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Abstract

We prove the existence and associativity of the nonmeromorphic opera-
tor product expansion for an infinite family of vertex operator algebras, the
triplet W-algebras, using results from P (z)-tensor product theory. While
doing this, we also show that all these vertex operator algebras are C2-
cofinite.

1 Introduction
The notion of operator product expansion is fundamental in (quantum) field the-
ory; this notion was originally introduced by Wilson [W] and Kadanoff [Kad].
Physically, it describes the short distance behaviour of the product of two quan-
tum fields Φ1(z1) and Φ2(z2) when it is evaluated near the singularity at z1 = z2

and therefore encodes part of the local structure of the theory. The singularity
arises because the fields are distributions.

In particular, products of fields occur in correlation functions, which eventu-
ally allow to compute observables which can then be compared with experimental
data. One important advantage of operator product expansion, viewed as a tool
that expands the product of two fields into a series in which each summand
involves only one field, is that in this way n-point functions can be expressed
in terms of (n − 1)-point functions. This does not only tremendously facilitate
concrete computations, but it also structures the theory conceptually.
∗nils@th.physik.uni-bonn.de
†flohr@th.physik.uni-bonn.de
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While for generic spacetime dimensions a rigorous formulation and treatment
of operator product expansion is very difficult, in two-dimensional conformal
field theory the situation is much clearer (which is one of many reasons to study
conformal field theory, apart form its prominent role and successful application
in string theory and statistical physics).

A natural framework to deal with two-dimensional conformal field theory
is that of vertex operator algebras [FHL], [LL] and related concepts. In this
language, the operator product expansion of fields operating on a fixed module
(or representation) W for a vertex operator algebra V is expressed in the well-
known result

ι−1
12 〈w′, Y (u, x1)Y (v, x2)w〉 =

(
ι−1
20 〈w′, Y (Y (u, x0)v, x2)w〉

) ∣∣∣
x0=x1−x2

, (1.1)

where u, v ∈ V , w ∈ W , w′ ∈ W ′ =
∐

n∈Z(W[n])
∗, 〈 · , · 〉 denotes the natural

pairing betweenW ′ andW , and ιij denotes the operation of expanding a function
of xi and xj such that only finitely many negative powers of xj appear in the
expansion. In the physics literature, (1.1) usually is given in disguise as

Y (u, z1)Y (v, z2) ∼
N∑

n=0

Y (unv, z2)(z1 − z2)−n−1 ,

with some N ∈ N depending on u and v, where the iteration of two vertex
operators has been expanded, only the terms singular in (z1 − z2) are given,
and this relation should be implicitly understood to be used inside a correlation
function.

The operator product expansion (1.1) is referred to as meromorphic since
vertex operators acting on modules only involve integer powers of formal vari-
ables. But much of the interesting information in both physical and mathematical
theories is hidden in the way different modules “interact”. So instead of vertex
operators that always act from the underlying vertex operator algebra on a given
module, intertwining operators have to be considered, which mediate between
three (possibly distinct) modules and do not necessarily depend meromorphically
on their variables.

While the existence and associativity of the operator product expansion for
vertex operators Y ( · , x) · follows rather easily from the axioms, this is not the
case for intertwining operators Y( · , x) ·. In fact, it is a deep result of the intricate
P (z)-tensor product theory of Huang and Lepowsky developed in [HL1]–[HL3]
and [H1]. In [HLZ], Huang, Lepowsky and Zhang generalized their results such
that they could drop the condition of rationality and of semisimplicity of the
action of L0. In this way, a logarithmic dependence on the variables may appear
in intertwining operators and correlation functions. This also seems to be the
most successful rigorous treatment of logarithmic conformal field theory (e.g.,
see the review articles [G] and [F3]) so far.
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Now we recall some of the results of [HLZ] which are central for this work.
For any generalized module W of a vertex operator algebra V , its restricted dual
W ′ =

∐
n∈Z(W[n])

∗ can be endowed with a module structure, where the associated
vertex operator Y ′( · , x) · is defined by〈

Y ′(v, x)w′, w
〉

=
〈
w′, Y

(
exL1

(
−x−2

)L0 v, x−1
)
w
〉

for all v ∈ V , w ∈ W and w′ ∈ W ′. The pair (W ′, Y ′) is called the contragre-
dient module to (W,Y ), and the contravariant functor ( · )′ : (W,Y ) 7→ (W ′, Y ′)
is called the contragredient functor. (Here and in the following, we understand
a generalized module in the way a module is usually defined as for example in
[LL], except that the action of L0 may have a nilpotent part, i.e. the homoge-
neous subspaces W[n] = {w ∈ W | (L0 − n)mw = 0 for m � 0} are generalized
eigenspaces which are in particular assumed to be finite-dimensional. Sometimes
we call such a structure simply a module, omitting the attribute generalized.)
Also, let C denote an as yet unspecified full subcategory of the category whose
objects are all (generalized) modules of a given vertex operator algebra V , that
is closed under the contragredient functor.

In [HLZ], the authors use the P (z)-tensor product theory and carefully estab-
lish several conditions for the existence and associativity of the operator product
expansion for logarithmic intertwining operators. Instead of repeating all the
steps in their argument here, we refer to their paper for details and give only a
summary of the results concerning the operator product expansion. Indeed, once
an adequate subcategory C has been chosen, it follows from Proposition 5.13
and Theorems 6.1 to 6.3 in [HLZ] that if its objects satisfy the following three
conditions, then the nonmeromorphic operator product expansion exists and is
associative. These conditions are:

(i) All generalized V -modules in ob C are C1-cofinite, i.e. for all W ∈ ob C the
space W/C1(W ) is finite-dimensional with

C1(W ) = span

{
u−1w

∣∣∣ u ∈∐
n>0

V(n), w ∈ W

}
.

(ii) All generalized V -modules in ob C are quasi-finite-dimensional, i.e. for all
W ∈ ob C,

dim
∐
n<N

W[n] <∞ for all N ∈ R .

(iii) Every object which is a finitely generated lower-truncated generalized V -
module, except that it may have infinite-dimensional homogeneous sub-
spaces, is an object in C.
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Note that the basic structure in [HLZ] are conformal vertex algebras, which are
the same as vertex operator algebras except that they might not satisfy the
lower-truncation condition and their homogeneous subspaces may be infinite-
dimensional, and the same is true for their (generalized) modules. This is why the
objects may not be assumed to have finite-dimensional homogeneous subspaces
in condition (iii), but this must be proven.

