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1. Introduction

Conformal field theory (CFT) constitutes one of the main $oial string theory. This
“survival kit” attempts to provide the reader with the maapiortant techniques and results
of this fascinating topic for immediate use in the stringatydectures. Since the material
presented here is intended to be covered in three ninetyteshectures only, the scope of
these notes is very limited. The interested reader shouldutbthe seminal paper [1] and
the reviews [2] for further help and a mroe thorough treatnoéhe subject. But before
we start to talk about CFT as a theory on its own, we will try xplain briefly, why CFT
shows up in string theory so prominently.

Historically, string theory evolved out of an attempt
to understand the increasing zoo of hadronic resonances
in strong interactions during the sixties. One way of a
physicist to understand something is to search for a pat-
tern. Plotting the spin of these strong resonances ver-
sus their mass squared, one obtaines the so-called R
trajectories, i.e. straight lines, which brought some or-
der into the zoo. Although this experimental fact is very
beautiful, it is very difficult to explain within a quantum
field theory, since particles with high spin normally cause
serious difficulties to keep the theory unitary, i.e. to assbat probability is conserved.

Figure 1: Regge trajectory.

We can illustrate this by considering a four-point ampléwf a real scalar field, say, in thechannel:¢(p2)d(ps) —
o(p1)d(p=2) with an interchanged particte; of integer spinj. The interaction term in the Lagrangian for the cubic vertex
g9y contains thereford derivatives. IfJ = 0, then the amplitude for the invariant interaction tegspdyy behaves
like Ay o g2(t — M?)~1, whereM is the mass of the interchanged particle, gnis the coupling constant. Obviously,
the amplitude develops a pole whes: (p, + p3)? is equal toM/2, and it vanishes fro — oo, as it should be. However, if

J > 0, the vertex must be of the forgy (¢ 9, .. 9, ¢)Y#-11). According to the Feynman rules, each derivative
becomes a momentum factor, and hence the amplitude now igeed } o ¢%(t — M?)~1s’, where the Mandelstam
variables = (p; + p2)? gives the momentum transfer of the process. More precigyamplitude is proportional to the
Legendre polynomiaP; () of the scattering anglé which, however, happens to be givenéas- s for high energies.
Obviously, the amplitude diverges for very high energiesvaly out of this dilemma could be that these infinities cancel
each other if the full amplitude is a sum over all possibleiinal statesA(s, ) oc > ; g%s”(t — M?)~!. Inspection shows
that this could only work if this sum is taken over an infinifyresonances, not onl§/ t['l1e experimentally observed states o
the Regge trajectory. In fact, this idea led to the so-calieal amplitude models, since an automatic consequencésof th
ansatz was the appearance of a new symmetry, namely théychfahie amplitudesA(s,t) = A(t, s).

The reader might remind herself that grouping states inttijphets of an assumed underlying symmetry group is
another physicist's way to assemble things into a patteetteBknown examples are (iso)si®/ (2) multiplets, flavor
SU(3) multiplets etc., which all belong to finite dimensional @mjt representations of the corresponding Lie groups. In
our case, we want to put an infinity of states into one (unjtegresentation of some symmetry group, which hints at the
possibility that this group might be infinite-dimension@ course, if we view all the states on a Regge trajectory &s on
representation, it seems natural to consider them as @aofaf some fundamental object — the string.

The Regge trajectories have two free parameters, the éqitig with the J-axis, and the slope’. An early result
was that dual amplitudes can only be unitary and analytienwdy = 1 or g = 2. In the former case, there exists a
massless vector particle (a “photon”), in the latter, wesh@wnassless spin two field (a “graviton”). Unfortunately,also
get a spin zero state akgativemass squared in both cases, the so-called tachyon.

Further experimental data soon disqualified the Reggectajes as a valid way to
sort the zoo of hadronic resonances, QCD was discoveredsiallished to quite suc-
cessfully explain strong interactions. But a view peopletcwed to work on models with



Regge trajectory like spectra and their amplitudes, busiciaming them on a completely
different energy scale. In this way, string theory was digted, since such spectra can
easily be understood as excitations of a one-dimensionall fot extended object. What
made these people pursue this idea was the surprising tatdhsistent unitary theories
admitting a Regge spectrum do contain a massless spin tteogtiéch make them natural
candidates for a quantized theory of gravitation. This is\swiging that other surprises,
for example the problem that string theories, as they welteccaince then, need some
extra space-time dimensions in order to be consistent, acrepted with all their conse-
guences instead of being viewed as a strong hint to immeylidiecard any such crazy
theory.

At the end of this introduction, we will com- p, Py
ment on how strings, and with them conformal field\/

theory, are a natural consequence of duality of am- e s
plitudes. But for the moment we assume that tte y , = 5 ws

reader has already heard something about strings. ’ ’
Remembering ordinary particle mechanics, we : Py
know that time evolution of a particle generates o,

world line. In the path integral approach to its quan-

tum theory, we sum over all possible trajectories. Figure 2: Duality.

The natural action functional of a free relativistic
particle of massn is simply proportional to the length of the world line,

Sle(r)] = —m / _Tf dr (1.1)

(3

with 7 the eigen time. Similarly, the most natural quantity to diéscthe action of a string,

a finite one-dimensional object, moving in some flat spate-is the area of the world-
surface swept out by it. The reader will learn much abouhggiin the main lectures of
Olaf Lechtenfeld, to which these notes are a mere apperfdikelis impatient, she might
consult [5]. We denote witlr and 7 the space and time coordinates of the world-sheet,
respectively. The embedding of it intodadimensional Minkowski space-tim!?~! is
described by function&* (o, 7). The action is then given by the area of the world-sheet
with respect to the reduced metric

ds® = 7, dX*dX"

= N (0- X410, X"A7* + 0,X"0,X"d0* + 20, X"0,X"dodr) . (1.2)
Introducingé® = 7, ¢! = o, we can write this as
ds? = g;;(X)de'de? . (1.3)

With this metric, the action of the string world-shegt(£°, ¢1) is proportional to the area

J V/aetg,

SIX(€)] = 51 / €% /(B X )2 (0 X2 — (0 X - O X)? (1.4)



with the usual definitiom - B = 7, A* B”. The string tensiof/(27¢/) is the analogue of
the particle mass. Since we always put ¢ = 1, its units are mass over length or mass
squared.

This action is quite complicated and difficult to handle. Eovrer, the embedding
mappingX* can be arbitrarily complex. Fortunately, there exists gpéifination of this
action which will be thoroughly derived in the string leasar As a result, by introducing
the auxiliary metrigg;; on the two-dimensional word-sheet, an action quadrati¥ ican
be obtained,

SPX.g) =~k [ Pe/a 00X - 0,x). (1.5

The metric on the surface is considered as a new field. Sinckeratives ofg;; appear
in (1.5), its equations of motions will lead to a constrainttbe dynamical field*. We
know from general relativity that under a variatign— g + dg, the action varies as

L [ %\ /gT5g;, (1.6)

which defines the stress-energy tenér. Therefore, the classical theory defined by the
action (1.5) satisfies the equations of motion

08 = —

T = (0'X) - (VX) — 1g7(8*X) - (:X) = 0, (1.7)
1 PR = B
ﬁ& (Vgo'X*) =0X* =0. (1.8)

Hence, in the presence of the metyig, the field X* is a free scalar field which does
not carry two-dimensional energy or momentum. Writing Y1a3 (0,X) - (0,X) =
19;;(0"X) - (9,X) and taking the determinant on each side shows that the a(tibh
is indeed equivalent to the so-called Nambu-Goto actiof) (1.

It is instructive to obtain (1.7) via the variatianS' with respect todg;;. Firstly, from 6(6Z.j) =0 = 6(gixg™) we

find thatdg”’ = —g"g*'égr,. Secondly, the variatodi,/g can be obtained in a mathematically slightly sloppy way by
using/detg = exp(3logdetg) which yieldsé,/g = 3,/gdlogg. Now, by definitionélogg = logdet(gij + dgi5) —

log det(gi;) = log(det(g;j + dgi;)detg®). With log detg = trlogg andlog(l +z) = x — %~ —i— T — ..., we finally arrive
até,/g = 1,/gtr(¢"*dgr; + O(6?)). Putting all together, we find up to the facteﬂ/(27ra )
55 =1 / d?¢\/gT" 5gi;

Il
\

[(65/8)g" (B X) - (9, X) + G397 ) (3 X) - (9;X)]
= /d £0:X) - (0;X) [¢"0913v/997 + Va(—g"¢" 6gk1)]
- / PeyF [~(07X) - (@ X) + Lg¥ (0:X) - (AX)g™] 5gs; (1.9)

from which (1.7) can be read off.

With the other equation of motion, (1.8), one easily proves following properties of the stress-energy tensor,
namely that it is conserved and traceless. Infad// = —(0X)- (07X) — (8'X) - (8;0° X ) + 30" ((9x X)) - (0¥ X)) = 0.
Also, T) = —(07X) - (9;X) + 1(0kX) - (0"X)g) = (4D — 1)(0xX) - (0¥ X), where we have explicitly denoted the

dlmenS|onD = 2 of the world- sheet Note the remarkable fact that the seessgy tensor is traceless only for a free
scalar field inD = 2 dimensions.



The outcome of this is that the free propagation of a string'ii—! is described by
a free two-dimensional field theory. But there is more to thaiwalence of these two
actions. Both actions enjoy several non-trivial symmetrie
1.) Both actions are invariant under arbitrary repararpationss’ — f*(¢) of the surface,
under which the metric transforms as a rank two tengor~ (9;£*(£))(9; 1 (€)) G-

2.) The stress-energy tenspy; in (1.7) is traceless with respect i, i.e. ¢¥T;; = 0.
This constraint is due to local Weyl invariance of the act{@rb), which is invariance
under local scalings of the metrig;; — exp(¢(£°,£Y))g;;. This is true only inD = 2
dimensions, since only then remains the fagi@w’ unchanged.

3.) Classically, we have three symmetries. Besides repramation invariance (diffeo-
morphisms) and local Weyl invariance, there are also theesfine symmetries depend-
ing on the isometries of the metrig,,. In our standard Minkowski space-time, the action
is clearly invariant under thé-dimensional Poincaré grougf# — A* X" + b* with
A" € SO(1,d — 1) a Lorentz transformation.

Coordinate transformations which leave the metric invernigo to a local scaling fac-
tor preserve all angles and are therefore conformal tramsfoons. As should be clear by
now, string theory is described by the (minimal) coupling@afonformally invariant field
theory (in our approach of two-dimensional scalar fields*, ;= 0,...,d — 1) to two-
dimensional gravity. We have not said anything about theltagy of the world-sheet. For
simplicity, we assume from now on that the string itself iss&ld, i.e. forms a small loop
(there is more about this to say, which will be said in thengtliectures). The simplest
topology of a world-sheet of a closed string is a cylinderthis caseg = ¢! lives on a
circle S* while 7 = ¢° lives onR or on an intervall = [r;, 7¢]. The sum of all embeddings
of I x St intoR™¥~! describes the propagation of a free string. We can use regdriaa-
tion invariance to fix,/gg;; = n;; in this simple topology. With the Minkowski metric on
the cylinder (i.e. in the conformal gauge), the action (%iB)plifies to

2wl

S =1 /deU ((0-X)* = (8,X)%) , (1.10)
where the convention., = —n,, = 1 is used.

1.1 CFT on the complex plane

We come now to one of the main tools in two-dimensional CFTclvimake it to such a
powerful instrument for the exploration of string theorys discussed above, the theory
lives (in the simplest case) on the Riemann surface S!, i.e. a cylinder, where we have
taken the times of the initial and final states to be asymgafi in the infinite past and
infinite future respectively;; = —oo, 7, = 4o00. It is much more convenient to consider
the theory on the punctured complex pl&tte= C — {0}, such that we can exploit all the
power of complex analysis. This is done as follows:



First, light-cone coordinates (or chiral coordi;,, Zl=1t =0)
nates) are introduced;," = 7 +ocandoc™ = 7 —o0. m
The metric element then reads? = d7? — do? = z=¢’ 1= -0
dotdo~. Next,7 is mapped via a Wick-rotation to
Euclidean timey — —ir such thab™ — —i(t + _}
ic) =iwando~ +— —i(7 —io) = iw. Under Wick
rotation, the metric becomel? = —dwdw, and Figure 3: Conformal mapping of the
the null geodesics are the straight lings= const, YlindertoC”.
for which ds*> = 0. We conclude that the causal
structure is preserved by any transformation of the ferm+— f(c*), 0= +— g(o7)
where f, g are arbitrary and independent functions. Finally, the dexified coordinates
w, w are mapped t&* by the conformal transformation = e*. Therefore, Fourier ex-
pansions inr & o, i.e. expansions in” ande” become Laurent expansionsinz. This
will prove extremely useful in what is to come.

Infinite past (the lower end of the cylinder) is mapped to thgio of C, and infinite
future (the upper end of the cylinder) is mapped to the irdifar of the complex plane.
If we would compactify the complex plane to the Riemann sphenfinite future would
go the the added pointo on it. Note that light-cone left and right chiral coordinate
o* translate into holomorphic and anti-holomorphic variaklez on the Riemann sphere
(with both poles removed). A consequence of this descnpigothat the equations of
motion (1.8) becomé&,0_X* =0, i.e.

0,0:X" = 00X" = 0. (1.11)

The most general solution, which is single valued (i.e. platly observable) is easily
written down,

I I
Xt =g —iptlogleP 41 e iy T (1.12)
n#0 n n#0 n

This expression, the string coordinate, has contributfoor® the location of the center
of mass of the stringy*, its total momentunp*, and oscillator modes!: anda#, which
describe its left-moving and right-moving excitationsgestively. That is more apparent,
if we return momentarily to the original coordinates, in alithe string coordinate clearly
is a Fourier expansion,

Xt =gt —ip"(ct +07) + iz a—gexp(iaJrn) + iz &—gexp(ia_n) : (1.13)

n=£0 n n#0 n
Since the energy momentum tengoris symmetric and traceless, it has only two non-
vanishing components in holomorphic coordinates, narfiglyand7%;. Conservation of
energy and momentum yields
OT,. = 0T = 0. (1.14)



This means thal” = 7.. is a holomorphic function oi€*, while T = T%; is anti-
holomorphic. Hencel has a Laurent expansion,

T(z) =) L,z "7, (1.15)

nez

and analogously fof’(z). From now on, many formulae will only be given for the holo-
morphic part of the theory, since the anti-holomorphic gadompletely analogous. The
factor>=2in (1.15) is due to the conformal mappiag= ¢“. On the original cylinder]" is

a quadratic differential, i.€l},,,(dw)? is a scalar. However, the conformal mapping yields
dw = z7'dz and thugdw)? = z7%(dz)?, leading to the additional factar2. This holds
for a general tensdf,,. .. Of rank(j7), which will acquire an overall factor =7z 7.
Since we consider tensors with respect to conformal tram&ftions, j, 7 are also called
the left and right chiral conformal weights of the tensor.

