Riemann surfaces shall now be sketched instead
of pursuing Segal’s work much further. (Note that in [HK] Huang and Kong constructed full
genus-zero conformal field theories from vertex operator algebras in terms of full field alge-
bras.) This is supposed to illuminate the relation between geometric and algebraic aspects
of conformal field theory.

The sewing operation in the moduli space of punctured Riemann surfaces. The
way from the geometric theory of Riemann surfaces to the algebraic theory of vertex opera-
tor algebras starts with a precise description of how certain Riemann surfaces can be “sewn”.
From the discussion of the definition of vertex operator algebras in section 2.1, which relates
vertex operators with “vertices” in string diagrams, one can expect that only genus-zero
Riemann surfaces are relevant for a study of vertex operator algebras. This is indeed the
case, and from now on only punctured spheres, i.e. one-complex-dimensional, compact, con-
nected genus-zero manifolds, will be considered. The importance of punctured surfaces to
conformal field theory was discussed by Vafa in [V]. This led Huang to introduce the notion
of geometric vertex operator algebra and study its properties in [Hua1], [Hua2] and [Hua5].
These structures are isomorphically related to (algebraic) vertex operator algebras. In order
to give the definition of a geometric vertex operator algebra, a precise handling of the sewing
operation is needed.

Instead of studying Riemann surfaces with boundaries as above one can equivalently consider
spheres with tubes. A sphere with tubes of type (m,n) has m negatively and n positively
oriented, distinct and ordered points (or punctures) with m + n local analytic coordinate
charts vanishing at their respective points. The relation to Segal’s approach in terms of
Riemann surfaces with boundaries is that (after a possible rescaling of the coordinate maps)
spheres with tubes of type (m,n) correspond to morphisms in C with m copies of S1 in the

6



1. A Bigger Conformal Picture

domain and n copies of S1 in the codomain. Using the sewing operation described below
this equivalence can be made more precise.
It turns out that only spheres with tubes of type (1, n) are needed to arrive at vertex
operator algebras. On the other hand, the theory of (geometric) vertex operator coalgebras
developed by Hubbard in [Hub] is based on spheres with tubes of type (m, 1). Using the
sewing operation, spheres with tubes of arbitrary type can be obtained from the special
classes of types (m, 1) and (1, n), so no sphere is left behind.
Any sphere of type (1, n) can be written as (S; p0, p1, . . . , pn; (U0, ϕ0), (U1, ϕ1), . . . , (Un, ϕn)),
where pi ∈ Ui are its punctures, ϕi : Ui → C are the local coordinates, i ∈ {0, . . . , n}, and
the index ‘0’ refers to the single negatively oriented puncture. Two spheres

(S1; p0, . . . , pn1; (U0, ϕ0), . . . , (Un1, ϕn1)) and (S2; q0, . . . , qn2 ; (V0, ψ0), . . . , (Vn2, ψn2))

of types (1, n1) and (1, n2) are called conformally equivalent if n1 = n2 and there exists a
complex analytic isomorphism F : S1 → S2 such that F (pi) = qi and ϕi is equal to ψi ◦ F
on some neighborhood of pi for all i ∈ {0, . . . , n1}. Furthermore, one says that for two
such spheres S1 and S2, the i-th tube of S1 can be sewn with the 0-th tube of S2 if there
is a positive real number r such that B̄r ⊂ ϕi(Ui), B̄

1/r ⊂ ψ0(V0) and pi, q0 are the only
punctures in ϕ−1

i (B̄r), ψ−1
0 (B̄1/r), respectively, for all i ∈ {1, . . . , n1}. Then a sphere with

tubes of type (1, n1 + n2 − 1) is obtained by cutting ϕ−1
i (B̄r) and ψ−1

0 (B̄1/r), respectively,
from S1 and S2 and identifying the boundaries of the resulting Riemann surfaces using the
map ψ−1

0 ◦ 1
· ◦ ϕ

−1
i . This sphere with tubes of type (1, n1 + n2 − 1) has ordered punctures

(p0, . . . , pi−1, q1, . . . , qn2 , pi+1, . . . , pn1) and is denoted by S1i∞0S2. The procedure to obtain
it from S1 and S2 is called the sewing operation.
In Vafa’s approach the moduli space of spheres with tubes, which is the set of all conformal
equivalence classes of spheres with tubes, plays a fundamental role. To find an appropriate
representative of an element of this moduli space, one makes use of the uniformization
theorem of complex analysis which says that any sphere is conformally equivalent to the
Riemann sphere Ĉ = C∪ {∞}. So any conformal equivalence class of spheres with tubes of
type (1, n) has a representative of the form (p0 = z0, . . . , pn = zn; f0, . . . , fn), where the fi,
i ∈ {0, . . . , n}, are suitable analytic coordinates. Furthermore, the fact that SL(2,C) is the

automorphism group of Ĉ allows to fix two of the n+1 punctures as z0 = ∞ and zn = 0, and
the remaining conformal symmetry can be used to restrict f0 to satisfy limz→∞zf0(z) = 1.
These restrictions already provide a representative without redundancy, but in concrete
computations related to (geometric) vertex operator algebras another realization of the maps
fi is more convenient. Any such map can be expanded into a series as

fi(z) = a
(i)
0


z +

∑

k∈Z+

a
(i)
k z

k+1


 = a

(i)
0 exp



∑

k∈Z+

A
(i)
k z

k+1 d

dz


 z .

Note that the last expression has the typical appearance of a vertex operator in string theory.
The space of all sequences A = {Ak}k∈Z+ for which the expression exp(

∑
k∈Z+

Akz
k+1 d

dz
)z

converges in a neighborhood of z = 0 is denoted by H . So by the above discussion the
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moduli space of spheres with tubes of types (1, 0) and (1, n) can be identified with K(0) =
{A ∈ H |A1 = 0} and

K(n) = Mn−1 ×H × (C× ×H)n

for n ∈ Z+ and Mn−1 = {(z1, . . . , zn−1) ∈ Cn−1 | zi 6= zj for all i 6= j}, respectively, and an
element of K(n) is represented by a canonical sphere with tubes of type (1, n) denoted by

(
z1, . . . , zn−1;A

(0), (a
(1)
0 , A(1)), . . . , (a

(n)
0 , A(n))

)
. (1.1)

In this notation the sewing operation is a partial map i∞0 : K(n1)×K(n2) → K(n1+n2−1).
Writing 0 for the element of H whose components are all zero, the element I = (0, (1, 0)) ∈
K(1) has the properties of a unit: for all n ∈ N, Q ∈ K(n) and i ∈ {1, . . . , n}, Q can be
sewn with I and I leaves Q invariant, Qi∞0I = Q = I1∞0Q. Finally, an element σ of the
permutation group of n− 1 objects acts on elements of the form (1.1) to give an element of
the form

(
zσ−1(1), . . . , zσ−1(n−1);A

(0), (a
(σ−1(1))
0 , A(σ−1(1))), . . . , (a

(σ−1(n))
0 , A(σ−1(n)))

)
.

Geometric vertex operator algebras. After the above precise discussion of the sewing
operation now the definition of geometric vertex operator algebras due to Huang can be given.
The reason why this notion is presented here is that geometric vertex operator algebras are
isomorphic to (algebraic) vertex operator algebras. This relation is an important connection
between Segal’s and Vafa’s geometric approach to conformal field theory and its fundamental
algebraic aspects described by (algebraic) vertex operator algebras. The latter are the objects
of main study in my diploma thesis, and the discussion in this chapter is supposed to show
how they fit into a bigger picture.

To give the definition of geometric vertex operator algebras, one more notion needs to be
introduced. Let V =

∐
m∈Z V(m) be a Z-graded C-vector space with finite-dimensional

homogeneous subspaces, let V ′ =
∐

m∈Z V ∗
(m) be its graded dual, let V =

∏
m∈Z V(m) denote

its algebraic completion and 〈 · , · 〉 the natural pairing between V ′ and V . Also let HV (m)
for any m ∈ N denote the space of homomorphisms from V ⊗m to V . Then for all m ∈ Z+,
n ∈ N and any i ∈ {1, . . . , m}, the t-contraction is defined as the map

( · i∗0 · )t : HV (m) ×HV (n) −→ Hom(V ⊗m+n−1, V [[t, t−1]]) ,

(f, g) 7−→ (f i∗0 g)t

which acts as

(f i∗0g)t(v1⊗. . .⊗vm+n−1) =
∑

k∈Z f(v1⊗. . .⊗vi−1⊗πkg(vi⊗. . .⊗vi+n−1)⊗vi+n⊗. . .⊗vm+n−1)t
k

for all v1, . . . , vm+n−1 ∈ V , where πk : V → V(k) is the natural projection for all k ∈ Z. If
the formal Laurent series

〈v′, (f i∗0 g)t(v1 ⊗ . . .⊗ vm+n−1)〉

8
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is absolutely convergent at t = 1 for all v′ ∈ V ′, the resulting element f i∗0 g = (f i∗0 g)1 ∈
HV (m + n − 1) is defined to be the contraction of f and g. Note how the operation of
contraction is very similar in form to the operation of sewing two Riemann surfaces. Actually
the contraction imitates the sewing operation on an algebraic level, and both operations
appear together in the definition of a geometric vertex operator algebra. Again, as in the
case of the moduli space of punctured spheres, there is an action of the permutation group
Sm of m objects on HV (m): for all σ ∈ Sm,

σ(f)(v1 ⊗ . . .⊗ vm) = f(σ−1(v1 ⊗ . . .⊗ vm)) .

Definition. A geometric vertex operator algebra is a Z-graded C-vector space

V =
∐

m∈ZV(m) with dimV(m) <∞ for all m ∈ Z
together with maps

νn : K(n) −→ HV (n)

for all n ∈ N. These data are subject to the following axioms:

(GV1) the positive energy axiom

V(m) = 0 for all m≪ 0 ;

(GV2) the grading axiom
〈v′, ν1(0, (a, 0))(v)〉 = a−m〈v′, v〉

for all m ∈ Z, v′ ∈ V ′, v ∈ V(m) and a ∈ C×;

(GV3) the meromorphicity axiom: For all m ∈ Z+, v′ ∈ V ′, and v1, . . . , vm ∈ V , the
function

Q 7−→ 〈v′, νm(Q)(v1 ⊗ . . .⊗ vm)〉

is meromorphic on K(m), and if zi and zj are the i-th and j-th puncture of Q,
respectively, then for any vi, vj ∈ V there exists Nvi,vj ∈ Z+ such that for any
v′ ∈ V ′, vk ∈ V , k ∈ {1, . . . , m} and k 6= i, j, the order of the pole zi = zj of
〈v′, νm(Q)(v1 ⊗ . . .⊗ vm)〉 is less than Nvi,vj ;

(GV4) the permutation axiom
σ(νn(Q)) = νn(σ(Q))

for all n ∈ N, σ ∈ Sn and Q ∈ K(n);

(GV5) the sewing axiom: There exists a unique c ∈ C (called the central charge) such that
if

Q1 =
(
z1, . . . , zm−1;A

(0), (a
(1)
0 , A(1)), . . . , (a

(m)
0 , A(m))

)
∈ K(m) ,

9
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Q2 =
(
z1, . . . , zn−1;A

(0), (b
(1)
0 , B(1)), . . . , (b

(n)
0 , B(n))

)
∈ K(n)

and if the i-th tube ofQ1 can be sewn with the 0-th tube ofQ2, then νm(Q1) i∗0νn(Q2)
exists and satisfies the relation

νm+n−1(Q1 i∞0Q2) = νm(Q1) i∗0 νn(Q2) e−Γ(A(i),B(0),a
(i)
0 )c ,

where Γ(A(i), B(0), a
(i)
0 ) is a certain series in the components of A(i), B(0) and a

(i)
0

which is given in (4.2.1), (4.2.2) in [Hua5].

The above definition should be compared with the definition of a vertex operator algebra
and its discussion in section 2.1. The first and second axioms above can immediately be
related to the corresponding axioms of a vertex operator algebra. The permutation axiom
states that the ordering of punctures of spheres with tubes is not relevant for the structure
of a geometric vertex operator algebra. The central axioms are the meromorphicity axiom
and the sewing axiom as they both transport most of the geometric data into an algebraic
setting. It turns out that the meromorphicity axiom is needed to obtain the important
associativity and commutativity properties discussed at length in the next chapter. As
mentioned above, the sewing axiom consistently relates the geometric operation of sewing
to an algebraic treatment, and conversely it subtly introduces the central charge into the
geometric description.
One of Huang’s main results concerning (geometric) vertex operator algebras is that both
notions are equivalent. In fact, the following even stronger statement is true and is proven
in [Hua5].

Theorem. For all c ∈ C, the category of geometric vertex operator algebras with central
charge c is equivalent to the category of vertex operator algebras with central charge c.

This means that there is a one-to-one correspondence between the geometric and the al-
gebraic description of genus-one conformal field theory. For example, the vacuum vector
Ω ∈ V(0) of a vertex operator algebra V is related to the element 0 ∈ K(0) of the moduli space
of spheres with tubes via the identity 〈v′, ν0(0)〉 = 〈v′,Ω〉 for all v′ ∈ V ′. Also, a vertex opera-
tor Y ( · , x) corresponds to the canonical spheres with three tubes P (z) = (z; 0, (1, 0)) ∈ K(2)
via the relation

〈v′, (ν2(P (z)))(u⊗ v)〉 = 〈v′, Y (u, x)v〉
∣∣
x=z

for all v′ ∈ V ′ and u, v ∈ V . The moduli space element P (z) also plays another important
role in vertex operator algebra theory as will be discussed in section 2.3.

10



Chapter 2

Aspects of

Vertex Operator Algebra

In this chapter the notion of vertex operator algebra is introduced and its definition is
discussed in some detail, in particular with respect to its physical motivation and interpre-
tation. Then several properties of vertex operator algebras and their modules are derived,
with special emphasis on commutativity and associativity properties which correspond to
the physical concepts of locality and meromorphic operator product expansion, respectively.
After a short review of certain finiteness properties for vertex operator algebras and their
relations, as well as a brief discussion of W-algebras, the problem of the existence and asso-
ciativity of the nonmeromorphic operator product expansion is addressed. To arrive at the
corresponding result the relevant aspects of the theory of P (z)-tensor products are presented.

2.1 Basic notions

Formal calculus. In order to introduce and work with vertex operator algebras it is
convenient and natural to use the language of formal calculus. This completely algebraic
approach avoids subtle issues of convergence that must be taken into account if operators
depend on complex numbers as variables. In physical applications one is of course eventually
interested in computing correlation functions and the like, and these are evaluated in terms
of complex numbers. But the theory can be developed quite far with formal variables, and
manipulating expressions and deriving results is often easier with them, emphasizing and
exploiting the algebraic structure. Furthermore, all relevant results can also be expressed
in terms of complex numbers, and (paying careful attention) one is free to switch between
both descriptions; examples of this will be presented in this and later sections.

For a given vector space V , a basic class of objects in the theory of vertex operator algebras
is the set of formal Laurent series

V [[x, x−1]] =

{
∑

m∈Z vmx−m−1
∣∣∣ vm ∈ V

}
,

11
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where x denotes a formal variable and the indexing is a useful convention. Among the
subspaces of V [[x, x−1]] are the sets of V -valued polynomials V [x], formal Laurent polynomials
V [x, x−1], formal power series V [[x]] = {

∑
m∈N vmx−m−1 | vm ∈ V }, and truncated formal

Laurent series

V ((x, x−1)) =

{
∑

m∈Z vmx−m−1
∣∣∣ vm ∈ V , vm = 0 for m≫ 0

}
.

The expression formal power series is also used for the more general formal Laurent series
if either the distinction is irrelevant or if the context clarifies the meaning. Formal Laurent
series with more than one variable are defined in the obvious way, e.g. V [[x1, x

−1
1 , x2, x

−1
2 ]] =

{
∑

m,n∈Z vm,nx−m−1
1 x−n−1

2 | vm,n ∈ V }. Also, a derivative operation d
dx

acts on a formal series

as d
dx

∑
m∈Z vmx−m−1 =

∑
m∈Z(−m − 1)vmx

−m−2, and a residue operation Resx extracts
the coefficient of x−1: Resx

∑
m∈Z vmx−m−1 = v0. Because of the physical interpretation in

mind, writing an element v(x) ∈ V [[x, x−1]] in the form v(x) =
∑

m∈Z vmx−m−1 is called a
mode expansion.
All the above spaces are subspaces of the huge space V {x} of formal power series with
arbitrary complex powers,

V {x} =

{
∑

h∈C vhx−h−1
∣∣∣ vh ∈ V

}
.

The arguably most important formal power series is the δ-function

δ(x) =
∑

m∈Z xm (2.1)

with coefficients (which are all equal to one) in C. Note that the δ-function is not called a
distribution (although one can use it to define a distribution for the space of power series);
this displays the power of formal calculus: the expression (2.1) could not be written down
meaningfully if x were a complex number. Instead, in this context of formal calculus, the
question of convergence simply does not arise.
The name of the δ-function is motivated by the fact that for any f(x) ∈ V [x, x−1], the
identity f(x)δ(x) = f(1)δ(x) holds, which follows from the relation xmδ(x) = δ(x) for all
m ∈ Z, and this imitates formally the action of the (analytic) δ-distribution. Two somewhat
more intricate and even more important results are the relations

x−1
2 δ

(
x1 − x0

x2

)
= x−1

1 δ

(
x2 + x0

x1

)
(2.2)

and

x−1
1 δ

(
x2 − x3

x1

)
f(x1, x2, x3) = x−1

1 δ

(
x2 − x3

x1

)
f(x2 − x3, x2, x3) , (2.3)
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the latter of which is true for all those elements f(x1, x2, x3) ∈ (EndV )[[x1, x
−1
1 , x2, x

−1
2 , x3, x

−1
3 ]]

for which
lim
x1→x2

f(x1, x2, x3) = f(x1, x2, x3)
∣∣∣
x1=x2

(2.4)

exists and
f(x1, x2, x3)v ∈ V [[x1, x

−1
1 , x2, x

−1
2 ]]((x3))

holds for all v ∈ V . The condition of the existence of the algebraic limit defined in (2.4) is that
for any v ∈ V , the coefficient of each power of x2 in the mode expansion f(x1, x2, x3)v|x1=x2

is a finite sum of elements in V [[x3]]. Certainly, whenever use will be made of relation (2.3),
this will be valid.
In (2.2) and (2.3), some of the arguments of the formal power series are shifted from one
formal variable to the difference of two formal variables. To evaluate such expressions con-
sistently one needs a general prescription how to expand formal power series with sums (or
differences) of formal variables as their arguments. An ambiguity arises whenever a negative
power of such a sum is taken because then there are usually several possible expansions.
Conventually, a binomial expansion of the form

(x+ y)m =
∑

k∈N(mk)xm−kyk where

(
m

k

)
=

1

k!

k−1∏

i=0

(m− i) for all m ∈ C (2.5)

is employed, i.e. binomial expressions are expanded such that the second variable in the
sum appears only with nonnegative integral powers, and care is necessary because (x+ y)m

is different from (y + x)m for negative m. Analytically, this amounts to an expansion of
(z + w)m in the domain |z| > |w| for complex numbers z and w, and certainly in other
domains the expansion can be different.
As an example of the application of the binomial expansion convention, part of the left-hand
side of (2.3) is expanded into modes,

x−1
1 δ

(
x2 − x3

x1

)
= x−1

2 δ

(
x1 + x3

x2

)
= x−1

2

∑

m∈Z(x1+x3)
mx−m2 =

∑

m∈Z∑k∈N(mk)xm−k
1 x−m−1

2 xk3 ,

where the first equality is due to relation (2.2).
It turns out to be useful to have a precise algebraic prescription of expanding expressions in
several formal variables. Let ιij be the linear map

ιij :
〈
xi, x

−1
i , xj , x

−1
j , (xi + xj)

−1, (xi − xj)
−1
〉
⊂ C(xi, xj) −→ C[[xi, x

−1
i , xj , x

−1
j ]]

such that ιij(f(xi, xj)) is the power series expansion of f(xi, xj) involving only finitely many
negative powers of xj , where C(xi, xj) denotes the space of rational functions in xi and xj .
It is possible to generalize this definition to arbitrarily many formal variables, but this will
not be needed in the following.

Definition of a vertex operator algebra. With the basic tools of formal calculus at
hand, it is now possible to define the notion of a vertex operator algebra. This is the rigorous
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mathematical pendant to the physical notion of an “operator algebra” in the sense of a
“chiral algebra”, which became a widely used term after the seminal paper [BPZ] by Belavin,
Polyakov and Zamolodchikov in 1984. The first axiomatic approach to the notion of a
vertex operator algebra was given by Frenkel, Huang and Lepowsky in [FHL]. Further
excellent introductions to the topic are the books [FLM], [Kac], [FBZ] and [LL], which all
stress different aspects of the theory. Much of the material in this section is based on these
references.