The precise statement of the assertion is that under the above conditions, for
anyW1,W2,W3,W

′
4 andM in ob C, any P (z1)-intertwining map I1 of type

(
W4

W1 M

)
and any P (z2)-intertwining map I2 of type

(
M

W2 W3

)
, there is a P (z2)-intertwining

map I of type
(

W4

W1�P (z0)W2 W3

)
such that

〈w′4, I1(w1, z1)I2(w2, z2)w3〉 =
〈
w′4, I(w1�P (z0)w2, z2)w3

〉
(1.2)

for all w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4.

The formal similarity between (1.1) and (1.2) is obvious. The subtle point
is that Huang, Lepowsky and Zhang really proved that in the operator product
expansion of two logarithmic intertwining maps, there only appear powers of the
variables and their logarithms (with no further dependence on the variables),
while in the physics literature this is usually assumed without proof. With this
information one can then try to find differential equations that are solved by the
matrix elements of the product of two logarithmic intertwining maps at, say, z1

and z2. (Such differential equations always do exist by a theorem of Huang [H2],
[HLZ].) Expanding the solution in z0 = z1− z2 and z2, one arrives at the desired
operator product expansion, evaluated inside a matrix element – and only this
way is the operator product expansion well-defined.

In the present paper, we show that a certain family {W(2, (2p− 1)×3)}p≥2 of
W-algebras satisfies the above conditions. The vertex operator algebraW(2, 3×3)
is historically the first example of a “rational” logarithmic conformal field theory
in the sense of [GK], i.e. a finite set of its modules closes under fusion. From
the explicitly known characters for the vertex operator algebrasW(2, (2p− 1)×3)
it follows that they all display logarithmic features, see [F2]. This is one of the
motivations for us to study these W-algebras in more detail here.

The main work of our proof is to establish that each member of this family
is C2-cofinite, and from this fact condition (i) follows as we will show (the other
two conditions are easy to check). Thus, we do not only prove the existence
and associativity of the operator product expansion as described above for each
W(2, (2p − 1)×3), but we also establish one of the most useful and interesting
properties in the study of vertex operator algebras for these W-algebras.

Indeed, the condition of C2-cofiniteness was introduced by Zhu in [Z] and
subsequently used to prove the convergence and modular invariance of characters
for certain vertex operator algebras, and it is also related to his famous asso-
ciative algebra A(V ). But C2-cofiniteness is also important because of its close
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relation to rationality and regularity. It was proven by Li in [L] that any regular
vertex operator algebra is also C2-cofinite, and Abe, Buhl and Dong were able to
show in [ABD] that regularity is equivalent to rationality (in the sense of com-
plete reducibility of all modules) and C2-cofiniteness together for vertex operator
algebras of the form V =

∐
m∈N V(m) with V(0) = CΩ. Even a conjecture was

formulated that rationality (in the sense of complete reducibility of all modules),
regularity and C2-cofiniteness are equivalent properties for vertex operator alge-
bras, but W(2, 3×3) actually serves as a counter-example. This was known from
the work of Kausch, and Abe explicitly noted it in [A]. Nevertheless, one may
still conjecture the equivalence of C2-cofiniteness and “rationality” in the sense of
[GK], i.e. a finite set of modules closes under fusion.

Our proof that all triplet algebras V2p−1 = W(2, (2p − 1)×3) are C2-cofinite
adds credibility to this conjecture. Indeed, from the C2-cofiniteness of V2p−1

it follows that the Zhu algebra A(V2p−1) is finite-dimensional, and because of
this there are only finitely many equivalence classes of indecomposable A(V2p−1)-
modules. This together with the strong restrictions coming from the structure of
W-algebras suggests that the assumedly equivalent properties both hold for all
triplet algebras.

What makes this relationship particularly interesting is the fact that while
rationality explicitly concerns the modules for a vertex operator algebra, the C2-
cofiniteness condition can be studied solely in terms of the vertex operator algebra
itself, without reference to any modules.

The remaining structure of the present paper is as follows. In section 2 we
briefly recall a few basic properties concerning Cn-cofiniteness; we also explain
what we mean by a W-algebra in general and give some useful results. For stan-
dard notions concerning vertex operator algebras and for details about concepts
like (logarithmic) intertwining maps (which are in one-to-one correspondence to
(logarithmic) intertwining operators) or the P (z)-tensor product, we refer the
reader to the above-mentioned literature. Then, in section 3, we first prove our
result for the intimately known vertex operator algebraW(2, 3×3) and then show
how the respective arguments can be generalized to all members of the family
{W(2, (2p− 1)×3)}p≥2.

Acknowledgments : Nils Carqueville thanks Yi-Zhi Huang for explaining sev-
eral aspects of P (z)-tensor product theory to him. He also thanks Julia Voelskow
for taking interest in this work. Both authors thank James Lepowsky and Ge-
offrey Buhl for many valuable comments. The research of Michael Flohr is sup-
ported by the European Union Network HPRN-CT-2002-00325 (EUCLID).
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2 Preliminaries

The subspaces Cn(W )

In order to prove that the above conditions are satisfied for a given vertex operator
algebra V and appropriately chosen C, we first give two general properties of the
spaces Cn(W ), where W is any generalized V -module. For n ≥ 2, Cn(W ) is
defined as Cn(W ) = span{u−nw |u ∈ V, w ∈ W}, and for n = 1, we have
C1(W ) = span{u−1w |u ∈

∐
n>0 V(n), w ∈ W}. The spaceW is called Cn-cofinite

if dim(W/Cn(W )) <∞. Thus, because of the L−1-derivative property

Y
(
Lm
−1v, x

)
=

dm

dxm
Y (v, x) ,

it directly follows by comparing coefficients that

v−m−1 =
1

m
(L−1v)−m =

1

m!