The modesL,, have the geometrical meaning to generate infinitesimal arordl
transformations through Poisson brackets. Since thedeoémeorphic functions, a basis
for them may be given as

2 2+ e2" =2+ evi(z), (1.16)
where the vector field*(z) may exhibit poles (or zeroes) only at the two poiats 0 or
z = oo. With 97'(z) = 0, clearly als@2"T'(z) = 0, and we can therefore considerT ()
to be the local density of the Noether charge which impleséhtl6) on the fields of the

theory. Usually, this charge is computed in field theory biggnating over the surface
given byr = 0. In our holomorphic coordinates, this translates into a@@anintegral

1
L,=— 2"TT(2) . (1.17)
27 |z|=1

Of course, sincd’(z) is analytic inC*, L,, is conserved, because it is independent of
contour deformations. Actually, since time evolution oa dlylinder is equivalent to radial
evolution on thez-plane, constant surfaces correspond to circles centered at the origin
with radii |z| = e7. Analyticity of 7" implies that

1
L,=~— ¢ 2""'T 1.18
3 § T (1.18)
for any closed contou€' encircling the origin, as long as no sources of energy or mo-
mentum are present. Choosing fora circle|z| = R with a radiusR # 1 yields time-
independece. But there is a much larger symmetry at work hewedlection of conformal
invariance of the theory, sinde, is invariant under any homologous deformatiorCof



1.2 Invariance under su(1,1)

There are three particular important transformationsciviare associated with the gener-
atorsLy and L. These are infinitesimally given as

L_i: z—z+4¢e_4,
Ly: z+— 2+ ¢0z, (1.19)
Li: 2 24622,

which are infinitesimal translations, dilatations, andcatied special conformal transfor-
mations, respectively. Their global versions are— = + b, z — (a/d)z, andz —
—z/(cz — 1), which generate the well known Mobius group

az+b
cz+d’
which are the only conformal automorphisms of the Riemariresponto itself. Indeed,
there are three complex parametersn = —1, 0, 1, which allow to impose the condition
ad — be = 1. The Mobius group is thus the groufl.(2,C)/Z, = PSL(2,C), i.e. the
group of special linear transformation of the projectivenpbex plane. This can be seen
as follows: The grougL(2,C) is the set of all2 x 2 matrices(? 2) with determinant
one, which acts on complex two-dimensional vect()zr;s). Identifying vectors related
by an overall complex scale, only the ratio= z;/z, is a free parameter, which indeed
transforms as (1.20). This transformation is cleary irardrunder multiplying the matrix
with an overall factor. The determinant condition can fixstimvariance only up to a sign,
which explains why we have to divide ouZa symmetry.

Together with the analogous anti-holomorphic relationdeeen thatZ, + L, gener-
ates time translations— 7 +¢, and thatL, — L, generates rotations— o +¢<’. The full
conformal group i€ = PSL(2,C) x PSL(2,C) which contains as a subgrog)(1, 3).
The latter group is what one would naively expect to be théaglaonformal group on
R, C is twice as large aSO(1, 3) in terms of real generators. However, if we impose
a reality condition to the independently treated variables(such that we either obtain
the complex plane or the Minkowski cylinder), the number ehgrators reduces to that
of SO(1,3).

The infinitesimal generators of conformal transformatisassfy the so-called Witt-
algebra, which is the algebra of infinitesimal diffeomogshs on the cricles!. Putting
¢, = —2"*t19,, we have

AN e d

a,b,c,de C, ad—bc=1, (1.20)

[, L] = (0 — M)y - (1.21)

We have seen that the conformal group on the Riemann sphergaslimensional. How-
ever, we found that on the Minkowski cylinder (in chiraf coordinates, the conformal
group actually isDiff (S*) x Diff (S'), and hence infinite-dimensional. Locally, both sur-
faces admitt an infinite-dimensional algebra. The genesatpwith n = —1,0,1 are
particularly important, since these are the only ones wiah be integrated to global
transformations on both surfaces. They form the algeh(2) or, equivalentlysu(1, 1).



1.3 The Virasoro algebra

Ultimatively, we wish to work with a quantized theory. Confwal transformations are
then generated via commutators with the correspondinghdoeharges instead of Pois-
son brackets. The densitie¥ z)T.(z) for vector fieldsv*(z) yield charges

v* — Lv] = . fcv(z)T(z), (1.22)

27

which are well defined since the product of the terisgr and the vecton? is a one-
differential over which a contour integral can be taken. sTisia representation of the
Witt-algebra of vector fields, and the question arises, et |/,,| = L, still satisfies
(1.21).

One should now recall a strange feature of elementary qoathteiory. Physical states
correspond to rays in a Hilbert space, not to points, sinegttase of the state cannot be
observed experimentally. Therefore, a symmetry may besgmted on a Hilbert spagé
not only linearly, but also projectively, i.e. up to a phabethe latter case, one says that
the symmetry is anomalous, because a projective symmeduivalent to a linear sym-
metry in the central extension of the original symmetry blge Indeed, the Witt-algebra
admitts precisely one singel central extensidimy H2( Diff (S*)) = 1. As a general rule,
adding a single central elemento the generators,,, we will be able to work with linear
representations. The eigenvaluef the operatot: is called the central charge, and labels
the representation. Hence, we expect that the represemiat]j has the algebraic structure

[L[6,), L[€]] = L [[bn, €] + p(n,m)cll (1.23)

with p(n, m) a (complex-valued) function antl= cll. The form ofp(n, m) can be de-
termined by making use of the antisymmetry of the commutantal the Jacobi identity,
which imply

p(n’ m> = _p<m7 n) ;
(n — m)p(n + m, k) + (m — k)p(m + k,n) + (k= mp(k +n,m) =0, 2¥)

The general solution to this equation is
p(n,m) = (an® 4+ bn)dyrmo - (1.25)

We fix a = —b by the requirement that we want to keep th¢l1, 1) symmetry explicitly,
i.e. we wantp(n, m) to vanish forn,m € {—1,0,1}. We can do this without loss of
generality by a linear redifinition of the generators. Henee arrive at the celebrated
Virasoro algebra,

A

3

Ly, Liy) = (n —m)Lypym + —(n

&
501" =i (1.26)
where the choice = 1/12 is conventional. Mathematically(n,m) is a so-called co-
cycle, and (1.24) are the cocycle conditions. Another waget® why a central extension



arises is, to consider the norm of states in the Hilbert sgéacéVe certainly want that
there exists a (unique) vacuum statewhich should be invariant under global conformal
transformations/,,|0) = 0 for n = —1,0, 1. Considering the full Virasoro algebra, we
cannot expect the vacuum to be invariant under all localaomél transformations, since
this would be in contradiction to the algebra. In fakt,L_,,|0) = L_,L,|0) = 0 implies
0 = [Ln, L_,]|0) = (2nLo + ¢/2(™"))|0) # 0 for ¢ # 0. To ensure that the vacuum
functional(0|0) is invariant under the action of the Virasoro algebra, ifiseé to impose
the smaller set of conditions

L,]0) =0 ¥n>—1. (1.27)

Together with (1.15) and (1.26) we can now easily computethieetwo-point function
(O[T (2)T (w)[0) = (T'(2)T (w)),

(T(2)T(w)) = (0] Z L,z "2 Z L ™™2|0)
= 01— ) Lz R0+ £ () (2) "
— 52—4 S (n ;r 3) (%)n

n>0

e (1.28)

2(z—w)*

It follows from this that the central extension of the symmetigebra amounts to fixing
the norm of states in the Hilbert space.

2. Amplitudes

This section is mainly devoted to some issues which arose the early studies of dual
amplitudes and which led to the advent of CFT. It might be tlfp understand how
the so-called vertex operators do arise and what kind ofctbne ultimatively wants to
compute.

2.1 Planar Amplitudes

Let us consider a scattering amplitudeMfparticles with momenté; , . .., ky in d-dimensional Minkowski space with

signaturg(1, —1, ..., —1) such thatk® = —m?. Projecting the scattering process onto a plane such taaternal legs
do not intersect, we say that two such scattering amplitadegquivalent under planar ordering, if there exists aicycl
relabelling of the external lines mapping one into the otRer example, the inequivalent planar orderings of a fauin{p
amplitude aré1,2,3,4), (1, 3,2,4), (1,2,4, 3).

We call a contiguous subset of external lines a planar charifer example (1,2, 3) is a planar channel in the
first of the above planar orderings, afid2) is a planar channel in the first and the last ordering. To e&fap channel
(i,i —1,...,7j) = (i_j) we associate an energy variable = (k; + k;+1 + ... + k;)* which gives the energy transfer
from the planar channel to its complement through an intdiate channel. Given such a planar channel, any other planar
channel with at least one external leg in the same positian #se original planar channel is said to overlap. Hence,
to each planar channél_j) we can associate a whole family of overlapping chanf&lg’) with momentum transfer
variabless; ;. Note that the energies of the overlapping channels act asemtum transfers with respect to the original
planar channel.

10



With these definitions at hand, we call an amplitutlg.,a. (K1, - - ., kn) planar, if and only if

Aplanar(kla-“v Z A 11;-“ ZN); (21)
otorings
where each of the partial amplituddsk;, . .., k;, ) possesses an infinite number of poles in each planar chavirieh
lie on Regge trajectories
J=a(s)=d's+ay € Zy. (2.2)

The residues at the poles are polynomial in the momentursfeawmariables of degree at most

Applying this axiomatic definition of a planar amplitude keetfour-point case, the sum extends over three inequiv-
alent planar orderings,

Aptanar(k1, k2, ks, ka) = A(k1, ko, ks, ka) + A(k1, k3, ko, ka) + A(k1, ko, ka, k3) . (2.3)

The first term allows the two planar channéls2) or (2_3). If we puts = s12 andt = sa3, the required pole structure of
the first term dictates that it may only dependsaandt, i.e. A(k1, k2, ks, k) = A(s, ). In a similar way we can conclude
that A(kq, ks, k2, ks) = A(u,t) with u = s13, because the second term has the planar chafinglsand(4.1) ~ (3_2).
Analogously,A(kq, k2, k4, k3) = A(s, u).

Duality means thatd(s,s’) = A(s’,s) such that the dual four-point amplitude i§,ianar (K1, k2, k3, ka) =
A(s,t) + A(t,u) + A(u, s).

_ \./ N J/ . \./
1 4 / \4 1/ \4 1/ \3
2\ /3 2 3

= > 5 = 2 s
1/‘\4 1 4

Figure 4: Decomposition of the planar 4-point amplitude into its éhdéfferent planar orderings,
decomposition of a planar ordering into planar channels.

2.2 The Veneziano amplitude

Let us concentrate on one of the partial amplitudes, 4@y, ko, ks, k4) = A(s,t) = A(t, s), which according to our
requirements shall be a meromorphic function ébr fixed ¢t and vice versa. A particular simple function satisfyingsine
properties is Euler’s beta function,

n e n

B(u,v) = Z — m Hv— Z — n' ]:[ (2.4)

where the first series expansion isurfor fixed v, and the second one is infor fixed u. For fixedu, B(u,v) exhibits

poles whenever = —n, n € Z4, and the residue is indeed a polynomiatiof degreen. Therefore, the corresponding
Regge trajectory is = —a(t) = —a't — ap, and similarlyu = —a(s) = —a’s — ag. The starting point of string theory,
the famous Veneziano amplitude, is then obtained by setting

A(s,t) = B(—a(s), —a(t)) . (2.5)
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In the days preceeding string theory, physicists develgoedalled dual resonance
models to explain the proliferation of hadronic resonandésve believe in the idea of
duality, we may try to find microscopical physical systemschtexplain it. In the early
days of dual models, people found that Euler’s beta fungtiells a dual amplitude. With
a(s) = a's + ap, a dual four-point amplitude, the so-called Veneziano @unbé, reads

Aplanar (K1, ko, k3, ky) = B(—a(s), —a(t)) + B(—a(t), —a(u)) + B(—a(u), —a(s)),

(2.6)
wheres, ¢, u denote the Mandelstam variables, and whBfe, v) has the integral repre-
sentation )

B(—a(s), —a(t)) = / dz 272711 — z)7e®=1 (2.7)
0

The poles in the-channel originate from the integration regien— 0, while the region
z — 1 is responsible for the poles in tlvechannel.

But why is such an amplitude a hint towards string theorya Thimes about if we try
to interpret the parameteras some coordinate. It looks as:iis somehow the distance
between particles 1 and 2, afid— z) is the distance between partilces 2 and 3. One might
imagine the external legs as living on a line, i.e. the red with coordinate9, z, and 1
for particles 1,2, and 3. More generally, let us identifgo with +00 compactifying the
real line to a circleS! and let us introduce the so-called Koba-Nielsen variableghich
we associate to every external leg. In this way, an ansata fyggneral planan-point
amplitude satisfying the duality property can be found,

N

Ak, ko) = / TT did(21 — 2)0(2x-1 — 2)0(on — 22) (2.8)
{zi>z;:i>5} ;4
N-1
X (25— 2a)(ze — 2b)(2e — 24) H (Zig1 — 7)) H(ZZ — )2 kiky
i=1 i>j

Note that we introduced three marked paintz, andz., whose meaning will become clear
below. The region of integration introduces an orderingtandircle, which essentially is
a quantum-mechanical “time-ordering”.

The Koba-Nielsen variables are the simplest solution tadhj@irement that a planar amplitude be of the form

JTucxs) T 7, (29)

planar
channels

such that a variabl&;; is associated to each planar chanfigl) with the property that foX;; — 0 all X;;,, — 1 with
(i'_j") an overlapping channel ¢f_j). In this way poles never develop in two different channetsfie same region of
parameters. The measyréX;;) is yet unspecified, but should at least reflect the cyclic pgation symmetry of planar
amplitudes. An ansatz can be found with the Koba-Nielseiabbas by simply putting(;; = z; — z;.

The amplitude (2.8), resticted fé6 = 4 andz, = 0, z;, = 1, z. = oo does indeed reproduce (2.6), if the definition of
the Mandelstam variables; = (kl-+k:j)2 = kf+k?+2ki-kj is used together with momentum conservatpi) k; = 0,

and the mass shell condition for the lightest particles @nRigge trajectory (the spin zero particles)? + ag = 0.
Note that the general ansatz (2.8) is dual only on the madis she

12



A very important feature of (2.8) is that it yields a dual aiyale on the mass shell
for arbitrary values ot,, z,, andz.. The reason is that (2.8) i8L(2, R) invariant. This
invariance is just invariance under Mobius transformai@l.20) witha, b, ¢, d real. The
infinitesimal transformations, i.e. the ones withi close to one ané, ¢ close to zero, are

22 =z 4 ela+ Bz +v2%), (2.10)

from which we find the algebra of the generators to form a dgbkaa of the Witt-algebra
(1.21) withn,m € {—1,0,+1}. Explicitly, {_; = —0., o = —z0., and/; = —2z20..
Now, the reader might convince herself that under such afwamation

zi—zj = (zi— z) L+l +v(z + 2)])
{ dz; — dz;(1+e[B+2vz]) - (2.11)

It is now convenient to rewrite (2.8) in the following way, aiie the abbreviation;; =
z; — z; has been used:

A({k;}) = / p{zh) [ [ = [ [ Greni) ™ (2.12)
p(teh) = [ daitews = =) — 2w e — ) [[(en) ™ @213)

It follows that the measurg({z;}) is SL(2,R) invariant, andzy, zy_1, zy are the three
fixed variables. A common choice for thenris= 2, = 0, z2y_1 = 2, = 1, 2y = 2, = 00.

As noted above, this amplitude is dual only on the mass steslprovidedy'k? + o = 0
andy_, k; = 0. Therefore, the external spin zero particles have massy,/a’. Since the
Regge slope/’ is always positive, positive, leads to imaginary mass, i.e. the amplitude
yields the scattering of tachyons. Despite problems withysjgal interpretation of this,
one immediately sees that the valug= 1 greatly simplifies (2.8) to

N

A({k;}) = / Hdzié(zl — 24)0(2n—1 — 2p)0(2N — 2c)

{Zi>ZjZi>j} i=1
X (2 — 24)(2e — 2)(2¢ — 2a) H(Z’ — z;) T2 kK (2.14)

i>j

It is instructive to explicitly checkS L(2, R) invariance for this compact form of the
planar amplitude. Under+— 2’ = (az 4+ b)/(cz + d), we find

{ zi— 2z — (2 — 2j)[(czi + d)(cz; + )] 71,

dz; — dzi[(cz + d)]72. (2.15)

Thus, the net effect of a global Mobius transformation isroltiply the integrand by
powers ofD; = (cz; + d). The measure contribut¢®,) 2 for each variable, whereas the
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kernel contributes the power

momentum mass
—20[,]{72' . (Z k]) consegation —20[,]{72' . (_kz) s]gll _|_2 ) (216)
i

That provesSL(2,R) invariance of the Veneziano amplitude. Besides the siroptifin,
the choiceny = 1 has other interesting consequences. First of all, the Reggeetory
now contains not only the unpleasant tachyon, but also alesssgector, which indicates
the existence of a gauge symmetry. Indeed, the modified ardpl{2.15) is invariant not
only underSL(2,R), but under the whole groupiff (S'). Fixing oy = 1 thus enhances
the symmetry of the scattering amplitudes to the full inérdimensional Witt-algebra
(1.21) with generatorg, = —z"0, forn € Z.