Definition. A vertex operator algebra is a Z-graded C-vector space

V =
∐

m∈ZV(m) with dimV(m) <∞ for all m ∈ Z (2.6)

together with a linear map V ⊗ V → V [[x, x−1]], or equivalently

V −→ (EndV )[[x, x−1]] ,

v 7−→ Y (v, x) =
∑

m∈Z vmx−m−1 ,

where the formal power series Y (v, x) is called the vertex operator associated to the
element v ∈ V . Furthermore, there is a special element Ω ∈ V(0) called the vacuum and
another special element ω ∈ V(2) called the conformal vector.
These data are subject to the following axioms for all u, v ∈ V :

(V1) the truncation condition
umv = 0 for all m≫ 0 ; (2.7)

(V2) the vacuum property
Y (Ω, x) = 1V ; (2.8)

(V3) the creation property

Y (v, x)Ω ∈ V [[x]] and Y (v, x)Ω
∣∣∣
x=0

= v , (2.9)

which in terms of modes reads

vmΩ = 0 for all m ∈ N and v−1Ω = v ; (2.10)

(V4) the Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1)Y (v, x2) − x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
Y (Y (u, x0)v, x2) ; (2.11)
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(V5) the modes Lm, m ∈ Z, defined by

Y (ω, x) =
∑

m∈ZLmx−m−2

satisfy the commutation relations of the Virasoro algebra Vir,

[Lm, Ln] = (m− n)Ln+m +
c

12

(
m3 −m

)
δm+n,0 with c ∈ C , (2.12)

and the homogeneous subspaces V(m) are exactly the eigenspaces of the operator L0

with eigenvalues m;

(V6) the L−1-derivative property

d

dx
Y (v, x) = Y (L−1v, x) . (2.13)

The data and axioms of a vertex operator algebra can be thought of as the vacuum sector
of meromorphic conformal quantum field theory, clearly stating its assumptions and general
structure. Certainly, physicists dealt with such and similar structures long before Borcherds
introduced the notion of a vertex algebra in [Bo1] in 1983. One prime example of a (specula-
tive) physical theory which heavily relies on such conformal structures is perturbative string
theory. Here, one pictures the worldsheets of interacting strings as Riemann surfaces embed-
ded into higher dimensional spacetime, and correlation functions corresponding to physical
observables in spacetime are computed in terms of fields that “live on” the two-dimensional
worldsheet. So because of the conformal symmetry of perturbative string theory, processes
in spacetime (with a dimension larger than two) are supposed to be described by a two-
dimensional conformal field theory.
On the other hand, excited string states are represented by elements of a vector space, and
there should be a correspondence between these vectors and the fields in the geometrical
picture of interacting strings. This operator-state-correspondence is given by the above
vertex operators Y ( · , x) which associate operator-valued fields to all states in the space V .
Furthermore, these operators capture the essence of a basic three-string-interaction, where
two closed strings join into one. To first order in perturbation theory, this process is described
by a sphere with three tubes corresponding to the incoming and outgoing strings attached
to it, or equivalently (via a conformal map) three punctures, two of which are conventionally
placed at 0 and ∞ using the conformal invariance, while the third puncture is at some point
z ∈ C×. This so-called “pair-of-paints” is mapped by Segal’s functor T to a z-dependent
homomorphism V × V → V . Using a formal variable x instead of a complex variable z, this
homomorphism is the vertex operator Y ( · , x) · . If the symbol ‘Y ’ is rotated into ‘ Y’ it looks
similar to a one-dimensional projection of such a pair-of-paints string diagram. This is why
these linear maps are called vertex operators.
So in string theory, and also in statistical physics, the concept of vertex operators was
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already used before it found its way into mathematics. This situation is quite similar to
the one of vector spaces. The properties of vectors (represented by arrows) were already
intuitively used to describe physical processes such as objects moving in space long before
the modern axiomatic definition of vector spaces was formulated by Peano in 1888. And
just as most people feel a little uneasy the very first time they are confronted with this
axiomatic definition of vector spaces, the above definition of a vertex operator algebra might
seem unnatural and too abstract at first. But just like vector spaces soon become quite
familiar and useful objects to physicists, vertex operator algebras are a very natural and
useful language to discuss chiral conformal field theories. The following brief discussion
attempts to clarify some of the aspects of the definition of vertex operator algebras.
The relevance of vertex operators Y ( · , x) has already been mentioned, and the existence of
a vacuum vector Ω is also a familiar attribute. The vacuum property (2.8) can be thought
of as the correspondence that the identity operation 1V which is the operator associated to
the vacuum state reflects its simple and fundamental structure. The creation property (2.9)
in a way says that any state v can be created out of the vacuum by acting on it with the
appropriate operator. This operator is evaluated at x = 0, which corresponds to the infinite
past in radial coordinates z = ei(x0+x1), and this is what is to be expected for an asymptotic
incoming state in perturbation theory. In the theory of vertex operator algebras, formal
variables x are used most of the time, but when complex numbers z appear as arguments
in correlation functions or intertwining operators (to be defined below), radial coordinates
and quantization should be assumed throughout. The reason that vertex operator algebras
are said to describe meromorphic conformal field theories is that Y ( · , x) depends only on x
and not on a second conjugate variable.
The fact that in (2.6) the dimensions of all homogeneous subspaces V(m) are bounded is a
simple finiteness condition, which is actually sometimes dropped. Another finiteness condi-
tion which is physically more important is the truncation condition (2.7). Formally, this is a
technical assumption that ensures that certain operations like the multiplication of two ver-
tex operators can be defined. But in its physical interpretation, it also encodes a restriction
of a lower-bounded energy spectrum in the theory, as the operator L0 is directly related to
the Hamiltonian.
The operator L0 is part of a representation of the Virasoro algebra on the vertex operator
algebra V . The modes Lm, m ∈ Z, of the Virasoro field or energy momentum operator
T (x) = Y (ω, x) which corresponds to the conformal vector ω generate this representa-
tion together with the central element c1V . This representation implements the conformal
symmetry in a two-dimensional quantum theory for the following reason: The conformal
group Conf(R1,1) in two-dimensional Minkowski space (whose compactification is S1 × S1)
is isomorphic to the product Diff+(S1) × Diff+(S1) of the group of orientation preserving
diffeomorphisms of S1, as discussed e.g. in [Scho]. The Lie algebra of this group is the space
of smooth vector fields on S1, whose complexification Vect(S1) ⊗C has a dense subalgebra
called the Witt algebra W. The Witt algebra is the conformal symmetry algebra of classical
theories in two dimensions. Instead of studying its projective representations in the context
of quantum theories, one is interested in its central extensions. Since the second cohomology
group of the Witt algebra is one-dimensional, H2(W,C) ∼= C, its central extensions on irre-
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ducible representations are unique up to a complex parameter c. For a given c, this central
extension is the Virasoro algebra (2.12). The appearance of the circle S1 in this construction
is directly related to its role in the objects of the category C in Segal’s definition of conformal
field theory.
The global subgroup of Conf(R1,1) generated by L0 and L±1 is the Möbius group. The
element L−1 is the generator of spacetime translations, and this explains the L−1-derivative
property (2.13).
While the Virasoro algebra associated to the conformal vector ω is an important part of the
definition of a vertex operator algebra, the axiom of the Jacobi identity (2.11) carries by far
most of the structure as will be argued below. First, an explanation of its name is due. Let
A,B,C be any elements of a Lie algebra. Then the (ordinary) Jacobi identity states that
[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, but this can also be expressed by

(adA)(adB)C − (adB)(adA)C = ad((adA)B)C , (2.14)

where (adA)B = [A,B]. This is strikingly similar to (2.11): in both cases there is some
kind of a commutator on the left-hand side, while the right-hand side displays some kind
of associativity, but in the case of vertex operator algebras, the situation is complicated by
the appearance of δ-functions in several formal variables, which might be attributed to the
“quantum” character of the theory. So the Jacobi identity (2.11) can be thought of as a
generalization of the ordinary Jacobi identity (2.14).
Actually, it follows from the Jacobi identity (2.11) that vertex operator algebras appear as
“quantum analogs” of both Lie algebras and associative commutative algebras. Also, in the
presence of the other axioms, the Jacobi identity is equivalent to certain commutativity and
associativity properties, which in turn represent fundamental physical concepts. This will
be explained later in this section.

Commutation relations. In order to get a first idea of how the axioms of a vertex operator
algebra and in particular the Jacobi identity can be used to arrive at interesting results,
several commutation relations will be derived here. The method used in such calculations
is to apply appropriate residue operations to the Jacobi identity to extract the relevant
information.

To obtain commutation relations involving the Virasoro modes Lm, one sets u = ω while
leaving v arbitrary in (2.11) and applies Resx0Resx1x

m+1
1 with m ∈ Z to both sides of the

equation. For the left-hand side, this yields

Resx0Resx1x
m+1
1

(
x−1

0 δ

(
x1 − x2

x0

)
Y (ω, x1)Y (v, x2) − x−1

0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (ω, x1)

)

=Resx1x
m+1
1

∑

n∈Z [x−n−2
1 Ln, Y (v, x2)

]

= [Lm, Y (v, x2)] . (2.15)
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Applying the same operation to the right-hand side gives

Resx0Resx1x
m+1
1 x−1

2 δ

(
x1 − x0

x2

)
Y (Y (ω, x0)v, x2)

= Resx0Resx1x
m
1 δ

(
x2 + x0

x1

)
Y (Y (ω, x0)v, x2)

= Resx0Resx1x
m
1

∑

k∈Z(x2 + x0)
kx−k1 Y (Y (ω, x0)v, x2)

= Resx0Resx1

∑

k∈Z∑l∈N (kl)xk−l2 xl0x
m−k
1 Y

(
∑

n∈ZLnvx−n−2
0 , x2

)

= Resx0

∑

n∈Z∑l∈N (m+ 1

l

)
xl−n−2

0 xm+1−l
2 Y (Lnv, x2)

=
∑

l∈N (m+ 1

l

)
xm+1−l

2 Y (Ll−1v, x2) . (2.16)

Thus, by comparing (2.15) and (2.16) one arrives at

[Lm, Y (v, x)] =
∑

l∈N (m+ 1

l

)
xm+1−lY (Ll−1v, x) , (2.17)

which is true for any v ∈ V . Note that the sum on the right-hand side it finite because of
the truncation condition (2.7). For the special case m = 0, the equation (2.17) reads

[L0, Y (v, x)] = Y (L0v, x) + x
d

dx
Y (v, x) .

From this relation one can infer the weight of the modes of a homogeneous element v, which
is denoted by wtv. To do this, assume that L0v = hv, i.e. v ∈ V(h). Then by expanding
Y (v, x) in the above equation into modes on both sides and comparing coefficients, one
arrives at

[L0, vn] = (h− n− 1)vn which implies that vnV(m) ⊂ V(h+m−n−1) , (2.18)

and this means that the modes vn of a homogeneous vector v ∈ V(h) are of weight h− n− 1.
Another important consequence of (2.17) is the following: Suppose that v is a primary vector
of weight h, i.e. Lmv = 0 for all m > 0 and L0v = hv. Then by a reparametrization of the
summation index it follows that

[Lm, Y (v, x)] = xm
(
h(m+ 1) + x

d

dx

)
Y (v, x) , (2.19)

which is a well-known equivalent characterization of a primary vector by the corresponding
vertex operator or primary field.
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More generally, by performing residue operations similarly to those that led to (2.17), one
obtains the commutator relations for the modes of two arbitrary elements u, v ∈ V :

[um, vn] =
∑

k∈N(mk)(ukv)m+n−k . (2.20)

This equation is not only useful in explicit calculations, but it also states that the modes
associated to the elements of a vertex operator algebra V form a Lie algebra with the
commutator as its bracket. This is so because ukv is again an element in V , and by the
truncation condition (2.7) the sum in (2.20) is finite. This is one of the reasons why vertex
operator algebras can be seen as analogs of Lie algebras.
The commutation relation (2.20) is complemented by the following iterate relation for modes,
which is obtained by equating the coefficients of x−m−1

0 x−1
1 x−n−1

2 on both sides of the Jacobi
identity:

(umv)n =
∑

i∈N(−1)i
(
m

i

)
um−ivn+i −

∑

i∈N(−1)i+m
(
m

i

)
vm+n−iui . (2.21)

This is also called the Borcherds identity as it appeared as an axiom of his original definition
of vertex algebras.
Before proceeding to state further consequences of the axioms of vertex operator algebras,
now a more general setting will be presented.

Modules for vertex operator algebras. In many cases the physically interesting proper-
ties of a theory are not directly described in terms of its fundamental mathematical structure,
but rather does this structure manifest itself in terms of representations. This is certainly
also the case in conformal field theory where one explicitly distinguishes between the vacuum
sector and the remaining part of the theory, and the corresponding notion in the language
used here is that of a module for a vertex operator algebra V . Given a vector space W , it
is called a V -module if it is possible to transport a maximal amount of the vertex operator
algebra structure of V to W . The precise definition is as follows.

Definition. Let V be a vertex operator algebra. A V -module is a C-graded C-vector
space

W =
∐

h∈CW(h) with dimW(h) <∞ for all h ∈ C (2.22)

together with a linear map V ⊗W →W [[x, x−1]], or equivalently

V −→ (EndW )[[x, x−1]] ,

v 7−→ YW (v, x) =
∑

m∈Z vWm x−m−1 , (2.23)

where the formal power series YW (v, x) is called the vertex operator acting on W associated
to the element v ∈ V .
These data are subject to the following axioms for all u, v ∈ V and w ∈W :
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(M1) the truncation condition

uWmw = 0 for all m≫ 0 ; (2.24)

(M2) the vacuum property
YW (Ω, x) = 1W ; (2.25)

(M3) the Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
YW (u, x1)YW (v, x2) − x−1

0 δ

(
x2 − x1

−x0

)
YW (v, x2)YW (u, x1)

= x−1
2 δ

(
x1 − x0

x2

)
YW (Y (u, x0)v, x2) ; (2.26)

(M4) the modes LWm , m ∈ Z, defined by

YW (ω, x) =
∑

m∈ZLWm x−m−2

satisfy the commutation relations of the Virasoro algebra

[LWm , L
W
n ] = (m− n)LWn+m +

c

12
(m3 −m)δm+n,0 with c ∈ C ,

and the homogeneous subspaces W(h) are exactly the eigenspaces of the operator
LW0 with eigenvalues h;

(M5) the L−1-derivative property

d

dx
YW (v, x) = YW (L−1v, x) . (2.27)

Note that while the grading in (2.22) is now by C,1 the weights of the modes vWm are graded
by Z, so V -modules are still part of meromorphic conformal field theory. If there is no
confusion the notation is simplified such that the index ‘W ’ for the vertex operators on W
and their modes is not displayed.
Any vertex operator algebra is a module for itself. Other prime examples are the minimal
Virasoro models and the WZW theories, which are modules for the vertex operator algebras
generated by the conformal vector and the generating vectors of Kac-Moody algebras, re-
spectively; this will be made more precise in section 2.2. More generally, given any V -module
W =

∐
h∈CW(h), one can construct another module W ′ from it in the following way. As a

1I am not aware of any physically meaningful conformal field theory with weights that have a nonzero
imaginary part, and one might take the grading to be given by R or even Q. But the general theory can
also be developed with a complex grading, and there is no reason not to be general here.
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2. Aspects of Vertex Operator Algebra

vector space, W ′ is given by the restricted dual

W ′ =
∐

h∈CW ∗
(h) .

Since all the homogeneous subspaces of W ′ are finite-dimensional, there is a natural pairing
between W and W ′ which is denoted by 〈 · , · 〉. With this, one can define a linear map

V −→ (EndW ′)[[x, x−1]] ,

v 7−→ Y ′(v, x) =
∑

m∈Z v′mx−m−1 ,

via the relation
〈
Y ′(v, x)w′, w

〉
=
〈
w′, Y

(
exL1

(
−x−2

)L0 v, x−1
)
w
〉

for all v ∈ V , w ∈ W and w′ ∈ W ′, where Y o(v, x) = Y (exL1 (−x−2)
L0 v, x−1) is called the

opposite vertex operator to Y (v, x). An important result is the following theorem which is
obtained by an explicit check of the axioms of a module for a vertex operator algebra.

Theorem. (W ′, Y ′) is a V -module.

The module (W ′, Y ′) is called the contragredient module since the map ( · )′ is a contravariant
functor on the category of modules for vertex operator algebras. Also, there is a natural
isomorphism between W and its double-contragredient module, and it follows from the
definition that

〈ψ′
mw

′, w〉 = 〈w′, ψ−mw〉

for all m ∈ Z and all primary vectors ψ whose associated vertex operators are expanded into
modes as

∑
m∈Z ψmx−m−wtψ.

The natural pairing 〈 · , · 〉 is fundamental as it allows to introduce correlation functions, and
the important associativity and commutativity properties discussed below will be formulated
in terms of this pairing and the contragredient module.

Intertwining operators. Modules for vertex operator algebras alone are not enough
to describe conformal field theories. What is needed is a way for different modules to
“communicate” or “interact” with each other, but this relationship should respect the relevant
vertex operator algebra structure. The corresponding generalization of vertex operators is
the notion of intertwining operators which are also called “chiral operators”.

Definition. Let V be vertex operator algebra and let (W1, Y1), (W2, Y2) and (W3, Y3) be
V -modules. An intertwining operator of type

(
W3

W1 W2

)
is a linear map W1 ⊗W2 → W3{x},

or equivalently

W1 −→ (Hom(W2,W3)){x} ,
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w(1) 7−→ Y(w(1), x) =
∑

m∈C(w(1))
Y
mx

−m−1 .

These data are subject to the following axioms for all v ∈ V , w(1) ∈W1 and w(2) ∈ W2:

(IO1) the truncation condition

(w(1))mw(2) = 0 for all m with Re(m) ≫ 0 ;

(IO2) the Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y3(v, x1)Y(w(1), x2)w(2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y(w(1), x2)Y2(v, x1)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y1(u, x0)w(1), x2)w(2) ;

(IO3) the L−1-derivative property

d

dx
Y(w(1), x) = Y(L−1w(1), x) .

The dimension of the vector space formed of all intertwining operators of type
(

W3

W1 W2

)
is

denoted by NW3
W1W2

and is called the fusion rule for W1, W2 and W3.

The fusion rules have two important symmetry properties. Writing NWk

WiWj
≡ Nk

ij , they read

Nk
ij = Nk

ji and Nk
ij = N j′

ik′, as can be proven with the help of the so-called skew-symmetry
of vertex operators and the properties of the contragredient module. By the definition
Nijk = N i′

jk this can also be expressed as

Nijk = Nσ(i)σ(j)σ(k)

for all permutations σ of {i, j, k}.

Associativity and commutativity properties. For vertex operators acting on modules,
certain duality and locality properties follow rather straightforwardly from the definitions.
In several approaches to vertex operator algebras, these properties are actually taken to
replace the Jacobi identity. This is understandable as they are easier to state and their
physical relevance is much more obvious. Nevertheless here the Jacobi identity is taken to
be the main axiom because of the way it encodes nearly all of the important properties of
vertex operator algebra theory, and because in some more advanced applications it seems to
be indispensable.

22



2. Aspects of Vertex Operator Algebra

Theorem. Let V be a vertex operator algebra, W a V -module, and u, v ∈ V , w ∈ W ,
w′ ∈ W ′. Then the following associativity property holds between the product and the
iterate of two vertex operators:

ι−1
12 〈w

′, Y (u, x1)Y (v, x2)w〉 =
(
ι−1
20 〈w

′, Y (Y (u, x0)v, x2)w〉
) ∣∣∣

x0=x1−x2

. (2.28)

Because the proof of this statement further illustrates how to use the Jacobi identity to
extract nontrivial results, it is given here in detail.2

The identity (2.28) can be proven in three steps. Firstly, one uses the Jacobi identity together
with relations (2.2) and (2.3) to find

x−1
0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)w

= x−1
1 δ

(
x0 + x2

x1

)
Y (u, x1)Y (v, x2)w − x−1

1 δ

(
x2 + x0

x1

)
Y (Y (u, x0)v, x2)w

= x−1
1 δ

(
x0 + x2

x1

)
Y (u, x0 + x2)Y (v, x2)w − x−1

1 δ

(
x2 + x0

x1

)
Y (Y (u, x0)v, x2)w .

This is now multiplied on both sides with xN1 for some as yet unspecified N ∈ N; taking
then Resx1, one arrives at

Resx1x
N
1 x

−1
0 δ

(
x2 − x1

−x0

)
Y (v, x2)Y (u, x1)w

= (x0 + x2)
N (Y (u, x0 + x2)Y (v, x2)w − Y (Y (u, x0)v, x2)w) .

Because of the truncation property (2.24) one can now choose N such that umw = 0 for all
m ≥ N . Then the left-hand side of the above equation vanishes, with the result

(x0 + x2)
NY (u, x0 + x2)Y (v, x2)w = (x0 + x2)

NY (Y (u, x0)v, x2)w . (2.29)

This is called the weak associativity of two vertex operators.
In a second step it will be shown that

〈w′, Y (u, x0 + x2)Y (v, x2)w〉 = ι02p(x0, x2) (2.30)

and
〈w′, Y (Y (u, x0)v, x2)w〉 = ι20p(x0, x2) (2.31)

for a rational function p(x0, x2) of the form

p(x0, x2) =
q(x0, x2)

xk0(x0 + x2)lxm2

2Though it would be satisfactory to prove all statements made here, limitations of space and time advise
against it.
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where q(x0, x2) is a polynomial and k, l,m ∈ Z. To do this, use is made of the weak
associativity (2.29) in the form

(x0 + x2)
l〈w′, Y (u, x0 + x2)Y (v, x2)w〉 = 〈w′, (x0 + x2)

lY (Y (u, x0)v, x2)w〉 .

Because of the truncation property (2.24) and the binomial expansion convention, the left-
hand side of this equation involves only finitely many negative powers of x2. From this,
together with the relation (2.18), it follows that there appear only finitely many positive
powers of x0 on the left-hand side. Using an analogous argument, the right-hand side
involves only finitely many negative powers of x0 and only finitely many positive powers
of x2. Because they are equal, both are simply given by a formal Laurent polynomial
r(x0, x2) ∈ C[x0, x

−1
0 , x2, x

−1
2 ]. The rational function p(x0, x2) = r(x0, x2)(x0 + x2)

l then
satisfies the stated conditions.
The final step aims at translating the formal variable x0 to x1 −x2 in the above expressions.
This substitution can readily be made on the left-hand side of (2.30). Noting that

ι12p(x1 − x2, x2) = (ι02p(x0, x2))
∣∣∣
x0=x1−x2

,

this yields
〈w′, Y (u, x1)Y (v, x2)w〉 = ι12p(x1 − x2, x2) .

Together with (2.31) this gives the desired result (2.28).

The above theorem on associativity can be rephrased in a way that is more familiar from
physical applications of conformal field theory. Indeed, in terms of complex variables z1, z2
it states that

〈w′, Y (u, z1)Y (v, z′2)w〉 and 〈w′, Y (Y (u, z1 − z2)v, z2)w〉

are absolutely convergent to a common rational function in the domains

|z1| > |z2| > 0 and |z2| > |z1 − z2| > 0 ,

respectively. It is important to observe that such relations really only hold within the natural
pairing 〈 · , · 〉 in this context, i.e. (2.28) is not true in general if the product and iterate of
two vertex operators are equated as formal series in x1 and x2 outside the “matrix elements”.
But when calculating physical observables in concrete theories, one is really only interested
in these matrix elements or correlation functions, and these are also the objects of interest
in other axiomatic approaches such as those by Osterwalder and Schrader in [OS1], [OS2]
or Gaberdiel and Goddard in [GG]. In this context, the associativity above is also called
duality and plays a central role in the theory.

Similarly to the proof of weak associativity (2.29) one can show that weak commutativity
holds in the setting of a vertex operator algebra V : for all u, v ∈ V there exists N ∈ N such
that

(x1 − x2)
N [Y (u, x1), Y (v, x2)] = 0 . (2.32)
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Replacing the Jacobi identity by this relation yields an equivalent definition of a vertex
operator algebra. It is important to note that it is not valid to obtain [Y (u, x1), Y (v, x2)] = 0
from (2.32) by multiplying it with (x1 − x2)

−N because the tripel product (x1 − x2)
−N(x1 −

x2)
N [Y (u, x1), Y (v, x2)] fails to exist in the sense alluded to in conjunction with (2.4).

More generally, with slightly less effort than in the case of associativity, one can prove the
following result.

Theorem. Let V be a vertex operator algebra, W a V -module, and u, v ∈ V , w ∈ W ,
w′ ∈W ′. Then the following commutativity property holds for two vertex operators:

ι−1
12 〈w

′, Y (u, x1)Y (v, x2)w〉 = ι−1
21 〈w

′, Y (v, x2)Y (u, x1)w〉 . (2.33)

This property is also referred to as locality because of its relevance in the Wightman axioms
discussed in [SW] and the fact that in a one-dimensional quantum theory, any nonidentical
two points are spacelike separated.

The associativity and commutativity properties in the above two theorems are among the
reasons why vertex operator algebras cannot only be seen as quantum analogs of Lie algebras,
but also of associative commutative algebras, despite the fact that these two notions cannot
coincide in a nontrivial way classically.

Meromorphic operator product expansion. Physically, the associativity property of
vertex operators describes the short distance behaviour of two quantum fields as it only
holds for sufficiently close complex variables z1 and z2. It turns out that the form (2.28) of
the associativity is also the one that appears in more general and deeper parts of the theory
to be described below.
On the other hand, this is not exactly the form in which it is usually used in two-dimensional
physics, where it appears as the meromorphic operator product expansion. The notion of op-
erator product expansion was originally introduced by Wilson in [Wi] and Kadanoff in [Kad]
and is very powerful since products of fields occur in particular in correlation functions,
which eventually allow to compute observables which can then be compared with experi-
mental data. One important advantage of operator product expansion, viewed as a tool that
expands the product of two fields into a series in which each summand involves only one
single field, is that in this way n-point functions can be expressed in terms of (n− 1)-point
functions. This does not only tremendously facilitate concrete computations, but it also
structures the theory conceptually and makes it completely solvable in many cases. This is
why a reformulation of associativity will be sketched here.

To start with, the associativity property can also be expressed by stating that for all u, v ∈ V
and w ∈ W the three expressions

Y (u, x1)Y (v, x2)w ∈W ((x1))((x2)) ,

Y (v, x2)Y (u, x1)w ∈W ((x2))((x1)) ,

Y (Y (u, x1 − x2)v, x2)w ∈W ((x2))((x1 − x2))
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are the expansions of one and the same element of

W [[x1, x2]][x
−1
1 , x−1

2 , (x1 − x2)
−1]

in their respective domains, see [FBZ]. Note that here Y (Y (u, x1 − x2)v, x2)w is not con-
sidered as an element of W [[x1, x

−1
1 , x2, x

−1
2 ]] (as which it might not even exist) but as an

element of W ((x2))((x1 − x2)). Having these subtleties in mind, one may write the meromor-
phic operator product expansion as

Y (u, x1)Y (v, x2)w =
∑

m∈Z(x1 − x2)
−m−1Y (umv, x2)w . (2.34)

In order to proceed the following results obtained by Kac in [Kac] are very helpful. A similar
treatment by Matsuo and Nagatomo can be found in [MN1], [MN2].

Proposition. The following two assertions are equivalent to the locality

(x1 − x2)
N [f(x1), g(x2)] = 0 for N ≫ 0

of two arbitrary formal power series f(x1) and g(x2).

(i) There exist N formal power series hi(x2), i ∈ {0, . . . , N − 1}, such that

[f(x1), g(x2)] =
N−1∑

i=0

1

i!
hi(x2)

(
d

dx2

)i
δ̃(x1 − x2) ,

where δ̃(x1 − x2) = x−1
2 δ(x1/x2) has the propery t(x1)δ̃(x1 − x2) = t(x2)δ̃(x1 − x2)

for all formal power series t(x1).