(
Lm
−1v
)
−1

for all m ∈ Z+ , (2.1)

and hence every Cm-cofinite generalized V -module W is also Cn-cofinite for all
m ≥ n ≥ 1. For n = 1, this can also be expressed by writing

C1(W ) = span

{
u−mw

∣∣∣ u ∈∐
n>0

V(n), w ∈ W, m ∈ Z+

}
. (2.2)

Secondly, Cn(W ) is invariant under the action of vm for all v ∈ V and m ≤ 0.
To prove this, one only needs to look at the well-known commutation relation

vmu−nw = u−nvmw +
∑
i∈N

(
m

i

)
(viu)m−n−iw (2.3)

which follows from the Jacobi identity by performing the usual residue operation.
For m ≤ 0 the right-hand side of (2.3) obviously is an element of Cn(W ) because
of the relation (2.1), and so this must also be true for the left-hand side. The
result is

vmCn(W ) ⊂ Cn(W ) for all v ∈ V , m ∈ Z≤0 , n ∈ Z+ . (2.4)

Finally, another useful relation that follows from the Jacobi identity is

(umv)n =
∑
i∈N

(−1)i

(
m

i

)
um−ivn+i −

∑
i∈N

(−1)i+m

(
m

i

)
vm+n−iui . (2.5)
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W-algebras

A W-algebra of type W(2, h1, . . . , hm) is a vertex operator algebra which has a
generating set consisting of the vacuum Ω, the conformal vector ω of weight 2
and m additional primary vectors W i of weight hi, i ∈ {1, . . . ,m}. The vertex
operators or fields associated to these vectors are simple in the sense that they are
not normal-ordered products of other fields. Sometimes the term W-algebra is
also used to refer to the algebra of modes instead of the vertex operator algebra.

What will be of particular importance for us is the notion of quasi-primary
normal-ordered products which is due to Nahm [N]. When working with W-
algebras, we will mainly adopt his notation. For a more detailed exposition, see
for example [F1]. Here, only those relations are given that are needed for our
present purpose.

The usual normal-ordered product : φi(x)φj(y) : = φi(x)+φj(y) +φj(y)φi(x)−
of two quasi-primary fields φi and φj is not necessarily quasi-primary for x = y.
One of Nahm’s results is that it is always possible to add certain correction terms,
yielding a quasi-primary normal-ordered product denoted by N ( · , · ):

N (φj, ∂
nφi) =

n∑
r=0

(−1)r

(
n

r

)(
2(hi + hj + n− 1)

r

)−1(
2hi + n− 1

r

)
· ∂rN (hi+n+r)

(
φj, ∂

n−rφi

)
− (−1)n

∑
{k |h(ijk)≥1}

Ck
ij

(
h(ijk) + n− 1

n

)

·
(

2(hi + hj + n− 1)

n

)−1(
2hi + n− 1

h(ijk) + n

)(
σ(ijk)− 1

h(ijk)− 1

)−1

· ∂h(ijk)+nφk

(σ(ijk) + n)(h(ijk)− 1)
. (2.6)

Here, {φk}k is the family of quasi-primary fields of the correspondingW-algebra,
hk are their respective weights, h(ijk) := hi+hj−hk and σ(ijk) := hi+hj+hk−1.
The structure constants Ck

ij are defined such that
∑

l C
l
ijdlk = Cijk with

Cijk =
〈
Ω′, (φk)+hk(φi)−hk+hj(φj)−hjΩ

〉
and dij =

〈
Ω′, (φi)+hi(φj)−hjΩ

〉
,

and the N ( · )-product is defined by the relations

N (m)(φ, ψ)(x) =
∑
n∈Z

x−n−hφ−hψN (m)(φ, ψ)n ,

N (m)(φ, ψ)n =
∑
k<m

φn+kψ−k +
∑
k≥m

ψ−kφn+k (2.7)

for any m ∈ Z. The quasi-primary normal-ordered product of more than two
fields is defined recursively, for example N (φi, φj, φk) = N (φi,N (φj, φk)). If the
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product of a field with itself is considered the notation is simplified, for example
N (ψ, ψ) = N (ψ2).

Furthermore, in this notation the commutators of modes are given by

[
(φi)m, (φj)n

]
= dijδm+n,0

(
hi +m− 1

2hi − 1

)
+

∑
{k |h(ijk)≥1}

Ck
ij phi,hj ,hk(m,n)(φk)m+n

(2.8)
in terms of the polynomials

phi,hj ,hk(m,n) =
∑

r,s∈N

δr+s,h(ijk)−1a
r
ijk

(
m+ n− hk

r

)(
hi − n− 1

s

)
with

ar
ijk =

(
2hk + r − 1

r

)−1(
hi + hk − hj + r − 1

r

)
.

In the next section, also the formal power series known as the character

χV (q) = trV qL0−c/24 = q−c/24
∑
n∈N

dimV(n) q
n

of the vertex operator algebra V =W(2, h1, . . . , hm) will be useful. In our proof
of the existence of certain singular vectors, we will compare this character with
the character of the vacuum Verma module of theW-algebra. This is the induced
module

U(W(2, h1, . . . , hm))⊗U(W(2,h1,...,hm)(+)) Cc ,

where U( · ) denotes the universal enveloping algebra of theW-algebra, the space
W(2, h1, . . . , hm)(+) is defined by

W(2, h1, . . . , hm)(+) =
∐
n≤1

CL−n ⊕
m∐

i=1

∐
ni≤hi−1

CW i
−ni

,

and Cc is the trivial W(2, h1, . . . , hm)(+)-module of central charge c. In other
words, the vacuum Verma module is generated freely by the action of the modes
Ln and W i

n on a nonzero element Ω in Cc, subject to the restrictions

LnΩ = 0 for all n ≥ −1 and W i
nΩ = 0 for all n ≥ −hi + 1 . (2.9)

Because of these restrictions, the dimensions of the homogeneous subspaces V(n)

are smaller than p(n), where p(n) is the number of partitions of n into sums of
positive integers, generated by the function

(ϕ(q))−1 =
∏
n≥1

(1− qn)−1 =
∑
n∈N

p(n)qn .
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Taking the restrictions (2.9) into account, the vacuum Verma module character
is given by

χVerma
V (q) = q−c/24(ϕ2(q))−1

m∏
i=1

(
ϕhi(q)

)−1
, (2.10)

where we have introduced the generating functions ϕk, k ≥ 2, as truncated ϕ-
functions:

ϕk(q) =
∏
n≥k

(1− qn) = ϕ(q)
k−1∏
l=1

(
1− ql

)−1
. (2.11)

3 Properties of the triplet algebras

The triplet algebra at c = −2

With the general relations of the preceding section at hand, we now choose a
vertex operator algebra V and a suitable category C for which we will prove the
conditions for the existence and associativity of the nonmeromorphic operator
product expansion. We take V = V3 which is the triplet algebra with central
charge c = −2 [Kau], [F2], [GK] and C such that its objects are exactly all finitely
generated lower-truncated generalized V -modules. (Note that in this context, the
notion of such a module of V by definition encompasses a possible Jordan cell
structure in the L0-grading.) In particular, this choice includes all (generalized)
highest weight modules, but also those on which L1 acts only nilpotently (and
not necessarily trivially) on the generating vector.