Duality, i.e. crossing symmetry betweenand¢-channels has given us &1.(2, R)
symmetry. Due to quantum mechanics, no positions for thereat particles arise, since
we worked with well-defined momentg. But duality is somehow incorporated into the
SL(2,R) symmetry acting on the Koba-Nielsen variables defined orcdneactified real
line. What physics is behind all this?

2.3 Vertex operators

Our aim is now to construct a quantum-mechanical system e/klasuum expectation
values (a.k.a. correlation functions) reproduce the dogdl@udes. Thus, we would like
to think of A({k;}) as the expectation values of some operators represengngstticles
in some Fock space. In quantum mechanics, scattering amigditare usually described
in terms of theS-matrix operator. Hence, we seek so-caleutex operatord/(k, z) in
some Hilbert space whose vacuum expectation values coelld tyie dual amplitudes

Atk = [ T (0, z) .V 20)10). (2.17)

To construct such vertex operators, we first introduce ario$ack space with a vacuum
|0) and an infinity of simple harmonic oscillators, i.e. an irtfrof pairs of creation and
annihilation operators!', a with n > 0 labelling the “modes” ang =0, ..., D — 1. As
usual, we require that the vacuum be a highest-weight state,

a0y =0 Vn>1,u, (2.18)
and that the oscillators satisfy standard commutatioriogla
[aZ7 CLZ“ = _nén,mnwj s (219)

with all other commutators vanishing. We further assumenitérity such that under
conjugation0)’ = (0] anda*’ = a",,.
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A basis for the Hilbert space of states is the set of all momadsimn creation operators,
at1t .. ak*7]0). We have a natural gradation on this space by the particlebeunto,
a”T|0) is a basis for one particle states, anla”'|0) for two-particle states, and so on.
Actually, the space generated this way is not a Hilber spsinee its norm is not positive
definite. For instance,

n»'n

|att10) |

= (0]ahat|0) = (0[[ak, a4T]]0) = —nip*(0]0) = —nyp* . (2.20)
Since time has the opposite signature in the metric tharesplae states’’|0) have neg-
ative norm forn > 1. This is similar to gauge theories, where the timelike congo.A°
of the vector field has negative norm. The way out of this isg¢oadiple such unphysical
states such that computable observables do not violateo@i®n of probability.
Another issue to take care of concerns the zero mode oper&ofrfara” = a/ = p*
commutes with everything. It is necessary to introduceatgugate operator such that the
only non-vanishing commutator jg*, ¢] = in**. To complete our choice of polarization
(that|0) be a highest-weight state), we require that the vacuum eanymomentum, i.e.
Pyl0) =0.
We are now able to introduce the equivalent of plane wavesiehathe “moving
ground states”
|0; k) = exp(ik,q")|0) (2.21)

with momentumk*, sincep”|0; k) = k*|0; k). We may apply a Lorentz boost to bring
these states to a stand-still, and therefore we should Viewperatorg” andp” = afj as
the center-of-mass position and momentum. The whole “IHiltspace is thus spanned

by
H = span {(H at N0 k) :ND I ={ny,...np},nip1 > nl} : (2.22)

el
The following picture emerges: The Hilbert space is laliebg the center-of-mass mo-
mentum and by the occupation numbers of the Fourier models m# 1). The bosonic
Fock space we just have constructed is the Fock space of aferestring, where each
independent mode of vibrational excitation is quantized &iee oscillator.

In mathematical terms, the Fock space decomposes intoa dirsn of Verma mod-
ules. To each valuk € SP~! we associate a higehst-weight stiitgk) on which a Verma
module of some infinite-dimensional Lie algebra is built. ¥é& now proceed to identify
the Fubini-Veneziano vertex operatdrgk, z) in this Fock space. Let us first consider the
string coordinate

XH(z) = p' — 2i'p"logz + X" (2) + X (2), (2.23)
ar
W — iV n . —n
XE(z) = iV2a E A

n>1

wt
X (z) = —iv2a/ Z %2_" .

n>1
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Note that, up to a different normalization explicitly inparating the string tension’,
this expression is quite — but not completely! — similar tdl@). Obviously, the Koba-
Nielsen variable acts as a local coordinate on a string vaipect to which a Fourier
decomposition of its vibrational modes is made. We havedhefing vacuum conditions
for the positive and negative modes,

X"(2)[0) = (0| X" (2) =0. (2.24)

The reader should work out the following statements explidUsing the standard commutation relations of the ol
modes, one easily shows that

X (2), Xt (w)] = 20" 37 —[alt,aif]z "0 = —2af Z (—) :2o¢'log(1—%). (2.25)

mn>l

The result is a function (not an operator) such that we catyapp Baker-Hausdorff formula, i.exp(A)exp(B) =
exp(B)exp(A)exp(:[A, B)), to find

exp(i(ky)y XY (2))exp(i(ke) X" (w)) = (w — 2) 72 Frkeq2e Bk oxp iy, XH (w) Jexp(i(k1), XY (2)) . (2.26)

The operator$(k, z) = exp(k - X _(z))exp(k - X 4 (z)) can be seen to have the expectation values

(O[Vie (ke 2n) - - Vie (R, 20)[0) = [ (21 — 25) 72 ks H )20 ki K (2.27)

i>j
with K Z < kj. So far, The second factor spoils this to be of the requireshfdBut we have neglected the zero-
modes. In fact Wlth the definition
V(k,z) = exp(k, X" (2))explik,(¢" — 2ia/p"logz)|exp(k, X (2)) (2.28)

the spoiling factor is cancelled and momentum conservédiaatomatically implemented leading to the desired vacuum

expectation values
OV (kn,2n) ... V(k1,20)[0) = [ (25 — 2j) 72 *eks H )o'ki (2.29)
>
Note that the second term is now solely due to the non-trasahmutator of the zero-mode operatptsandqg”, and is
not associated to an ordering problem between differet¢x@perators.

The above definition of our vertex operators can be writteavery simple form with
the use of normal ordering. It is nothing else than the noordgred exponential of a free
field, namely

V(k,z) = exp(ik, X"(2)):, (2.30)

which is just the common normal ordering prescription to mal annihilators right to the
creators and to move momentum right to position, exacthng2.28). In the following,
all such expressions will be understood as implicitly ndrordered, even if the.: .: is
omitted. With these vertex operators we find the correcgnatiekernel as

v<kN7ZN) V(kbzl) —92d'k: k.
(0] e e OE | [ (2.31)
(ZN)a ky (zl)a k7 :Zl;][ J

As they are defined, the vertex operators do not carry anysfraee-time indices, and are
thus scalar (spin zero) operators. If the correspondirtgstee on a Regge trajectory, we
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must haven'k? + oy = 0, such that we can indeed reproduce the amplitudes as vacuum
expectation values of a product of vertex operators,
N

Atk = [ (H d) OV (kn, 2) - V{1, 20)]0) (2.32)

i=1 """

This expression i$'L(2,R) invariant by construction, and becomes invariant under the
full Diff (S1), i.e. arbitrary reparametrizations of thecoordinate for the special value
ap = 1. Clearly, for this choice ofy, the measuréz/z is reparametrization invariant. It

is nice to writez = ¢?. Then, keeping in mind that the integration measure inclwyelic
orderingz; > z; fori > j, i.e. the step functio®(6; — 6;), we see that is something like

a time coordinate, and the amplitude can be seen as expectalue of a time ordered
product of operators which create states with momerkuat timess,.

2.4 The Virasoro-Shapiro amplitude

The planar amplitudes are not the only ones satisfying ttaditsiiconditions. If the additional requirement that poles
may only develop in one channel at a time is dropped, Venezieml Shapiro found a non-planar solution to duality.
Let us concentrate on the four-point amplitudés, ¢, ), depending on the three Mandelstam variables (k; + k2)?,

t = (ko + k3)?, andu = (k3 + k1)%. These are related via+ ¢t + u = Z‘i‘:l m?, and for the sake of simplicity we
restrict ourselves to the case that all masses are ekjiak, —m?. Again, states on Regge trajectories are labelled by
a(s) = a’s + ap. Then, Virasoro’s proposal was

L(—5a(s)T(=5a(t))T(=za(u))
D(=3la(s) + a®))T(=3lat) + a(T(=3[e(u) + als))
This amplitude is non-planar, but still satisfies dualiys,t,u) = A(t, s,u) = A(u,t,s) = A(s,u,t) = A(t,u,s) =
A(u, s,t). Thus, the amplitude is invariant under permutations ofNtemdelstam variables which means that it is in-

variant under cyclic relabellings of the external legs. igthis amplitude has an infinity of poles, and their resglaee
polynomials of bounded degree. To see this, it is best tohesentegral representation

A(s,t,u) =

(2.33)

Als, t,u) = /d2z|z|_°‘(s)_2|1 — z|7*®)=2 (2.34)

This expression is remarkably close to the integral reprtasien of the four-point Veneziano amplitude (2.6 and 2.7)
except that now is a complex variable, and that the exponents differ by ohe. ghysical interpretation of this is that this
amplitude refers to a closed string, while the Venezianolgnte came from an open string.

In the planar (Veneziano) casec R anday = 1 was a distinguished value for which a massless vector (aophot
appeared in the spectrum enhancing$tig2, R) symmetry of the vacuum tBiff (S'). In the non-planar (Virasoro) case,
z € Canday = 2 is a special value for which a massless two-tensor (a gravédlilaton, and a Kalb-Ramond field)
arises. The symmetry of the vacuum is nS\i(2, C), which forag = 2 enlarges taDiff (S') x Diff (S'). The SL(2)
symmetry enables us in both cases to fix three of the cooadinatarbitrarily chosen values, usudllyl, andoo.

In the planar case, we constructed vertex operadfdks =) = :exp(ik, X" (z)): with the string coordinate (skipping
the normalization with') "

XHM(z) =¢" —ip*logz+i L (2.35)
In the non-planar case, we can proceed in a similar fashiamrder to construct vertex operators which reproduce the

dual amplitudes in terms of vacuum expectation values. Keweve find that they are now of the forbi(k, 2z, z) =
:exp(ik, X*(z, Z)): with the string coordinate of a closed string given by

Iz 7) — oM it > 3 an —n | Gn ——n
XMz, 2) =q" —ip 1ogzz+1znz +1an . (2.36)
n#0 n#0
This is precisely the expression (1.12) we found earlierenghwe derived it from the action for the string world-sheet
(provided we identifyi,,, so far considered to be independent oféhewith a,,). Were it not for the zero mode, we would
have the decompositioki“(z, z) = X*(z) + X*(z) into holomorphic and anti-holomorphic parts. At least tkeitbator
modes are doubled such that we will have two copies of thesuh@algebra as symmetries.
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3. CFT proper

We will now detach ourselves from any string theoretic mations and consider CFT
solely on its own. As mentioned in section 1.1, we work on th@plex plane (or Riemann
sphere) with the holomorphic coordinateand the holomorphic differential or one-form
dz. Afield ®(z) is called aconformalor primary field of weight#, if it transforms under
holomorphic mappings — z/(z) of the coordinate as

B (2)(d2)" = By () (d)" = Oy (2)(d2)". (3.1)

In case that the conformal weightis not a (half-)integer, it is better to write this as

: 02/ (2)\ ™"
0(2) - () = ) () 62)
One should keep in mind that all formulae here have an antirhotphic counterpart.
Since a primary field factorizes into holomorphic and arfthworphic parts®,, ;(z, z) =
o, (2)Py(Z), in most cases, we can skip half of the story. Infinitesimélly (z) = z+<(z)
with Je = 0, the transformation of the field is

Dy (2) (A2 = (B (2) 4+ £(2)0.Pn(2) + ...) (d2)" (1 + D.e(2))" . (3.3)

Therefore, the variation of the field with respect to a holgohic coordinate transforma-
tion is

00, (2) = (e(2)0 + h(0e(2))) Pr(z) . (3.4)
Since this transformation is supposed to be holomorphiC*init can be expanded as a
Laurent series,

e(z) = Zanznﬂ : (3.5)
nez

This suggests to take the set of infinitesimal transformatio— 2 = z + ¢,2""! as a

basis from which we find the generators of this reparameinizaymmetry by considering
dy, — by, + 5n(I)h with

6,1 (2) = ("0 + h(n+1)2") @p(2) . (3.6)

The generators are thus the generators of the already elecedn/itt-algebra (1.21),
l, = —z"10.

We are interested in a quantized theory such that conformladisfibecome operator
valued distributions in some Hilber spaté We therefore seek a representatiorf,pk
Diff (S*) by some operators,, € ‘H such that

0nPr(2) = [Ln, Pr(2)]. (3.7)
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We already have done this in section 1.3, where we discovbeddirasoro algebra (1.26),
(L, L) = (n — m) Lyt + 55 (n® — n)dy4m0. We once more remark thal(2) is a sub-
algebra ofDiff (S*) which is independent of the central chargeSo, we start with con-
sidering the consequences of jygt(2, C) invariance on correlation functions of primary
conformal fields of the form

G(z1,...,28) = (0|Ppy (2n) . .. Ppy (21)]0) . (3.8)

We immediately can read off the effect on primary fields fré6y}, which iso_;®,(z) =
0Py, (2), 00Pn(2) = (20 + h)Py(2), andd; @, (2) = (220 + 2hz)Pp(2).

3.1 Conformal Ward identities

Global conformal invariance of correlation functions isusglent to the statement that
0;G(z1,...,2y) = 0fori € {—1,0,1}. Sinced; acts as a (Lie-) derivative, we find the
following differential equations for correlation functisG({z;}),

0=SN 8.G(z,...,2x),
0=, (20, + hi)G(z,..., 2n), (3.9)
0=3"N (220, + 2h;z))G (21, ..., 2n)

which are the so-calledonformal Ward identites The general solution to these three
equations is

(O @ry (2n) - iy (20)[0) = F({me}) [ [ (i = 29) (3.10)
i>j
where the exponenjs; = 1;; must satisfy the conditions
Z/Mj = —2h;, (3.11)
J#i

and where'({n; }) is an arbitray function of any set &f — 3 independent harmonic ratios
(a.k.a. crossing ratios), for example

(21 — z1)(2v-1 — 2n)
(Zk - ZN)(Zl - ZN—1) ’

e = k=2...N—-2. (3.12)
The above choice is conventional, and maps— 0, zy_; — 1, andzy — oo. This
remaining function cannot be further determined, becausé&armonic ratios are already
SL(2,C) invariant, and therefore any function of them is too. Thisfams thats((2)
invariance allows us to fix (only) three of the variables @duily. If we compare this
general form (3.10) with the Veneziano amplitudes builtdreertex operators as in (2.31),
we find thaty;; = —2d'k; - k; andh; = o/k:f. Thus, we arrive at the very nice result that
the vertex operatorg (k, z) in (2.30) are primary conformal fields of weightk® = «y.
Since the integral over the Koba-Nielsen variables, i@ctbordinates of the primary fiels,
is well-defined only forog = 1, we learn that a string amplitude (of tachyons) is related
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to a particular simple conformal field theory where all inved conformal fields have
conformal scaling weight one.
Let us rewrite the conformal Ward identities (3.9) as

0 = ((0:iPny (28))Ph, 1 (2n-1) - - Pny (21)) + ((Pry (28) (6P, (2v-1)) - - - Py (21))
+ o+ ((Phy (28) Phy sy (2v—1) (6P, (21))) (3.13)

where ;®,(z) = [L;, Pn(z)] for i € {-1,0,1}. We assume that the in-vacuum is
SL(2,C) invariant, i.e. thatZ;|0) = 0 fori € {—1,0,1}. Then (3.13) is nothing else
than (0| L; (®p, (2n) . .. Pp,(21)) |0) from which it follows that(0|L; must be states or-
thogonal to (and hence decoupled from) any other state ithtéwy fori € {—1,0,1}.