(ii) There exist N formal power series hi(x2), i ∈ {0, . . . , N − 1}, such that

f(x1)g(x2) =
N−1∑

i=0

(
ι12(x1 − x2)

−i−1
)
hi(x2)+ : f(x1)g(x2) : ,

g(x2)f(x1) =

N−1∑

i=0

(
ι21(x1 − x2)

−i−1
)
hi(x2)+ : f(x1)g(x2) : ,

where : · : denotes the normal-ordered product defined by

: f(x1)g(x2) : = f(x1)+g(x2) + g(x2)f(x1)− (2.35)

with f(x1)± denoting the regular and singular part of f(x1) in x1, respectively.

Using this proposition, it follows from the weak commutativity (2.32) that the product of
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two vertex operators can also be written as

Y (u, x1)Y (v, x2) =

N−1∑

i=0

(x1 − x2)
−n−1yi(x2)+ : Y (u, x1)Y (v, x2) :

where yi(x2), i ∈ {0, . . . , N − 1}, are some formal power series. But this means that
Y (u, x1)Y (v, x2)w ∈W ((x1))((x2)) is an expansion of

(
N−1∑

i=0

(x1 − x2)
−n−1yi(x2)+ : Y (u, x1)Y (v, x2) :

)
w ∈W [[x1, x2]][x

−1
1 , x−1

2 , (x1 − x2)
−1] .

Comparing this with the corresponding expansion in (2.34) allows to identify the formal
power series yi(x2) with Y (uiv, x2). Using the above proposition again then yields

Y (u, x1)Y (v, x2) =

N−1∑

i=0

(
ι12(x1 − x2)

−i−1
)
Y (uiv, x2)+ : Y (u, x1)Y (v, x2) : , (2.36a)

Y (v, x2)Y (u, x1) =
N−1∑

i=0

(
ι21(x1 − x2)

−i−1
)
Y (uiv, x2)+ : Y (u, x1)Y (v, x2) : . (2.36b)

This is another form of the meromorphic operator product expansion, stating clearly that
it actually involves two crucial pieces of information. In the physics literature, this is of-
ten shortened by suppressing the second part, not specifying the domain of expansion and
discarding the normal-ordered terms which are regular in x1 − x2:

Y (u, x1)Y (v, x2) ∼
N−1∑

i=0

(x1 − x2)
−i−1Y (uiv, x2) .

It has already been stressed that the interaction between different modules described by
intertwining operators is particularly interesting, so a natural question to ask is whether
there is also an associativity property for intertwining operators. In contrast to the case of
vertex operators acting on modules discussed above, one should expect the corresponding
result to be a nonmeromorphic operator product expansion, where also noninteger powers of
the variables may appear. Indeed, such a result can be obtained, but it involves a lot more
effort than the meromorphic case. Several aspects of this together with the precise statement
of the nonmeromorphic operator product expansion will be reviewed in section 2.3.

2.2 Finiteness properties and W-algebras

Any nontrivial vertex operator algebra is a very large structure, and even though the Jacobi
identity (or equivalently duality and locality) imposes certain restrictions, it is not always
easy to organize a vertex operator algebra into concise substructures. As in conformal
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field theory all the possible modules also have to be taken into account, one might feel
overstrained. But fortunately, in many interesting cases vertex operator algebras display
various kinds of finiteness properties which make it more manageable to deal with the whole
structure. Prominent among such properties are the notions of rationality, regularity, C2-
cofiniteness and the Zhu algebra, which also have an interesting interdependence.

Rationality and regularity. Let V be a vertex operator algebra. Instead of asking under
which circumstances the set of V -modules is particularly “small”, one can also be interested
in more general classes of such modules, and many relevant results also hold in these more
general cases. A weak V -module is a structure that necessarily satisfies all the axioms of a
V -module, except those related to the grading of the vector space. This means that (2.22)
might not hold, and there is no additional condition on the operator L0. Certainly any
module is also a weak module.
A weak V -module W is called admissible if it admits an N-grading W =

∐
n∈NWn such that

vmWn ⊂ Wwtv+n−m−1 for all v ∈ V . This is parallel to the situation of an ordinary module
besides the fact that the grading must not necessarily coincide with the L0-eigenvalues.
Admissible modules are also called N-gradable.

Now it is possible to define an important finiteness property. A vertex operator algebra
V is called weakly rational if every admissible V -module is a direct sum of irreducible V -
modules. Actually, there are a number of different notions of rationality in the literature,
and the one just introduced is the one defined by Dong, Li and Mason in [DLM]. They also
showed that a rational vertex operator algebra has only finitely many isomorphism classes
of irreducible admissible modules. This is obviously a strong finiteness condition, and this
is why it appears in the definition of Zhu given in [Z].
Additional requirements for rationality are often imposed in the physics literature, though
it is not always precisely stated what notion of rationality is actually used. For example
because of the importance of conformal field theory on a torus for the general construc-
tion, the convergence of (generalized) characters and their closure with respect to modular
transformations is sometimes taken to be part of the definition of rational vertex operator
algebras. Such properties are not relevant for the part of the theory that is considered here,
and therefore they are not discussed any further here. Instead, another kind of finiteness is
assumed for rationality, namely that all fusion rules Nk

ij (i.e. the dimensions of the spaces
of intertwining operators) are finite. This means that here the definition of Huang and
Lepowsky from [HL3] is adopted: A vertex operator algebra V is defined to be rational if

(i) there exist only finitely many irreducible V -modules up to equivalence;

(ii) every V -module is completely reducible;

(iii) the fusion rules for all triplets of V -modules are finite.

It has been stated above that the first condition is redundant, but it is still taken to be part
of the definition in order to stress its importance. Also, for certain natural classes of vertex
operator algebras, the third condition is automatically satisfied as will be discussed below.
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An apparently somewhat stronger requirement than rationality is regularity. A vertex opera-
tor algebra V is called regular if any weak V -module is a direct sum of irreducible V -modules.

The vertex operator algebras associated to the minimal Virasoro models, WZW models
and the moonshine module are among the best-studied vertex operator algebras and have
received much attention regarding possible physical applications. This is partly so because
of the fact that they are all rational and regular. In order to get an idea of how the finiteness
property of rationality can manifest itself the first two cases are briefly reviewed here.
The Virasoro algebra (2.12) has two subalgebras L± =

∐
m∈±Z+

CLm. Consider the trivial
one-dimensional L+-module CΩc,h on which the central charge element and the operator
L0 act by multiplication with the complex numbers c and h, respectively. Then the Verma
module M(c, h) is defined to be the free L−-module generated by Ωc,h. It has a unique
maximal proper submodule denoted by J(c, h), so the quotient L(c, h) = M(c, h)/J(c, h) is
irreducible. One can show that L(c, 0) has the structure of a vertex operator algebra whose
vacuum and conformal vector are Ωc,0 and L−2Ωc,0, respectively. Using the Kac determinant
formula and results of Feigin and Fuchs, Wang proved in [Wa] in which cases this vertex
operator algebra is rational:

Theorem. The vertex operator algebra L(c, 0) is rational if and only if c is either zero or
equal to

cp,q = 1 − 6
(p− q)2

pq
with p, q ∈ Z≥2 relatively prime. (2.37)

Furthermore, a (finite) set of representatives of equivalence classes of irreducible modules
for L(cp,q, 0) is

{L(cp,q, hr,s(p, q))}0<r<p,0<s<q;r,s∈N with hr,s(p, q) =
(sp− rq)2 − (p− q)2

4pq
.

For the case of WZW models, let g be a finite-dimensional simple Lie algebra whose Killing
form is denoted by ( · , · ) and normalized such that (θ, θ) = 2 for the highest root θ, and let
h ⊂ g be a Cartan subalgebra. The associated untwisted affine Lie algebra or Kac-Moody
algebra ĝ = g ⊗C[t, t−1] ⊕CK has the bracket

[a⊗ tm, b⊗ tn] = [a, b] ⊗ tm+n + (a, b)mδm+n,0K .

ĝ has two subalgebras ĝ± = g⊗t±1C[t±1]. If for λ ∈ h∗, L(λ) denotes the irreducible highest-
weight g-module with highest weight λ, then L(λ) can be taken to be a trivial ĝ+-module on

which K acts as a complex number k. From this one obtains a ĝ-module M̂(k, λ) by letting

ĝ− act freely on L(λ). Let Ĵ(k, λ) be the maximal proper graded submodule of M̂(k, λ) and

L̂(k, λ) = M̂(k, λ)/Ĵ(k, λ). Frenkel and Zhu showed in [FZ] that for k 6= h∨, L̂(k, 0) has the
structure of a vertex operator algebra whose vacuum and conformal vector are given by 1
and

ω =
1

2(k + h∨)

dimg∑

i=1

(ai−1)
21 ,
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respectively, where h∨ is the dual Coxeter number and {ai}i∈{1,...,dimg} is an orthonormal
basis for g. This realization of the Virasoro algebra in terms of affine Lie algebras is also
called the Sugawara construction.

Theorem. If k 6= h∨ and k ∈ N, the vertex operator algebra L̂(k, 0) is rational, and a

(finite) set of representatives of equivalence classes of irreducible modules for L̂(k, 0) is

{
L̂(k, λ)

∣∣ λ ∈ h∗, dimL(λ) <∞, (λ, θ) ≤ k
}
.

Cn-cofiniteness. Rationality and regularity are related in several ways to another form of
“finiteness”, C2-cofiniteness, which will also play an important role in the next chapter.

Let V be a vertex operator algebra and W a V -module. If the subspaces

C1(W ) = span

{
u−1w

∣∣∣ u ∈
∐

m>0

V(m), w ∈W

}
,

Cn(W ) = span
{
u−nw

∣∣∣ u ∈ V, w ∈W
}

for n ≥ 2,

are of finite codimension in W , i.e. dim(W/Cn(W )) <∞ for n ∈ {1, . . . , n}, then W is called
Cn-cofinite.
Because of the L−1-derivative property written in the form

Y
(
Lm−1v, x

)
=

dm

dxm
Y (v, x) ,

it directly follows by comparing coefficients that

v−m−1 =
1

m
(L−1v)−m =

1

m!

(
Lm−1v

)
−1

for all m ∈ Z+ , (2.38)

and hence every Cm-cofinite module W is also Cn-cofinite for all m ≥ n ≥ 1. For n = 1, this
can also be expressed by writing

C1(W ) = span

{
u−mw

∣∣∣ u ∈
∐

n>0

V(n), w ∈W, m ∈ Z+

}
. (2.39)

Another relevant property of the subspaces Cn(W ) is that they are invariant under the action
of vm for all v ∈ V and m ≤ 0. To prove this, the commutation relation (2.20) for modes is
written in the alternate form

vmu−nw = u−nvmw +
∑

i∈N (mi ) (viu)m−n−iw . (2.40)
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For m ≤ 0 the right-hand side of this equation obviously is an element of Cn(W ) because of
the relation (2.38), and so this must also be true for the left-hand side. The result is

vmCn(W ) ⊂ Cn(W ) for all v ∈ V, m ∈ Z≤0, n ∈ Z+ . (2.41)

The condition of C2-cofiniteness was introduced by Zhu in [Z] and subsequently used to prove
the convergence and modular invariance of characters for certain vertex operator algebras,
and it is also related to his famous associative algebra A(V ) which is introduced below.
But C2-cofiniteness is also important because of its close relation to rationality and regularity.
Indeed, it was proven by Li in [L] that any regular vertex operator algebra is also C2-
cofinite, and Abe, Buhl and Dong were able to show in [ABD] that regularity is equivalent
to rationality and C2-cofiniteness together for vertex operator algebras V =

∐
m∈N V(m) with

V(0) = CΩ (such vertex operator algebras are also said to be of CFT type). Furthermore,
it was proven by theses authors and Gaberdiel and Neitzke in [GN] that for a C2-cofinite
vertex operator algebra, all fusion rules for irreducible weak modules are finite, and as a
consequence the third condition for rationality on page 28 is also redundant.
What makes this relationship particularly interesting is the fact that while rationality ex-
plicitly concerns the modules for a vertex operator algebra, the C2-cofiniteness condition
can be studied solely in terms of the vertex operator algebra itself, without reference to any
modules.

Zhu’s algebra A(V ). In his analysis of correlation functions in conformal field theories
defined on genus-one Riemann surfaces, Zhu also introduced a certain associative algebra
which he used to construct an explicit basis for the so-called conformal block on the torus
under suitable conditions. In many cases of interest, this algebra is particularly useful to
classify all irreducible modules for a vertex operator algebra.

Let V be a vertex operator algebra. Then the vector space O(V ) ⊂ V is defined to be the
linear span of all elements of the form

Resx
(
x−2(x+ 1)wtuY (u, x)v

)

where u, v ∈ V with u a homogeneous element. The space O(V ) can be shown to be a
two-sided ideal for the product operation ∗ defined by

u ∗ v = Resx
(
x−1(x+ 1)wtuY (u, x)v

)

and linearity, where u, v ∈ V as above. Thus, ∗ is defined on the Zhu algebra A(V ) =
V/O(V ), and it turns out that (A(V ), ∗) is an associative algebra whose unit element is the
equivalence class [Ω] of the vacuum vector.
It was pointed out by Brungs and Nahm in [BN] that the Zhu algebra is naturally isomorphic
to the zero mode algebra familiar to physicists working on conformal field theory.

In the context of the Zhu algebra, the grading of any V -module W is written such that
W =

∐
m∈NW(m) with W(0) 6= 0. This is always possible because of the truncation condition
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(2.24). The following result due to Zhu already illustrates the relevance of the algebra A(V )
for the representation theory of vertex operator algebras.

Theorem. Let V be a vertex operator algebra and W a V -module. Then W(0) forms a
representation space for the algebra A(V ) given by the linear extension of the map

A(V ) −→ EndW(0) ,

[v] 7−→ vwtv−1 ,

where v ∈ V is a homogeneous element. Conversely, for every representation A(V ) →
EndR of the algebra A(V ), there exists a V -module W such that W(0) = R. Furthermore,
the set of equivalence classes of irreducible V -modules is in one-to-one correspondence to
the set of equivalence classes of irreducible representations of A(V ).

Certainly this theorem is particularly interesting if A(V ) is finite-dimensional because in
this case it follows that there are only finitely many inequivalent irreducible V -modules.
Indeed, it is true in general that irreducible representations of finite-dimensional algebras
are finite-dimensional themselves, and there are only finitely many equivalence classes of
such irreducible representations. This is why the following result by Dong, Li and Mason
obtained in [DLM], which places an upper bound on the dimension of A(V ) in terms of
C2-cofiniteness, is of considerable practical use.

Proposition. Let V be a C2-cofinite vertex operator algebra. Then the algebra A(V )
is finite-dimensional and dimA(V ) ≤ dimṼ for all subspaces Ṽ ⊂ V such that V =
C2(V ) + Ṽ .

W-algebras. A W-algebra of type W(2, h1, . . . , hm) is a vertex operator algebra which has
a minimal generating set consisting of the vacuum Ω, the conformal vector ω of weight 2 and
m additional primary vectors W i of weight hi, i ∈ {1, . . . , m}. The vertex operators or fields
associated to these vectors are simple in the sense that they are not normal-ordered products
of other fields. Sometimes the term W-algebra is also used to refer to the algebra of modes
and their normal-ordered products instead of the vertex operator algebra. In this situation
the term maximally extended symmetry algebra is synonymous for W-algebra because it is
the maximal structure of a given type that contains the Virasoro algebra and satisfies the
(ordinary) Jacobi identity.

W-algebras by themselves do not necessarily satisfy finiteness conditions as those discussed
above, but still much of their structure can be inferred from the properties of the finitely many
vectors W i. This becomes particularly apparent using Nahm’s results on the quasi-primary
normal-ordered product. For a more extensive introduction to W-algebras, see e.g. [Nah2]
or [Fl1].
A formal power series is called quasi-primary if the identity (2.19) holds for m ∈ {±1, 0}.
The usual normal-ordered product : φi(x)φj(y) := φi(x)+φj(y) + φj(y)φi(x)− of two quasi-
primary fields φi(x) and φj(y) is not necessarily quasi-primary for x = y. One of Nahm’s
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results is that it is always possible to add certain correction terms, yielding a quasi-primary
normal-ordered product denoted by N ( · , · ):

N (φj, ∂
nφi) =

n∑

r=0

(−1)r
(
n

r

)(
2(hi + hj + n− 1)

r

)−1(
2hi + n− 1

r

)

· ∂rN (hi+n+r)
(
φj, ∂

n−rφi
)

− (−1)n
∑

{k |h(ijk)≥1}

Ck
ij

(
h(ijk) + n− 1

n

)

·

(
2(hi + hj + n− 1)

n

)−1(
2hi + n− 1

h(ijk) + n

)(
σ(ijk) − 1

h(ijk) − 1

)−1

·
∂h(ijk)+nφk

(σ(ijk) + n)(h(ijk) − 1)
. (2.42)

Here, {φk}k is the family of quasi-primary fields of the corresponding W-algebra, hk are
their respective weights, h(ijk) := hi +hj−hk and σ(ijk) := hi +hj +hk−1. The structure
constants Ck

ij are defined such that
∑

lC
l
ijdlk = Cijk with

Cijk =
〈
Ω′, (φk)+hk(φi)−hk+hj(φj)−hjΩ

〉
and dij =

〈
Ω′, (φi)+hi(φj)−hjΩ

〉
,

and the N ( · )-product is defined by the relations

N (m)(φ, ψ)(x) =
∑

n∈Z x−n−hφ−hψN (m)(φ, ψ)n , (2.43a)

N (m)(φ, ψ)n =
∑

k<m

φn+kψ−k +
∑

k≥m

ψ−kφn+k (2.43b)

for any m ∈ Z. The quasi-primary normal-ordered product of more than two fields is defined
recursively, for example N (φi, φj, φk) = N (φi,N (φj, φk)). If the product of a field with itself
is considered the notation is simplified, for example N (ψ, ψ) = N (ψ2).
Furthermore, in this notation the commutators of modes are given by

[
(φi)m, (φj)n

]
= dijδm+n,0

(
hi +m− 1

2hi − 1

)
+

∑

{k | h(ijk)≥1}

Ck
ij phi,hj ,hk(m,n)(φk)m+n (2.44)

in terms of the universal polynomials

phi,hj,hk(m,n) =
∑

r,s∈N δr+s,h(ijk)−1a
r
ijk

(
m+ n− hk

r

)(
hi − n− 1

s

)

with

arijk =

(
2hk + r − 1

r

)−1(
hi + hk − hj + r − 1

r

)
.
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Note that in the definition of the structure constants Ck
ij and in the relation (2.44), the

convention for the indices of modes associated to the fields φi is not the one introduced before,
i.e. any vertex operator is expanded into a series

∑
n∈Z vnx−n−1 regardless of the weight of

the associated vector v. This is the convention that is used in most of the mathematics
literature. On the other hand, in the physics literature it is common to expand a field that
is associated to a vector u of weight h into a series

∑
n∈Z uphys

n x−n−h. The latter convention is
used here only in the context of W-algebras. When comparing results expressed in differing
notations, the relation un = uphys

n−h+1 is used.

In conformal field theory in general and in the study of W-algebras in particular, the formal
power series known as the character

χV (q) = trV q
L0−c/24 = q−c/24

∑

n∈NdimV(n) q
n

of the vertex operator algebra V = W(2, h1, . . . , hm) is of fundamental importance. In
the next chapter, this character will be compared with the character of the vacuum Verma
module of the W-algebra. This is the induced module

U(W(2, h1, . . . , hm)) ⊗U(W(2,h1,...,hm)(+)) Cc ,

where U( · ) denotes the universal enveloping algebra of the W-algebra, the space
W(2, h1, . . . , hm)(+) is defined by

W(2, h1, . . . , hm)(+) =
∐

n≤1

CL−n ⊕
m∐

i=1

∐

ni≤hi−1

CW i
−ni

,

and Cc is the trivial W(2, h1, . . . , hm)(+)-module of central charge c. In other words, the
vacuum Verma module is generated freely by the action of the modes Ln and W i

n on a
nonzero element Ω in Cc, subject to the restrictions

LnΩ = 0 for all n ≥ −1 and W i
nΩ = 0 for all n ≥ −hi + 1 . (2.45)

Because of these restrictions, the dimensions of the homogeneous subspaces V(n) are smaller
than p(n), where p(n) is the number of partitions of n into sums of positive integers, generated
by the function

(ϕ(q))−1 =
∏

n≥1

(1 − qn)−1 =
∑

n∈N p(n)qn .

Taking the restrictions (2.45) into account, the vacuum Verma module character is given by

χVerma

V (q) = q−c/24(ϕ2(q))
−1

m∏

i=1

(ϕhi(q))
−1 , (2.46)

where the generating functions ϕk, k ≥ 2, have been introduced as truncated ϕ-functions:

ϕk(q) =
∏

n≥k

(1 − qn) = ϕ(q)

k−1∏

l=1

(
1 − ql

)−1
. (2.47)
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2.3 P (z)-tensor product theory

This section takes up the question of an associativity property for intertwining operators,
i.e. of the nonmeromorphic operator product expansion. The first problem is that there
does not seem to be a natural way to make sense of an identity like (2.28) in the case of
intertwining operators. The reason is that in order for the product of two such operators to
exist, they must be of type

(
W4

W1 M

)
and

(
M

W2 W3

)
, respectively, for some modules M and Wi,

i ∈ {1, 2, 3, 4}. But in general, two operators of such types cannot be iterated.
To find appropriate associated intertwining operators that can be iterated, Huang and Lep-
owsky developed a theory of certain tensor products of modules for vertex operator algebras
in [HL3], [HL4], [HL5] and [Hua3] which was generalized by Huang, Lepowsky and Zhang in
[HLZ]. This theory is already very interesting for its own sake and can easily be motivated:
For a vertex operator algebra V and n V -modules W1, . . . ,Wn, one can naturally endow
V ⊗n with a vertex operator algebra structure which has a module W1 ⊗ . . .⊗Wn. But this
vector space is not a module for V itself. Finding the correct tensor product operation that
leaves the space of V -modules invariant also eventually solves the problem of an associative
nonmeromorphic operator product expansion.

Generalized modules and logarithmic intertwining operators. The theory just ad-
vertised can actually be developed in a more general setting than that presented in sec-
tion 2.1. This is of special interest because this generalization aims at formulating logarithmic
conformal field theory3 in terms of vertex operator algebras at the level of modules.

Let V be a vertex operator algebra. A generalized V -module W is a structure that satisfies
all the axioms of a V -module except that its grading is not given by L0-eigenspaces but by
generalized L0-eigenspaces, so that W can be written as

W =
∐

h∈CW[h] with W[h] = {w ∈W | (L0 − h)mw = 0 for m≫ 0} .

From now on, all generalized modules will be assumed to be objects of a full subcategory
C (of the category whose objects are R-graded generalized modules for any fixed vertex
operator algebra V ) that is closed under the contragredient functor ( · )′.
Next, following [Mil] and [HLZ], a new formal variable denoted by log x is introduced which
is not exactly to be thought of as the logarithm of the formal variable x, because this
would lead to inconsistencies regarding the existence of certain formal power series. Despite
the suggestive notation, log x is a formal variable independent of the formal variable x
in most respects. But still, this variable is defined to behave in the expected way under
differentiation: On a formal power series f(x, log x) =

∑
m,n∈C fm,n(log x)mxn ∈W{x, log x},

3Logarithmic conformal field theory owes its name to the existence of logarithmic divergencies in correlation
functions of such theories, but certain indecomposability properties seem to be even more fundamental
features – certainly from an algebraic point of view, which also suggests (chiral) logarithmic conformal
field theory to be some sort of a generalization of ordinary (chiral) conformal field theory. Physically, it
seems to be particularly interesting for disordered systems, but there is also a number of other physical
models with “logarithmic” features, see e.g. [Fl3], [Gab2] and references therein.
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the operator d
dx

acts as

d

dx

(
∑

m,n∈C fm,n(log x)mxn

)
=
∑

m,n∈C ((n+ 1)fm,n+1 + (m+ 1)fm+1,n+1) (log x)mxn . (2.48)

To have a convenient notation, the dependence of a formal power series f(x, log x) on log x
is suppressed. In order to do this consistently, the following notational conventions are
imposed:

f(x+ y) =
∑

m,n∈C fm,n(x+ y)n



log x+
∑

i∈Z+

(−1)i−1

i

(y
x

)i



m

,

f(xey) =
∑

m,n∈C fm,nxneny(log x+ y)m ,

f(xy) =
∑

m,n∈C fm,nxnyn(log x+ log y)m .