The triplet algebra at c = −2 is aW-algebra of typeW(2, 3×3). It is generated
by the modes Lm of the Virasoro field T (x) =

∑
m∈Z Lmx

−m−2 associated to the
vector ω of weight 2 which implements the conformal symmetry, and the modes
W a

m of a triplet (under the action of the group SO(3)) of primary fields of weight
3, W a(x) =

∑
m∈ZW

a
mx
−m−3 with a ∈ {±1, 0}, which “maximally extend” the

conformal symmetry, acting on some module W ∈ ob C. With this notation and
by relation (2.2), the vectors

L−m+1w and W a
−mw are in C1(W ) for all w ∈ W and all m ≥ 3 , (3.1)

while for all other values of m, this is not necessarily the case.
By this choice of C, condition (iii) above is satisfied. The fact that the homoge-

neous subspaces of the (generalized) modules in ob C are really finite-dimensional
follows from results of Buhl [B] on a module spanning set, using the fact that
they are finitely generated and all triplet algebras are C2-cofinite, see below.

Condition (ii) also is satisfied: by the action of any mode vn with v ∈ V , the
weight of an element to which vn is applied to changes by an integer value, and
there are only finitely many vectors that generate V , namely ω andW a (together
with the vacuum Ω).
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In order to see that condition (i) is satisfied as well, i.e. C1(W ) is finite-
codimensional for all W ∈ ob C, we assume without loss of generality that W is
generated by some element w = w(0) together with its (finitely many) “logarithmic
partners” w(i). Then by (2.3) and (2.5), every vector inW is a linear combination
of elements of the form

M−m1 . . .M−mk
LM
−1

∏
a∈{±1,0}

((
W a
−2

)Na
2
(
W a
−1

)Na
1 (W a

0 )Na
0

)
Mn1 . . .Mnlw

(i)

(3.2)
whereM is a placeholder for either L or W a; M , Na

0 , Na
1 , Na

2 ∈ N, n1, . . . , nl ∈
Z+ and m1, . . . ,mk ∈ Z≥2 forM = L while m1, . . . ,mk ∈ Z≥3 forM = W a.

In the case that k is strictly larger than zero, (3.1) immediately shows that
any such element is in C1(W ). On the other hand, for k = 0 there are only
finitely many possibilities for the termMn1 . . .Mnlw

(i) not to vanish because of
the lower-truncatedness of W . The factor (W a

0 )Na
0 can also do no harm as it does

not change the generalized weight of the element it is applied to, and each Jordan
cell is finite-dimensional by the definition of C, given the fact that condition (ii)
is satisfied.

So what deserves special attention are the powers of L−1, W a
−1 and W a

−2 in
the case k = 0, because when applied to some element of W , the result need not
be in C1(W ), but each of these modes strictly increases the generalized weight.
As there is certainly no “upper-truncation condition” for the module W , the
appearance of these modes in (3.2) makes it seem possible that the complement
of C1(W ) in W is infinite-dimensional.

But fortunately, in this situation a theorem due to Buhl (see [B], Theorem 1)
applies, which is a generalization of an earlier result of Gaberdiel and Neitzke
[GN]. It states the following (among other things): If a vertex operator algebra
V is C2-cofinite, i.e. dim(V/C2(V )) < ∞ with C2(V ) = span{u−2v |u, v ∈ V },
then every weak V -module W is spanned by elements of the form

x1
−n1

. . . xk
−nk

w (3.3)

with w ∈ W , n1 ≥ . . . ≥ nk > −L, where L is some fixed number, and the
vectors x1, . . . , xk ∈ V are representatives of the elements of a basis of V/C2(V ).
In addition, if nj ≤ 0, then ni = nj for at most Q indices i, where Q is another
fixed number. This last feature is the most important one for the present situation
as it implies that only a limited number of powers of L−1, W a

−1 and W a
−2 has to

be considered if V is C2-cofinite.
(Note that in (3.3) the convention for the indices of modes is the one used

most often in the mathematics literature, i.e. any vertex operator is expanded
into a series

∑
n∈Z vnx

−n−1 regardless of the weight of the associated vector v.
On the other hand, in the physics literature it is common to expand a field that
is associated to a vector u of weight h into a series

∑
n∈Z u

phys
n x−n−h. The latter
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convention is used here only in the context of W-algebras. When comparing
results expressed in differing notations, the relation un = uphys

n−h+1 is used.)
The triplet algebra at c = −2 has the virtue of being C2-cofinite because of

the existence of certain singular vectors. Several authors (see [GN] and [M]) have
been aware of this fact for some time, and it was recently proven by Abe in [A].
The proof given here uses a different method. Indeed, the explicit form of six
singular vectors at level 6 is known [GK], [R]:

Nab =W a
−3W

b
−3Ω− δab

(
8

9
L3
−2 +

19

36
L2
−3 +

14

9
L−4L−2 −

16

9
L−6

)
Ω

+ iεabc

(
−2W c

−4L−2 +
5

4
W c
−6

)
Ω . (3.4)

In order to prove that V is really C2-cofinite, we first observe that in the above
expression for the singular vector Nab, because of (2.1) each term that it is made
of is manifestly in C2(V ) except for W a

−3W
b
−3Ω and L3

−2Ω. As any singular vector
is divided out in the vertex operator algebra of interest, it follows that for a 6= b,

W a
−3W

b
−3Ω ∈ C2(V ) and

((
W a
−3

)2 −
(
W b
−3

)2
)

Ω ∈ C2(V ) .