In a well-defined quantum field theory, we have an isomorpliistween the fields in
the theory and states in the Hilbert spa¢e This isomorphism is particularly simple in
CFT and induced by

lim ®,(2)[0) = |1) (3.14)

where |h) is a highest-weight state of the Virasoro algebra. Inde&tdesL,,, ;] =
(2"T10 + h(n + 1)2")®;, we find with the highest-weight property of the vaculihas
in (1.27) that for alln > 0

Ly|h) = lim L,®,(2)]0) = lil%[L"’ ,,(2)]]0) = lim (2" + (n+ 1)hz") ®1,(2)[0)
=0. (3.15)

Furthermore/Lo|h) = h|h) by the same consideration. Thus, primary fields correspond t
highest-weight states. In particular, our vertex opesidi, z) correspond to the highest-
weight states0, k) = lim,_, V(k, 2)|0). Sincez — 0 in PC' corresponds te — —oco

on the cylinder, i.e. the world sheet, the above field-stsdenorphism is precisely what
physics would suggest to us.

A nice exercise is to apply the conformal Ward identities tava-point functionG = (®,(z)® (w). The constraint from
L_;isthat(9, + 9,,)G = 0, meaning tha& = f(z — w) is a function of the distance only. THg constraint then yields

a linear ordinary differential equatiof(;z — w)d., ., + (b + 1')) f(z — w) = 0, which is solved byonst - (z — w) =",

Finally, the L; constraint yields the conditioh = h’. However, we should be carefull here, since this does not
necessarily imply that the two fields have to be identicallyG@meir conformal weights have to coincide. In fact, we will

encounter examples where the propagéii’) = lim,_, ., (0|22"®;,(z)®.,(0)|0) is not diagonal. Therefore, if more than
one field of conformal weight exists, the two-point functions aquire the fo(ﬁag)(z)@ﬁj) (w)) = (2 — w) 2"y 1 Dyj

with D;; = (h;i|h; j) the propagator matrix. The matrl;; then induces a metric on the space of fields. In the following,
we will assume thab,; = ¢;; except otherwise stated.

It is worth noting that the conformal Ward identites (3.9o@a us to fix the two-
and three-point functions completely upto constants. ¢, flae two-point functions are
simply given by

5h,h'

(P (2)Pp (w)) = o) (3.16)
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where we have taken the freedom to fix the normalization ofpyimary fields. The
three-point functions turn out to be

Cijk
(zij)hi-i-hj—hk (Zik)hi-i-hk—hj (ij)hj+hk_hi Y

(P, ()P, (25) P (21)) = (3.17)
where we again used the abbreviatigh = z; — z;. The constantg’;;; are not fixed
by SL(2,C) invariance and are called ttetructure constantsf the CFT. Finally, the
four-point function is determined upto an arbitrary fuonatiof one crossing ratio, usually
chosen ag = (212234)/(224213). The solution fory;; is no longer unique fo®N > 4, and
the customary one faN = 4 is yi;; = H/3 — h; — h; with H = 31, h;, such that the
four-point functions reads

(@1, (24) By (23) D1y (22) Py (21)) = H<zij>H/3—hi—hfF<%>. (3.18)

Note again that' L(2, C) invariance cannot tell us anything about the functitiy), since
7 is invariant under Mobius transformations.

3.2 Virasoro representation theory: Verma modules

We already encoutered highest-weight states, which arst#ttes corresponding to pri-
mary fields. On each such highest-weight state we can cahstverma modulé’, . with
respect to the Virasoro algebiér by applying the negative modés,, n < 0 to it. Such
states are calledescendanstates. In this way our Hilbert space decomposes as

H = @hﬁ Vh70®vf_l,c7
Vh.c = span {(Hie[ L_y|h) :NDIT=A{ny,...ng},nip1 > nz} ,

where we momentarily have sketched the fact that the full &3 a holomorphic and an
anti-holomorphic part. Note also, that we indicate the gdtr the central charge in the
Verma modules. We have so far chosen the anti-holomorphiopthe CFT to be simply
a copy of the holomorphic part, which guarantees the futhtih¢o be local. However, this
is not the only consistent choice, and heterotic stringgaarexample where left and right
chiral CFT definitely are very much different from each other

A way of counting the number of states ¥j . is to introduce theharacterof the
Virasoro algebra, which is a formal power series

(3.19)

Xne(q) = try, g7~ (3.20)

For the moment, we considerto be a formal variable, but we will later interpret it in
physical terms, where it will be defined lgy= e?™'" with a complex parameter living
in the upper half plane, i.&m 7 > 0. The meaning of the constant terra/24 will also
become clear further ahead.

The Verma module possesses a natural gradation in terme @iglen value of.,
which for any descendant stafe ,,;|h) = L_,, ... L_,, |h) is given byLoL_g,y|h) =
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(h+ {n})|h) = (h+ny + ...+ ng)|h). One calls|{n}| the level of the descendant
L_gy|h). The first descendant stateslif. are easily found. At level zero, there exists
of course only the highest-weight state itsélf). At level one, we only have one state,
L_1|h). At level two, we find two stated,? ,|h) andL_,|h). In general, we have

Vie = @y Vir |
Vi) = span {L_g|h) : [{n}| = N} |
i.e. at each levelV we generically have(N) linearly independent descendants, where
p(IN) denotes the number of partitions &f into positive integers. If all these states are

physical, i.e. do not decouple from the spectrum, we easitywrite down the character
of this highest-weight representation,

Xh,c(Q) _ qh—c/24 H

n>1

(3.21)

1
1—qn

(3.22)

To see this, the reader should make herself clear that we otaynah) with any power
of L_,, independently of the powers of any other made,,,, quite similar to the Fock
space of oscillators (2.22). A closer look reveals that@Bi2 indeed formally equivalent
to the partition function of an infinite number of oscilladarith energies”,, = n. The
expression (3.22) contains the generating function forriliabers of partitions, since
expanding it in a power series yields

[Ta=a)7 =" p(N)g" (3.23)

n>1 N2>0

=14q+2¢*+3¢ +5¢* + 7¢° + 11¢° + 15¢" + 22¢° + 30¢° + 42¢*° + . . . .

3.3 Virasoro representation theory: Null vectors

The above considerations are true in the generic case. Bug #tart to fix our CFT by

a choice of the central chargewe have to be carefull about the question whether all the
states are really linearly independent. In other words: Magppen that for a given level

N a patrticular linear combination

i)y = > Ly lh)y =07 (3.24)
H{n}=N

With this we mean tha(¢|x§ivc)) = 0 for all |)) € H. To be precise, this statement
assumes that our space of states admitts a sesqui-lin@ax for. In most CFTs, this is
the case, since we can define asymptotic out-states (thetoo limit on the cylinder) by

(h] = lim (0|®}(2)2z*" . (3.25)
This definition is forced by the requirement to be compatititey SZ(2, C) invariance of
the two-point function (3.16). We then hayi€|h) = d, . The exponent?" arises due to

the conformal transformation— 2’ = 1/z we implicitly have used. We further assume
the hermiticity conditior’.” , = L,, to hold.
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The hermiticity condition is certainly fulfilled for unitgrtheories. We already know from the calculation (1.28) & th
two-point function(7'(z)T'(w)) that necessarily > 0 for unitary theories. Otherwisé,L_,|0)||> = (0|L,L_,|0) =
(0[[Ln, L—3]|0) = $5¢(n® —n)(0]0) would be negative fon > 2. Moreover, redoing the same calculation for the highest-
weight state?) instead ofi0), we find ||L_, |h)[|* = (3¢(n® — n) + 2nh) (h|h). The first term dominates for large
such that agair must be non-negative, if this norm should be positive definfthe second term dominates for= 1,
from which we learn thak must be non-negative, too. To summarize, unitary CFTs sacésrequirec > 0 andh > 0,
where the theory is trivial for = 0 and whereh = 0 implies thatjh = 0) = |0) is the (unique) vacuum.

To answer the above question, we considepti?é) x p(N) matrix K™) of all possi-
ble scalar productK(ﬁf)} ny = (A Ly L_gny|h). This matrix is hermitean by definition.
If this matrix has a vaniéhing or negative determinant, therust possess an eigen vector
(i.e. alinear combination of levé¥ descendants) with zero or negative norm, respectively.
The converse is not necessarily true, such that a positiegrdeant could still mean the
presence of an even number of negative eigen values.NFer 1, this reduces to the
simple statementet K") = (h|L;L_,|h) = ||L_1|h)||> = (h|2Lo|h) = 2h{h|h) = 2h,
where we used the Virasoro algebra (1.26). Thus, theresexistll vector at leveN =1
only for the vacuum highest-weight representatios 0.

We note a view points concerning the general case. Firstlg,td the assumption
that all highest-weight states are unique ({#|h) = ¢,/ ), it follows that it suffices to
analyze the matri¥<™ in order to find conditions for the presence of null statesteNo
that scalar product&:| L,y L_,y|h) are automatically zero fo{n'}| — [{n}| # 0 due
to the highest-weight property. Secondly, using the Virasdgebra (1.26), each matrix
element can be reduced to a polynomial functioh ahde. This must be so, since the total
level of the descendaudt,, L_(,1|h) is zero such that use of the Virasoro algebra allows

to reduce it to a polynomial,y ¢} (Lo, ¢)|h). It follows that K{7) \ = piay. gy (k. ©).
Itis an extremely useful exercise to work out the leiel= 2 case by hand. Singg2) = 2, The matrixk () is the2 x 2

matrix
@ _ ( (hlLaLosfh) (L2l oy La|h)
" (<h|L1L1L_2|h> (W LiL1L_1L_q|h) ) ° (3.26)

The Virasoro algebra reduces all the four elements to egjmesinh andc. For example, we evaluatle, L1 L_s|h) =
Li[L1,L_s]|h) =3L1L_4|h) = 6L¢|h) etc., such that we arrive at

d4h+Lc  6h
(2) — 2
K ( oh 4h+8h2) (h|h) . (3.27)

Fore, h > 1, the diagonal dominates and the eigen values are hence bsitive. The determinant is

det K® = 2h (16h* + 2(c — 5)h + c) (h|h)?. (3.28)
At level N = 2, there are three values of the highest weight
he {0,1—16(5—cj:\/(c—1)(c—25))}, (3.29)

where the matir¥<?) develops a zero eigen value. Note that one finds two valyudsr
each given central charge besides the valuk = 0 which is a remnant of the level one
null state. The corresponding eigen vector is easily fourdraads

X ) = (2(2hs + 1)Ly — L)) |hs) . (3.30)

hi,c
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This can be generalized. The reader might occupy hersel siome with calculating the null states for the next few level

Luckily, there exist at least general formulee for the zeafdhe so-called Kac determinadtt X ™), which are curves in
the (h, ¢) plane. Reparametrizing with some hind-sight

_ 1 1 . _ 1 c—25
c=c¢(m)=1 67m(m+1), ie. m= 2<1i”c—1>’ (3.31)

one can show that the vanishing lines are given by

~ ((m+1)p—mg)®—1
hpq(c) = yrE— (3.32)

= —lpg+ Lc—-1+ 4 ((13—c¢ (c—1)(c—25))p> + (13 —c+/(c— 1)(0—25))q2) .

Note that the two solutions for. lead to the same set bfvalues, sincé, ,(m (c)) = hqp(m—(c)). With this notation
for the zeroes, the Kac determinant can be written upto atantisy of combinatorical origin as

det K™ = ay H (h— hpyq(c))p(nipq) oc det KV H (h = hp,q(c)) (3.33)

pg<N pg=N

where we have séh|h) = 1, and wherey(n) denotes again the number of partitionsudhto positive integers.

A deeper analysis not only reveals null states, where thiarspeoduct would be positive semi-definite, but also
regions of the(h, ¢) plane where negative norm states are present. A physicaibderstring theory should possess a
Hilbert space of states, i.e. the scalar product should bitiy®definite. Therefore, an analysis which regions of(the:)
plane are free of negative-norm states is a very importauneif string theory. As a result, for< ¢ < 1, only the discrete
set of points given by the value$m) with m € N in (3.31) and the corresponding values,(c) with 1 < p < m and
1 < ¢ <m+1in(3.32) turns out to be free of negative-norm states. Irstting theory lectures, the reader will learn that
the regionc > 25 is particularly interesting, and that indeed- 26 admitts a positive definite Hilbert space.

45
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35

25 A3

15k E
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Figure 5: The first few of the lines, ,(c) where null states exist. They are also the lines where
the Kac determinant has a zero, indicating a sign change eiganvalue.

To complete our brief discussion of Virasoro representatieeory, we note the fol-
lowing: If null states are present in a given Verma modyle, they are states which are
orthogonal to all other states. It follows, that they, andtfair descendants, decouple
from the other states in the Verma module. Hence, the corepecesentation module is
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the irreducible sub-module with the ideal generated by tiiestate divided out, or more
precisley, with the maximal proper sub-module divided ost,

N
Vhp,q(c),c - Mhp,q(c),c = Vhp,q(c)vc /Span{‘xgp,i(c)d = O} ’ (334)

or mathematically more rigorously/, is the unique sub-module such that

p,q(c),c

!
Vipaere = My, e = M, 4(0).c (3.35)

is exact for allM’. Due to the state-field isomorphism, it is clear that thisodgding

of states must reflect itself in partial differential eqoas for correlation functions, since
descendants of primary fields are made by acting with modéseo$tress energy tensor
on them. These modes, as we have seen, are representeceeentldf operators. The

precise relationship will be worked out further below. Thuosll states provide a very

powerful tool to find further conditions for expectation was. They allow us to exploit

the infinity of local conformal symmetries as well, and unsi@ecial circumstances enable
us — at least in principle — to compuaél observables of the theory.

3.4 Descendant fields and Operator product expansion

As we associated to each highest-weight state a primary fieddnay associate to each
descendant state a descendant field in the following way: stefedant is a linear com-

bination of monomiald_,, ... L_,, |h). The modes., were extracted from the stress-
energy tensor via a contour integration (1.18). This suiggesreate the descendant field
<I>§l_"1 """ _"’“)(z) by a successive application of contour integrations

(I)gl—nl ..... —nk)(z) _ (336)
dw1 dw2 dwk

where from now on we include the prefactatsinto the definition of§ dz. The contours
C; all encirclez andC; completely encircle€’; , 1, in shortC; = C. 4.