In the first line a logarithm as a series in the formal variables x and y was expanded,
and the binomial expansion convention applies as usual. The notation is chosen such that
the expected properties with respect to differentiation hold; for example, by an involved
computation it can be shown that ey

d
dxf(x) = f(x+ y) and exy

d
dxf(x) = f(xey).

Definition. Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized V -modules. A logarith-
mic intertwining operator of type

(
W3

W1 W2

)
is a linear map W1 ⊗W2 → W3[log x]{x}, or

equivalently

W1 −→ (Hom(W2,W3))[log x]{x} ,

w(1) 7−→ Y(w(1), x) =
∑

m∈C∑a∈N(w(1))
Y
m,ax

−m−1(log x)a ,

with only finitely many nontrivial powers of log x. These data are subject to the following
axioms for all v ∈ V , w(1) ∈W1 and w(2) ∈W2:

(̃IO1) the truncation condition

(w(1))m,aw(2) = 0 for all m with Im(m) ≫ 0, independently of a;

(̃IO2) the Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y3(v, x1)Y(w(1), x2)w(2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y(w(1), x2)Y2(v, x1)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
Y(Y1(u, x0)w(1), x2)w(2) ;
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(̃IO3) the L−1-derivative property

d

dx
Y(w(1), x) = Y(L−1w(1), x) .

The vector space formed of all logarithmic intertwining operators of type
(

W3

W1 W2

)
is de-

noted by LW3
W1W2

.

Definition of the P (z)-tensor product. The abstract definition of a kind of tensor
product that leaves the space of modules for a vertex operator algebra invariant is motivated
by the exact relation of vertex operator algebra theory to the geometrical formulation of
conformal field theory in terms of (the sewing of) Riemann surfaces with punctures which
describe string interactions. More precisely, the canonical element P (z) of the moduli space
of spheres with punctures which has three ordered punctures at ∞, z ∈ C× and 0 is the
geometric object that corresponds to intertwining operators.

Definition. Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized V -modules. A P (z)-
intertwining map of type

(
W3

W1 W2

)
is a linear map

F : W1 ⊗W2 −→W3 ≡
∏

h∈C(W3)[h] = (W ′
3)

∗

subject to the following axioms for all n ∈ C, v ∈ V , w(1) ∈ W1 and w(2) ∈W2:

(IM1) the truncation condition

πn−mF (w(1) ⊗ w(2)) = 0 for m≫ 0 ,

where πh : W3 → (W3)[h] denotes the natural projection;

(IM2) the Jacobi identity

x−1
0 δ

(
x1 − z

x0

)
Y3(v, x1)F (w(1) ⊗ w(2)) − x−1

0 δ

(
z − x1

−x0

)
F (w(1) ⊗ Y2(v, x1)w(2))

= z−1δ

(
x1 − x0

x2

)
F (Y1(u, x0)w(1) ⊗ w(2)) .

The vector space formed of all intertwining maps of type
(

W3

W1 W2

)
is denoted by

M[P (z)]W3
W1W2

or simply MW3
W1W2

if the dependence on z is clear from the context. Further-
more, a P (z)-product of W1 and W2 is a moduleW3 together with an intertwining map F of
type

(
W3

W1 W2

)
which is denoted by (W3, Y3;F ), and a morphism between two P (z)-products

(W3, Y3;F ) and (W4, Y4;G) is a module map η : W3 → W4, i.e. η(vW3
n w(3)) = vW4

n η(w(3)),
with G = η ◦ F .
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There is an isomorphic correspondence between logarithmic intertwining operators and P (z)-
intertwining maps: To any Y ∈ LW3

W1W2
one can associate an element FY ∈ MW3

W1W2
by setting

FY(w(1) ⊗ w(2)) = Y(w(1), z)w(2) for all w(1) ∈ W1 and w(2) ∈ W2, and which in general is
an element of the algebraic completion W3 of W3. Conversely, for an intertwining map
F ∈ MW3

W1W2
one obtains a logarithmic intertwining operator YF of the same type by

YF (w(1), x)w(2) = yL0xL0F
(
y−L0x−L0w(1) ⊗ y−L0x−L0w(2)

) ∣∣∣
y=z−1

.

Definition. Let W1 and W2 be generalized V -modules. A P (z)-tensor product of W1

and W2 is a P (z)-product (W0, Y0;F0) of W1 and W2 such that for all P (z)-products
(W,Y ;F ) of W1 and W2 there is a unique morphism from (W0, Y0;F0) to (W,Y ;F ). If
this P (z)-tensor product exists then it is denoted by

(
W1 ⊠P (z) W2, YP (z); ⊠P (z)

)
,

and (W1 ⊠P (z) W2, YP (z)) is called the P (z)-tensor product module of W1 and W2.

Note that while ⊠P (z) is an intertwining map, W1 ⊠P (z) W2 does not denote the image of
this map because by definition the former is a generalized module. The image of W1 ⊗W2

under ⊠P (z) is in the algebraic completion W1 ⊠P (z) W2.

Constructing ⊠P(z). It does not follow obviously from the above definition of the P (z)-
tensor product that it actually exists. The strategy to construct it uses the notion of the
contragredient module.

The first step is to define an operator Y ′
P (z)( · , x) whose restriction to a suitable subspace

of (W1 ⊗ W2)
∗ will be the contragredient vertex operator. Define the linear map τP (z) :

V ⊗C[t, t−1, (z−1 − t)−1] → End(W1 ⊗W2)
∗ implicitly via the relation

τP (z)

(
x−1

0 δ

(
x−1

1 − z

x0

)
Yt(v, x1)κ

)

= z−1δ

(
x−1

1 − x0

z

)
κ
(
Y1

(
ex1L1

(
−x−2

1

)L0 v, x0

)
w(1) ⊗ w(2)

)

+ x−1
0 δ

(
z − x−1

1

x0

)
κ
(
w(1) ⊗ Y o

2 (v, x1)w(2)

)
,

for all v ∈ V , w(1) ∈W1, w(2) ∈W2, κ ∈ (W1⊗W2)
∗, where Yt(v, x) ∈ (V ⊗C[t, t−1])[[x, x−1]] is

the formal power series
∑

m∈Z(v⊗tm)x−m−1. Then Y ′
P (z)(v, x) is defined to be τP (z)(Yt(v, x)),

and it follows by taking a residue that Y ′
P (z)( · , x) acts as

(
Y ′
P (z)(v, x1)κ

)
(w(1) ⊗ w(2))

= κ
(
w(1) ⊗ Y o

2 (v, x1)w(2)

)

+ Resx0z
−1δ

(
x−1

1 − x0

z

)
κ
(
Y1

(
ex1L1

(
−x−2

1

)L0
v, x0

)
w(1) ⊗ w(2)

)
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and is a linear map Y ′
P (z)( · , x) : V → End(W1 ⊗W2)

∗[[x, x−1]]. Since the full and not the

restricted dual of the tensor product appears here, Y ′
P (z)( · , x) in general is not a vertex

operator and it will be necessary to restrict it to a suitable subspace of (W1 ⊗W2)
∗.

To proceed, let (W,Y ;F ) be any P (z)-product of W1 and W2 and define the linear map
F ′ : W ′ → (W1 ⊗W2)

∗ by 〈F ′(w′), w(1) ⊗ w(2)〉 = 〈w′, F (w(1) ⊗ w(2))〉 with w′ ∈ W ′. Then
the following intermediate result holds.

Proposition. If

W1 �P (z) W2 =
⋃

P (z)-products (W,Y ;F )

F ′(W ′) ⊂ (W1 ⊗W2)
∗ (2.49)

together with Y ′
P (z) is an object in C, then by denoting (W1 ⊠P (z) W2, YP (z)) its contra-

gredient module, the P (z)-tensor product exists and is given by (W1 ⊠P (z) W2, YP (z); i
′)

where i : W1 �P (z) W2 →֒ (W1 ⊗W2)
∗ is the natural inclusion.

From the definition (2.49) it follows that every κ ∈W1 �P (z) W2 ⊂ (W1 ⊗W2)
∗ satisfies the

following nontrivial conditions.

The P (z)-compatibility condition:

(i) The lower-truncation condition: Only finitely many negative powers of x appear in the
formal power series Y ′

P (z)(v, x)κ for all v ∈ V .

(ii) τP (z)

(
x−1

0 δ
(
x−1
1 −z

x0

)
Yt(v, x1)

)
κ = x−1

0 δ
(
x−1
1 −z

x0

)
Y ′
P (z)(v, x1)κ holds for all v ∈ V .

The P (z)-local grading restriction condition:

(i) The grading condition: κ is a finite sum of generalized eigenvectors in (W1 ⊗W2)
∗ for

the operator (L′
P (z))0.

(ii) The minimal subspace Wκ of (W1⊗W2)
∗ which satisfies κ ∈Wκ and τP (z)(v⊗t

m)Wκ ⊂
Wκ for all v ∈ V and m ∈ Z (which states stability with respect to the modes of
Y ′
P (z)(v, x)) has finite-dimensional homogeneous subspaces with respect to the (L′

P (z))0-

grading, and these subspaces vanish for generalized (L′
P (z))0-eigenvalues with suffi-

ciently small real parts.

These conditions give rise to an equivalent characterization of the P (z)-tensor product:

Proposition. If for any element κ ∈ (W1 ⊗W2)
∗ which satisfies the P (z)-compatibility

condition and the P (z)-local grading restriction condition the generalized module gener-
ated by the action of the modes of Y ′

P (z)(v, x) on κ is an object in C for all v ∈ V , then

the subspace of (W1 ⊗W2)
∗ consisting of all these elements is equal to W1 �P (z) W2.
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Associativity isomorphism. The theory of P (z)-tensor products allows to make a pre-
cise statement on the associativity of logarithmic intertwining operators, or equivalently
intertwining maps. The idea is to express the iterate of two intertwining maps as a single
intertwining map which corresponds to an element of a suitable P (z)-tensor product.

When working with products and iterates of intertwining maps it is necessary to have a
valid definition of these notions as intertwining maps are maps from the tensor product of
two modules to the algebraic completion of another module, and intertwining maps are not
defined on such huge spaces. Let Wi, i ∈ {1, 2, 3, 4}, and M be objects in C and let F and
G be P (z1)- and P (z2)-intertwining maps of type

(
W4

W1 M

)
and

(
M

W2 W3

)
, respectively. If the

series ∑

m∈C 〈w′
(4), F (w(1) ⊗ πm(G(w(2) ⊗ w(3))))

〉

absolutely converges for all w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3 and w′
(4) ∈ W4, then the

product of F and G is defined to exist, and the resulting map from W1 ⊗W2 ⊗W3 to W4

is called the product of F and G. This product is denoted by γ(F ;1W1, G). This notation
is due to the formulation of the P (z)-tensor product theory in terms of operads which is a
particularly useful concept in the study of the geometric aspects of conformal field theory,
see [HL1], [HL2], [Hua5] and [Schl].

For two intertwining maps F̃ and G̃ of type
(

M̃
W̃1 W̃2

)
and

(
W̃4

M̃ W̃3

)
, respectively, the iterate of

F̃ and G̃ is defined analogously and is denoted by γ(F̃ ; G̃,1W̃3
).

The conditions of existence of products and iterates of intertwining maps are actually mu-
tually dependent, and one has the following result. For all complex numbers z1 and z2
satisfying |z1| > |z2| > 0, and for any P (z1)-intertwining map F of type

(
W4

W1 M

)
and any

P (z2)-intertwining map G of type
(

M
W2 W3

)
, the product γ(F ;1W1, G) exists for all mod-

ules M and Wi, i ∈ {1, 2, 3, 4}, in ob C if and only if: for all complex numbers z0 and z2

satifying |z2| > |z0| > 0, and for any P (z2)-intertwining map F̃ of type
(

W̃4

M̃ W̃3

)
and any

P (z0)-intertwining map G̃ of type
(

M̃
W̃1 W̃2

)
, the product γ(F̃ ; G̃,1W1) exists for all modules

M̃ and W̃i, i ∈ {1, 2, 3, 4}, in ob C. If one of these two equivalent statements on the existence
of all products or iterates holds true, then the convergence condition is said to be satisfied
in the category C.

Given that the convergence condition is satisfied a first statement on the existence and
associativity of the nonmeromorphic operator product expansion can be made. To do this,
two further conditions are needed which are parallel to the P (z)-local grading restriction
condition that led to the alternate characterization of the P (z)-tensor product. To formulate
these conditions, the following notation is convenient: For any λ ∈ (W1 ⊗W2 ⊗W3)

∗, define

µ
(1)
λ,w(1)

to be the linear functional λ(w(1) ⊗ · ) ∈ (W2 ⊗W3)
∗ for w(1) ∈W1, and define µ

(2)
λ,w(3)

to be the linear functional λ( · ⊗ w(3)) ∈ (W1 ⊗W2)
∗ for w(3) ∈ W3. Then the following

conditions on an element λ ∈ (W1 ⊗W2 ⊗W3)
∗ will be relevant.

The P (1)(z)-local grading restriction condition:
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2. Aspects of Vertex Operator Algebra

(i) The P (1)(z)-grading condition: For all w(1) ∈ W1, the element µ
(1)
λ,w(1)

∈ (W2 ⊗W3)
∗ is

the limit, in the locally convex topology defined by the pairing between (W2⊗W3)
∗ and

W2 ⊗W3, of an absolutely convergent series of generalized eigenvectors in (W2 ⊗W3)
∗

with respect to the operator (L′
P (z))0.

(ii) For all w(1) ∈ W1, the minimal subspace W
(1)
λ,w(1)

of (W2 ⊗ W3)
∗ which contains the

terms in the series in (i) and satisfies τP (z)(v ⊗ tm)W
(1)
λ,w(1)

⊂ W
(1)
λ,w(1)

for all v ∈ V

and m ∈ Z (which states stability with respect to the modes of Y ′
P (z)(v, x)) has finite-

dimensional homogeneous subspaces with respect to the (L′
P (z))0-grading, and these

subspaces vanish for generalized (L′
P (z))0-eigenvalues with sufficiently small real parts.

The P (2)(z)-local grading restriction condition:

(i) The P (2)(z)-grading condition: For all w(3) ∈ W3, the element µ
(2)
λ,w(3)

∈ (W1 ⊗W2)
∗ is

the limit, in the locally convex topology defined by the pairing between (W1⊗W2)
∗ and

W1 ⊗W2, of an absolutely convergent series of generalized eigenvectors in (W1 ⊗W2)
∗

with respect to the operator (L′
P (z))0.

(ii) For all w(3) ∈ W3, the minimal subspace W
(2)
λ,w(3)

of (W1 ⊗ W2)
∗ which contains the

terms in the series in (i) and satisfies τP (z)(v ⊗ tm)W
(2)
λ,w(3)

⊂ W
(2)
λ,w(3)

for all v ∈ V

and m ∈ Z (which states stability with respect to the modes of Y ′
P (z)(v, x)) has finite-

dimensional homogeneous subspaces with respect to the (L′
P (z))0-grading, and these

subspaces vanish for generalized (L′
P (z))0-eigenvalues with sufficiently small real parts.

Now the important result is the following.

Theorem. Let W1, W2, W3, W
′
4 and M be objects in C and let F1 and F2 be P (z1)-

and P (z2)-intertwining maps of type
(
W4

W1 M

)
and

(
M

W2 W3

)
, respectively, such that their

product γ(F1;1W1 , F2) exists. If (γ(F1;1W1 , F2))
′(w′

(4)) satisfies the P (2)(z1 − z2)-local

grading restriction condition for all w′
(4) ∈W ′

4, then there exists a P (z2)-intertwining map

F of type
(

W4

W1⊠P (z1−z2)W2 W3

)
such that

〈
w′

(4), F1(w(1), z1)F2(w(2), z2)w(3)

〉
=
〈
w′

(4), F
(
w(1) ⊠P (z1−z2) w(2), z2

)
w(3)

〉
(2.50)

for all w(1) ∈W1, w(2) ∈W2, w(3) ∈W3 and w′
(4) ∈W ′

4.

The relation (2.50) is the exact statement of the nonmeromorphic operator product expansion
and its associativity, and it should be compared to the meromorphic case (2.28) to which
it is very similar in form. The subtlety is that Huang, Lepowsky and Zhang really proved
under which conditions in the operator product expansion of two intertwining maps there
only appear powers of the variables and their logarithms (with no further dependence on
the variables), while in the physics literature this is usually assumed without proof. It takes
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all the sophistication of the P (z)-tensor product theory (which has only been touched upon
very lightly here) to really prove this point.
Similarly to the above theorem on the product of two intertwining maps, there is also an
analogous result on the iterate of two intertwining maps which involves the P (1)(z)-local
grading restriction condition.
Developing the theory still further, it can be shown that the associativity property of the
nonmeromorphic operator product expansion has an analog in the concise isomorphism

W1 ⊠P (z1)

(
W2 ⊠P (z2) W3

)
−→

(
W1 ⊠P (z1−z2) W2

)
⊠P (z2) W3

for all generalized modules W1, W2 and W3 in ob C.

Convergence and extension properties. The above central result on the nonmero-
morphic operator product expansion relies on the technical assumptions of the P (2)(z)-local
grading restriction condition. Verifying this condition for concrete vertex operator alge-
bras “in real life” is not very convenient, and it is desirable to have to check another set of
conditions that is more manageable.

Let Wi, i ∈ {1, 2, 3, 4}, and M be generalized modules in ob C and let Y1 and Y2 be two log-
arithmic intertwining operators of type

(
W4

W1 M

)
and

(
M

W2 W3

)
, respectively. Then the following

is certainly a comprehensive condition from the point of view of logarithmic conformal field
theory.

The convergence and extension property for products:

There exists N ∈ Z depending only on Y1 and Y2, and for all w(1) ∈ W1, w(2) ∈ W2,
w(3) ∈ W3 and w′

(4) ∈ W ′
4, there exists M ∈ N, rk, sk ∈ R, ik, jk ∈ N and analytic

functions fikjk(z) on |z| < 1, k ∈ {1, . . . ,M}, satisfying

wtw(1) + wtw(2) + sk > N for all k ∈ {1, . . . ,M}

such that 〈
w′

(4),Y1(w(1), x1)Y2(w(2), x2)w(3)

〉 ∣∣∣
x1=zz,x2=z2

is convergent for |z1| > |z2| > 0 and can be analytically extended to the multi-valued
analytic function

M∑

k=1

zrk2 (z1 − z2)
sk(log z2)

ik(log(z1 − z2))
jkfikjk

(
z1 − z2
z2

)

in the domain |z2| > |z1 − z2| > 0.

This condition can be applied to yield the following result which is a first step to reformulate
the sufficient conditions for the existence and associativity of the nonmeromorphic operator
product expansion.
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Theorem. If every finitely-generated lower-truncated generalized V -module is an object in
C and the convergence and extension property holds in C, then the convergence condition
holds in C, i.e. all relevant products and iterates of P (z)-intertwining maps exist, see
page 40. Furthermore, let W1, W2, W3, W

′
4 and M be any objects in C and let F1 and

F2 be P (z1)- and P (z2)-intertwining maps of type
(

W4

W1 M

)
and

(
M

W2 W3

)
, respectively, with

|z1| > |z2| > |z1 − z2| > 0. Then (γ(F1;1W1 , F2))
′(w′

(4)) ∈ (W1 ⊗W2 ⊗W3)
∗ satisfies the

P (2)(z1 − z2)-local grading restriction condition for all w′
(4) ∈W ′

4.

The lower-truncation condition is of course satisfied by definition for all (generalized) mod-
ules for a vertex operator algebra. The reason that it is mentioned here explicitly is that
all results summarized in this section actually hold for the wider class of conformal vertex
algebras and their modules. These satisfy all the axioms of the vertex operator algebra case
except that their homogeneous subspaces need not vanish for sufficiently small (generalized)
L0-eigenvalues, and they also need not be finite-dimensional. This is also why the condition
of quasi-finite-dimensionality (to be defined below) appears in the next theorem.
Using Huang’s results on differential equations for matrix elements of products of intertwin-
ing maps obtained in [Hua7] and the theory of differential equations with regular singular
points, the convergence and extension property can be replaced in the above theorem by a
simple finiteness property.

Theorem. If all generalized V -modules W =
∐

h∈RW[h] in ob C are C1-cofinite and quasi-
finite-dimensional, i.e.

∐
h<RW[h] is finite-dimensional for all R ∈ R, then the convergence

and extension property holds in C.

This ends the discussion of P (z)-tensor product theory and its application to the nonmero-
morphic operator product expansion. It was shown by Huang and Lepowsky in [Hua4] and
[HL6] that the conditions for its existence and associativity hold for the vertex operator
algebras associated to the minimal Virasoro models and the WZW models. In the next
chapter, it will be proven that these conditions also hold for another class of vertex operator
algebras.
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Chapter 3

Properties of the Triplet Algebras

In this chapter the results on associativity in the nonmeromorphic case are very briefly sum-
marized and applied to an infinite family of vertex operator algebras, the triplet W-algebras.
These are introduced and it is shown that they satisfy all the sufficient conditions for the
existence and associativity of the nonmeromorphic operator product expansion. This is done
by firstly examining in detail one such triplet algebra, which has been studied extensively
before, and then generalizing the arguments made in the special case to all triplet algebras.
The main effort to succeed in this is to analyze certain singular vectors and prove that all
triplet algebras are C2-cofinite, which is an interesting result independent of its application
in the context of associativity. Finally, an upper bound on the dimension of the Zhu alge-
bras associated to the triplet algebras is given. Most of this chapter is based on the work
described in [CF], though the exposition presented here is more detailed.

The results of the P (z)-tensor product theory concerning the nonmeromorphic operator
product expansion as presented in section 2.3 are not yet in a very concise form. Combining
all three theorems of that section, one finds that for a given conformal vertex algebra V , the
nonmeromorphic operator product expansion exists and is associative as stated in (2.50) if
V satisfies the following conditions, where C is an as yet unspecified full subcategory of the
category whose objects are R-graded generalized V -modules and that is closed under the
contragredient functor:

(1) All generalized V -modules in ob C are C1-cofinite, i.e. for all W ∈ ob C,

dim
(
W/C1(W )

)
<∞ with C1(W ) = span

{
u−1w

∣∣∣ u ∈
∐

m>0

V(m), w ∈W

}
.

(2) All generalized V -modules in ob C are quasi-finite-dimensional, i.e. for all W ∈ ob C,

dim
∐

m<R

W[m] <∞ for all R ∈ R .

(3) Every object which is a finitely generated lower-truncated generalized V -module, ex-
cept that it may have infinite-dimensional homogeneous subspaces, is an object in C.
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In the case that the conformal vertex algebra V has the full structure of a vertex operator
algebra, then all its generalized modules are quasi-finite-dimensional and lower-truncated by
definition, as was already noted in the last chapter.

3.1 The triplet algebra at c = −2

It will now be shown that the above conditions hold for the W-algebra of type W(2, 3×3)
and a suitable choice of the category C. This W-algebra is generated by the modes Lm
of the Virasoro field T (x) =

∑
m∈Z Lmx−m−2 associated to the vector ω of weight 2 which

implements the conformal symmetry, and the modes W a
m of a triplet (under the action of

the group SO(3)) of primary fields of weight 3, W a(x) =
∑

m∈ZW a
mx

−m−3 with a ∈ {±1, 0},
which “maximally extend” the conformal symmetry. Because of the SO(3)-symmetry, which
is realized such that the structure constants Ck

ij of the W-algebra involve the structure
constants εijk of the Lie algebra so(3), W(2, 3×3) is also called a triplet algebra. It has a
Virasoro central charge of c = −2 and its relevant commutation relations can be computed
from (2.44) to be

[Lm, Ln] = (m− n)Lm+n −
1

6

(
m3 −m

)
δm+n,0 , (3.1a)

[Lm,W
a
n ] = (2m− n)W a

m+n , (3.1b)

[
W a
m,W

b
n

]
= δab

(
2(m− n)Λm+n +

1

20
(m− n)

(
2m2 + 2n2 −mn− 8

)
Lm+n

−
1

120
m(m2 − 1)(m2 − 4)δm+n,0

)

+ iεabc

(
5

14

(
2m2 + 2n2 − 3mn− 4

)
W c
m+n +

12

15
V c
m+n

)
, (3.1c)

where

Λ = N (T, T ) = N (2)(T, T ) −
3

10
∂2T ,

V a = N (W a, T ) = N (2)(W a, T ) −
3

14
∂2W a .