SinceW a
−3 leaves the space C2(V ) invariant (recall (2.4)),W a

−3((W a
−3)2−(W b

−3)2)Ω
is an element of C2(V ) as well. But this element can also be written as(

W a
−3

)3
Ω−W a

−3

(
W b
−3

)2
Ω =

(
W a
−3

)3
Ω−W b

−3W
a
−3W

b
−3Ω + Y−6W

b
−3Ω , (3.5)

where Y−6 = [W a
−3,W

b
−3] applied to any vector v ∈ V yields an element of C2(V )

because in the commutator of modes of primary fields of weight 3 there can
only appear modes corresponding to fields of weight less than or equal to 5 (see
equation (2.8) above). So in particular, the last term in (3.5) is in C2(V ). In
addition, the second last term in this equation also is in C2(V ) asW b

−3 leaves this
space invariant. Hence, it follows that (W a

−3)3Ω ∈ C2(V ), and we have(
W a
−3

)m
Ω ∈ C2(V ) for all m ≥ 3 . (3.6)

From this and the fact that ((W a
−3)2 − 8

9
L3
−2)Ω is in C2(V ) it follows that

(W a
−3)2L3

−2Ω ∈ C2(V ). Now using the invariance of C2(V ) under L−2 and W a
−3

one more time it is easy to see that((
W a
−3

)2 − 8

9
L3
−2

)2

Ω =

((
W a
−3

)4
+

64

81
L6
−2 −

8

9

(
W a
−3

)2
L3
−2 −

8

9
L3
−2

(
W a
−3

)2
)

Ω

is an element of C2(V ). But from the above discussion it is also clear that each
term on the right-hand side apart from 64

81
L6
−2Ω is in C2(V ), and so it follows

that L6
−2Ω must be an element of C2(V ) as well.
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As a consequence of the reasoning of the last paragraph, sufficiently large
powers of L−2 and W a

−3 (6 or maybe less in the first case, 3 or maybe less in the
latter) applied to any element in V yield elements in C2(V ). Thus it is proven
that C2(V ) is finite-codimensional.

Now that it has been shown that the prerequisite of Buhl’s theorem is satisfied
for the triplet algebra at c = −2, it can be used since by definition any object in
C is a weak module and the elements in (3.2) are of the same form as those in
(3.3). This means that if it can be argued that ω and W a are not in C2(V ) and
can thus be taken to be representatives of elements in a basis for V/C2(V ), there
actually is some sort of an “upper-truncation condition”, but for the exponents of
the modes L−1, W a

−1 and W a
−2 in (3.2). So for k = 0, it follows that only finitely

many elements of the form (3.2) span the “(k = 0)-part” of W . This is exactly
the statement that W is C1-cofinite.

It remains to be seen that ω and W a are not in C2(V ). For the moment,
consider the possibility that ω is in C2(V ). Then there must be u, v ∈ V such
that u−2v = ω. By comparing weights on both sides, we arrive at the condition
wtu+wt v+ 1 = 2. But since the vertex operator algebra V under consideration
is of the form V =

∐
n∈N V(n) with V(0) = CΩ, this condition says that either u

or v must be (a scalar multiple of) the vacuum (and the other one of weight 1).
This is not possible for the conformal vector, leading to a contradiction. By a
similar reasoning, one also sees that W a /∈ C2(V ).

Finally, it needs to be shown that the chosen category is closed with re-
spect to the contragredient functor. By the definition of the graded dual W ′ =∐

n∈Z(W[n])
∗ it is clear that it is lower-truncated. In order to establish that it is

also finitely generated, choose a minimal generating set {w1, . . . , wN} ⊂ W ∈ ob C
from a basis

⋃
n∈ZBn of W , where Bn is a basis of W[n] for all n ∈ Z. Then all

w ∈ W are linear combinations of elements of the form

Mn1 . . .Mnkwi ,

whereM denotes the same as in (3.2). Let w′1, . . . , w′N be the elements of the dual
basis in W ′ such that 〈w′i, wj〉 = δij. Because of this, all w′ ∈ W ′ that may give a
nonvanishing matrix element with some w ∈ W must be linear combinations of
elements of the formM′

nk
. . .M′

n1
w′i. To see this, assume that there is an element

w̃′ /∈ {w′1, . . . , w′N} in W ′ such that {w̃′, w′1, . . . , w′N} is a subset of a minimal set
of generating vectors of W ′. It follows that 〈w̃′, wi〉 = 0 for all i ∈ {1, . . . , N}
and thus〈
M′
−m1

. . .M′
−mk

w̃′,M−n1 . . .M−nlwi

〉
=
〈
w̃′,M′

mk
. . .M′

m1
M−n1 . . .M−nlwi

〉
= δP

i mi,
P
j nj

〈
w̃′,

∑
{I |wt wI=wt wi}

aIwI

〉
= 0 ,
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where aI ∈ C are the coefficients that result from applying the commutation
relations of the M-modes. This means that the subspace of generalized weight
wt w̃′ has a dimension that is strictly larger than the dimension of the corre-
sponding subspace in W . But by the definition of the graded dual of W , these
finite-dimensional subspaces must have the same dimension, so there cannot be
an element w̃′ as above, and C is closed under the contragredient functor.

The triplet algebras at cp,1

The triplet algebra at c = −2 is only the first member of an infinite family of
tripletW-algebras {W(2, (2p−1)×3)}p≥2 with central charge cp,1 = 1−6(p−1)2/p,
where for each p ∈ Z≥2 the three primary fields of weight 2p − 1 are a triplet
under the action of the group SO(3), which means that the structure constant
CW c

Wa,W b is proportional to εabc [Kau]. It is the goal of this section to show that
the above conditions (i), (ii) and (iii) are also satisfied in this general case.

If one defines the category C analogously to the special case of p = 2, one
immediately sees that the conditions of quasi-finite dimensionality and of finitely
generated lower-truncated generalized modules in ob C hold in the same way as
before with the obvious generalization of the arguments. What requires additional
work is to establish the C1-cofiniteness of all objects in C.