There is only one problem with this definition, -
namely that it involves products of operators. In
quantum field theory, this is a notoriously difficult!
issue. Firstly, operators may not commute, sec-"-

ndly, and mor riously, pr ts of operators at
ondly, and more seriously, products of operato SIél ure 6: Contour deformation for
eqgual points are not well-defined unless normal 06

PE calculations.

dered. As we defined (3.36), we took care to re-
spect “time” ordering, i.e. radial ordering on the compldane. In order to evaluate
equal-time commutators, we define for operatér#? and arbitrary funtiong, g the den-
sities

A = 7§ dzf(2)A(z), B,— 7§ dwg(w) B(w), (3.37)
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where the contours are circles around the origin with rédii= |w| = 1. Then, the
equal-time commutator of these objects is

A Bl = f 4= ()4 A dug(u) B(w) - ¢

Co

dug(w)Blw) § d=f(:)AC).
Ch
(3.38)
where we took the freedom to deform the contours in a homaeisgeay such that radial
ordering is kept in both terms. As indicated in the figure fivah terms together result in
the following expression,

A Bylos. = § dug(w) § d2f()A)Blw) (3.39)

with the conour arounay as small as we wish. The inner integration is thus given by
the singularities of the operator product expansion (ORE)(e) B(w). We suppose that
products of operators have an asymptotic expansion fot distances of their arguments.
The singular part of this short-distance expansion detegmvia contour integration the
corresponding equal-time commutators. For example, with

zgzﬁd%@ﬁu) (3.40)

as the general version of (1.18) fofz) = 2"™!, we recognize immediately. ®;, (w) =
(0w + h(0ye))Pp(w) = [T:, Pp(w)]. If this is to be reproduced by an OPE, it must be of
the form

h 1
m‘bh(w) + mﬁwq)h(w) + regqular terms . (3.41)

T(2)®n(w) =

To see this, one essentially has to apply Cauchy’s integraddla¢ dzf(z)(z — w)™ =
(n_ll),an—lf(w). Of course, we may also attempt to find the OPE of the stressygn
tensor with itself from the Virasoro algebra (1.26) in thengavay, which yields

c/2 2 1
G- e W e
The reader is encouraged to verify that the above OPE doegdhgield the Viraosro
algebra (1.26), if substituted into (3.39).

Note that7'(z) is not a proper primary field of weight two due to the term imod
the central charge. Sin@&(z) behaves as a primary field undey, i € {—1,0, 1} mean-
ing that it is a weight two tensor with respect$d.(2, C), it is called quasi-primary. One
important consequence of this is that the stress-energptem the complex plane and
the original stress energy tensor on the cylinder differ bpmstant term. Indeed, remem-
bering that the transfer from the complexified cylinder cliatew to the complex plane
coordinatez was given by the conformal map= e, one obtaines

T(2)T(w) =

0T (w) + regular terms . (3.42)

2—6411, i.e. (Ln)eyl = L — — 00 (3.43)

Tep(w) = 2*T(2) — 51
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This explains the appearance of the factet/24 in the definition (3.20) of the Virasoro
characters.

The structure of OPEs in CFT is fixed to some degree by two requants. Firstly,
the OPE is not a commutative product, but it should be asSeejae.(A(z)B(y))C(z) =
A(x)(B(y)C(z)). The motivation for this presumption comes from the dugityperties
of string amplitudes. Duality is crossing symmetry in CFTretation functions, which
can be seen to be equivalent to associativity of the OPE.xample, one may evaluate a
four-point function in several regions, where differentrpaf coordinates are taken close
together such that OPEs can be applied. Secondly, the OPEbmasnsistent with global
conformal invariance, i.e. it must respect (3.16), (3. ARy (3.18). This fixes the OPE to
be of the following generic form,
ch
o Oy, (w) + ..., (3.44)

(bhi (Z)(I)hj (w) = Z

(z—w

where the structure constants are identical to the streictumstants which appeared in the
three-point functions (3.17). Note that due to our nornadian of the propagators (two-
point functions), raising and lowering of indices is trivianless the two-point functions
are non-trivial, i.e D;; # 4;;).

We can divide all fields in a CFT into a few classes. First, éhare the primary field®,; corresponding to highest-
weight state$h) and second, there are all their Virasoro descendant f@ﬁdé"}) corresponding to the descendant states

L_ny|h) given by (3.36). For instance, the stress energy tensdf issa descendant of the identitf;(z) = 12,
We further divide descendant fields into two sub-classesghafields which are quasi-primary, and fields which are not.
Quasi-primary fields transform conformally covariant £k (2, C) trnasformations only.

General local conformal transformations are implementexigorrelation function by simply inserting the Noether
charge, which yields

5:(0|®py (2x) ... B, (21)]0) = (0] ?fdzs(z)T(z)%N(zN) D, (21)]0), (3.45)

where the contour encircles all the coordinatgs = 1,..., N. This contour can be deformed into the sumMosmall
contours, each encircling just one of the coordinantes;inisia standard technique in complex analysis. That is atgriv
to rewriting (3.45) as

D 01y (28) - (6D, (1)) - . Dy (21)[0) =D (0| @y (28) - - (7{ dza(z)T(z)%(zi)) By, (21)]0).

' ' 1 (3.46)
Since this holds for any(z), we can proceed to a local version of the equality betweenigh¢ hand sides of (3.45) and

(3.46), yielding

<ww%mmm%wW—Z(

i

h; 1
(z—2)% (2—2

)6Zi) (0|Ppy (2N) - - Ppy (21)]0) . (3.47)

This identity is extremely usefull, since it allows us to qmute any correlation function involving descendant fields
in terms of the corresponding correlation function of pnigféelds. For the sake of simplicity, let us consider the elator

(0|Ppy (2N) - .. P, (zl)fb(_k) (2)|0) with only one descendant field involved. Inserting the d&éini(3.36) and using the
conformal Ward identity f3.47), this gives

7{ - _d?:)kfl (3.48)
hs 1

(w—2)2 (w—=z

X

<wvmwmw@mm%@m—z(

%

0. ) 01y (o) - B ()2 (2) 0
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The contour integration in the first term encircles all therclinatesz andz;, ¢ = 1,..., N. Since there are no other
sources of poles, we can deform the contour to a circle aroimity by pulling it over the Riemann sphere accordingly.
The highest-weight propert)| L, = 0 for & < 1 ensures that the integral around= oo vanishes. The other terms are
evaluated with the help of Cauchy’s formula to

i dw hi 1 _ (k=1h; 1
L, = 7{ T ((w ot Zi)azi) e R Tt (3.49)

Going through the above small-print shows that a corratafiimction involving descen-
dant fields can be expressed in terms of the correlationifumof the corresponding pri-
mary fields only, on which explicitly computable partialfdifential operators act. Col-
lectingL_;, = >, L", yields a partial differential operator (which implicitlyedends on

z) such that

(01 (23) - Doy (20) @17 (2)[0) = L4 (0D (2n) - @y (20)@0(2)[0), (3.50)

where this operatof _; has the explicit form

L), = f: <(k —Dhi L ) (3.51)

A\ (=2 (=)t

for £ > 1. Due to the global conformal Ward identities, the case 1 is much simpler,
being just the derivative of the primary field, i.£.; = 0.. Thus, correlators involving
descendant fields are entirely expressed in terms of ctorslaf primary fields only. Once
we know the latter, we can compute all correlation functiohthe CFT.

On the other hand, if we use a descendant, which is a null field,

Xie ()= Y e, ) (3.52)
=N

with \Xﬁf,vc)> orthogonal to all other states, we know that it completelgodmples from the
physical states. Hence, every correlation function iniw‘zngi)(z) must vanish. Hence,
we can turn things around and use this knowledge to find paliffarential equations,
which must be satisfied by the correlation function involythe primary®,,(z) instead.

For example, the leveV = 2 null field yields according to (3.30) the equation

(2(2hs + 1)L — 02) (0|Ppy (2n) - .. Py (21)Pre (2)]0) = 0 (3.53)

with A given by the non-trivial values in (3.29).

A particular interesting case is the four-point functiorheTthree global conformal
Ward identites (3.9) then allow us to express derivativels vespect ta, z,, z3 in terms of
derivatives with respect to. Every new-comer to CFT should once in her life go through
this computation for the level two null field: If the fieltd, (z) is degenerate of level two,
i.e. possesses a null field at level two, we can reduce thejdifferential equation (3.53)
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for G4 = (Pp,(23) P, (22)Pp, (21)Pr(2)) to an ordinary Riemnann differential equation

3

_ 3 2 hi 1
0T (m@z 2 (2 _6‘)) Gy (3:54)
5 k
5 2 1 hi h+ hi+ hj — eihg
(m@z t2 (z_z,.@z— (Z_Zm) > S a,.

- )

This can be brought into the well-known form of the Gauss hygemetric equation by
extracting a suitable factar’(1 — x)? from G, with = the crossing ratia: = %
Using the general ansatz (refeq:4pt), we first rewrite thie-fimint function for the partic-
ular choice of coordinateg = oo, 2o = 1, andz; = 0 (i.e. z = x) in the following form,

where we renamebl = h, to allow consistent labelling:

(Pny (00) D1y (1)@, (0) g (2)) = 27701 (1 — 2)TH20 F(2) (3.55)
u,j = (ho—l—hl—l—hg—l—hg)/g—hi—h]’,

§ — 3ho — po1 — 51,
q:%—gho—ﬂm—% T2,
1 — 8hg + 16h3 + 48h;hg + 24h,; .

T, =

The remaining functio’( ) then is a solution of the hypergeometric systgim(a, b; ¢; z)
given by

0= (2(1-2)02+[c— (a+b+1)z]8z—ab) F(z), (3.56)
R et

b:%_ﬁf \/7_'_6

c= 1—%\/ﬁ.

The general solution is then a linear combination of the inedrly independent solutions

o Fi(a,b;c; z) andz! =%y Fy(a —c+1,b—c+1;2 —¢; ). Which linear combination one has
to take is determined by the requirement that the full fopirpfunction involving holo-
morphic and anti-holomorphic dependencies must be sivajleed to represent a physical
observable quantity. FQr| < 1, the hypergeometric function enjoys a convergent power
series expansion

[e.e]

o F1(a,b;¢; 2) Z Jn () =T(x+n)/T'(x), (3.57)

Cn

3

n=0

but it is a quite interesting point to note that the integegdresentation has a remarkably
similarity to our expressions of dual string-amplitudes@mtered in section two, namely

c 1
oF1(a,b;c; z) = %/0 dt P11 — )11 — 2t) 7, (3.58)
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which, of course, is no accident. However, we must leaveiisise to the curiosity of
the reader, who might browse through the literature lookorgthe keywordfree field
construction

A further consequence of the fact, that descendants amelgrdetermined by their corresponding primaries is thatame
refine the structure of OPEs. Let us assume we want to compai®RE of two primary fields. The right hand side will
possibly involve both, primary and descendant fields. Stheecoefficients for the descendant fields are fixed by local
conformal covariance, we may rewrite (3.44) as

By, Z chp k {n} )hk+|{n}\—m—hjq>§;{"}>(w), (3.59)
k,{n}

where the coefficients are determined by conformal covariance. Note that we haigpell the anti-holomorphic part,
although an OPE is in general only well-defined for fields effilll theory, i.e. for fieldsb,, ; (2, z). An exception is the

case where all conformal weights satigfy € Z, since then holomorphic fields are already local.

Finally, we can explain how associativity of the OPE and sircgsymmetry are related. Let us consider a four-point
function G (z, 2) = (0|1 (00, 0)érk(1,1)¢;(z, 2)¢;(0,0)]|0). There are three different regions for the free coordinate
z, for which an OPE makes sense, corresponding to the coonact — 0 : (¢,5)(k,1), z — 1 : (k,5)(s,1), and
z — o0 : (I,7)(k,4). In fact, these three regions correspond toghe andu channels. Duality states, that the evaluation
of the four-point function should not depend on this choilesorbing all descendant contributions into functidnealled
conformal blocksduality imposes the conditions

Gijri (2, 2) Zc Contr Fij (2lm) Fijua (2|m) (3.60)
= chkcmli Figra (1 = z|m) Fijra (1 — z|m)
m —2h; 1 ——2h.: T 1
= CJiCrpiz ™" ikt (Zm)z=" Figra (Z|m)

wherem runs over all primary fields which appear on the right hane sifithe corresponding OPEs. The carefull reader
will have noted that these last equations were written dowtetims of the full fields in the so-calletlagonaltheory,

i.e. whereh = h for all fields. This is one possible solution to the physiaduirement that the full correlator be a
single-valued analytic function. Under certain circumsts, other solutions, so-called non-diagonal theorizgxibt.

Figure 7: The three different ways to evaluate a four-point amplifude s- ¢- andu-channels.

In the full theory, with left- and right-chiral parts comieid, the OPE has the folowing structure, where the contdhsti
from descendants have been made explicit:

Z Z Ck k{n}ck k{n}( )hk+\{n}|—hi—hj( )hk-H{n}\ hi hjq)(k{:k} {n})( ) (361)

Correlation functions in the full CFT should be single valiue order to represent observables, i.e. physical mealgurab
quantities. This imposes further restrictions on the paldir linear combinations of the conformal blocKs;x; (z|m) in

(3.60). In most CFTs, the diagonal combinatior= h is a solution, but it is easy to see, that the monodromy of d fiel
®,, 7 (2, 2) underz — e*™'z yields the less restrictive conditidn- & € Z, such that off-diagonal solutions can be possible.
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The success story of CFT is much rooted in the following oletérn first made by Belavin, Polyakov and Zamolod-
chikov [1]: If an OPE of two primary field®;(z)®;(w) is considered, which both are degenerated at leeland N;
respectively, then the right hand side will only involve trtsutions from primary fields, whiclall are degenerate at a
certain levelsV, < N; + ;. In particular, the sum over conformal familiéson the right hand side is then always
finite, and so is the set of conformal blocks one has to knoweahticular, the set of degenerate primary fields (and their
descendants) forms a closed operator algebra. For exaoguisidering a four-point function where all four fields are
degenerate at level two, we find only two conformal blocksfach channel, which precisely are the hypergeometric func-
tions computed above and their analytic continuationsnEmere remarkably, for the special valugs:) in (3.31) with
m € N, there are onlyinitely many primary fields with conformal weights, ,(c) with1 <p <mandl < ¢ <m+1
given by(3.32). All other degenerate primary fields with gfesh,, ,(c) wherep or ¢ lie outside this range turn out to be
null fields within the Verma modules of the descendants odéHermer primary fields. Hence, such CFTs have a finite
field content and are actually the “smallest” CFTs. This ig#hey are calledninimal models Unfortunately, they are
not very useful for string theory, but turn up in many apgdicas of statistical physics [4].

4. The free Boson

One particularly important CFT is the theory of masslestasdeelds in two dimensions.

We already encountered the string embedding fiéapwhich turned out to be such a field.
We forget now about the space-time ingexand call the scalar field. The action reads

in complex coordinates

S o /sz:&b&gb:, (4.1)

leading to the equation of motiodd¢p = 0. A general formal solution to this is the
holomorphic Laurent ansatz

Jj(z) = 00(2) = —iZanz_”_l , (4.2)
nel

whereaq = p if the reader wishes to compare this with (1.12), which nowloead as

_ : o n _p . an __p,
&(z,z) = q — iplogzz + 12 . + 12 —a (4.3)
n#0 n#0
After quantization of the theory, the canonical commutatoe

[ana am] = n5n+m,0 ) [am am] =0, [ana &m] = n5n+m,0 ) [Q7p] =1. (4.4)

In order to evaluate the OPE of two scalar fields, we have tp keemal ordering in mind,
i.e. we always shifp to the right ofq, anda,, to the right ofa,, whenevem > m. With
these conventions, we get

(2, 2)p(w, w) = :1¢p(z, 2)p(w, w): — i[p, q]logzz +

: n .y . —
12 ;z ,1 - w + c.c.
n>0 m<0
(4.5)
Using the commutation relations we find that the oscillatwmis are reduced to the

function — 3" _ > -Lnz""w ™4, .0 and analogously for the anti-holomorphic
terms, such that we get for the right hand side

6(2,2)0(w, @): —logzz + Y % (&) +x % (2)".

n>0 n>0
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which converges fofz| > |w|. Since the product was radially ordered, this is satisfied
such that we find the OPE to be

(2, 2)p(w, w) = log(z —w) + log(z — wl+i¢(z, z)o(w, w)J ) (4.6)

g

singular part regular part

The commutators thus yield the singular part of the OPE fef w, as they should, while
the regular part is given by the normal ordered product.