In section 2.2 the conditions for the smallest nontrival vertex operator algebras (generated
only by the vacuum and the conformal vector) to be rational were given, among which is
the relation (2.37) for the central charge, cp,q = 1− 6(p− q)2/(pq) with p, q ∈ Z≥2 relatively
prime. In this notation the central charge of the triplet algebra considered here can be
written as c = c2,1 = −2. Since 1 /∈ Z≥2, the Virasoro algebra with c = −2 alone cannot
lead to a rational vertex operator algebra, but the question might arise whether or not the
extended W-algebra satisfies the conditions of rationality. The answer is that this is not the
case, at least not in the meaning of “rational” adopted here. The reason is that the triplet
algebra at c = −2 has modules that are reducible but indecomposable and thus does not
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satisfy the definition of rationality given in section 2.2. Indeed, it was noted by Gaberdiel
and Kausch in [GK1] and by Rohsiepe in [Roh] that the triplet algebra at c = −2 has only
four (generalized) highest weight modules, with (generalized) highest weights −1

8
, 0, 3

8
and

1, respectively. While the modules corresponding to the values −1
8

and 3
8

are irreducible,
this is not the case for the other two. For example, the module with generalized highest
weight 1 has an irreducible submodule generated by a vector ϕ, but it also contains another
vector φ which is not an element of this submodule but has the property that

L0φ = φ+ ϕ .

This Jordan cell structure in the action of L0 is typical of a logarithmic conformal field
theory, and it rules out rationality.
Nevertheless, four (generalized) highest weight modules are not so much; in particular, these
are only finitely many modules, and in this sense the triplet algebra at c = −2 certainly
has a finiteness property. An even stronger statement is true: The set of finitely many
(generalized) highest weight modules closes under fusion, i.e. for two elements Wi and Wj

of this set, the fusion rules Nk
ij vanish for all Wk that are not elements of this set. In this

sense the triplet algebra at c = −2 is called “rational” in [GK1].

Now that the vertex operator algebra V = W(2, 3×3) has been presented, the choice for the
category C is made. It is taken to be the category whose objects are precisely all finitely
generated lower-truncated R-graded generalized V -modules. In particular, this choice in-
cludes all (generalized) highest weight modules for V , but also those on which L1 acts only
nilpotently (and not necessarily trivially) on the generating vector. The restriction to finitely
generated modules does not seem to be very limiting from the point of view of a physicist.
By this choice of C, condition (3) above is satisfied. The fact that the homogeneous subspaces
of the (generalized) modules in ob C are really finite-dimensional follows from results of Buhl
in [Bu] on a module spanning set, using the fact that they are finitely generated and all
triplet algebras are C2-cofinite, which will be proven below.
As the triplet algebra is a vertex operator algebra, condition (2) is automatically satisfied,
which is easily verified in this concrete example: by the action of any mode vn with v ∈ V , the
weight of a homogeneous element to which vn is applied to changes by an integer value, and
there are only finitely many vectors that generate V , namely the vacuum Ω, the conformal
vector ω and W a, a ∈ {±1, 0}.
In order to see that condition (1) is satisfied as well, i.e. C1(W ) is finite-codimensional
for all W ∈ ob C, one can assume without loss of generality that W is generated by some
element w = w(0) together with its finitely many “logarithmic partners” w(i), i.e. L0w

(i) =
(wtw(i))w(i) + w(i+1) and w(i) = 0 for sufficiently large i. Then by (2.21) and (2.40), every
vector in W is a linear combination of elements of the form

M−m1 . . .M−mkL
M
−1

∏

a∈{±1,0}

((
W a

−2

)Na
2
(
W a

−1

)Na
1 (W a

0 )N
a
0

)
Mn1 . . .Mnlw

(i) (3.2)

where M is a placeholder for either L or W a; M , Na
0 , Na

1 , Na
2 ∈ N, n1, . . . , nl ∈ Z+ and

m1, . . . , mk ∈ Z≥2 for M = L while m1, . . . , mk ∈ Z≥3 for M = W a.
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It follows from (2.39) that the vectors

L−m+1w and W a
−mw are in C1(W ) for all w ∈W and all m ≥ 3 ,

while for all other values of m, this is not necessarily so. Thus in the case that k is strictly
larger than zero, any element of the form (3.2) is in C1(W ). On the other hand, for k = 0
there are only finitely many possibilities for terms of the form Mn1 . . .Mnlw

(i) not to vanish
because of the lower-truncatedness of W . The factor (W a

0 )N
a
0 can also do no harm as it does

not change the generalized weight of the element it is applied to, and each Jordan cell is
finite-dimensional by the definition of C.
So what deserves special attention are the powers of L−1, W

a
−1 and W a

−2 in the case k = 0,
because when applied to an element of W , the result need not be in C1(W ), but each of these
modes strictly increases the generalized weight. As there is certainly no “upper-truncation
condition” for the module W , the appearance of these modes in (3.2) makes it seem possible
that the complement of C1(W ) in W is infinite-dimensional.
But fortunately, in this situation a theorem obtained by Buhl in [Bu] applies, which is a
generalization of an earlier result of Gaberdiel and Neitzke in [GN].

Theorem. Let V be a C2-cofinite vertex operator algebra, i.e. dim(V/C2(V )) < ∞ with
C2(V ) = span{u−2v | u, v ∈ V }, and let W be a weak V -module which is generated by
w ∈W . Then W is spanned by elements of the form

x1
−n1

. . . xk−nkw (3.3)

with n1 ≥ . . . ≥ nk > −L, where L is some fixed real number, and the vectors x1, . . . , xk ∈
V are representatives of the elements of a basis of V/C2(V ). In addition, if nj ≤ 0, then
ni = nj for at most Q indices i, where Q is another fixed real number.

Note that this statement is true for general vertex operator algebras and not only in the
case of W-algebras, so the convention used for the indices of modes is not the one that is
preferred in the physics literature, as has been explained in section 2.2; to switch between
both conventions, the relation un = uphys

n−wtu+1 is employed.
The last part of the above theorem is the most important one for the present situation of
the triplet algebra V as it implies that only a limited number of powers of L−1, W

a
−1 and

W a
−2 has to be considered in (3.2) if V is C2-cofinite. This is indeed the case:

Proposition. The triplet algebra at c = −2 is C2-cofinite.

Several authors (see [GN] and [Miy]) have been aware of this fact for some time, and it was
recently proven by Abe in [A]. The following proof uses a completely different method.
The key to this proof is the existence of certain singular vectors. These are homogeneous
vectors in the Verma module generated by the action of the modes Lm and W a

m with m ∈ Z
and a ∈ {±1, 0}, such that they are annihilated by all modes that lower the (generalized)
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weight of the vector they are applied to. Indeed, an explicit expression for six singular
vectors at level 6 was obtained in [GK1] and is given by

Nab =W a
−3W

b
−3Ω − δab

(
8

9
L3
−2 +

19

36
L2
−3 +

14

9
L−4L−2 −

16

9
L−6

)
Ω

+ iεabc

(
−2W c

−4L−2 +
5

4
W c

−6

)
Ω , (3.4)

as can be checked with the help of the commutation relations (3.1).
In order to prove that V is really C2-cofinite, one first observes that in the expression (3.4)
for the singular vector Nab, because of (2.38) each term that it is made of is manifestly in
C2(V ) except for W a

−3W
b
−3Ω and L3

−2Ω. Similarly to the maximal ideals in the case of the
minimal Virasoro models and the WZW models discussed in section 2.2, any singular vector
is divided out of the Verma module to give the triplet algebra the structure of a vertex
operator algebra. So it follows that for a 6= b,

W a
−3W

b
−3Ω ∈ C2(V )

and ((
W a

−3

)2
−
(
W b

−3

)2)
Ω ∈ C2(V ) .

Since by (2.41), W a
−3 leaves the space C2(V ) invariant, W a

−3((W
a
−3)

2−(W b
−3)

2)Ω is an element
of C2(V ) as well. But this element can also be written as

(
W a

−3

)3
Ω −W a

−3

(
W b

−3

)2
Ω =

(
W a

−3

)3
Ω −W b

−3W
a
−3W

b
−3Ω + Y−6W

b
−3Ω , (3.5)

where Y−6 = [W a
−3,W

b
−3] applied to any vector v ∈ V yields an element of C2(V ) because

in the commutator of modes of primary fields of weight 3 there can only appear modes
corresponding to fields of weight less than or equal to 5, as follows from the general com-
mutation relation (2.44) for W-algebras. So in particular, the last term in (3.5) is in C2(V ).
In addition, the second last term in this equation also is in C2(V ) as W b

−3 leaves this space
invariant. Hence, it follows that (W a

−3)
3Ω ∈ C2(V ), and thus

(
W a

−3

)m
Ω ∈ C2(V ) for all m ≥ 3 . (3.6)

From this and the fact that ((W a
−3)

2 − 8
9
L3
−2)Ω is in C2(V ) it follows that (W a

−3)
2L3

−2Ω ∈
C2(V ). Now using the invariance of C2(V ) under L−2 and W a

−3 one more time it is easy to
see that

((
W a

−3

)2
−

8

9
L3
−2

)2

Ω =

((
W a

−3

)4
+

64

81
L6
−2 −

8

9

(
W a

−3

)2
L3
−2 −

8

9
L3
−2

(
W a

−3

)2
)

Ω

is an element of C2(V ). But from the above discussion it is also clear that each term on
the right-hand side apart from 64

81
L6
−2Ω is in C2(V ), and so it follows that L6

−2Ω must be an
element of C2(V ) as well.
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It has just been shown that sufficiently large powers of L−2 and W a
−3 (6 or maybe less in

the first case, 3 or maybe less in the latter) applied to any element in V yield elements in
C2(V ). Thus it is proven that C2(V ) is finite-codimensional.

Now that it has been shown that the main prerequisite of Buhl’s theorem is satisfied for
the triplet algebra at c = −2, it can be used since by definition any object in C is a weak
module and the elements in (3.2) are of the same form as those in (3.3). This means that
if ω and W a are not in C2(V ) and can thus be taken to be representatives of elements in
a basis for V/C2(V ), there actually is some sort of an “upper-truncation condition”, but for
the exponents of the modes L−1, W

a
−1 and W a

−2 in (3.2). So for k = 0, it follows that only
finitely many elements of the form (3.2) span the “(k = 0)-part” of W . This is exactly the
statement that W is C1-cofinite.
It remains to be verified that ω and W a are not in C2(V ). For the moment, consider the
possibility that ω is in C2(V ). Then there must be u, v ∈ V such that u−2v = ω. By
comparing weights on both sides, one arrives at the condition wtu + wtv + 1 = 2. But
since the vertex operator algebra V under consideration is of CFT type, i.e. it is of the
form V =

∐
n∈N V(n) with V(0) = CΩ, this condition says that either u or v must be (a

scalar multiple of) the vacuum (and the other one of weight 1). This is not possible for
the conformal vector, leading to a contradiction. By a similar reasoning, one also sees that
W a /∈ C2(V ).
As W was taken to be an arbitrary element of ob C, it is now established that all generalized
V -modules of interest here are C1-cofinite and thus condition (1) is satisfied.

Finally, it needs to be shown that the chosen category is closed with respect to the contra-
gredient functor. By the definition of the graded dual W ′ =

∐
n∈Z(W[n])

∗ it is clear that it
is lower-truncated. In order to establish that it is also finitely generated, choose a minimal
generating set {w1, . . . , wN} ⊂W ∈ ob C from a basis

⋃
n∈ZBn of W , where Bn is a basis of

W[n] for all n ∈ Z. Then all w ∈W are linear combinations of elements of the form

Mn1 . . .Mnkwi ,

where M denotes the same as in (3.2). Let w′
1, . . . , w

′
N be the elements of the dual basis

in W ′ such that 〈w′
i, wj〉 = δij . Because of this, all w′ ∈ W ′ that may give a nonvanishing

matrix element with some w ∈ W must be linear combinations of elements of the form
M′

nk
. . .M′

n1
w′
i. To see this, assume that there is an element w̃′ /∈ {w′

1, . . . , w
′
N} in W ′ such

that {w̃′, w′
1, . . . , w

′
N} is a subset of a minimal set of generating vectors of W ′. It follows

that 〈w̃′, wi〉 = 0 for all i ∈ {1, . . . , N} and thus
〈
M′

−m1
. . .M′

−mk
w̃′,M−n1 . . .M−nlwi

〉
=
〈
w̃′,M′

mk
. . .M′

m1
M−n1 . . .M−nlwi

〉

= δP
imi,

P
j nj

〈
w̃′,

∑

{I |wtwI=wtwi}

aIwI

〉

= 0 ,

where aI ∈ C are the coefficients that result from applying the commutation relations of the
M-modes. This means that the subspace of generalized weight wt w̃′ has a dimension that is
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strictly larger than the dimension of the corresponding subspace in W . But by the definition
of the graded dual of W , these finite-dimensional subspaces must have the same dimension,
so there cannot be an element w̃′ as above, and C is closed under the contragredient functor.

To summarize the results of this section, the triplet algebra at c = −2 satisfies all the condi-
tions for the existence and associativity of the nonmeromorphic operator product expansion.
While proving this fact another interesting property of this vertex operator algebra was es-
tablished: it is also C2-cofinite. As has been mentioned above, the triplet algebra at c = −2
is not rational in the strict sense adopted here because of the existence of reducible but
indecomposable generalized modules, and thus its C2-cofiniteness contradicts a conjecture
that rationality, regularity and C2-cofiniteness are equivalent properties of vertex operator
algebras. Nevertheless, a set of finitely many generalized modules for the triplet algebra at
c = −2 closes under fusion, and it may be conjectured that the equivalence of C2-cofiniteness
and rationality holds in this more general sense.

3.2 The triplet algebras at cp,1

The triplet algebra at c = −2 is only the first member of an infinite family of triplet W-
algebras {W(2, (2p− 1)×3)}p∈Z≥2

with central charge cp,1 = 1 − 6(p− 1)2/p, where for each
p ∈ Z≥2 the three primary fields of weight 2p− 1 are a triplet under the action of the group
SO(3), which means that the structure constants CW c

W a,W b are proportional to εabc, see [Kau1]

and [Fl2]. It will be shown in this section that the above conditions (1), (2) and (3) are also
satisfied in this general case.

If one defines the category C analogously to the special case of p = 2 in the previous
section, one immediately sees that the conditions of quasi-finite-dimensionality and of finitely
generated lower-truncated modules in ob C hold in the same way as before with the obvious
generalization of the arguments. What requires additional work is to establish the C1-
cofiniteness of all objects in C.
Let V∆ denote the vertex operator algebra associated to the W-algebra W(2,∆×3) for a fixed
∆ := 2p − 1 with p ∈ Z≥3. If V∆ is C2-cofinite, one can apply Buhl’s theorem as in the
case p = 2, and any V∆-module under consideration would be C1-cofinite, which together
with the other properties of V∆ gives the existence and associativity of the nonmeromorphic
operator product expansion. Compared with the case p = 2, the difficulty of proving the
C2-cofiniteness of V∆ stems from the lack of explicit expressions for singular vectors that are
crucial for a proof of C2-cofiniteness. A priori, it is not even clear whether such singular
vectors at all exist for arbitrary p ∈ Z≥3.
In principle, it is possible to determine whether or not such singular vectors exist by trying
to construct them explicitly. First, one has to obtain the commutation relations of the
fundamental modes by the general identity (2.44). In order to do that, all the structure
constants Ck

ij have to be computed, which soon becomes a tremendous task with increasing
p. But for an examination of singular vectors the commutation relations of the modes are
only the beginning, and much more effort is needed to come to a conclusion. Finally, all
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these calculations have to be carried out separately for each p ∈ Z≥3. That is why another
approach is desirable to examine the infinitely many triplet algebras all at once.
As it turns out, one can argue for the existence of certain singular vectors of weight 2(2p−1)
with the help of the explicitly known character of V∆ that was obtained by Flohr in [Fl2].
By analyzing this character in detail, one obtains the following result.

Proposition. For all ∆ ∈ (2Z++1), the triplet algebra W(2,∆×3) has six singular vectors
at level 2∆ of the form

Nab = W a
−∆W

b
−∆Ω + δab

(
Virasoro-polynomial

)
Ω + εabc

(
Virasoro-W c

m-polynomial
)
Ω ,
(3.7)

where in the last term only monomials with exactly one W c-mode appear.

Note that the singular vectors (3.4) in the special case ∆ = 3 are of the form indicated in the
proposition. In order to prove that singular vectors as in (3.7) exist in general, the character

χV∆
(q) =

q−1/24

ϕ(q)

∑

n∈Z(2n+ 1)q(2np+p−1)2/(4p) (3.8)

from [Fl2] is needed. If one expands both this character and the vacuum Verma module
character χVerma

V∆
(q) given by (2.46) into formal power series in q and compares the coefficients

of q(2p−1)+3 (times q−cp,1/24), one finds that the dimensions of the homogeneous subspaces
of weight (2p − 1) + 3 of the vacuum Verma module and the W-algebra itself differ by 3.
The reason for this is the following: From the Kac determinant it follows that the Virasoro
algebra of central charge cp,1 has an infinite set of highest weight modules where the highest
weights are given by h2k−1,1 = (k − 1)(kp− 1), k ∈ Z+. By a standard argument it follows
that these modules have singular vectors at level 2k− 1. In particular, for k = 2 the highest
weight vectors of weight 2p− 1 can be identified with the vectors W a

−∆Ω due to ∆ = 2p− 1.
So because of the additional structure of the W-algebra with its fields W a, pure Virasoro
modules are embedded into the full vertex operator algebra W(2,∆×3), and the difference
of the dimensions above is due to the three singular vectors of weight (2p− 1) + 3.
If these three vectors are divided out of the vacuum Verma module, a structure is obtained
to which the character

χ̃∆(q) = q−cp,1/24
(

1

ϕ2(q)
+

3q2p−1(1 − q3)

ϕ(q)(ϕ2p−1(q))2

)
(3.9)

pertains, where the notation introduced in (2.47) is used. The first term in this expression
accounts for the action of the Virasoro algebra on the vacuum alone. The second term
reflects the fact that beginning at level 2p − 1, the modes associated to the three distinct
W a-fields act nontrivially on the vacuum. With respect to the Virasoro algebra, this is a
highest weight vector, which explains the factor q2p−1/ϕ(q). Furthermore, the factor 1−q3 is
due to the singular vectors of weight (2p−1)+3 discussed above, and the term (ϕ2p−1(q))

−2

comes from the action of the W a-modes on the vacuum. The second power (and not the
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third) has to be taken here in order not to doubly count the contribution from the W a-modes
because of the 3-fold multiplicity.
Partially expanding both (3.8) and (3.9) into a formal power series yields

χV∆
(q) =

q−cp,1/24

ϕ(q)

(
1 − q + 3q2p−1 − 3q2p+2 + O(q6p−2)

)
, (3.10)

χ̃∆(q) =
q−cp,1/24

ϕ(q)

(
1 − q + 3q2p−1 − 3q2p+2 + 6q4p−2 + O(q4p−1)

)
. (3.11)

Now the dimensions of the homogeneous subspaces of weight 2∆ = 4p−2 described by these
characters are examined. Comparing the coefficients of q4p−2 (times q−cp,1/24) by taking the
relevant contributions from (ϕ(q))−1 =

∑
n∈N p(n)qn into account, one immediately sees

from (3.10) and (3.11) that these dimensions differ by 6. This means that six additional
singular vectors of weight 2∆ are divided out in W(2,∆×3). The reason that these vectors
must involve a term with two W a-modes is that there are no pure Virasoro singular vectors
of weight 2∆, as follows from the Kac determinant. Finally, the form of (3.7) is a direct
consequence of the SO(3)-structure of W(2,∆×3). This proves the proposition.

To gain a better understanding of how the comparison of coefficients works in the above
proof, it is helpful to write down the expansions (3.10) and (3.11) in detail for some explicit
values of ∆:

qc2,1/24 χV∆=3
(q) = 1 + q2 + 4q3 + 5q4 + 8q5 + 10q6 + 16q7 + 22q8 + 32q9 + . . . ,

qc2,1/24 χ̃∆=3(q) = 1 + q2 + 4q3 + 5q4 + 8q5 + 16q6 + 28q7 + 46q8 + 77q9 + . . . ,

qc3,1/24 χV∆=5
(q) = 1 + q2 + q3 + 2q4 + 5q5 + 7q6 + 10q7 + 13q8 + 20q9 + 27q10 + 38q11

+ 51q12 + 69q13 + . . . ,

qc3,1/24 χ̃∆=5(q) = 1 + q2 + q3 + 2q4 + 5q5 + 7q6 + 10q7 + 13q8 + 20q9 + 33q10 + 50q11

+ 75q12 + 105q13 + . . . ,

qc4,1/24 χV∆=7
(q) = 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 7q7 + 10q8 + 14q9 + 18q10 + 26q11

+ 36q12 + 48q13 + 64q14 + 86q15 + 112q16 + . . . ,

qc4,1/24 χ̃∆=7(q) = 1 + q2 + q3 + 2q4 + 2q5 + 4q6 + 7q7 + 10q8 + 14q9 + 18q10 + 26q11

+ 36q12 + 48q13 + 70q14 + 98q15 + 136q16 + . . . .

This way the appearance of six singular vectors in V3, V5 and V7 at level 6, 10 and 14,
respectively, is obvious.

Now with the knowledge of singular vectors of the form (3.7) the proof of the C2-cofiniteness
of the W-algebras W(2,∆×3) can be continued. As in the special case p = 2 it is clear that
nearly all possible vectors in the expression (3.7) for the singular vector Nab are elements of
C2(V∆) because of the fact that W a

mΩ = 0 for all m ≥ −∆ + 1. The only vectors for which
this might not be true are W a

−∆W
b
−∆Ω and αL∆

−2Ω, the latter appearing in the δaa-term in
Nab. If it can be shown that the coefficient α is not zero, the exact same reasoning as in the
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case p = 2 can be applied to see that V∆ is C2-cofinite. So the question that remains to be
answered is whether or not α 6= 0. The answer is the following.

Lemma. For all ∆ ∈ (2Z+ + 1), the term L∆
−2Ω appears in the singular vectors Naa in

(3.7) with a nonzero coefficient α, possibly depending on ∆.

Conceptually, this result does not seem to be particularly significant, but computationally,
establishing its truth is the most laborious part of the proof of the C2-cofiniteness of all triplet
algebras. It turns out to be quite subtle to find the correct way to make use of the scarce
pieces of information available. This befits the fact that C2-cofiniteness can be ascertained for
infinitely many vertex operator algebras all at once, without having to compute all structure
constants and construct singular vectors explicitly. It is actually remarkable that such a
fundamental property can be established from relatively little data.

To prove the above lemma, one first observes that the vertex operator to which a singular
vector corresponds necessarily is a primary field. In particular, it is a quasi-primary field.
As the vector W a

−∆W
b
−∆Ω appears in the expression for the singular vector Nab, the corre-

sponding quasi-primary null-field can be written as a linear combination of quasi-primary
fields, and one of these must be the normal-ordered product N (W a,W b).
The next step is to note that the quasi-primary field N (W a,W b) alone cannot be the null-
field. To see this, the fact that the mode L1 annihilates the vector Nab can be used. Indeed,
by expanding the null-field into modes,

L1N
aa = L1

(
W a

−∆W
a
−∆Ω +

(
Virasoro-polynomial

)
Ω
)

∆−1
= L1

(
W a

−∆W
a
−∆Ω + βL−4L

∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω

)

∆−1
= 0 . (3.12)

Here, the symbol
∆−1
= has been introduced, which means “equal to, modulo vectors with less

than ∆ − 1 modes applied to the vacuum Ω”. For example,

βL−4L
∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω

∆−1
= βL−4L

∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω + δL2

−4L
∆−4
−2 Ω .

So far, the values of the constants β and γ are unknown. If the null-field were equal to
N (W a,W b), the coefficients β = βWW and γ = γWW could be computed from the for-
mula (2.42) for quasi-primary normal-ordered products in terms of the structure constant

C
N (T∆−1)
W a,W a . In principle, this constant can be computed for each p ∈ Z≥3 separately, but

neither are such computations carried out easily nor is it necessary to know the exact value
of the constant; only the information that it is not zero is crucial.
With this, a straight-forward calculation using (3.12) shows that

L2

(
W a

−∆W
a
−∆ + βWWL−4L

∆−2
−2 + γWWL

2
−3L

∆−3
−2

)
Ω

∆−1
=
/

0 .