Let V∆ denote the vertex operator algebra associated to the W-algebra
W(2,∆×3) for a fixed ∆ := 2p − 1 with p ∈ Z≥3. If V∆ is C2-cofinite, one
can apply Buhl’s theorem as in the case p = 2, and any V∆-module under consid-
eration would be C1-cofinite, which together with the other properties of V∆ gives
the existence and associativity of the nonmeromorphic operator product expan-
sion. Compared with the case p = 2, the difficulty of proving the C2-cofiniteness
of V∆ stems from the lack of explicit expressions for singular vectors that are
crucial for a proof of C2-cofiniteness. A priori, it is not even clear whether such
singular vectors at all exist for arbitrary p ∈ Z≥3.

As it turns out, one can argue for the existence of certain singular vectors
of weight 2(2p − 1) with the help of the explicitly known character of V∆ that
was obtained in [F2]. By analyzing this character in detail one can show that for
arbitrary p ∈ Z≥2, singular vectors of the form

Nab = W a
−∆W

b
−∆Ω + δab

(
Virasoro-polynomial

)
Ω

+ εabc

(
Virasoro-W c

m-polynomial
)
Ω (3.7)

exist, where in the last term only summands with exactly one W c-mode can
appear (of course, equation (3.4) is of this form, too).

In order to show that singular vectors as in (3.7) really exist, we first recall
the character

χV∆
(q) =

q−1/24

ϕ(q)

∑
n∈Z

(2n+ 1)q(2np+p−1)2/(4p) (3.8)
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from [F2]. If we expand both this character and the vacuum Verma module
character χVerma

V∆
(q) given by (2.10) into a formal power series in q and compare

the coefficients of q(2p−1)+3 (times q−cp,1/24), we see that the dimensions of the
homogeneous subspaces of weight (2p− 1) + 3 of the vacuum Verma module and
the W-algebra itself differ by 3. The reason for this is the following: From the
Kac determinant it follows that the Virasoro algebra of central charge cp,1 has
an infinite set of highest weight modules where the highest weights are given by
h2k−1,1 = (k − 1)(kp− 1), k ∈ Z+. By a standard argument it follows that these
modules have singular vectors at level 2k−1. In particular, for k = 2 the highest
weight vectors of weight 2p − 1 can be identified with the vectors W a

−∆Ω as we
have ∆ = 2p − 1. So because of the additional structure of the W-algebra with
its fields W a, pure Virasoro modules are embedded into the full vertex operator
algebraW(2,∆×3), and the difference of the dimensions above is due to the three
singular vectors of weight (2p− 1) + 3.

If these three vectors are divided out of the vacuum Verma module, we obtain
a structure to which the character

χ̃(q) = q−cp,1/24

(
1

ϕ2(q)
+

3q2p−1(1− q3)

ϕ(q)(ϕ2p−1(q))2

)
(3.9)

pertains, where we use the notation introduced in (2.11). The first term in this
expression accounts for the action of the Virasoro algebra on the vacuum alone.
The second term reflects the fact that beginning at level 2p − 1, the modes
associated to the three distinct W a-fields act nontrivially on the vacuum. With
respect to the Virasoro algebra, this is a highest weight vector, which explains the
factor q2p−1/ϕ(q). Furthermore, the factor 1 − q3 is due to the singular vectors
of weight (2p − 1) + 3 discussed above, and the term (ϕ2p−1(q))−2 comes from
the action of the W a-modes on the vacuum. The second power (and not the
third) has to be taken here in order not to doubly count the contribution from
the W a-modes because of the three-fold multiplicity.

Partially expanding both (3.8) and (3.9) into a formal power series yields

χV∆
(q) =

q−cp,1/24

ϕ(q)

(
1− q + 3q2p−1 − 3q2p+2 +O(q6p−2)

)
,

χ̃(q) =
q−cp,1/24

ϕ(q)

(
1− q + 3q2p−1 − 3q2p+2 + 6q4p−2 +O(q4p−1)

)
.

We are interested in the dimensions of the homogeneous subspaces of weight 2∆ =
4p− 2 described by these characters. Comparing the coefficients of q4p−2 (times
q−cp,1/24) by taking the relevant contributions from (ϕ(q))−1 =

∑
n∈N p(n)qn into

account, we see that these dimensions differ by 6. Thus we have found that
six additional singular vectors of weight 2∆ are divided out in W(2,∆×3). The
reason that these vectors must involve a term with two W a-modes is that there
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are no pure Virasoro singular vectors of weight 2∆. Finally, the form of (3.7) is
a direct consequence of the SO(3)-structure of W(2,∆×3) [Kau].

We now continue the proof of C2-cofiniteness of the W-algebras W(2,∆×3).
As in the special case p = 2 it is clear that nearly all possible vectors in the
expression (3.7) for the singular vector Nab are elements of C2(V∆) because of
the fact thatW a

mΩ = 0 for all m ≥ −∆+1. The only vectors for which this might
not be true are W a

−∆W
b
−∆Ω and αL∆

−2Ω, the latter appearing in the δaa-term in
Nab. If it can be shown that the coefficient α is not zero, the exact same reasoning
as in the case p = 2 can be applied to see that V∆ is C2-cofinite. So the question
that remains to be answered is whether or not α 6= 0.

To find the correct answer, we first observe that the vertex operator to which
a singular vector corresponds necessarily is a primary field. In particular, it is a
quasi-primary field. As the vector W a

−∆W
b
−∆Ω appears in the expression for the

singular vector Nab, the corresponding quasi-primary null-field must be a linear
combination of quasi-primary fields, and one of these must be the normal-ordered
product N (W a,W b).

The next step is to note that the quasi-primary field N (W a,W b) alone cannot
be the null-field. To see this, we make use of the fact that the mode L1 annihilates
the vector Nab. Thus, by expanding the null-field into modes,

L1N
aa = L1

(
W a
−∆W

a
−∆Ω +

(
Virasoro-polynomial

)
Ω
)

∆−1
= L1

(
W a
−∆W

a
−∆Ω + βL−4L

∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω

)
∆−1
= 0 . (3.10)

Here, the symbol ∆−1
= has been introduced, which means “equal to, modulo vectors

with less than ∆− 1 modes applied to the vacuum Ω”. For example,

βL−4L
∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω

∆−1
= βL−4L

∆−2
−2 Ω + γL2

−3L
∆−3
−2 Ω + δL2

−4L
∆−4
−2 Ω .