This OPE is not what we usually expect in a CFT, but neithehésdcalar field a
good conformal field, since it cannot be factorized entiialp holomorphic and anti-
holomorphic part. However, its derivatives are properi¢gmlomorphic conformal fields,
and it is very easy to find the OPE fap from the above expression by differentiation,

Since vacuum expectation values of normal ordered prodwish by definition, the
expectation value ofd¢(z)d¢(w)) is immediately read off from (4.7) to bel/(z — w)?.

Earlier we found the classical energy momentum tensor ,(Wfjch in our current
notation readd’(z) = —39¢(z)d¢(z). This has to be improved in the quantized theory
by normal ordering. Thus, we define

99(2)0¢(w) =

T(z) = —3:00(2)0¢(2): = —1 Zlgr)rtlU <8¢(z)0¢(z) — _71) . (4.8)

(2 —w)?

The carefull reader might query at this moment whether we mat mixed different no-
tions of normal ordering here. In fact, we have, but they am@nn to coincide for the case
of the free boson. With the above definition f6(z), the energy of the vacuum is put to
zero.

We are now in the position to compute further OPEs. Let ug stitin the OPE of
T'(z) with 0¢(w). SinceT(z) is already normal ordered, we only have to worry about
ordering betweefi’(z) andd¢(w). This is easily achieved with Wick’s theorem, which in
this case simply amounts to

—35:0¢0(2)0¢(2):0¢(w) = —3 (:8¢(z)8¢(2)3¢(w): + 28¢(z)ﬁ) . (4.9

The factor of two in the last term is due to combinatoricsreéhere two ways to contract.
The field in the last term has yet to be expressed at the cadedin which simply means
a Taylor expansiofig(z) = d¢(w) + (z —w)P?¢(w) + 1 (z —w)?PB¢(w) +. . ., and finally
yields

T(2)0¢(w) = ;00(w) +

= 0(0¢(w)) + reqular terms . (4.10)

1
(2 —w)

Comparing with (3.41), we conclude thab(w) is a primary conformal field with weight
h=1.
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In the same way, we can compute the OPE of the energy momeatsortwith itself
and compare it with (3.42). It is left to the industrious reatb verify that the result is

1/2 2
(o= w)4]l—0— o w)zT(w) +

()T (w) =

IT (w) + reg. terms,  (4.11)
(z —w)
which identifies the central charge of the free boson thembet: = 1. It emphasizes that
the central charge is a quantum effect, since it arose duertaal ordering, and we can
rightly guess that the central charge of the bosonic sthiegty is equal to the number of
free bosons\#, i.e.c = D.
The above exercise is also a good training in the applicaifowick's theorem. The OPE of the stress-energy tensor

with itself yields an expression of four fields, paired imiotnormal ordered products. In total, that allows four sienpl
contractions and two double contractions:

T()T(w) = 1:06(2)06(=):00(w)do(w):
2
iiagb(z)@(b(z)agb(w)a(b(w)i + 4%:8¢(z)8¢(w):_71 + 2% ((2:71)2>

(z —w)? w
= el 37 ) GO0 s+
— e 1_/30)4 1+ —5:0¢(w)0 ¢<w>(z—%ﬁ + —%&(b(w)agb(w):(z_%)l + regular (4.12)

which yields (4.11). In the last line, the Taylor expansiéthe field 9¢(z) aroundw was evaluated for the singular terms
only, and2: A0A: = 9:AA: was used. As a further check, we can extract the Virasoebatgfrom this OPE. To do so, we

write
[Ly, L] (?{ dz%dw %dw%dz) 2" () w™ M T (w)
d

w ¢ dzz" ™ (2)T (w)

i
dwjidz( 242 )+ 8T(w))

—w)*  (z—w)? z—w

— (02" THT (w) + z"“f)T(w))
(n+Dn(n — Dw" 2+ 2(n + 1)w"T(w) + w"JrlaT(w))

= jédw (i(n + Dn(n — Dw" ™™ 4 2(n + 1)w™ T (w) + w"+m+28T(w))

= %dw (i(n + Dn(n — Dw™ ™™ £ 2(n + D" ™™ T (w) — (2 +n + m)w"+m+1T(w))

I
|
E)
!
S

)6n+m,0 + (n - m)Ln+m ) (413)

where we have used partial integration (there are no boyridans here!) in the penultimate line. The second line is of
course due to the deformation of integration contours ickady discussed in section 3.4 (cf. figure five).

4.1 \ertex operators revisited

The free boson CFT does contain other primary fields, nanhelywértex operators. The
scalar fieldy in (4.3) is not a good conformal field, but its derivatives &efAnother way
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to get rid off the unpleasant logarithm is to exponentiatefteld. However, we have to
normal order this expression. So, we define

Vi(z, 2) = exp(iko(z, 2)):, (4.14)

and compute its OPE with the energy momentum tensor. To deesose that the expecta-
tion value(eé(z, z)¢(w, w)) = —log|z — w|?* as can be seen from the OPE (4.6). With this,
and Wick’s theorem to contract products of normal ordereantjties into fully normal
ordered quantities times expectation values in the usugl wa

T(2)Vi(w, 0) = —1:06(2)06(2): Y %(ik)n: o
n=0
3> e 3 Ly (e
n=0 " n=0
(zk_/f))gvk(wa w) + G- _1 w)ﬁka(w, W) + reg. terms . (4.15)

The same calculation goes through 70¢z). Therefore, the vertex operators are primary
fields with conformal weighté = h = ’“—; Note thatV}, has the same conformal weight
asV_y.

The two-point function of two such vertex operators can hatbin many ways, e.g.
by exploitingSL(2, C) invariance, and turns out as

—ok?

(Vi(2, 2)Vi(w, @) = (2 — w) ™% (2 — )3 5k+k'o = |z — w| " 6wo.  (4.16)

More generallyn-point functions of arbitrary vertex operators of the freesdnic CFT
can all be computed with Wick’s theorem, and the result iseggimple, namely

<H Vio(z2) = [[ 1z — =

1>7

Fiki 55 10 (4.17)

provided|z;| > |z;| for i < j. Thus, these-point functions are trivially zero unless the
“charge” balancé . k; = 0 is kept, i.e. total momentum is conserved.

The condition) , k; = 0 comes from the existence of a conserved charge. Actualypfleratorj(z) = i0¢(z) is a
conserved current with zero modg = p, as can be infered from its mode expansjon) = pz—! + Zn;&o apz "l =
>, anz" "1 Since the vacuum was defined in such a way that = p|0) = 0, it follows that

(=)
0= p Hvk (2, z)|0)

= (0| p (HV’C zz,zz>
—ZO|HVk i, Zi) (pVi, (215 Zi) HVk 2, 2)|0)

i>j i<j

Z 0|Hvk 2i,2)0) (4.18)
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where we have indicated the direction in whjels applied. That is in fact consistent with the operator pkd@xpansion
of the CFT. Due to global conformal invariance, the only namishing one-point function must be of a field of zero
conformal weight (which in general is the identity). The OBEtwo vertex operators can be calculated with Wick’s
theorem or by inserting the mode expansion of the free fietblemg the Baker-Hausdorff formula. It yields

Vie (2, 2)Vi(w, @) = texp(ik'¢(z, 2))texp(ike(w, @)):
= (2 — w) 2R =2k =3k (5 ) HR) =3k =3k onn (i(k + ) (w, ©)): + . ..
= |z — w|2kk/Vk+k/ (w, 1I)) +... (419)

as its leading term. Therefore, contracting all fields viecassive OPEs will finally result in the vertex operdtar(0, 0),
K =", ki, which must be of conformal weight zero. (The OPE can onlyg#iad for short distances. However, global

conformal invariance always admitts to achieve this situdby a global translation of all points — z;+ Z with | Z| > 1
and a following inversion.)

We learn from this that the two-point function is non-zerdydor &’ = —k, meaning that the correct definition of
the in- and out-states is

k) = V3 (0,0)[0), (k| = lim (0|(Vi(z,2)) ¥ 25 = lim (0|V_g(2,2)2* 2", (4.20)
such that(k’|k) = 0x . One says that the fielt_(z, z) is theconjugatefield of V,(z, z). Note thath(k) = $k? =
h(—k) such that conjugate fields have the same conformal weightsnaust be.

4.2 Chiral bosons

The free boson could not be split into holomorphic and antémorphic parts, i.e. into left and right chiral comporgent
However, we could generalize its mode expansion to

®(2,2) = qr + qr — i(pLlogz + prlogs) +1» (%"z‘" + %"5_"> : (4.21)
n#0

introducing left and right chiral momenta and center-ofsmaoordinates. A consistent choice for the commutators is
lgr,pL] = [ar,pr| = 1, with commutators mixing left and right chiral parts vanigh In this way, we obtain a field
which can be split into left and right chiral componeri$;z, z) = ®1.(z) + ®Pr(Z), with

Or(2) =qrL —ileogz—i—iZ %z_", (4.22)
n#0

and analogously fobr(Z). These modifications do not change any of our previouslyinetaresults that depended only
ond¢ or d¢. But in addition, we can now introduce chiral vertex opersite.g.Vy 1.(z) = exp(ik® (2)): which can be
seen to have conformal weight= %kQ andh = 0.
_ To understand the meaning of our modifications, we momdytaieinslate back to cylinder coordinates, which
gives us
B0, 1) = g+ 2pe® + LT + oscillators (4.23)

wherep;, = p+ %L andpr = p— %L. The extra! is new, and naively violates our requirement tipdte periodic in the
space direction, i.eb (2%, xi' + 27) = ®(zi°, zi'). We can repair this by imposing a new symmetry on the field,efgm
® = & + 27 L, which must hold for all eigen values of the operataas well as for all integer linear combinations of such
eigen values. I is to possess a non-trivial dependence brthen the eigen values @f must be quantized on a lattice
with dimA = D, the number of free bosons in the theory.

The existence of such a lattice has a natural interpretatiolosed string theory. It means that the target space (to
which the string coordinate maps) is not Euclidean or Mingkiflat, but is compactified on B-dimensional torus. The
string may then wind several times around any of the comfiedttiimensions before it closes.

Interestingly, the same lattice description can be fountbbiting at the chiral vertex operators. Obviously, vertex
operators/y 1. (z) = exp(ik - ®1,(z)) have integer conformal weigths f& < 2Z. One can prove that the OPE of these
vertex operators is

Vie L (2)Vier (W) = (2 = w)** Vi 1. (w) + reg. terms, (4.24)

which forms a closed operator algebra only if wkhandk’ alsok” = k + k' satisfies the condition that its square is
an even integer. If the set of &l for which a chiral vertex operator with integer conformalight exists, forms an even
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lattice A, then the operator algebra closes and yields an extendead siimmetry algebra, i.e. an algebra of chiral local
single-valued fields. Chiral local fields are candidatessfonmetry generators, since they admitt well-defined Naethe
charge densities. Thus, they admitt additional quantumb@sm

We know that our theory contains states , pr) which are highest-weight states with respect to the Vimsor
algebra. Skipping normal ordering signs, these statesrasgetl by applying vertex operatdrs, , . (2, %) = exp(ipy, -

®; (2))exp(ipr-Pr(2)) to the vacuum and letting z both tend to zero, such thatp(ip, - ®1,(0))exp(ipg- @ r(0))]|0) =
exp(ipy, - q;. + ipR - qr)|0). Locality with respect to the chiral vertex operators of é€x¢éended chiral algebra requires
thatk - p; € Z andk - pp € Z. Thus, the only possible momenta that the theory admitts miglements of the dual
lattice A*, which is defined ad* = {p:p-k € Z Vk € A}.

4.3 OPEs and path integrals

Our discussion of the free massless scalar field theoryesténdm classical consideration
and went on towards a quantized theory. During this proeedue were a bit sloppy
translating identities valid for classical fields into ogi@r identities. With the latter we
mean equations written down for operatorsm, which are icithliunderstood to hold only
when evaluated within expectation values. In the path naldgrmalism, an expectation
value is defined by

(Flo)) = [ (Doexp(~Si6)Flo (4.25)
where F[¢] is an arbitrary functional of the field, and S[¢] = 5 [d?20¢d¢. The

2o’

operator equations of motion are then found by the variggramciple § (F'[¢]) = 0 in the
following way:

0
0= /(D¢) M(z’z)exp(—S)F[sb]

-/ (ch)exp(—&%w}
59
= —<WF[¢]>
= L (00¢(z,2)F|¢)), (4.26)

provided thatF'[¢] does not contain an insertion at the paintz). Since this holds for
any such insertion, the conditigd¢(z, z) F[¢]) = 0 is usually refered to in the form of
the operator equation of moti@é(z, z) = 0.

What happens if'[¢] does contain such an insertion at a point coincident (ith) ?
The calculation is as above, except that the variation iiegpo F'[¢] as well. Therefore,
if we take F'[¢] = ¢(#/, Z')G|¢], we find

o oo
0= [P0 5 (exn(=S)0(=. )Gl

— — [ (Do)exp(-8) (0002200, 7) + 8 — #.2 - )) Gl
L {000 (= 2)8(. 2)Cll) + (0%(= — £, 2 — Z)Cg) (4.27)

T omd

provided again that all other insertio@$p| are located away frorfr, z). it follows that the
equation of motion holds except at coincident points. Thesfind the operator equation
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of motion
0,0:0(2,2)(7,7') = —wad/'6*(2 — 2,2 — 7). (4.28)

So far, we have not thought about normal ordering, which waikhdo if we consider
products of operators at coinciding points. Usually, thewead ordered product is required
to behave exactly like a classical object, i.e. we want tovecthe equation

0,0::0(2, %) (2, 7): = 0. (4.29)

Recalling thabdlog|z|*> = 27%(z, z), one immediately sees that this can be satisfied with
the definition

19(2,2)9(2',2): = ¢(2,2)p(2', 2) + Llog|z — 2|2, (4.30)

which we may turn around to read off the OPE of two scalar fiels it happens, this
definition of normal ordering yields exactly the same reswltour earlier prescription
defined in terms of oscillator modes, (4.6). The reader shlkegp in mind, that this is not
necessarily the case.

5. Ghost systems

Another very important family of CFTs are the so-called glgystems. Mathematically,
they are the CFT description of the complex analysig-dffferentials. Thus, one starts
with considering a pair of anti-commuting fielt&:) andc(z) with conformal weightsi
and1 — j respectively. Indeedy’) = b(z)(dz)’ andc!=7) = ¢(2)(dz)'~7 are invariant
under conformal transformations providigd) transforms as(z’) = b(z)(dz’'/dz)~7 and
analogously for:(z).

Altough we will see in a moment that the resulting CFT is natany, it possesses a
natural scalar product defined via

9,4 = G b(a)e()dz = f o= (d)elz) ) (5.1)

If 2j € Z, these fields make sense as chiral fields, meaning that tinray&denign under
the monodromy: — e?™ 2, aquiering nothing more than a sing (fohalf-integer). Under
these circumstances, they possess a mode expansion

b(z) = anz_”_j, ie. b, = 7{ dzb(z)2" (5.2)
nez

and analogously for(z). Since the fields are anti-commuting their modes satisfy the
relations

{bm7 CTL} = Om+4n,0 (53)

with all other anti-commutators vanishing.
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Let us first extract some general information such as thetmmsaof motion. The
action of thebc system is given by

S =5 /dzz b(2)0c(z), (5.4)

which is conformally invariant by construction due tot+ (1 — j) = 1. The operator
eqguations of motion may be obtained in the same way as irose4t8 without any com-
plications, and are

50(22 = 0b(2)
) Qb(z)c(z’) =2
0b(2)b(2") = 0c(2)e(Z') =0

Since we have not yet fixefland therefore do not know whether we have a well-defined
mode expansion, we define normal ordering by requiering tbamnal ordered objects
behave classically. Recalling that—! = 9z7! = 27w%(z, z), we find that the normal
ordered productc: must read

b(2)c(2): = b(2)e(2) — (2 — 2) 7. (5.6)

0

n6%(z — 2,2 - %), (5.5)

Again, we may turn this around to identifiy the sinigular pafrthe corresponding OPE.
Combinatorically, normal ordering for the ghost system iscmthe same as for the free
scalar field, i.e. goes with Wick’s theorem, except thatrictianging two fields may result
in sign flips. Therefore, when contracting two fields, onewdtidirst anti-commute them

until they are next to each other, where each anti-comnautdtips the sign. We thus

obtain the following OPEs, where~ y means that is equal toy upto regular terms:

b(2)c(w) ~ ﬁ c{2)bfuw) ~ - ! -, 57

b(z)b(w) = O(z —w), c(z)c(w) =0(z —w).