So the field N (W a,W b) is quasi-primary but not primary and can thus not be the null-field.
Instead, other quasi-primary fields must be added to N (W a,W b) to get the null-field. Of
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all these fields, only those are of immediate interest that yield primarity of the null-field at
length ∆ − 1, i.e. L2N

aa ∆−1
= 0. Define X to be the set of all quasi-primary fields of weight

2∆ except N (T∆) in whose mode expansion appear Virasoro-monomials up to degree ∆−1;
in particular, L−4L

∆−2
−2 is such a monomial. For example, N (∂2T,N (T∆−2)) ∈ X . Then the

singular vector associated to the null-field satisfies the identity

Naa ∆−1
=

(
(N (W a,W a))−2∆ + α

(
N (T∆)

)
−2∆

+
∑

X∈X

kXX−2∆

)
Ω

∆−1
=

(
W a

−∆W
a
−∆ + αL∆

−2 + (βT∆ + βWW )L−4L
∆−2
−2

+ (γT∆ + γWW )L2
−3L

∆−3
−2 +

∑

X∈X

(
βXL−4L

∆−2
−2 + γXL

2
−3L

∆−3
−2

)
)

Ω .

Note that there are no vectors of length ∆ − 1 in L2L
2
−3L

∆−3
−2 Ω, so the γ-terms do not have

to be considered when L2 acts on Naa.
Now the assumption is made that α = 0. Then one can use the fact that L2N

aa = 0 to find
an explicit expression for the parameter

B :=
∑

X∈X

βX

in terms of the structure constant C
N (T∆−1)
W a,W a . (Fields F of weight 2∆ − 1 like N (∂T, T∆−2)

with one derivative term need not be taken into account since the structure constants CF
W a,W a

for such fields vanish, see [BFKNRV].) To determine B, one needs to know in which exact

way βWW is proportional to C
N (T∆−1)
W a,W a , so that βWW can be written as βWW = β ′

WWC
N (T∆−1)
W a,W a

with β ′
WW a nonzero constant whose exact value can be calculated to be β ′

WW = − (2∆−1)(∆−1)
2(4∆−3)

by equation (2.42). With this notation it follows that

0 = L2N
aa ∆−1

= L2

(
W a

−∆W
a
−∆ +

(
β ′
WWC

N (T∆−1)
W a,W a +B

)
L−4L

∆−2
−2

)
Ω

∆−1
=
([
L2,W

a
−∆W

a
−∆

]
+ 6

(
β ′
WWC

N (T∆−1)
W a,W a +B

)
L∆−1
−2

)
Ω

∆−1
=
([
L2,W

a
−∆

]
W a

−∆ + 6
(
β ′
WWC

N (T∆−1)
W a,W a +B

)
L∆−1
−2

)
Ω

∆−1
=
(
(2(∆ − 1) + ∆)W a

2−∆W
a
−∆ + 6

(
β ′
WWC

N (T∆−1)
W a,W a +B

)
L∆−1
−2

)
Ω

∆−1
=
(
(3∆ − 2)

[
W a

2−∆,W
a
−∆

]
+ 6

(
β ′
WWC

N (T∆−1)
W a,W a +B

)
L∆−1
−2

)
Ω

∆−1
=
(
(3∆ − 2)C

N (T∆−1)
W a,W a + 6

(
β ′
WWC

N (T∆−1)
W a,W a +B

))
L∆−1
−2 Ω ,

where it has been used in the last line that p∆,∆,2∆−2(2 − ∆,−∆) = 1. The above equation
holds if and only if

B = −
6∆2 − 8∆ + 3

6(4∆ − 3)
C

N (T∆−1)
W a,W a . (3.13)

55



Aspects of Indecomposable Vertex Operator Algebras

Before going on with the proof of the lemma, it shall now be explained how exactly the value
of βWW , which is the coefficient of the term L−4L

∆−2
−2 Ω of length ∆ − 1 in the expression

for N (W a,W a)−2∆Ω, is computed from (2.42). This kind of calculation will also be relevant
further on.
The only possibility for a term in the mode expansion of N (W a,W a) to be of length ∆ − 1
is that it is contributed from the field φk = N (T∆−1), which appears as ∂2N (T∆−1) in the
second sum in (2.42). All other terms in the expression for N (W a,W a) involve terms of
length ∆ − 2 or less.
To compute the contribution of terms of length ∆−1 from N (T∆−1) in N (W a,W a), only the
N ( · )-product part of N (T∆−1) has to be taken into account as again all other terms in the
corresponding version of (2.42) do not contribute at length ∆− 1. The nested N ( · )-product
is calculated recursively, and suppressing the dependence on the formal variable x in most
places, the first few steps are

N (2∆−4)
(
. . . N (6)

(
T,N (4)

(
T,N (2)(T, T )

))
. . .
)

= N (2∆−4)

(
. . . N (6)

(
T,N (4)

(
T,
∑

n∈Z x−n−4

{
1∑

k1=−∞

Lk1+nL−k1 +
∞∑

k1=2

L−k1+n

}))
. . .

)

= N (2∆−4)

(
. . . N (6)

(
T,
∑

n∈Z x−n−6

{
3∑

k2=−∞

Lk2+n

[
1∑

k1=−∞

Lk1−k2L−k1 +

∞∑

k1=2

L−k1Lk1−k2

]

+

∞∑

k2=4

[
1∑

k1=−∞

Lk1−k2L−k1 +

∞∑

k1=2

L−k1Lk1−k2

]
Lk2+n

})
. . .

)

= N (2∆−4)

(
. . . N (8)

(
T,
∑

n∈Z x−n−8

{
5∑

k3=−∞

Lk3+n

[
3∑

k2=−∞

Lk2−k3

(
1∑

k1=−∞

Lk1−k2L−k1

+
∞∑

k1=2

L−k1Lk1−k2

)
+

∞∑

k2=4

(
1∑

k1=−∞

Lk1−k2L−k1 +
∞∑

k1=2

L−k1Lk1−k2

)
Lk2−k3

]

+

∞∑

k3=6

[
3∑

k2=−∞

Lk2−k3

(
1∑

k1=−∞

Lk1−k2L−k1 +

∞∑

k1=2

L−k1Lk1−k2

)

+

∞∑

k2=4

(
1∑

k1=−∞

Lk1−k2L−k1 +

∞∑

k1=2

L−k1Lk1−k2

)
Lk2−k3

]
Lk3+n

})
. . .

)
. (3.14)

Multiplying by the correct coefficient from (2.42), setting n = −2∆ in (3.14) and applying
the result to the vacuum Ω yields the contribution to N (W a,W a)−2∆Ω. All terms but those
in the last sum in (3.14) either vanish when applied to Ω or they involve at least one mode
Lm with m ≥ −1 such that these terms are of length ∆−2 or less by use of the commutation
relations for Lm. Thus by induction, the contribution at length ∆ − 1 is

∑

ki≥2i
i∈{1,...,∆−2}

L−k1Lk1−k2Lk2−k3 . . . Lk∆−3−k∆−2
Lk∆−2−2∆Ω (3.15)
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multiplied by (−n− 2∆ + 2)(−n− 2∆ + 1)|n=−2∆ = 2 (because of the second derivative in

∂2N (T∆−1)) and −1
4
C

N (T∆−1)
W a,W a

2∆−1
4∆−3

(which is the coefficient of ∂2N (T∆−1) in the expression
for N (W a,W a) in (2.42)). Counting the nonvanishing terms in (3.15) an rearranging it by
use of the commutation relations by which only irrelevant contributions of length less than
∆ − 1 are modified, one thus arrives at

N (W a,W a)−2∆Ω = βWWL−4L
∆−2
−2 Ω + γWWL

2
−3L

∆−3
−2 Ω

with

βWW = 2 ·

(
−

1

4
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3

)
· (∆ − 1) , (3.16a)

γWW = 2 ·

(
−

1

4
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3

)
·

(
(∆ − 2)2 −

1

2
(∆ − 2)(∆ − 3)

)
. (3.16b)

Now the proof of the lemma is continued. The idea to prove that α 6= 0 is to find another
way to explicitly compute the value of B that does not agree with the one given in (3.13).
For this it is convenient to express the parameters β = βWW +B and γ = γWW +

∑
X∈X γX

in terms of the structure constant C
N (T∆−1)
W a,W a and B alone: βWW and γWW are given in (3.16)

and from the fact that each field X in X is quasi-primary (which means L1X−2∆Ω
∆−1
= 0

among other things) it follows that

0
∆−1
= L1

∑

X∈X

kXX−2∆Ω

∆−1
= L1

(
BL−4L

∆−2
−2 +

∑

X∈X

γXL
2
−3L

∆−3
−2

)
Ω

∆−1
=

(
5BL−3L

∆−2
−2 + 8

∑

X∈X

γXL−3L
∆−2
−2

)
Ω

and thus
∑

X∈X γX = −5
8
B. This yields

β = −
1

2

2∆ − 1

4∆ − 3
C

N (T∆−1)
W a,W a (∆ − 1) +B , (3.17a)

γ = −
1

2

2∆ − 1

4∆ − 3
C

N (T∆−1)
W a,W a

(
(∆ − 2)2 −

1

2
(∆ − 2)(∆ − 3)

)
−

5

8
B . (3.17b)

These relations will be made use of without explicit mention in the following.
The vector Naa

−2∆Ω is already completely known at length ∆ − 1 up to the structure con-

stant C
N (T∆−1)
W a,W a , and the same situation will now be achieved for the vector Naa

−2∆−1Ω as an
intermediate step. For this, the relation

[Lm, φn] = ((h− 1)m− n)φm+n
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with m ∈ {±1, 0} for a quasi-primary field φ of weight h is employed. On the one hand, at
length ∆ − 1 the term [L−1, N

aa
−2∆]Ω = L−1N

aa is equal to

L−1

(
W a

−∆W
a
−∆ + βL−4L

∆−2
−2 + γL2

−3L
∆−3
−2

)
Ω

∆−1
=
(
W a

−∆

[
L−1,W

a
−∆

]
+
[
L−1,W

a
−∆

]
W a

−∆ + 3βL−5L
∆−2
−2

+(∆ − 2)βL−4L−3L
∆−3
−2 + 4γL−4L−3L

∆−3
−2 + (∆ − 3)γL3

−3L
∆−4
−2

)
Ω

∆−1
=
(
2W a

−∆−1W
a
−∆ +

[
W a

−∆,W
a
−∆−1

]

+3βL−5L
∆−2
−2 + ((∆ − 2)β + 4γ)L−4L−3L

∆−3
−2 + (∆ − 3)γL3

−3L
∆−4
−2

)
Ω

∆−1
= C

N (T∆−1)
W a,W a p∆,∆,2∆−2(−∆,−∆ − 1)

(
(∆ − 1)L−5L

∆−2
−2

+(∆ − 1)(∆ − 2)L−4L−3L
∆−3
−2 +

(
∆ − 1

3

)
L3
−3L

∆−4
−2

)
Ω

+
(
3βL−5L

∆−2
−2 + ((∆ − 2)β + 4γ)L−4L−3L

∆−3
−2

)
Ω

+ (∆ − 3)γL3
−3L

∆−4
−2 Ω . (3.18)

But because of the quasi-primarity of the vector Naa, this must also be equal to Naa
−2∆−1Ω.

Of course the latter is not known explicitly, but at length ∆−1 the relevant parameters can
be inferred. Firstly, there is a contribution to Naa

−2∆−1Ω from N (W a,W a)−2∆−1Ω, and only
the terms of length ∆−1 will be of importance here. Secondly, the contribution of the fields
in X has to be taken into account. Computing this contribution exactly would require the
knowledge of the exact values of the parameters kX in

Naa ∆−1
= N (W a,W a)−2∆Ω +

∑

X∈X

kXX−2∆Ω .

These are not available, but all one really needs to know in this case are the coefficients
of the relevant monomials at length ∆ − 1. Denoting these coefficients by ξi, i ∈ {1, 2, 3},
(3.18) is also equal to

N (W a,W a)−2∆−1Ω +
(
ξ1L−5L

∆−2
−2 + ξ2L−4L−3L

∆−3
−2 + ξ3L

3
−3L

∆−4
−2

)
Ω

∆−1
= −

1

4
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(−n− 2∆ + 2)(−n− 2∆ + 1)

∣∣∣
n=−2∆−1

·

(
(∆ − 1)L−5L

∆−2
−2 + (∆ − 1)(∆ − 2)L−4L−3L

∆−3
−2 +

(
∆ − 1

3

)
L3
−3L

∆−4
−2

)
Ω

+
(
ξ1L−5L

∆−2
−2 + ξ2L−4L−3L

∆−3
−2 + ξ3L

3
−3L

∆−4
−2

)
Ω , (3.19)

where the coefficients are computed similarly to the way that led to (3.16). Now comparing
the coefficients of the vectors L−5L

∆−2
−2 Ω, L−4L−3L

∆−3
−2 Ω and L3

−3L
∆−4
−2 Ω in (3.18) and (3.19)

yields

ξ1 =
1

2

(
6B + C

N (T∆−1)
W a,W a (∆ − 1)

)
, (3.20a)
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ξ2 =
1

2

(
−9B + 2B∆ + C

N (T∆−1)
W a,W a

(
∆2 − 3∆ + 2

))
, (3.20b)

ξ3 =
1

24

(
45B − 15B∆ + C

N (T∆−1)
W a,W a

(
2∆3 − 12∆2 + 22∆ − 12

))
. (3.20c)

With this knowledge of both vectors Naa
−2∆Ω and Naa

−2∆−1Ω at length ∆ − 1, now one last
piece of information can be utilized in order to find another way to compute B. Until now,
only the quasi-primarity of the null-field has been used. But actually it is also primary,
i.e. the relation

[Lm, N
aa
n ] = ((2∆ − 1)m− n)Naa

m+n

holds for all integers m and n. In particular, this is true for m = 2 and n = −2∆ − 1, and
thus

0 = (6∆ − 1)Naa
−2∆+1Ω =

[
L2, N

aa
−2∆−1

]
Ω = L2N

aa
−2∆−1Ω

∆−1
= −

3

2
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(7(∆ − 1) + 6(∆ − 1)(∆ − 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω +

[
L2, N

(∆)(W a,W a)−2∆−1

]
Ω

∆−1
= −

3

2
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(7(∆ − 1) + 6(∆ − 1)(∆ − 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω +

[
L2,W

a
−∆W

a
−∆−1 +W a

−∆−1W
a
−∆

]
Ω

∆−1
= −

3

2
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(7(∆ − 1) + 6(∆ − 1)(∆ − 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω

+
([
L2,W

a
−∆

]
W a

−∆−1 +
[
L2,W

a
−∆−1

]
W a

−∆

)
Ω

∆−1
= −

3

2
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(7(∆ − 1) + 6(∆ − 1)(∆ − 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω + (2(∆ − 1) + ∆)

[
W a

−∆+2,W
a
−∆−1

]
Ω

+ (2(∆ − 1) + ∆ + 1)
[
W a

−∆+1,W
a
−∆

]
Ω

∆−1
= −

3

2
C

N (T∆−1)
W a,W a

2∆ − 1

4∆ − 3
(7(∆ − 1) + 6(∆ − 1)(∆ − 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω

+ (3∆ − 2)C
N (T∆−1)
W a,W a p∆,∆,2∆−2(2 − ∆,−∆ − 1)(∆ − 1)L−3L

∆−2
−2 Ω

+ (3∆ − 1)C
N (T∆−1)
W a,W a p∆,∆,2∆−2(1 − ∆,−∆)(∆ − 1)L−3L

∆−2
−2 Ω , (3.21)

where in this case the term N (∆)(W a,W a)−2∆−1Ω (using the notation introduced in (2.43))
does lead to a contribution at length ∆ − 1, in contrast to the situation in equation (3.19).
Now using (3.17) and (3.20) in (3.21) yields the following alternate expression for the pa-
rameter B:

B = −
12∆2 − 18∆ + 7

4(4∆ − 3)
C

N (T∆−1)
W a,W a .
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This can only be in agreement with (3.13) for C
N (T∆−1)
W a,W a = 0, which is not the case. Thus,

the assumption α = 0 leads to a contradiction and the lemma is proven.

Now all the conditions are satisfied to immediately carry over the steps in the proof of the
proposition in section 3.1, and it follows that the vertex operator algebra W(2, (2p− 1)×3)
is C2-cofinite for all p ∈ Z≥2. Consequently, Buhl’s theorem can be applied just as in the
special case ∆ = 3, and the three conditions (1), (2) and (3) given at the beginning of this
chapter are satisfied for all triplet algebras. Thus, the following main result is proven.

Theorem. For all p ∈ Z≥2, the nonmeromorphic operator product expansion exists and
is associative for the vertex operator algebra W(2, (2p − 1)×3). Furthermore, all these
vertex operator algebras are C2-cofinite.

The fact that all triplet algebras are C2-cofinite adds credibility to the conjecture that
“rationality” in the sense of Gaberdiel and Kausch, i.e. a finite set of generalized modules
closes under fusion, is equivalent to C2-cofiniteness. Indeed, from the C2-cofiniteness of
V2p−1 it follows that the Zhu algebra A(V2p−1) is finite-dimensional, and because of this
there are only finitely many equivalence classes of indecomposable A(V2p−1)-modules. This
together with the strong restrictions coming from the structure of W-algebras suggests that
the assumedly equivalent properties both hold for all triplet algebras.
The above theorem is also interesting for a different reason. Not only the triplet algebra
at c = −2 but also all other triplet algebras are known to have indecomposable modules
with respect to the action of L0, and thus they constitute the vacuum sectors of a family of
logarithmic conformal field theories. The proof that they are all C2-cofinite and satisfy the
associated finiteness conditions shows that such congenial properties may just as well appear
in the general framework of logarithmic conformal field theory, not only in a few exotic cases.
Likewise, the precise statement on nonmeromorphic operator product expansion contributes
to the program to formulate and treat logarithmic conformal field theory rigorously.

An upper bound on dim A(V∆). As another application of the results above, one can
obtain an upper bound on the dimension of the Zhu algebra A(V∆) for any triplet algebra
V∆. The strategy is to use the proposition in section 2.2, i.e. to find a minimal subspace
Ṽ∆ ⊂ V∆ such that V∆ = C2(V∆) + Ṽ∆. Then the dimension of Ṽ∆ dominates the dimension
of the Zhu algebra.

From the existence of the singular vectors Nab and from the lemma above it follows that for
all a, b ∈ {±1, 0} and ∆ ∈ (Z+ + 1),

(
W a

−∆W
b
−∆ + αL∆

−2

)
Ω ∈ C2(V∆) (3.22)

and
L2∆
−2Ω ∈ C2(V∆) ,

(
W a

−∆

)3
Ω ∈ C2(V∆) .

With this information one can argue that

{
Lk−2Ω, L

l
−2W

a
−∆Ω | k ∈ {0, . . . , 2∆ − 1}, l ∈ {0, . . . ,∆ − 1}, a ∈ {±1, 0}

}
(3.23)

60



3. Properties of the Triplet Algebras

is a generating system for Ṽ∆. Note that this is a more precise statement than was necessary
above to prove that all triplet algebras are C2-cofinite. To verify the claim that (3.23) is a
generating system, one can first observe that the vectors L∆+i

−2 W a
−∆Ω, i ∈ N, are in C2(V∆)

because of ((W a
−∆)2 + αL∆

−2)Ω ∈ C2(V∆), (W a
−∆)3Ω ∈ C2(V∆) and the fact that this space is

invariant under the action of both L−2 and W a
−∆. Furthermore, the elements Lj−2(W

a
−∆)2Ω,

j ∈ N, need not be taken as part of a generating system for Ṽ∆ since by acting on (3.22) with
Lj−2, one finds that these elements can be written as a linear combination of some vector in

C2(V∆) and αL∆+j
−2 Ω, and the latter is already accounted for in (3.23).

From (3.23) and the proposition in section 2.2 it follows that

dimA(V∆) ≤ 5∆ for all ∆ ∈ (2Z+ + 1) . (3.24)

At least for ∆ = 3, the dimension of the Zhu algebra is strictly lower than this bound as
Abe proved in [A] that dimA(V3) = 11 by explicitly calculating relations between elements
of the Zhu algebra. Such calculations are quite laborious and would have to be done for each
triplet algebra separately, so the upper bounds in (3.24) are certainly of interest.
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Chapter 4

Mode Algebras in Logarithmic

Conformal Field Theory

In this chapter some aspects of the possibility of realizing “logarithmic” properties in two-
dimensional conformal field theory at the most fundamental algebraic level are investigated.
Such a structure may be called a “Jordan vertex operator algebra” as indecomposability is
among the defining characteristics of logarithmic conformal field theory. The difficulties of
establishing such a hypothetical structure are discussed and a certain concrete logarithmic
model (the θ+θ−-system) is studied in detail, seeking to identify generic features to under-
stand logarithmic conformal field theory in general. In particular, the commutation relations
between Virasoro modes Lm and modes Ω̃n,a pertaining to the logarithmic partner field of
the identity operator are successfully obtained in various ways. On the other hand, the
commutator [Ω̃m,a, Ω̃n,b] of two logarithmic modes resists a complete and rigorous treatment
but nevertheless, an ansatz for it is proposed and thoroughly motivated.

In the discussion of P (z)-tensor product theory in section 2.3 the notions of generalized
module and logarithmic intertwining operator were introduced. With these notions Huang,
Lepowsky and Zhang were able to treat aspects of logarithmic conformal field theory in the
language of vertex operator algebras. Their approach places generalized, logarithmic features
at the level of modules, while the definition of the fundamental structure, the vertex operator
algebra, is left unchanged.
On the other hand, all logarithmic conformal models I am aware of share the property that
the vacuum vector Ω has at least one logarithmic partner, i.e. Ω is an element of a nontrivial
Jordan cell with respect to the action of L0. By the operator-state-correspondence, there is
also a logarithmic partner to the identity operator which typically has a logarithmic depen-
dence on its variables. Since the vacuum vector is part of the structure of a vertex operator
algebra but not necessarily of its modules, the question arises whether it is possible to modify
or generalize the definition of a vertex operator algebra to treat logarithmic conformal field
theory already at this fundamental level.

Jordan vertex operator algebras? In order to explore the possibility of a Jordan vertex
operator algebra J , the formal logarithmic variable log x introduced in section 2.3 is used.
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It appears that most of the axioms of a vertex operator algebra as presented in section 2.1
are naturally generalized to incorporate properties of logarithmic conformal field theory: J
is Z-graded by generalized L0-eigenvalues; the vertex operator is a map

J −→ (EndJ)[log x][[x, x−1]] ,

v 7−→ Y (v, x, log x) =
∑

m∈Z∑a∈N x−m−1(log x)avm,a ;

there are d+1 ∈ Z+ vectors Ω(i) that span a Jordan cell with respect to L0 with i ∈ {0, . . . , d}
and the generalized vacuum property associates Ω = Ω(0) to the identity operator 1J ; the
truncation condition (2.7) is extended by the additional condition um,av = 0 for a ≫ 0
and arbitrary m ∈ Z; the creation property (2.9) is modified to Y (v, x, log x)Ω ∈ J [[x]] and
Y (v, x, log x)Ω|x=0 = v; the operator T (x) = Y (ω, x) associated to the conformal vector
ω has no logarithmic dependence (this choice is motivated by the known operator product
expansion of T (x) with itself in general logarithmic models and the concrete realization in the
θ+θ−-system discussed below) and its modes give a representation of the Virasoro algebra;
the L−1-derivative property is kept in the same form as in (2.13) but the natural definition
(2.48) is employed on the left-hand side.
The difficulty in establishing the definition of a Jordan vertex operator algebra is to find an
appropriate generalization of the Jacobi identity (2.11). The naive ansatz

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1, log x1)Y (v, x2, log x2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y (v, x2, log x2)Y (u, x1, log x1)

?
= x−1

2 δ

(
x1 − x0

x2

)
Y (Y (u, x0, log x0)v, x2, log x2) (4.1)

quickly leads to consequences that are not consistent with known logarithmic models. For
example, all modes um,a with a > 0 associated to nontrivial powers of the formal logarithmic
variable commute with all other modes. The reason for this is that the left-hand side of the
above relation involves log x1 but not log x0, while the right-hand side involves log x0 but
not log x1. Explicitly, the operation Resx0 applied to a mode expansion of (4.1) yields that∑

m,n∈Z∑a,b∈N x−m−1
1 x−n−1

2 (log x1)
a(log x2)

b[um,a, vn,b] would be equal to

∑

m,n∈Z ∑a,b∈N∑k∈N(mk)x−m−1
1 x−n−1

2 (log x0)
a(log x2)

b (uk,av)m+n−k,b .