So far, the values of the constants β and γ are unknown. If the null-field were
equal to N (W a,W b), the coefficients β = βWW and γ = γWW could be computed
from the above formula (2.6) for quasi-primary normal-ordered products in terms
of the structure constant CN (T∆−1)

Wa,Wa . In principle, this constant can be computed
for each p ∈ Z≥3 separately, but neither are such computations carried out easily
nor is it necessary to know the exact value of the constant; only the information
that it is not zero is crucial.

With this, a straight-forward calculation using (3.10) shows that

L2

(
W a
−∆W

a
−∆ + βWWL−4L

∆−2
−2 + γWWL

2
−3L

∆−3
−2

)
Ω

∆−1
=
/

0 .

So the field N (W a,W b) is quasi-primary but not primary and can thus not be
the null-field. Instead, other quasi-primary fields must be added to N (W a,W b)
to get the null-field. Of all these fields, only those are of immediate interest
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that yield primarity of the null-field at length ∆ − 1, i.e. L2N
aa ∆−1

= 0. Define
X to be the set of all quasi-primary fields of weight 2∆ except N (T∆) in whose
mode expansion appear Virasoro-monomials up to degree ∆ − 1; in particular,
L−4L

∆−2
−2 is such a monomial. For example, N (∂2T,N (T∆−2)) ∈ X . Then the

singular vector associated to the null-field satisfies the identity

Naa ∆−1
=

(
(N (W a,W a))−2∆ + α

(
N (T∆)

)
−2∆

+
∑
X∈X

kXX−2∆

)
Ω

∆−1
=

(
W a
−∆W

a
−∆ + αL∆

−2 + (βT∆ + βWW )L−4L
∆−2
−2

+ (γT∆ + γWW )L2
−3L

∆−3
−2 +

∑
X∈X

(
βXL−4L

∆−2
−2 + γXL

2
−3L

∆−3
−2

))
Ω .

(Note that there are no vectors of length ∆− 1 in L2L
2
−3L

∆−3
−2 Ω, so the γ-terms

do not have to be considered when L2 acts on Naa.)
Now the assumption is made that α = 0. Then one can use the fact that

L2N
aa = 0 to find an explicit expression for the parameter B :=

∑
X∈X βX

in terms of the structure constant CN (T∆−1)
Wa,Wa . (Fields F of weight 2∆ − 1 like

N (∂T, T∆−2) with one derivative term need not be taken into account since the
structure constants CFWa,Wa for such fields vanish, see [BFKNRV].) To do this,
we need to know in which exact way βWW is proportional to CN (T∆−1)

Wa,Wa , so that we
have βWW = β′WWC

N (T∆−1)
Wa,Wa with β′WW a nonzero constant whose exact value can

be calculated to be β′WW = − (2∆−1)(∆−1)
2(4∆−3)

by equation (2.6). With this notation
we arrive at

0 = L2N
aa ∆−1

= L2

(
W a
−∆W

a
−∆ +

(
β′WWC

N (T∆−1)
Wa,Wa +B

)
L−4L

∆−2
−2

)
Ω

∆−1
=
([
L2,W

a
−∆W

a
−∆

]
+ 6

(
β′WWC

N (T∆−1)
Wa,Wa +B

)
L∆−1
−2

)
Ω

∆−1
=
([
L2,W

a
−∆

]
W a
−∆ + 6

(
β′WWC

N (T∆−1)
Wa,Wa +B

)
L∆−1
−2

)
Ω

∆−1
=
(

(2(∆− 1) + ∆)W a
2−∆W

a
−∆ + 6

(
β′WWC

N (T∆−1)
Wa,Wa +B

)
L∆−1
−2

)
Ω

∆−1
=
(

(3∆− 2)
[
W a

2−∆,W
a
−∆

]
+ 6

(
β′WWC

N (T∆−1)
Wa,Wa +B

)
L∆−1
−2

)
Ω

∆−1
=
(

(3∆− 2)C
N (T∆−1)
Wa,Wa + 6

(
β′WWC

N (T∆−1)
Wa,Wa +B

))
L∆−1
−2 Ω ,

where it has been used in the last line that p∆,∆,2∆−2(2−∆,−∆) = 1. The above
equation holds if and only if

B = −6∆2 − 8∆ + 3

6(4∆− 3)
C
N (T∆−1)
Wa,Wa . (3.11)
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The idea to prove that α 6= 0 now is to find another way to explicitly compute
the value of B that does not agree with the one given in (3.11). But before
this is done it should be noticed that the parameters β = βWW + B and γ =
γWW +

∑
X∈X γX can be expressed completely in terms of the structure constant

C
N (T∆−1)
Wa,Wa and B: βWW and γWW can be calculated by equation (2.6), and from

the fact that each field X in X is quasi-primary (which means L1X−2∆Ω
∆−1
= 0

among other things) it follows that
∑

X∈X γX = −5
8
B. As a consequence we have

β = −1

2

2∆− 1

4∆− 3
C
N (T∆−1)
Wa,Wa (∆− 1) +B , (3.12a)

γ = −1

2

2∆− 1

4∆− 3
C
N (T∆−1)
Wa,Wa

(
(∆− 2)2 − 1

2
(∆− 2)(∆− 3)

)
− 5

8
B . (3.12b)

These relations will be made use of without explicit mention in the following.
The vector Naa

−2∆Ω is already completely known at length ∆ − 1 up to the
structure constant CN (T∆−1)

Wa,Wa , and the same situation will now be achieved for
the vector Naa

−2∆−1Ω as an intermediate step. For this, the relation [Lm, φn] =
((h− 1)m− n)φm+n with m ∈ {±1, 0} for a quasi-primary field φ of weight h is
employed: at length ∆− 1 we see that [L−1, N

aa
−2∆]Ω = L−1N

aa is equal to

L−1

(
W a
−∆W

a
−∆ + βL−4L

∆−2
−2 + γL2

−3L
∆−3
−2

)
Ω

∆−1
=
(
W a
−∆

[
L−1,W

a
−∆

]
+
[
L−1,W

a
−∆

]
W a
−∆ + 3βL−5L

∆−2
−2

+(∆− 2)βL−4L−3L
∆−3
−2 + 4γL−4L−3L

∆−3
−2 + (∆− 3)γL3

−3L
∆−4
−2

)
Ω

∆−1
=
(
2W a
−∆−1W

a
−∆ +

[
W a
−∆,W

a
−∆−1

]
+3βL−5L

∆−2
−2 + ((∆− 2)β + 4γ)L−4L−3L

∆−3
−2 + (∆− 3)γL3

−3L
∆−4
−2

)
Ω

∆−1
= C

N (T∆−1)
Wa,Wa p∆,∆,2∆−2(−∆,−∆− 1)