Note that there are two sign flips in the second OPE, one fraircammuting, and one
due toz < w. The last both OPEs are actually not only holomorphic, bey thave a zero
due to anti-symmetry (Pauli principle: expectation valuéth two identical fermions at
the same place must vanish).

The stress energy tensor is obtained via Noether’s theoidmegpect to world sheet
transformationgz = ¢(z), under whichbb = (¢0+ j(de))banddc = (¢0+ (1 —7)(0¢))c,
such that

T(z) =(1—j):(0b)c: — 5:b(0c):, T(2)=0. (5.8)

The interested reader should work our the OPHE’0f) with the fieldsb(w) andc(w) to
verify that they have the expected form (3.41). Also, the @PE(z) with T'(w) is not
hard to work out, it has the standard form (3.42) and it ressa conformal anomaly to
be

c=cyp=—2(65" =65 +1) <0 for jeR—[5(1~ ), 5(1+ )], (5.9)
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which is clearly negative for all (half)-integerexcept; = % Obviously, this CFT is
purely holomorphic (or actually meromorphic). Of coursesre exists a completely anal-
ogous anti-holomorphic CFT with actigh= % Ik d?zboe. But as it stands, this is a theory
which is completely left-chiral, the right-chiral part begithe trivial CFT withc = 0.

The be system admitts ghost numbesymmetryob = —icb, dc = iec. It stems from
the globalU (1) symmetry of the action under the transformation) — exp(—ia(z))b(z),
c(z) — exp(ia(z))c(z) for arbitrary holomorphiey(z). The corresponding Noether cur-
rent is simplyj(z) = —:bc:(z). Thus we may expect to have a quantum number with
respect to the corresponding conaserved Noether chagghtist number. Again, it is
defined for the left-chiral sector, and an analogous defimitiolds for the right-chiral sec-
tor, both being separately conserved. If one computes the @R with j, one finds
that Y )

T()jw) ~ o +

= w)zj(w) + ﬁ@w]’(w) : (5.10)

meaning thaj(w) is not a primary conformal field. Under conformal mappings;) thus
transforms as

5j(w) = (—e(w)dy — (Owe(w)) + 1(25 — 1)02) j(w). (5.11)

One particular case js=1—j,i.e.j = % The central charge (5.9) isthen= 1. Itis
customary, to use the notién= v, ¢ = ¢ in this case. It is then easy to see that this CFT
can be split into two identical copies by writing= (11 + i) andy) = 25 (¢ — i),
such that

S=+ /dzz (V1091 + V200,) (5.12)
T= _% (Y101 + a0ts) (5.13)

Each of they; theories has central charge= % and can be recognized as the CFT of a
free fermion. This theory corresponds to the case-= 3 in (3.31) and is the first non-
trivial example of a so-callechinimal model which are CFTs with only finitely many
Virasoro conformal families (primaries with all their desclants). It will not concern
us further, but it should at least be noted that it possesshystioree primary fields of
conformal weightsh,; = ho3 = 0, his = hap = 15, andhy; = hy 3 = 3 according to
(3.32), which prefectly coincides with the two order parteng of the two-dimensional
Ising model (plus the identity), the spinand the energy, and their critical exponents.
Another important value ig = 2, for which we get;,. = —26, and which is important in

bosonic string theory.

5.1 3y systems

We can redo everything from the last section with a pair ofifigl(z) and~(z), which behave exactly as in the
system except that they acemmuting The only differences are that the OPEs now rgég)y(w) ~ —(z —w)~! and
v(z)B(w) ~ (z — w)~!. Note the differing sign. The stress energy tensor lookgtxas in thebe system, but the
different sign under commutation yields now the centrargbas, = 2(6;% — 65 + 1) = —cp.. The system withy = %
hascs, = 11 is important for the superstring.
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5.2 Mode expansions

We will assume for now that € Z. Then we have well-defined mode expansions (5.2),
ie.

b(z) = Z bz ", e(z) = Z cpz ) (5.14)

nez nez

The anti-commutators can be obtained from the OPE, and tutto®e{b,,, ¢, } = dmtno
with all other anti-commutators vanishing. It seems sdasib impose highest-weight
conditions, and to consider states which are annihilatedlbynodesb, and ¢, with
n,n’ > 0. But what about the zero modes? It turns out that we have now|ga, |—) of
highest-weight states with the properties

bo|—) =0, bol+) = |-),
col—=) =1+),  cl+) =0, (5.15)
bn|_> :bn|+> :Cn|_> :Cn|+>> n>0.

We may construct Verma modules on these highest-weigleissibgtacting with the modes
b_, andc_,, with n > 0. We now have to fix notation by convention, saying thabe an
annihilator, and that, be a creator. This singles out) as the ghost vacuuif)(~). Note,
however, that for consistency we must require tHato| = (—)(0|c, be the correct out-
vacuum such thdt”) (0/0)(=) = 1. In this way we guarantee that the conditions defining
the in-vacuum0)(~) are dual to those defining the out-vacutii(0|. However, this is a
further example for the situation that the “metric on fieldsg’, the two-point structure
constantsa|3) = D,z is not diagonal.

Let us now introduce a grading or particle number operaterghost number operator
N, for the resulting Fock space. We define its action on the vasng|0) ™ = £1|0)),
and further define that it counts the modesN\g$b,) = —b, andN,(¢c,,) = +¢,. This
definition is cooked up in such a way that the scalar produd) {§ non-vanishing only if
the total ghost number is zero. For instaricé(0|0)(~) = 0 since the total ghost number
is N, = —1. Indeed |0)(~) = b,|0)(*), and since))) = b,, we see that™) (0|b, = 0.

Next, we consider the mode expansiolf@t). Since the stress energy tensor is made
up from thebce system, its Virasoro modes will have the form

Ly o< Y (mj = n)buCmn + 6mo0Noe , (5.16)

nel

where there might be an additional term due to normal ordevitnich can only be a con-
stant since the anti-commutators araumbers. Note that this is mode normal ordering,
i.e. normal ordering of creation operators left to annifola operators, which should not
be confused with field normal ordering. The constahtis easily computed by checking
the consistency condition that

!

2Lo| =) = [Ly, L_1]|=) = (jboct)((1 — j)b-1co)|—) = (1 — j)|=) = 0. (5.17)
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Thus, we learn that/,. = %j(l — j) amd hence

Lin =Y _(mj = n)buComni + 53 (1 = §)0mo- (5.18)

neL

The non-vanishing constan(f,. hints at the fact that mode normal ordering and field nor-
mal ordering are not identical in the ghost system. One camwghat the difference
amounts to

z

(Ut s = (I Dt s = == ((5)' 7 =1) . (629)

zZ

The reader should convince herself that the corresponditering constantVy, in the free bosonic CFT is zero, i.e. that
the Virasoro modes are given simply by

L =3 it nan: (5.20)
nez

without an additional termaV,d,, o. This can be done in complete analogy to the ghost systemby.ehecking that

Lo|0) = 3[L1,L_4]|0) = 0. The fact that there is no ordering constant is coincidett wie fact that mode normal
ordering and field normal ordering are equivalent for the fsesonic theory.

Let us return to the ghost number currgnt —:bc: with its charge

2m . 1
Ny = 55 /0 dwjep(w) = nzw(c_nbn = bonn) + coby — 3 - (5.21)
which indeed satisfiesV,, b,| = —b,, and[N,, ¢,] = +c,. It therefore counts the number

of ¢ excitations minus the number bExcitations of a given state. The constant is neces-
sary to reproduce our definition of the actionéf on the ground state¥,| ) = F3|F).

Note that we have defined the ghost number for the physicaliévant cylinder (the
string world-sheet). Since the ghost current is not a pynfigtd, the translation to the
complex plane has to be performed carefully. Recalling thate, we find

(Ozw)jen(w) = j(2) + (j = 5)(@2w) /(Dow) = j(2) + (j — 5)= 7" - (5.22)

This is quite similar to the effect that the zero mode of the%oro algebral,, receives a
shift by —c/24 when we map the theory from the cylinder to the complex plaieLs, the
ghost number also receives a shift, namEly, ... = § dzj(z) = N,+Q; with Q; = j—13.
The above definitions led to unusual vacuum states, whichairéhe S L(2, C)-invariant
vacua introduced earlier. This disadvantage is the prickfpatreating the ghost system
in a way where ordering prescriptions are more or less inudga of the spiry of the
system.

5.3 Ghost number and zero modes

The above approach is sometimes not useful, especially #racplar ghost system is
considered. Then, it is more natural to use $1ig2, C)-invariant vacuum. Let us now be
specific and puj = 2. For this value, théc system thus consists out of a spin-two field
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and a vector field, and has central charge —26. The string lectures will tell us, that this
ghost system is particularly important for the bosoniastri
The mode expansions read in this specific case simply

b(z) = Z bz ", o(2) = Z cnz "L (5.23)

We now wish to reproduce the canonical field normal ordering lmode normal ordering
prescription. The natural way to do this for a chiral localdi®,,(z), 2h € Z, with mode
expansion®,(z) = Y. ¢,27""" is to call all modes witm > —h annihilators, and all
other modes creators, i.e. by imposing highest weight ¢mmdi¢,,|0) = 0 for n > —h.
In our example, we thus would like to impose

bal0) =0 ¥V >—1, ¢,|0)=0Vn>2. (5.24)

In this way, the vacuun) is indeed theS L(2, C)-invariant vacuum. The corresponding
conditions for the out-vacuum then read

Ob_y =0VYn>—-1, (Oc,=0VYn>2. (5.25)

But now, we have to keep in mind that the modeg are conjugate to the modes,
since we have the canonical commutation relatiphs ¢,,} = d,4+mo- Both highest-
weight conditions together tell us that the three mddesb,, by are annihilators in both
directions, i.e. they annihilate to the right as well as ®l#it. On the other hand, the three
modesc_q, ¢y, ¢; are creators in both directions, i.e. they neither anrtéaila the right nor
to the left.

As a consequence, we find that0) = (0[{bo, co }|0) = 0. Even more strangely, also
(0]¢;]0) = 0fori € {—1,0,1}. Infact, the first non-vanishing expression{ic_,cyc; |0),
i.e. we need at least threemodes. One sees this by inserting a one in the forea
{bi,c_;} for i € {—1,0,1}. For example,(0|coc1|0) = (0|{b1,c_1}coc1|0) = 0. Of
course, this does not anylonger work for the correl&®r_, cyc,|0), since we are forced
to insert the one as = {b,,c_,,} with n > 1, which does not annihilate anymore. The
threec-modes are necessary to eat up the three zero modes of thé(fieldOne might
hide them in a redefinition of the out-vacuum(@s= (0|c_,coc; such that0|0) = 1.

We therefore find that the ghost system correlators can amlydm-zero, if the total
ghost number, i.e. the number efields minus the number dffields is exactly three,
N, = #c — #b = 3. The reader should note that this differs from our discussiche
preceeding section, since we made a different choice ofurache vacuum used now is
the physical vacuum.

5.4 Correlation functions

The above discussion can immediately applied to calculatelation functions of théc
ghost system. We already know that, for instaneé€;)c(w)) = 0. The first non-trivial
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correlator is
(c(z1)c(22)c(z3)) = (0] Z Z ot " ey T e 2 0)

= > D Olemnz ™ enmz " enz " 0), (5.26)

n<—1m<1
where we inserted the mode expansion and used the highagttwendition of the vac-
uum states. There are only two summations here, since thlddwel (with respect to the
L grading) must be zero, which fixes the mode of the third fiélitha modes of the other
two fields are given. Since all the modgsanti-commute with each other, it is easy to see
that the only non-vanishing choices aren € {—1,0, 1}. This leads to the six terms

(0] (c_lclcozfz;), + c_1coc122 29 + coc 1012125
+ cocic_12125 + cic_1coza 23 + clcoc_lzgzg) |0) (5.27)
= (Oc_1coco (—2723 + 2122 — 2175 + 2175 + 2323 — 2273 |0)

where the signs come from anti-commuting the modes. Caollgderms results in the
simple expression

(c(z1)c(z2)e(23)) = (21 — 29) (21 — 23) (22 — 23) (5.28)
which indeed satisfies the Pauli principle. In the same marallecorrelation functions
can be obtained. Firstly, it is clear that an arbitrary datren function must have first
order zeroes for each pair of coordinates, where dfields coinicde. The same is true
for each pair of coordinates, where tidields approach each other. Only when-feld
approaches &field, the singular OPE (5.7) will lead to a first order poldeTonly non-
trivial feature is that the number offields must exceed the numberbefields by precisely
three. Thus, in all generality we find

(0] HC(Zz') H b(w;)[0) = [ J(zi = 2) [T (wy —wi) [ [z = w)) 0pgn5. (5.29)

i<’ J<j’ i,
6. N=1 supersymmetric CFT

The bosonic string, although a very nice toy model, is noy\iitable to describe the
physics of our universe. This is partially due to the exisgeaf the unphysical tachyons.
However, there exist other string theories, which make usthe principle of super-
symmetry to arrive at a particle spectrum which is closerienqpmenology. The prin-
ciples and basics of supersymmetry will be explained in Jafk&s lectures, and are
therefore not to be found here.