But by comparing coefficients of both expressions one finds that [um,a, vn,b] = 0 for all a > 0.
This is not in agreement with known logarithmic models where logarithmic modes can have
nontrivial commutation relations; an example of such a case will be given below. Because
of this failure, the ansatz (4.1) must be discarded.
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Another possibility to enhance the Jacobi identity one might think of is to include factors
like

(log x0)
−1δ

(
log x1 − log x2

log x0

)
or (log x0)

−1δ

(
log x1 + log(1 − x2/x1)

log x0

)
(4.2)

in (4.1) in analogy to the factors of the form x−1
0 δ(x1−x2

x0
) in the original Jacobi identity. Note

the difference between the above two δ-function expressions: the first involves the formal
variables log x1, log x2 and log x0, the second involves the formal variables log x1, log x0,
x1 and x2. The difference is that log x2 cannot be expanded into a series because it is an
independent formal variable, while log(1 − x2/x1) is a series in x1 and x2 defined by the
general relation

log(x+ y) = log x+ log(1 + y/x) = log x+
∑

i∈Z+

(−1)i−1

i
x−iyi . (4.3)

But adding factors like in (4.2) to the ansatz (4.1) is not a successful generalization as
well because the case of an ordinary vertex operator algebra (which is the special case of a
logarithmic genus-zero conformal field theory with trivial Jordan cells) cannot be recovered
from it. Indeed, applying the operation Resx0Reslog x0 and comparing coefficients in the case
that u and v are linear combinations of ordinary eigenvectors of L0 yields the commutator
[um, vn] on the left-hand side, while the right-hand side vanishes since there are no negative
powers of the formal variable log x0. As this result does not agree with relation (2.20) in
the case of ordinary vertex operator algebras, extending the Jacobi identity by terms like in
(4.2) is not the right thing to do as well.
Instead of adding further δ-functions to the ansatz (4.1) one could try to eliminate its in-
consistencies by changing the logarithmic arguments of the vertex operators as suggested
by the δ-functions that are already present. As illustrated by its many applications in
chapter 2, a δ-function “virtually” acts by equating formal variables such that its argu-
ment is equal to 1, see e.g. (2.3). This might suggest that in (4.1) for example the term
x−1

0 δ(x1−x2

x0
)Y (u, x1, log x1)Y (v, x2, log x2) should be changed to x−1

0 δ(x1−x2

x0
)Y (u, x1, log(x0 +

x2))Y (v, x2, log(−x0 + x1)). But modifying all three terms in (4.1) this way immediately
leads to the same problem as before, i.e. logarithmic variables do not match on both sides.
Because of this one may propose the ansatz

x−1
0 δ

(
x1 − x2

x0

)
Y (u, x1, log x1)Y (v, x2, log x2)

− x−1
0 δ

(
x2 − x1

−x0

)
Y (v, x2, log x2)Y (u, x1, log x1)

?
= x−1

2 δ

(
x1 − x0

x2

)
Y (Y (u, x0, log(−x2 + x1))v, x2, log(x1 − x0)) (4.4)

where only the right-hand side was changed. This also seems plausible since at least when
extracting commutation relations from the Jacobi identity, the crucial information is found
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on the right-hand side while the left-hand side simply gives the commutator as discussed
starting on page 17. Applying Resx0 to the left-hand side of (4.4) gives a generating function
for the commutators [um,a, vn,b], while on the right-hand side after a computation using (4.3)
and the relation1

(− log(1 − x))k = k!

∞∑

nk=k

nk−1∑

nk−1=k−1

. . .

n2−1∑

n1=1

xnk

nknk−1 . . . n1
(4.5)

several times it yields

∑

m,n∈Z ∑a,b∈N ∑

i,j,k∈N ∑r∈N≥i

∑

s∈N≥k

r−1∑

mi−1=i−1

. . .

m2−1∑

m1=1

s−1∑

nk−1=k−1

. . .

n2−1∑

n1=1

i!k!

mimi−1 . . .m1nknk−1 . . . n1

·

(
m+ r − s

j

)(
a

i

)(
b

k

)
x−m−1

1 x−n−1
2 (log(−x2))

a−i(log x1)
b−k(uj+sv)m+n−j−s . (4.6)

For fixed indices m,n, a, b the above sums over i, j, k, s are all finite when applied to an
arbitrary element in J by the generalized truncation property, but the sum over r is infinite
and thus the above expression is not in J but in its algebraic completion J . This does
certainly not speak in favor of ansatz (4.4), but one might still be inclined not to discard
it right away, as a logarithmic generalization of vertex operator algebras might have some
unexpected properties like this. What really disqualifies the above ansatz is the fact that
it leads to vanishing commutation relations between the logarithmic partners Ω(p) of the
vacuum, p ∈ {1, . . . , d}, in many cases. To see this, one considers possible Jordan vertex
operator algebras of the form J =

∐
n∈N J[n] such that if u = Ω(p) and v = Ω(q) are substituted

into (4.6), the term Ω
(p)
j+s,aΩ

(q) identically vanishes for all j, s ∈ N as the result would have
to be of negative weight. Again, there are logarithmic models in which such commutators
do not vanish and thus (4.4) is not the sought-after generalization.
Other ansätze similar to those above or motivated by alternate approaches to vertex operator
algebras are plagued by related difficulties, and I have not been able to find a consistent
definition of a Jordan vertex operator algebra. Before generally withdrawing to the position
that logarithmic conformal field theory cannot be described on the vacuum level in terms of a
vertex operator algebraic structure, the possibility remains that a detailed study of concrete
physical models displaying logarithmic features may reveal a structure that suggests a general
treatment. Such a concrete model will now be investigated.

The θ+θ−-system. The probably most intensively studied logarithmic conformal field
theory is the one with central charge c = −2, see e.g. [Gu], [Kau2], [GK1], [FGN], [GK2],
[Kau3], [Fl3], [Gab2]. While the triplet algebra W(2, 3×3) at c = −2 discussed in section 3.1
involves three additional generating fields W a(x), there is also a pure Virasoro model with
indecomposable but reducible structure. It has a concrete realization in terms of the θ+θ−-
system.

1I found this relation in [Nag].
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The θ+θ−-system is defined by two fermionic fields θ+(z) and θ−(z) whose mode expansions
are

θ±(z) = θ±0 log z + ξ± +
∑

m6=0

θ±mz
−m , (4.7)

and all modes anti-commute except for the following cases:

{
ξ±, θ∓0

}
= ±1 ,

{
θ+
m, θ

−
n

}
=

1

m
δm+n,0 for all m 6= 0 . (4.8)

Note that there appears a logarithm in (4.7) and that all indices m and n are integer if not
stated otherwise. The modes ξ± and θ±m generate a Fock space by the free action on the
vacuum Ω, subject to the condition that θ±mΩ = 0 for all m ∈ N, and the normal-ordering is
given analogously to the definition in section 2.1,

: θ+(z)θ−(z) : = θ+(z)+θ
−(z) − θ−(z)θ+(z)−

=

(
ξ+ +

∑

m<0

θ+
mz

−m

)
θ−(z) − θ−(z)

(
θ+
0 log z +

∑

m>0

θ+
mz

−m

)
,

where the fermionic nature has been taken into account, and the terms ξ+ and θ+
0 log z are

naturally taken to be in the regular and singular part of θ+(z), respectively. The normal-
ordering of the fields translates to a normal-ordering of the modes given by

: θ+
mθ

−
n : =






+θ+
mθ

−
n for m ≤ n ,

−θ−n θ
+
m for m > n ,

and : θ±mξ
± : = −ξ±θ±m = − : ξ±θ±m : . (4.9)

The conformal symmetry is encoded in the θ+θ−-system such that the energy momentum
operator is realized as

T (z) = : (∂θ+(z))(∂θ−(z)) : .

Indeed, (4.8) and (4.9) can be used to express the modes Lm of T (z) =
∑

m∈Z Lmz−m−2 in
terms of the modes of θ±(z),

Lm =





m(θ−0 θ
+
m + θ−mθ

+
0 ) +

∑
a∈Z a(m− a)θ+

m−aθ
−
a for m 6= 0 ,

θ+
0 θ

−
0 −

∑
a∈Z a2 : θ+

−aθ
−
a : for m = 0 ,

(4.10)

and these modes satisfy the Virasoro algebra with central charge c = −2. To verify this one
easily checks that [Lm, Ln] = (m− n)Lm+n for m 6= −n, and for m = −n < 0 the following
calculation proves that c = −2: the commutator [Lm, L−m] is equal to

[
m(θ−0 θ

+
m + θ−mθ

+
0 ) +

∑

a∈Z a(m− a)θ+
m−aθ

−
a ,−m(θ−0 θ

+
−m + θ−−mθ

+
0 ) +

∑

b∈Z b(−m − b)θ+
−m−bθ

−
b

]

= −m2
(
θ−0 θ

+
mθ

−
0 θ

+
−m − θ−0 θ

+
−mθ

−
0 θ

+
m + θ−0 θ

+
mθ

−
−mθ

+
0 − θ−−mθ

+
0 θ

−
0 θ

+
m
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+θ−mθ
+
0 θ

−
0 θ

+
−m − θ−0 θ

+
−mθ

−
mθ

+
0 + θ−mθ

+
0 θ

−
−mθ

+
0 − θ−−mθ

+
0 θ

−
mθ

+
0

)

−
∑

b6=0

bm(b+m)
(
θ−0 θ

+
mθ

+
−m−bθ

−
b − θ−0 θ

+
mθ

+
−m−bθ

−
b + θ−mθ

+
0 θ

+
−m−bθ

−
b − θ+

−m−bθ
−
b θ

−
mθ

+
0

)

−
∑

a6=0

am(m− a)
(
θ+
m−aθ

−
a θ

−
0 θ

+
−m − θ−0 θ

+
−mθ

+
m−aθ

−
a + θ+

m−aθ
−
a θ

−
−mθ

+
0 − θ−−mθ

+
0 θ

+
m−aθ

−
a

)

−
∑

a6=0

∑

b6=0

ab(m− a)(b+m)(θ+
m−aθ

−
a θ

+
−m−bθ

−
b − θ+

m−aθ
−
a θ

+
−m−bθ

−
b )

= 2mθ+
0 θ

−
0 +

∑

b6=0

bm(b +m)
1

m
δb+m,0θ

−
0 θ

+
−m−b +

∑

a6=0

am(m− a)
1

m
δa,mθ

−
0 θ

+
m−a

−
∑

a6=0

∑

b6=0

ab(m− a)(b+m)

(
1

−b−m
δa,b+mθ

+
m−aθ

−
b −

1

m− a
δa,b+mθ

+
−b−mθ

+
a

)

= 2mθ+
0 θ

−
0 −

∑

b>0

b2(b+m)θ+
−bθ

−
b −

∑

b<0

b2(b+m)

(
−θ−b θ

+
−b −

1

b

)

+
∑

b>−m

b(b+m)2θ+
−b−mθ

−
b+m +

∑

b<−m

b(b+m)2

(
−θ−b+mθ

+
−b−m −

1

b+m

)

= 2mθ+
0 θ

−
0 −

∑

b>0

b2(b+m)θ+
−bθ

−
b +

∑

b<0

b2(b+m)θ−b θ
+
−b +

∑

b<0

b(b+m)

+
∑

b>0

(b−m)b2θ+
−bθ

−
b −

∑

b<0

(b−m)b2θ−b θ
+
−b −

∑

b<−m

b(b+m)

= 2mθ+
0 θ

−
0 − 2m

∑

b>0

b2θ+
−bθ

−
b + 2m

∑

b<0

b2θ−b θ
+
−b −

−m−1∑

b=1

b(b+m)

= 2mL0 −
1

6
(m3 −m) . (4.11)

In addition to the energy momentum operator, a field Ω̃(z) of generalized weight 0 can be
obtained by the fields θ±(z) as

Ω̃(z) =
∑

m∈Z∑a∈N Ω̃m,az
−m(log z)a = − : θ+(z)θ−(z) : ,

and its modes can be expressed in terms of the modes of θ±(z) by the relations

Ω̃m,0 = −





ξ+θ−m + θ+
mξ

− +
∑

a6=0,m θ
+
m−aθ

−
a for m 6= 0 ,

ξ+ξ− +
∑

a6=0 : θ+
−aθ

−
a : for m = 0 ,

(4.12a)

Ω̃m,1 = −





θ+
mθ

−
0 + θ+

0 θ
−
m for m 6= 0 ,

ξ+θ−0 − ξ−θ+
0 for m = 0 ,

(4.12b)

Ω̃m,2 = −δm,0θ
+
0 θ

−
0 . (4.12c)
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The vector Ω(1) ≡ Ω̃ = Ω̃(z)Ω|z=0 associated to the field Ω̃(z) spans a Jordan cell of rank
2 with respect to the operator L0 together with the vacuum Ω. This follows from (4.10),
(4.12), the anti-commutation relations (4.8) and the fact that the modes θ±m with m ∈ N
annihilate the vacuum:

L0Ω̃ =

(
θ+
0 θ

−
0 −

∑

a∈Z a2 : θ+
−aθ

−
a :

)
Ω̃(z)Ω

∣∣
z=0

= θ+
0 θ

−
0

(
−ξ+ξ−Ω

)
= −θ+

0 ξ
−Ω = +Ω .

Commutation relations involving logarithmic modes. Now that it has been shown
how the θ+θ−-system realizes a logarithmic conformal field theory where Ω̃(z) denotes the
logarithmic partner of the identity operator, the explicit expressions in terms of the modes
ξ± and θ±m can be used to study properties of the logarithmic fields. There is hope that such
results may also help to find a general formulation using vertex operator algebra methods
as discussed above.

As a first example, one can perform several calculations similar to (4.11) to obtain all com-

mutation relations involving one Virasoro mode Lm and one logarithmic mode Ω̃n,a. This
yields

[
Lm, Ω̃n,0

]
= −(m+ n)Ω̃m+n,0 + Ω̃m+n,1 + (m+ 1)δm+n,0 , (4.13a)

[
Lm, Ω̃n,1

]
= −(m+ n)Ω̃m+n,1 + 2Ω̃m+n,2 , (4.13b)

[
Lm, Ω̃n,2

]
= 0 . (4.13c)

The above result can be compared with what a computation starting at the naively gen-
eralized Jacobi identity (4.1) would end up with. It was argued above that (4.1) leads to
inconsistencies for generic vectors u and v; but in the special case that the vertex operator
associated to the first vector u does not involve logarithmic variables such problems do not
arise. In particular, for the choice u = ω and v = Ω̃ the operation Resx0 can be applied to
(4.1) without difficulties and a comparison of coefficients yields

[
Lm, Ω̃n,a

]
=
∑

l∈N (m+ 1

l

)(
Ll−1Ω̃

)

m+n−l,a

=
(
L−1Ω̃

)
m+n,a

+ (m+ 1)Ωm+n,a

= −(m+ n)Ω̃m+n,a + (a+ 1)Ω̃m+n,a+1 + (m+ 1)δm+n,−1δa,0 , (4.14)

where use was made of the L−1-derivative property d
dx
Y (Ω̃, x, log x) = Y (L−1Ω̃, x, log x)

and the relation L0Ω̃ = Ω. The short vertex operator algebraic calculation (4.14) exactly
reproduces all three relations (4.13) simultaneously, where the latter could only be obtained
by page-filling case differentiations. This may be interpreted as a hint that a Jordan vertex
operator algebra can actually be defined consistently such that its generalized Jacobi identity
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reduces to (4.1) in the case that only the second vertex operator (associated to v) may involve
logarithms. The above example illustrates that such a Jordan vertex operator algebra would
be a superior language to describe logarithmic conformal field theory, allowing to swiftly
and elegantly deriving the desired results.

On the other hand, a Jacobi identity for two logarithmic vertex operators is still out of
reach, so as a next step the commutation relations for the logarithmic modes Ω̃m,a will be

studied using the θ+θ−-system. But while the commutators [Lm, Ln] and [Lm, Ω̃n,a] follow
straight-forwardly from the anti-commutation relations (4.8) and the explicit expressions

(4.10) and (4.12) for the Virasoro and Ω̃-modes, respectively, the analogous computation of

the commutator [Ω̃m,a, Ω̃n,b] leads to unexpected properties: For some ranges of the indices

(m, a), (n, b) ∈ Z×N, the commutator of two logarithmic Ω̃-modes does not close. Indeed,
only in the following four cases the expressions for the commutators given in terms of the
modes θ±m and ξ± can be arranged such that all these modes can be collected into Ω̃-modes:

[
Ω̃0,2, Ω̃m,1

]
= −2Ω̃m,2 for all m ∈ Z ,

[
Ω̃m,1, Ω̃n,1

]
= −

2

n
Ω̃m+n,2 for all m,n ∈ Z× ,

[
Ω̃0,1, Ω̃m,1

]
= +2Ω̃m,1 for all m ∈ Z× ,

[
Ω̃0,2, Ω̃m,0

]
= −2Ω̃m,1 − δm,0 for all m ∈ Z .

In all other cases, the right-hand side of such commutators cannot be written solely in terms
of Ω̃-modes given by (4.12) and constant summands. For example one finds that

[
Ω̃0,1, Ω̃0,0

]
=

[
ξ+θ−0 − ξ−θ+

0 , ξ
+ξ− +

∑

a>0

(θ+
−aθ

−
a − θ−−aθ

+
a )

]

= ξ+θ−0 ξ
+ξ− − ξ+ξ−ξ+θ−0 − ξ−θ+

0 ξ
+ξ− + ξ+ξ−ξ−θ+

0

+
∑

a>0

(ξ+θ−0 θ
+
−aθ

−
a − θ+

−aθ
−
a ξ

+θ−0 − ξ−θ+
0 θ

+
−aθ

−
a + θ+

−aθ
−
a ξ

−θ+
0

− ξ+θ−0 θ
−
−aθ

+
a + θ−−aθ

+
a ξ

+θ−0 + ξ−θ+
0 θ

−
−aθ

+
a − θ−−aθ

+
a ξ

−θ+
0 )

= ξ+(1 − ξ+θ−0 )ξ− + ξ−(−1 − ξ−θ+
0 )ξ+

= 2ξ+ξ− , (4.15)

and the product ξ+ξ− appears in (4.12) only in the mode Ω̃0,0, but the sum 2
∑

a6=0 : θ+
−aθ

−
a :,

which together with 2ξ+ξ− would give −2Ω̃0,0, is missing on the right-hand side above.
Similar mismatchings occur also in all other remaining cases; either a sum seems to be
missing in order to obtain full Ω̃-modes, or there are sums that cannot be collected into
expressions of such Ω̃-modes. An example for such a case is the commutator [Ω̃m,0, Ω̃0,0] for
m 6= 0, which can be calculated to be equal to

−
1

m
(ξ+θ−m − ξ−θ+

m) +
∑

a6=0,m

(
1

a−m
−

1

a

)
θ+
m−aθ

−
a .
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If the coefficients in the sum were equal to −1/m, the above expression would be exactly Ω̃m,0,

but as they are not, the commutator [Ω̃m,0, Ω̃0,0] cannot be written as a linear combination

of Ω̃-modes.
These results are alarmingly different from the general fact that for ordinary vertex operator
algebras the modes span a Lie algebra, see (2.20). Actually, this can be interpreted as another
manifestation of the difficulty to understand the connection between two logarithmic vertex
operators as opposed to one logarithmic vertex operator and one ordinary vertex operator.
(4.13) shows that commutation relations can be given for the modes in the latter case.

The operator product expansion Ω̃(z)Ω̃(w). In ordinary conformal field theory, the
commutation relations between modes of two fields are equivalent to the operator product
expansion of the two fields, so one may try to obtain information about the commutation re-
lations between the Ω̃-modes by studying the operator product expansion of Ω̃(z)Ω̃(w). This
product can be computed with the help of a variant of Wick’s theorem. To formulate this re-
sult the normal-ordered product of two logarithmic fields f(z) =

∑
m∈Z,a∈N z−m(log z)afm,a

and g(z) =
∑

n∈Z,b∈N z−n(log z)bgn,b is defined as

: f(z)g(w) : = f(z)+g(w) + g(w)f(z)− ,

where f(z)+ denotes the regular part and f(z)− denotes the singular part, using the following
generalization of the meromorphic case given by (2.35):

f(z)+ =
∑

m≤0

z−mfm,0 +
∑

m≤−1

∑

a>0

z−m(log z)afm,a ,

f(z)− =
∑

m>0

z−mfm,0 +
∑

m>−1

∑

a>0

z−m(log z)afm,a .

Proposition. For two collections φ1(z), . . . , φM(z) and ψ1(w), . . . , ψN(w) of logarithmic
fields, define the contraction of φi(z) and ψj(w) as [φiψj ] = [φi(z)−, ψ

j(w)] for all i ∈
{1, . . . ,M} and j ∈ {1, . . . , N}, where [ · , · ] denotes the superbracket. Suppose that the
following properties hold:

(i) [[φi(z)−, ψ
j(w)], fk(z)±] = 0 for f denoting either φ or ψ and for all i, j, k in their

respective domains;

(ii) [φi(z)±, ψ
j(w)±] = 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}.

Then the normal-ordered product : φ1(z) . . . φM(z) :: ψ1(w) . . . ψN (w) : is given by

min(M,N)∑

k=0

∑

i1<...<ik
j1 6=...6=jk

(−1)pi1,...,ik;j1...,jk [φi1ψj1] . . . [φikψjk ]

· : φ1(z) . . . φM(z)ψ1(w) . . . ψN (w) :(̂ı1,...,̂ık;̂1...,̂k) , (4.16)

where (−1)pi1,...,ik;j1...,jk is the sign obtained by commuting the contracted fields out of
the normal-ordered product, and the subscript (̂ı1, . . . , ı̂k; ̂1 . . . , ̂k) means that the fields
φi1(z), . . . , φik(z) and ψj1(w), . . . , ψjk(w) are not included in the product.
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This is the logarithmic generalization of Wick’s theorem as presented in the book [Kac]
of Kac, and given the notation for the normal-ordered product for logarithmic fields as
introduced above, the proof is exactly the same as the one given by Kac.
The above proposition can be used to compute the operator product expansion Ω̃(z)Ω̃(w) =
(− : θ+(z)θ−(z) :)(− : θ+(w)θ−(w) :). To verify the conditions (i) and (ii) for the fields
φ1(z) = ψ1(z) = θ+(z) and φ2(w) = ψ2(w) = θ−(w), one may first determine the contrac-
tions [θ±θ±], [θ+θ−] and [θ−θ+]:

[θ±θ±] =

{
θ± log z +

∑

m>0

θ±mz
−m, θ± log z + ξ±

∑

n 6=0

θ±nw
−n

}
= 0 ,

[θ+θ−] =

{
θ+
0 log z +

∑

m>0

θ+
mz

−m, θ−0 logw + ξ−
∑

n 6=0

θ−nw
−n

}

=
∑

m>0

∑

n 6=0

1

m
δm+n,0z

−mw−n − log z = − log
(
1 −

w

z

)
− log z = − log(z − w) ,

[θ−θ+] = + log(z − w) .

Then condition (i) is satisfied because the contraction [θ+(z)−, θ
−(w)] = − log(z − w) com-

mutes with everything, and condition (ii) follows from

{θ+(z)+, θ
−(w)+} =

{
ξ+ +

∑

m≤0

θ+
mz

−m, ξ− +
∑

n≤0

θ+
nw

−n

}
= {θ+

0 , ξ
−} + {ξ+, θ−0 } = 0 ,

{θ+(z)−, θ
−(w)−} =

{
θ+
0 log z +

∑

m>0

θ+
mz

−m, θ−0 logw +
∑

n>0

θ−nw
−n

}
= 0 .

As a consequence, (4.16) can be applied to yield

Ω̃(z)Ω̃(w) = : θ+(z)θ−(z) :: θ+(w)θ−(w) :

= : θ+(z)θ−(z)θ+(w)θ−(w) : −[θ+θ+] : θ−(z)θ−(w) : +[θ+θ−] : θ−(z)θ+(w) :

+ [θ−θ+] : θ+(z)θ−(w) : −[θ−θ−] : θ+(z)θ+(w) : +[θ+θ−][θ−θ+]

− [θ+θ+][θ−θ−]

= : θ+(z)θ−(z)θ+(w)θ−(w) : +[θ+θ−] : θ−(z)θ+(w) : +[θ−θ+] : θ+(z)θ−(w) :

+ [θ+θ−][θ−θ+] .