(
(∆− 1)L−5L

∆−2
−2

+(∆− 1)(∆− 2)L−4L−3L
∆−3
−2 +

(
∆− 1

3

)
L3
−3L

∆−4
−2

)
Ω

+
(
3βL−5L

∆−2
−2 + ((∆− 2)β + 4γ)L−4L−3L

∆−3
−2

)
Ω

+ (∆− 3)γL3
−3L

∆−4
−2 Ω . (3.13)

But because of the quasi-primarity of the vector Naa, this must also be equal to
Naa
−2∆−1Ω. Of course the latter is not known explicitly, but at length ∆ − 1 the

relevant parameters can be inferred. Firstly, there is a contribution to Naa
−2∆−1Ω

fromN (W a,W a)−2∆−1Ω, and only the terms of length ∆−1 will be of importance
here. Secondly, the contribution of the fields in X has to be taken into account.
Computing this contribution exactly would require the knowledge of the exact
values of the parameters kX in

Naa ∆−1
= N (W a,W a)−2∆Ω +

∑
X∈X

kXX−2∆Ω .
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These are not available, but all we really need to know in this case are the
coefficients of the relevant monomials at length ∆−1. Denoting these coefficients
by ξi, i ∈ {1, 2, 3}, (3.13) is also equal to

N (W a,W a)−2∆−1Ω +
(
ξ1L−5L

∆−2
−2 + ξ2L−4L−3L

∆−3
−2 + ξ3L

3
−3L

∆−4
−2

)
Ω

∆−1
= − 1

4
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(−n− 2∆ + 2)(−n− 2∆ + 1)

∣∣∣
n=−2∆−1

·
(

(∆− 1)L−5L
∆−2
−2 + (∆− 1)(∆− 2)L−4L−3L

∆−3
−2

+

(
∆− 1

3

)
L3
−3L

∆−4
−2

)
Ω

+
(
ξ1L−5L

∆−2
−2 + ξ2L−4L−3L

∆−3
−2 + ξ3L

3
−3L

∆−4
−2

)
Ω . (3.14)

Now comparing the coefficients of the vectors L−5L
∆−2
−2 Ω, L−4L−3L

∆−3
−2 Ω and

L3
−3L

∆−4
−2 Ω in (3.13) and (3.14) yields

ξ1 =
1

2

(
6B + C

N (T∆−1)
Wa,Wa (∆− 1)

)
, (3.15a)

ξ2 =
1

2

(
−9B + 2B∆ + C

N (T∆−1)
Wa,Wa

(
∆2 − 3∆ + 2

))
, (3.15b)

ξ3 =
1

24

(
45B − 15B∆ + C

N (T∆−1)
Wa,Wa

(
2∆3 − 12∆2 + 22∆− 12

))
. (3.15c)

With this knowledge of both vectors Naa
−2∆Ω and Naa

−2∆−1Ω at length ∆− 1, now
one last piece of information can be utilized in order to find another way to
compute B. Until now, only the quasi-primarity of the null-field has been used.
But actually it is also primary, i.e. the relation [Lm, N

aa
n ] = ((2∆−1)m−n)Naa

m+n

holds for all m,n ∈ Z. In particular, this is true for m = 2 and n = −2∆ − 1,
and thus

0 = (6∆− 1)Naa
−2∆+1Ω =

[
L2, N

aa
−2∆−1

]
Ω = L2N

aa
−2∆−1Ω

∆−1
= −3

2
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(7(∆− 1) + 6(∆− 1)(∆− 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω +

[
L2, N

(∆)(W a,W a)−2∆−1

]
Ω

∆−1
= −3

2
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(7(∆− 1) + 6(∆− 1)(∆− 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω +

[
L2,W

a
−∆W

a
−∆−1 +W a

−∆−1W
a
−∆

]
Ω

∆−1
= −3

2
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(7(∆− 1) + 6(∆− 1)(∆− 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω

+
([
L2,W

a
−∆

]
W a
−∆−1 +

[
L2,W

a
−∆−1

]
W a
−∆

)
Ω

∆−1
= −3

2
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(7(∆− 1) + 6(∆− 1)(∆− 2))L−3L

∆−2
−2 Ω
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+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω + (2(∆− 1) + ∆)

[
W a
−∆+2,W

a
−∆−1

]
Ω

+ (2(∆− 1) + ∆ + 1)
[
W a
−∆+1,W

a
−∆

]
Ω

∆−1
= −3

2
C
N (T∆−1)
Wa,Wa

2∆− 1

4∆− 3
(7(∆− 1) + 6(∆− 1)(∆− 2))L−3L

∆−2
−2 Ω

+ (7ξ1 + 6ξ2)L−3L
∆−2
−2 Ω

+ (3∆− 2)C
N (T∆−1)
Wa,Wa p∆,∆,2∆−2(2−∆,−∆− 1)(∆− 1)L−3L

∆−2
−2 Ω

+ (3∆− 1)C
N (T∆−1)
Wa,Wa p∆,∆,2∆−2(1−∆,−∆)(∆− 1)L−3L

∆−2
−2 Ω , (3.16)

where in this case the termN (∆)(W a,W a)−2∆−1Ω (recall equation (2.7)) does lead
to a contribution at length ∆− 1, in contrast to the situation in equation (3.14).
Now using (3.12) and (3.15) in (3.16) yields the following alternate expression for
the parameter B:

B = −12∆2 − 18∆ + 7

4(4∆− 3)
C
N (T∆−1)
Wa,Wa .

This can only be in agreement with (3.11) for CN (T∆−1)
Wa,Wa = 0, which is not the

case. Thus, the assumption α = 0 leads to a contradiction and V∆ is C2-cofinite.

We summarize our results in the following theorem.

Theorem. For all p ∈ Z≥2, the nonmeromorphic operator product expansion exists
and is associative for the vertex operator algebraW(2, (2p− 1)×3). Furthermore,
all these vertex operator algebras are C2-cofinite.
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