Supersymmetry can be introduced to the string in two diffenaays, namely as super-
symmetry in the target space (the space-time we live in)upesymmetry on the world
sheet, spanned by the moving string. CFT lives on this wdnkkg and hence string
people consider supersymmetric CFTs. We will collect hei@nabasics on the simplest
supersymmetric CFT.
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6.1 Fermionic Currents

We already might have developed a feeling that integer cardbweights are something
special, since fields with integer conformal weights aral@nd single valued seperately
in their holomorphic as well as their anti-holomorphic pdntfact, we can take only one
such part and still have a perfectly well behaved confornedd fi An example for this is
the stress-energy tensor, which has scaling dimensionditlto(gh it is not a conformal
field, but only quasi-primary). Let us assume that we havé suzhiral field J(z) with
conformal weighth € Z, . Such a field has a mode expansion

J(z) = Z gL T = %dzz”h_lj(z) : (6.1)
Since the field is supposed to be conformal (or primary), REQvith the stressr-energy
tensor is of the form (3.41). Extracting the commutator ef tmodes/, with the Virasoro
generators from it yields
[Lm Jr] = <h<h - 1) - T>J7" . (62)

It follows that acting with.J, om a state decreases the conformal weight of this state by
r. Thus, the modes respect thg grading, and can be added to the symmetry algebra. If
the commutator§/,., J| are known, they, the Virasoro algebra and (6.2) form a skedal
extended chiral symmetry algebend.J(z) is called acurrent

Physicists tend to treat fermions on the same footing asrnspsn particular when
supersymmetry is involved. It is therefore desirable tockh@hether we can relax the
conditions for chiral fields a bit and allow the conformal gl&i/ to be half-integer. We
immediately are then faced with the question over which eathg mode index should
run. Two possibilities easily come to mind, namely Z andr € Z + % l.e.r integer
or r half-integer. Plugging this into (6.1), we see that under ¢*™'z, the current/(z)
transforms in the following way:

J(@™z) = > (M) = —(=)J(2) (6.3)

r€Z+e%

for e = 0,1 andh half-integer. Therefore, half-integer modes lead to mhci®oundary
conditions, while integer modes vyield anti-periodic boarydconditions. Anti-periodic
boundary conditions mean that the field introduces a brantbfoorder two in the com-
plex plane. Remembering that we originally come from thencldr as the string world
sheet, we see that the monodromy refers to the boundarytemmlivith respect to our
compactified space coordinate

However, the reader should keep the following in mind: If veebgick from the com-
plex plane to the cylinder via a conformal transformatioen{ember that = e*), we

Olog

aquire a factof 2%\ ~" sych that

Jepi(w) = 2"J(2). (6.4)

44



If the conformal weighth is half-integer, we learn that the periodicity changes. sfhu
it is better to call the choice of the modes by a name in ordevtad confusion when
talking about periodicity. Half-integer modes define thecafle Neveu-Schwargector
of the CFT, while integer modes define tRamondsector of the theory. The following
picture emerges:

Modes PlaneC CylinderR x S*
Neveu-Schwarz r € Z + % periodic anti-periodic
Ramond rez anti-periodic periodic

6.2 The N=1 Algebra

The simplest supersymmetric CFT is generated byNXhe- 1 superconformal algebra.
This algebra consists of the Virasoro generators of thessteaergy tensdf(z), and an
additional supersymmetric partnéf(z) to it, which has conformal weight = % To-
gether, they form a closed operator algebra, meaning teaitigular parts of their OPEs
only involve (derivatives of) the fields and7». The complete set of OPEs reads

c/2 2 1

T(2)T(w) ~ = w)4]l + = w)zT(w) + o w@T(w) ,
TN Tr(w) ~ 2 To(u) + - OTr(w), (65)
c/6

1+ L/2 T (w).

Tr(2)Tr(w) ~ (z —w)? Z—w

Note thatl is indeed a primary field of weig@twith respect to the stress-energy tensor.
Supersymmetry associates to each bosonic field a fermi@ningr and vice versa. The
lectures on supersymmetry have explained how field thearidsn particular their actions
can be written down in a manifestly supersymmetric way withtielp of Grassmann vari-
ablest, 62 = 0. It follows from simple dimensional reasoning that the swatimension

of 0 is % such that the scaling dimensions of a field and its supenadiffer by%. In-
troducing7 (z,0) = T'(z) + 61x(z) as the full super-field, the above three OPEs could
be collected in one manifestly supersymmetric OPE. Fronatitze OPES, the algebra of
the commutators of the modes can be extracted. The modésarfe traditionally called
G, where according to our above discussiomay be integer or half-integer. The algebra
also closes within the set of modés andG,., and reads

[Lna Lm] = (n - m)Ln-l—m + 1_126(”3 - n)(sn-i-m,O ’
L, G,] = (b — )G (6.6)
{Gr7 Gs} = 2Lr+s + %6(72 - i)ér-‘rs,o .

The last line involves an anti-commutator, because theesponding OPE is odd under
the exchange < w. Of course, this is as it should be, sinfeis a fermionic field.
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Another noteworthy feature is that the fiel@ has a zero mode in the Ramond sectgy,
with {Go, Go} = 2Ly — 11—20 This implies immediately, that a state annihilatedhymust
have conformal weight = 5, i.e. Go|h)r = 0 <= h = 5. On the other hand, if a
state is not annihilated b, then we find withGy|h)r = g|h)r that{Go, Go}|h)r =
2¢°|h)r = (2Lo — 5)|h) r which impliesh = & + ¢*> > &. Thus, in the Ramond sector
states not annihilated b§, appear in pairs of opposite fermion number, jle-)r and
|h+)r = Go|lh—)gr. They have the same conformal weigth, sibg G| = 0.

Considering now the Neveu-Schwarz sector, one should lbdkeaparticular anti-

commutation relation . .
{G,,G_.} =2Lg + gé(r2 — 1) ) (6.7)

Sincer is half-integer, we always have? — i) > 0. Thus, in a unitary theory with

¢ > 0andh > 0, the left-hand side is positive or zero, the latter occuforg: = % and

h = 0 only. If the left-hand side is positive, we see that .|2)|*> > 0 for ground states,
meaning that excitations of ground states have positivenndrhere is a unique ground
state which is annihilated by_%, namely the vacuum. Of course, all highest-weight states

are annihilated by modes, with » > 1.

7. Modular Invariance

So far, we have considered CFT on the simplest possible slugket, the cylinder, which
we have mapped by a conformal transformation to the purttitmenplex plane. In string
theory, the cylinder is the world sheet of one freely moviog4nteracting closed string.
Interaction of several strings, as will be explained in tinig lectures, yields world sheets
which might be any Riemann surface. It is intuitive to usegéeus of the Riemann surface
as an order count, since it directly corresponds to the lodpraf the Feynmann diagram
of the low-energy effective field theory, where the extenthaf string becomes invisible.
So, to zero-th order, we have a Riemann sphere with a numligbe$ attached, one for
each string which interacts with the others. To first ordes,fimd a torus, again with a
number of tubes attached, and so on.

The tubes of the incoming and outgoing strings, if these aresidered to be oth-
erwise non-interacting, can be thought of asymptoticadlyrdinitely long and infinitely
thin spikes. In effect, these tubes can be replaced by prexctf the Riemann surface,
where an appropriate vertex operator carrying the right erdom and quantum numbers
is placed. What remains is the non-trivial topology of therRann surface.

Up to now, we have described a CFT algebraically by a set dfdsgweight states
\h,h) = ®,5(0,0)]0), on which the left- and right chiral Virasoro algebra actsheT
guestion which naturally arises is which combinations @hsground states actually occur
in the CFT. If we know this, we have a complete characteradf the physical states in
the theory, namely all the admissible ground states pluthailt descendants created by
the generators of the Virasoro algebras, minus all nuléstat
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Crossing symmetry, or equivalently duality, has alreadyegius some constraints,
but these were constraints for the complex plane only. Dfemiht Riemann surfaces
yield different constraints? And is it possible to have atiyeconsistent on any arbitrary
Riemann surface? The answer to both questions is yes, andlixsk&ich a bit of the
answer in the following. As a general result, one can showaftarge class of CFTs
that crossing symmetry of correlators on the complex plaree raodular invariance of
the partition function on the torus is sufficient to make thedry consistent on arbitrary
Riemann surfaces. This is one of the motivations why modolariance on the torus is
often considered to be a fundamental requirement for CFT.

Interestingly, also condensed matter physicists are vawg bf modular invariance.
To understand this, first note that we usually consider CRTsmplex variables and, thus,
automatically as Euclidean field theory. Time is then comimanterpreted as tempera-
ture, and partition functions are well defined objects. SIGET in string theory is often
considered in its Euclidean from, the following motivatisnalso helpful for the under-
standing of modular invariance in string theory. Now, letaaformally map the complex
plane (with variablez) with the origin deleted onto a strip of width (with variablew).
This map is given by the exponential= exp(2wiu/L). It is a well known technique in
statistical physics to consider the system on a periodip,dtere with widthZ, and to
introduce the transfer matrix

T = exp {

2w - c
—— Lo+ Lo——) ¢ .

)
Here L, + L, serves as Hamiltonian, since this linear combination geasrtime trans-
lations! The additional term involving the central charge comes ftbenused conformal
map. This map is not one-to-one, and introduces a confornahaly. The reader might
convince herself first that the stress energy tensor on theistrelated to the one on the

plane via

1
Tawip(u) = —(27/L)? [Tplane(Z)ZQ ~

and then that Wit T}jane(2)) = 0 one must havéTy,,(u)) = 5;c(2w/L)?. Hence, the
above mentioned shift in the transfer matrix.

The OPE of the stress energy tensor with itself tells us hewstiess energy tensor reacts to conformal transformatibns
is not an entirely trivial task to explicitly work out the traformation ofl’(z), but the result can be cast in the formula

9

T(2)dz? =T'(2")dz"? + 1—02{2’7 z}d2?,
where the so-called Schwarzian derivative of the map 2z’ = f(z) is defined as
f/// 3 f// 2
{Z/, Z} = 7 - 5 ?
The conformal anomaly mentioned above can now be compustlgt b making use of the just given transformation law
of T'for f(z) = —i£ log(2).

1The reader should take care that+ Lo, considered on the-plane, generates dilatations. Only in the
u-strip does it generate time translations.
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We may now further confine the system to a box of gizé/, with periodic boundary
conditions on both sides. Then the partition function ofsasystem reads
M - c
Z =Z(L,M)=tr exp{—2ﬂf(L0+L0—ﬁ)} . (7.1)

A box with periodic boundary conditions has the topology abrus. The central obser-
vation is now that, since we deal with a Euclidean theorycend time are completely
symmetric to each other. It follows that in such a framewoghgsical sensible partition
function should satisfy/ (L, M) = Z(M, L).

More generally, one could consider a periodicity, wherergetiranslation byl/ is always accompanied by a space trans-

lation, generated bi(L, — Ly).2 Let us assume that this addition space translation i&’byrhen the partition function
would read
C

M _
Z=Z(L,M,N)=tr exp{—27rf(Lo+L0 1

N =
) + 27T1—(L0 — Lo)} .
L
Introducing complex numbers; = L, wy = N + iM, 7 = wy/wi, one can rewrite this witly = exp(27ir) and
g = exp(—2riT) elegantly as
Z(r,7) = tr (qLofc/24qiofc/24) '

7.1 The Moduli space of the torus

As a general rule of thumb, one usually assumes that alkstatetheory contribute to loop
diagrams. This may be seen as a motivation, why we expedit isatseful to study CFT
on the simplest loop diagram, the torus. Essentially, asttra cylinder whose ends have
been sewn together. Mathematically, it is usually desdrdsethe complex plane modulo a
lattice. Let the lattice be spanned by two basic latticemesci, andw,. Then two points
z, 7' in the complex plane are identified with each other, if thedistdwo integersi;, n,
such that’ = z+n,w; +nyws. Since the overall size and orientation of the torus shduldn
matter (due to global scaling, translational and rotatiomeariance of the CFT), we may
choose more conveniently one of the base lattice vectors tmlthe real axis with length
one, starting at the origin, and the other can without loggeokerality be taken to lie in the
upper half planer ~ wy/w;, Sm7 > 0. In effect, the entire lattice is described by one
complex number € H.

The key observation is now that the lattice, and consequéhd torus, does not
change at all if we replace by 7 + 1, since this spans the same lattice. Such a trans-
formation is called unimodular. In the same manner, thécktloes not change if we
replacer by 1/7, where we implicitly have to rescale the lattice, thougle @kerall since
of the torus is irrelevant). Since ~ w,/w;, we see that-1/7 basically interchanges the
role ofws andw;. The group spanned by these transformatibns — 7+1,5 : 7 — —}
is called the modular groupSL(2, Z) and is the set of all x 2 matricesM = (¢ db) with
a,b,c,d € Z anddet M = ad — bc = +1. The action of this group on is given by
M(t) = % which explains why we restrict the sign of the determinard atentify

matricest M with each other (this is what the stands for:PSL(2,Z) = SL(2,Z)/Zs).

20n thez-plane,i(Lo — Lo) generates rotations.
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Since the torus does not really change under
a PSL(2,7) transformation of its modulus, we
should expect that a physical sensible theory does
not change under such a transformation either, as|
we have motivated in the preceeding section. Thus
we impose as a condition on our (L)CFT that its
partition function be modular invariant. In the fol-
lowing, we often use the variablgs= ?"'" and
g = e ?™7 instead ofr and7. A series expan-
sion ing, g is then an expansion around the point-
T = +ico, i.e. where .th_e torus i_s considgred in thEigure 8: The upper half plane and the
extreme case where it is more like a cylinder. modular parameter defining a lattice,

We so far have made elaborate use of the fa¢t (5ys.
that much in conformal field theory can be consid-
ered separately for holomorphic and anti-holomorphic §igtat left-chiral and right-chiral
fields, respectively. Although one of the not so nice feawkeLCFT is that correlation
functions do not any longer factorize into holomorphic amdi-aolomorphic parts, we
still can consider most entities in factorized form, as lasgve do not impose the phys-
ical constraint that observables should be single-valdéds is particularly true for the
representation theory of the CFT under consideration. Wa &FT rational, if it has only
finitely many highest-weight representations. Then, aslabserved a long time ago,
the partition function of such a rational CFT can be writtearaasesqui-linear form over
the characters of these representations. Thus, denogrigtte set of representations by
R, the partition function takes the form

Z(1,7) = Y Nuwxa(m)xi(7), (7.2)
h,hER

Imt

1 Ret

whereN,; is a certain matrix with non-negative integer entries. Hére character of the
highest-weight representatidd; . is defined as usual,

Xn(T) = trag, gm0, (7.3)

and analogously fox; (7).

Since the partition function is modular invariant, the awaers from which it is built
must transform covariantly under the modular group. Tleeefin the present setting of a
rational theory, i.e|R| < oo, they form a finite-dimensional representation of the madul
group. As a consequence, the transformatinsr — —1/r and7 : 7 — 7+ 1 are
represented as matrices acting on the characters, that is,

(=2 = 3 (). (7.4)
h'eR

xn(T+1) = Z T xn (7). (7.5)
h'eR
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One of the most astonishing deep results in CFT is thatSHmeatrix fulfills a certain
algebraic property, which on first glance seems to be pureanigc Verlinde suggested
namely, that th&'-matrix also yields the so-called fusion rules, which etiaéiy count the
multiplicities of representations appearing on the riginidh side of the fusion product of
two representations. The latter is, in analytical termeyjaed by the OPE, and might be
thought of as some kind of tensor product algebraically. aseenotation, let us arbitrarily
enumerate the weightsc R ash;, i = 0,...,|R| — 1 with the convention that, refers
to the vacuum representation. Then, the seminal so-ca#dthde formula reads

[ha] % [hg] = Y N JF[hi] with NJF =) %W . (7.6)
k 0

T

Although, the entries of th&-matrix may be very complicated algebraic numbers (made
out of exp(27ip) expressions withy rational numbers), thefif are always non-negative
integers.

This brief tour through modular invariance just scratchetha surface of this con-
cept. We would like to note that the fact that the characteesrational CFT form a finite
dimensional representation of the modular grétupL(2, Z) is one of the motivations for
the deep interest mathematicians take in CFT. It also pesvahe of the most restrictive
structures underpinning a rational CFT. Therefore, mutdrte poured into using mod-
ular invariance to classify all possible rational CFTs. sSTbliassification is an important
task, since only with this knowledge are we able to make fsdl af this great toolkit of
theoretical physics, which CFT constitutes.

8. Conclusion

These notes by no means provide a comprehensive introduotihe vast theme of con-
formal field theory. Many topics of great importance haverbskipped completely, or
mentioned only in a half-sentence. These notes pretty maockist of the material pre-
sented in the actual lectures, which were mainly designétl tothe gaps left by — and to
provide the bare necessities to follow — the main seriesebthing Theory Crash Course
held fall 2000 at Hannover university. Therefore, the sabecof covered material was
made along the lines of this course. The main series of lestomn string theory itself by
Olaf Lechtenfeld and the introduction to supersymmetry &y Blefka are also be avail-
bale as written notes, see [6]. The nature of the courseptode a preliminary survey of
string theory in a very short time, is reflected in the incoetghess of these notes. The
bibliography might help the reader to find some more compreire introductions to the
subject. Again, also the bibliography does not attempt tehbeough in any sense, but
is intended to list easily accessible reviews or books oriararal field theory and string
theory.
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