The remaining normal-ordered products can be expressed as

: θ+(z)θ−(w) : =
∑

k∈N 1

k!
: (∂kθ+(w))θ−(w) : (z − w)k

= + : θ+(w)θ−(w) : + (terms regular in (z − w)) ,

: θ−(z)θ+(w) : = − : θ+(w)θ−(w) : + (terms regular in (z − w)) ,
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such that one arrives at the following operator product expansion for the logarithmic partner
of the identity:

Ω̃(z)Ω̃(w) = −(log(z − w))2 − 2 log(z − w)Ω̃(w) + (terms regular in (z − w)) . (4.17)

Commutation relations from the operator product expansion. The way commuta-
tion relations for modes are often obtained in conformal field theory is to compute contour
integrals of the corresponding operator product expansion, but this method can certainly
not be directly applied to the logarithmic case because the contour integral of a logarithm is
simply not defined. Given two logarithmic fields, in order to infer the commutators of their
modes from their operator product expansion without having to compute contour integrals
or (formal) residues, one can compare coefficients of monomials of all the variables on both
sides of the operator product expansion. To do this one has to consider the non-normal-
ordered part of the product of the two fields on one side of the equation, while on the other
side the singular part of the expansion in the difference of the variables has to be considered.
This method in particular circumvents the problem of having to deal with ill-defined residues
of logarithms, and it is an application of the alternate point of view on operator product
expansions given by (2.36). Following the treatment presented in section 2.3, the logarithm
log z is interpreted as a variable formally independent of z.

To get to know this method in detail it will first be applied to two examples that are already
well-understood, such that its application to the case of the commutators [Ω̃m,a, Ω̃n,b] will be
carried out more easily later on.
The first example is the operator product expansion of the Virasoro field T (z) with itself.
Let |z| > |w| as a relation between nonzero complex numbers. Alternatively, all variables
can also be considered as formal together with the convention that any function of (z−w) is
always expanded into a series with only finitely many negative powers of the second variable
w in the difference. Then the operator product expansion is given by

T (z)T (w) ∼
c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

(z − w)
∂T (w) , (4.18)

using the sloppy notation explained in section 2.1. The left-hand side can be written as

T (z)T (w) = T (z)+T (w) + T (z)−T (w)

= T (z)+T (w) + T (w)T (z)− + [T (z)−, T (w)]

= : T (z)T (w) : +
∑

m>−2

∑

n∈Z z−m−2w−n−2 [Lm, Ln] . (4.19)

On the other hand, the singular part of the right-hand side is

c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

(z − w)
∂T (w)

=
∑

m∈N c2(−4

m

)
z−4−m(−w)m +

∑

m∈N∑n∈Z 2

(
−2

m

)
z−2−m(−w)mw−n−2Ln
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+
∑

m∈N∑n∈Z(−1

m

)
(−n− 2)z−1−m(−w)mw−n−3Ln

=
∑

m≥2

c

2

(
−4

m− 2

)
(−1)mz−m−2wm−2 +

∑

m∈N∑n∈Z 2(m+ 1)z−m−2w−n−2Lm+n

+
∑

m≥−1

∑

n∈Z(−m− n− 2)z−m−2w−n−2Lm+n

=
∑

m≥2

c

2

(
m+ 1

3

)
z−m−2wm−2 +

∑

m≥−1

∑

n∈Z(m− n)z−m−2w−n−2Lm+n , (4.20)

where the identity
(
k
l

)
= (−1)l

(
−k+l−1

l

)
for k ∈ R<0 was used in the last step. The first sum

in the last line can be extended to the domain {m ≥ −1} because ±1 and 0 are exactly the
roots of m3 −m, so that comparison with (4.19) yields the Virasoro algebra

[Lm, Ln] = (m− n)Ln+m +
c

12
(m3 −m)δm+n,0 for all m ∈ Z≥−1 and n ∈ Z . (4.21)

To arrive at this result also for the case m < −1 and thus obtain the full Virasoro algebra,
let now |w| > |z|. According to (2.36) the left-hand side of the operator product expansion
is now

T (w)T (z) = : T (z)T (w) : +
∑

m≤−2

∑

n∈Z z−m−2w−n−2[Ln, Lm] , (4.22)

where the domain of one sum is different from the one in equation (4.19). Instead of repeating
the calculation in (4.20), the right-hand side of the operator product expansion has to be
expanded in the domain |w| > |z| – or in a more algebraic language: applied to some vector
in the underlying vertex operator algebra V one now considers the expansion of an element
of U(Vir)V [[w]][w−1, (z − w)−1] in U(Vir)V ((w))((z)) instead of U(Vir)V ((z))((w)). Effectively
this means that z and −w have to be permuted before doing the binomial expansion:

c/2

(−w + z)4
+

2

(−w + z)2
T (w) +

1

(−w + z)
∂T (w)

=
∑

m∈N c2(−4

m

)
(−w)−4−mzm +

∑

m∈N∑n∈Z 2

(
−2

m

)
(−w)−2−mzmw−n−2Ln

+
∑

m∈N∑n∈Z(−1

m

)
(−n− 2)(−w)−1−mzmw−n−3Ln

=
∑

m≥2

c

2

(
−4

m− 2

)
(−1)mzm−2w−m−2 +

∑

m∈N∑n∈Z 2(m+ 1)zmw−m−n−4Ln

−
∑

m∈N∑n∈Z(−n− 2)zmw−m−n−4Ln

=
∑

m≥2

c

12
(m3 −m)zm−2w−m−2 +

∑

m≤−2

∑

n∈Z 2(−m− 1)z−m−2w−n−2Lm+n
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−
∑

m≤−2

∑

n∈Z(−m− n− 2)z−m−2w−n−2Lm+n

=
∑

m≥−1

c

12
(m3 −m)zm−2w−m−2 +

∑

m≤−2

∑

n∈Z(n−m)z−m−2w−n−2Lm+n

= −
∑

m≤−2

c

12
(m3 −m)z−m−2wm−2 +

∑

m≤−2

∑

n∈Z(n−m)z−m−2w−n−2Lm+n .

Comparing this result with equation (4.22) yields exactly those commutators that are still
missing in (4.21) for the full Virasoro algebra, so this standard result has now been obtained
by the method of comparing coefficients in the correct expansions. By computations very
similar to the one above one can extract all other commutation relations from operator
product expansions of fields in a meromorphic conformal field theory.

The second example is the case of the operator product expansion T (z)Ω̃(w) which involves
one ordinary quantum field and one logarithmic field, the logarithmic partner of the identity.
This operator product expansion can be computed using the θ+θ−-system, but it can also
be inferred using the general relation L0Ω̃ = Ω, and it is given by

T (z)Ω̃(w) ∼
1

(z − w)2
+

1

(z − w)
∂Ω̃(w) . (4.23)

Similarly to the first example, the left-hand side can be written as

T (z)Ω̃(w) = : T (z)Ω̃(w) : +
∑

m>−2

∑

n∈Z∑b∈N z−m−2w−n(logw)b
[
Lm, Ω̃n,b

]
, (4.24)

and in the appropriate expansion the singular part of the right-hand side is equal to

1

(z − w)2
+

1

(z − w)
∂Ω̃(w)

=
∑

m∈N(−2

m

)
z−2−m(−w)m +

∑

m∈N(−1

m

)
z−1−m(−w)m

∑

n∈Z∑b∈N ∂ (w−n(logw)b
)
Ω̃n,b

=
∑

m∈N(m+ 1)z−m−2wm +
∑

m∈N z−m−1wm
∑

n∈Z∑b∈N ((−n)(logw)b + b(logw)b−1
)
w−n−1Ω̃n,b

=
∑

m≥−1

(m+ 1)z−m−2wm +
∑

m≥−1

∑

n∈Z∑b∈N z−m−2w−n(logw)b(−m− n)Ω̃m+n,b

+
∑

m≥−1

∑

n∈Z∑b∈N z−m−2w−n(logw)b(b+ 1)Ω̃m+n,b+1 . (4.25)

Comparing (4.24) and (4.25) leads to
[
Lm, Ω̃n,b

]
= (m+ 1)δb,0δm+n,−1 − (m+ n)Ω̃m+n,b + (b+ 1)Ω̃m+n,b+1 (4.26)

for m ∈ Z≥−1. This is exactly the same result as the one obtained in (4.13) or (4.14),
which gives further credibility to the method used here and provides a third independent
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possibility to compute the commutators [Lm, Ω̃n,b]. Indeed, analogously to the case of two
ordinary quantum fields one can show that the relation (4.26) also holds true for m ∈ Z≤−2.
In view of the difficulties that arise in the case of two logarithmic fields discussed below, it
should be noted that the reason for the absence of such difficulties in the current case is that
the modes Lm in the commutator are not labeled by an additional logarithmic index a.

After the familiar operator product expansions T (z)T (w) and T (z)Ω̃(w) now the case of

Ω̃(z)Ω̃(w) is addressed which involves two logarithmic fields and serves as the prime example
in the task to study the possibility of Jordan vertex operator algebras. The operator product
expansion Ω̃(z)Ω̃(w) was derived in (4.17) and is given by

Ω̃(z)Ω̃(w) ∼ − (log(z − w))2 − 2 log(z − w)Ω̃(w) . (4.27)

Proceeding as before, the left-hand side can be written as

Ω̃(z)Ω̃(w) = Ω̃(z)+Ω̃(w) + Ω̃(z)−Ω̃(w)

= Ω̃(z)+Ω̃(w) + Ω̃(w)Ω̃(z)− +
[
Ω̃(z)−, Ω̃(w)

]

= : Ω̃(z)Ω̃(w) : +
∑

n∈Z∑b∈Nw−n(logw)b

[
∑

m≥1

z−mΩ̃m,0

+
∑

m≥0

∑

a>0

z−m(log z)aΩ̃m,a, Ω̃n,b

]

= : Ω̃(z)Ω̃(w) : +
∑

m≥1

∑

n∈Z∑b∈N z−mw−n(logw)b
[
Ω̃m,0, Ω̃n,b

]

+
∑

m≥0

∑

n∈Z∑a>0

∑

b∈N z−mw−n(log z)a(logw)b
[
Ω̃m,a, Ω̃n,b

]
, (4.28)

while the relevant part of the right-hand side can be expanded in z, w, log z and logw as

− (log(z − w))2 − 2 log(z − w)Ω̃(w)

= −

(
log z −

∑

i≥1

1

i
z−iwi

)2

− 2

(
log z −

∑

i≥1

1

i
z−iwi

)
∑

n∈Z∑b∈N Ω̃n,bw
−n(logw)b

= − (log z)2 + 2 log z
∑

i≥1

1

i
z−iwi − 2!

∞∑

n2=2

n2−1∑

n1=1

1

n1n2
z−n2wn2

−
∑

n∈Z∑b∈N 2Ω̃n,bw
−n log z(logw)b +

∑

i≥1

∑

n∈Z∑b∈N 2

i
Ω̃n,bz

−iwi−n(logw)b

= − (log z)2 +
∑

m≥1

2

m+ 1
z−mwm log z −

∑

m≥2

m−1∑

i=1

2

mi
z−mwm

−
∑

n∈Z∑b∈N 2Ω̃n,bw
−n log z(logw)b +

∑

m≥1

∑

n∈Z∑b∈N 2

m
Ω̃m+n,bz

−mw−n(logw)b (4.29)
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where use was made of the relation (4.5) in the second step. Comparing (4.28) and (4.29)
may at first suggests the following commutator:

[
Ω̃m,a, Ω̃n,b

]
?
= −δa,2δb,0δm,0δn,0 + δa,1δb,0δm+n,0(1 − δm,0)

2

m

− δa,0δb,0δm+n,0(1 − δm,1)

m−1∑

i=1

2

mi
− δa,1δm,02Ω̃n,b + δa,0

2

m
Ω̃m+n,b . (4.30)

Here in the third term on the right-hand side the factor (1 − δm,1) can be discarded if the

convention is imposed that
∑l

i=k si ≡ 0 for all l < k, i.e. one only counts in the positive
direction. This convention is employed in the following.
According to the above reasoning, the relation (4.30) can only be true for (m, a) ∈ (Z+ ×
{0})⊔ (N×Z+). But the right-hand side of (4.30) does not have the same symmetry as the
left-hand side: a permutation of the kind (m, a) ↔ (n, b) should have the same effect as a
mere multiplication by −1. Obviously this is not the case, and so one may expect that an
expansion in the domain |w| > |z| will lead to additional terms such that the full commutator
has the correct symmetry. This would be in contrast to the two cases considered before,
where “half of” the commutator was actually already the “full” commutator.
With this in mind, let now |w| > |z|. Then the left-hand side of the operator product
expansion is

Ω̃(w)Ω̃(z) = : Ω̃(z)Ω̃(w) : +
∑

m≤0

∑

n∈Z∑b∈N z−mw−n(logw)b
[
Ω̃n,b, Ω̃m,0

]

+
∑

m≤−1

∑

n∈Z∑a>0

∑

b∈N z−mw−n(log z)a(logw)b
[
Ω̃n,b, Ω̃m,a

]
. (4.31)

The right-hand side of the operator product expansion (4.27) now is somewhat problematic:
if one considers the variables z, w, log z and logw to be formally independent, there can be
no factors of logw other than those that appear in Ω̃(w) that can be compared with the
(logw)-powers in (4.31), since by definition log(z − w) = log z −

∑
i≥1w

iz−i/i. This would
lead to an inconsistency.
If one is prepared to partially abandon this point of view there are several possibilities: at
first one might be tempted to expand log(z − w) at z = 2w such that the quantity logw
appears,

log(z − w) = logw +
∑

i≥1

(−1)i−1

i

(
z − 2w

w

)i
.

But an expansion around z = 2w is certainly questionable under the assumption |w| > |z|.
What is more, because of the binomial expansion of (z − 2w)i, after some calculation this
approach for m < 0 and a = 0 leads to the term

∑

l∈N (−1)1−m2l

(l −m)

(
l −m

l

)
Ω̃m+n,b , (4.32)
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which should correspond the term δa,0
2
m

Ω̃m+n,b in the case of (m, a) ∈ (Z+ × {0}) ⊔ (N ×Z+). Apart from the fact that both terms have little resemblance, the sum in (4.32) is not
truncated when applied to any vector, leading to an element of the algebraic completion of
the space of states. All this suggests that another expansion for |w| > |z| must be found in
the logarithmic case.

Expansion for |w| > |z|, first attempt. Another possibility is to accept the equation
log(z − w) = log(−w + z) and then expand at z = 0 as in the cases of T (z)T (w) and

T (z)Ω̃(w). In the framework of vertex operator algebras, this equation may be interpreted
as log(−w+ z) = ιwz(log(z−w)), generalizing the expansion map ι to a logarithmic setting.
Of course, one immediately sees that it is the quantity log(−w) and not logw that appears.
From an analytic point of view, both quantities are equal modulo an integer and nonvanishing
multiple of iπ depending on the choice of the branch of the logarithm. But if one would
for example choose log(−w) = logw + iπ, this would introduce constant terms into the
commutator which would destroy the necessary symmetry. In correlators of the full conformal
field theory (and not just its chiral part) logarithms only appear in the form log |w|2, and
this might be taken as a hint that the identification of logw and log(−w) is acceptable in
some sense.2

For the moment I will disregard this problem and investigate how far one can get with the
identification of logw and log(−w). But if this mistake is made, one can just as well make
the mistake log(z − w) = log(w − z) such that the unwanted quantity log(−w) will not
appear by the definition of log(w − z). So one can calculate

− (log(w − z))2 − 2 log(w − z)Ω̃(w)

= −

(
logw −

∑

i≥1

1

i
ziw−i

)2

− 2

(
logw −

∑

i≥1

1

i
ziw−i

)
Ω̃(w)

= − (logw)2 + 2 logw
∑

i≥1

1

i
ziw−i −

∑

m≥2

m−1∑

i=1

2

mi
zmw−m

−
∑

n∈Z∑b∈N 2Ω̃n,bw
−n (logw)b+1 +

∑

i≥1

∑

n∈Z∑b∈N 2

i
Ω̃n,bz

iw−i−n (logw)b

= − (logw)2 −
∑

m≤−1

2

m
z−mwm logw +

∑

m≤−2

−m−1∑

i=1

2

mi
z−mwm

−
∑

n∈Z∑b∈N 2Ω̃n,bw
−n (logw)b+1 −

∑

m≤−1

∑

n∈Z∑b∈N 2

m
Ω̃m+n,bz

−mw−n (logw)b . (4.33)

Now comparing (4.31) and (4.33) yields an expression for the commutators in the domain

2But on the other hand, this identification is senseless in the existing rigorous formalism of vertex operator
algebras, see for example the discussion related to (3.21) in [HLZ]. There, the choice ζ = (2r + 1)πi with
r ∈ Z corresponds exactly to the map y 7→ −x in this context. This is the algebraic equivalent to the
analytic language of the choice of the r-th branch of the logarithm.
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(m, a) ∈ (Z≤0 × {0}) ⊔ (Z− × Z+):
[
Ω̃n,b, Ω̃m,a

]
?
= −δa,0δb,2δm,0δn,0 − δa,0δb,1δm+n,0 (1 − δm,0)

2

m

+ δa,0δb,0δm+n,0(1 − δm,−1)(1 − δm,0)

−m−1∑

i=1

2

mi

− δa,0(1 − δb,0)δm,02Ω̃n,b−1 − δa,0(1 − δm,0)
2

m
Ω̃m+n,b . (4.34)

Together with the commutator in (4.30) this gives for arbitrary m, n, a and b:
[
Ω̃m,a, Ω̃n,b

]
?
= (δa,0δb,2 − δa,2δb,0) δm,0δn,0 + (δa,1δb,0 + δa,0δb,1) (1 − δm,0)δm+n,0

2

m

−

(
m−1∑

i=1

1

i
+

−m−1∑

i=1

1

i

)
δa,0δb,0δm+n,0

2

m

− δm,0

(
δa,12Ω̃n,b − δa,0(1 − δb,0)2Ω̃n,b−1

)
+ δa,0(1 − δm,0)

2

m
Ω̃m+n,b . (4.35)

One may convince oneself that the terms in the first three lines on the right-hand side
of (4.35) are indeed antisymmetric with respect to the permutation (m, a) ↔ (n, b). In a
manner of speaking, these terms are the “correct generalization” of the restricted commutator
in (4.30). In contrast to this, the remaining two terms are not antisymmetric with respect
to the permutation (m, a) ↔ (n, b).
The following makes the problem with the above expansion even clearer: since there are
also nontrivial (log z)-powers in the second term in equation (4.31), but there are no such
(log z)-powers in equation (4.33) due to the formal expansion at z = 0, a comparison shows
that

for all (n, b) ∈ Z×N :
[
Ω̃n,b, Ω̃m,a

]
= 0 if (m, a) ∈ Z≤−1 × Z+ . (4.36)

Now let (m, a) = (0, 1). Then according to (4.30) or (4.35) and because of 2Ω̃n,b 6= 0, the

commutator [Ω̃m,a, Ω̃n,b] does not vanish for (n, b) ∈ Z≤−1 × Z+, in contradiction to (4.36).
As the proof of (4.30) for (m, a) ∈ (Z+ ×{0})⊔ (N×Z+) does not seem to be problematic,
the reason must be the wrong expansion of log(z − w) for |w| > |z|: logw is not equal to
log(−w) and also for |w| > |z| or (m, a) ∈ (Z≤0 × {0}) ⊔ (Z− × Z+), the expansion of the
right-hand side of the operator product expansion (4.27) must contain the quantity log z.
An incorrect expansion leads to contradictions like (4.36).

Expansion for |w| > |z|, second attempt. The last paragraph makes it clear that the
first attempt lacks sufficiently many (log z)-terms. As the first three terms in (4.35) seem to
be correct and as the expansion log(−w+ z) = ιwz(log(z−w)) also seems sensible, now only

the term 2 log(z − w)Ω̃(w) from the operator product expansion (4.27) shall be expanded
differently. To do this one may first note that

2 log(w − z)Ω̃(w) = 2 log(w − z)
∑

i∈N 1

i!
(w − z)i∂iΩ̃(z) ∼ 2 log(w − z)Ω̃(z) .
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Motivated by this, now Ω̃(w) is simply replaced by Ω̃(z) in the operator product expansion
in the case of |w| > |z|. Thus,

2 log(w − z)Ω̃(z) =
∑

m∈Z∑a∈N 2Ω̃m,az
−m (log z)a logw −

∑

i≥1

∑

m∈Z∑a∈N 2

i
Ω̃m,az

i−mw−i (log z)a

=
∑

m∈Z∑a∈N 2Ω̃m,az
−m (log z)a logw

−
∑

m∈Z∑n≥1

∑

a∈N 2

n
Ω̃m+n,az

−mw−n (log z)a . (4.37)

If this is compared to (4.31) without paying attention to the domains of the sums, one finds
that now the relevant terms

δb,1δn,0Ω̃m,a − δb,0(1 − δn,0)
2

n
Ω̃m+n,a

appear in the commutator [Ω̃n,b, Ω̃m,a] – and these are exactly those terms that by adding
them would antisymmetrize the last two terms in the commutator (4.30). Unfortunately,
the domains of the sums in (4.31) and (4.37) do not agree, and this leads to inconsistencies
as before.

No expansion for |w| > |z|? The above two failed attempts to correctly expand for
|w| > |z| could motivate all the terms that are sufficient for an antisymmetric commu-

tator [Ω̃m,a, Ω̃n,b] (without explicitly aiming at antisymmetry), but they could not do so
consistently. On the other hand, the derivation of the commutator (4.30) for (m, a) ∈
(Z+ ×{0})⊔ (N×Z+) appears to be correct. So one may propose to argue in the following
way: only one expansion (for |z| > |w|) has to be carried out as this already gives all the

crucial information on the commutator (as in the case of T (z)T (w) and T (z)Ω̃(w)). The
missing terms are simply added such that antisymmetry is warranted. This suggests that
the commutator should be

[
Ω̃m,a, Ω̃n,b

]
?
= (δa,0δb,2 − δa,2δb,0) δm,0δn,0 + (δa,1δb,0 + δa,0δb,1) (1 − δm,0)δm+n,0

2

m

−

(
m−1∑

i=1

1

i
+

−m−1∑

i=1

1

i

)
δa,0δb,0δm+n,0

2

m
− δa,1δm,02Ω̃n,b + δb,1δn,02Ω̃m,a

+ δa,0(1 − δm,0)
2

m
Ω̃m+n,b − δb,0(1 − δn,0)

2

n
Ω̃m+n,a , (4.38)

where only the minimal number of new terms was added to the commutator (4.30) to secure
antisymmetry; additional terms are not to be expected “because of symmetry”.

So (4.38) is my best proposal for the commutator of two logarithmic Ω̃-modes. At this point
it may only be viewed as well-motivated but certainly not proven as the correct expansion
for |w| > |z| remains unclear.
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It is interesting to note that the commutation relation (4.38) cannot be the bracket for a

Lie algebra spanned by the modes Ω̃m,a. Indeed, explicitly calculating [[Ω̃l,a, Ω̃m,b], Ω̃n,c] +

[[Ω̃m,b, Ω̃n,c], Ω̃l,a] + [[Ω̃n,c, Ω̃l,a], Ω̃m,b] with a computer algebra system, one finds that this
satisfies the ordinary Lie algebra Jacobi identity for arbitrary l,m, n ∈ Z only if the loga-
rithmic indices a, b, c are positive integers. An analogous statement is true for the double-
commutator [[Ll, Ω̃m,b], Ω̃n,c] and its cyclic permutations, using in addition the commutation

relation (4.14) for [Ll, Ω̃m,b]. On the other hand, the Jacobi identity

[[
Lm, Ln

]
, Ω̃l,a

]
+
[[
Ln, Ω̃l,a

]
, Lm

]
+
[[

Ω̃l,a, Lm

]
, Ln

]
= 0

is satisfied for all l,m, n ∈ Z and a ∈ N. This is yet another manifestation of the correctness
of (4.14). But conversely, the failure of the commutator (4.38) to satisfy the Jacobi identity
may not be reason enough for it to be disqualified, as not much is known on the algebras
of modes in logarithmic conformal field theory. In particular, at the present stage I am
not aware of a necessity for the modes to span a Lie algebra. In the general setting of
logarithmic conformal field theory it might simply not be true that all modes are elements
of a Lie algebra as in the case of ordinary vertex operator algebras – if at all it is possible
to treat logarithmic conformal field theory at the level of vertex operator algebras and not
only their modules in the first place; this remains an open question.
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