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We propose to describe bulk wave functions of fractional quantum Hall states in terms of correlators of non-
unitary b/c-spin systems. These yield a promising conformal field theory analogon of the composite fermion
picture of Jain. Fractional statistics is described by twist fields which naturally appear in the b/c-spin systems.
We provide a geometrical interpretation of our approach in which bulk wave functions are seen as holomor-
phic functions over a ramified covering of the complex plane, where the ramification precisely resembles the
fractional statistics of the quasi-particle excitations in terms of branch points on the complex plane. To extend
Jain’s main series, we use the concept of composite fermions pairing to spin singlets, which enjoys a natural
description in terms of the particular c =−2 b/c-spin system as known from the Haldane-Rezayi state. In this
way we derive conformal field theory proposals for lowest Landau level bulk wave functions for more general
filling fractions. We obtain a natural classification of the experimentally confirmed filling fractions which does
not contain prominent unobserved fillings. Furthermore, our scheme fits together with classifications in terms
of K-matrices of effective multilayer theories leading to striking restrictions of these coupling matrices.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) is one of the
most fascinating and striking phenomena in condensed matter
physics.1 Certain numbers, the filling fractions ν ∈ Q, can
be observed with an extremely high precision in terms of the
Hall conductivity σH = ν in natural units. These numbers are
independent of many physical details such as the geometry of
the sample, its purity, the temperature – at least within large
bounds. The enigmatic and fascinating aspect of this phe-
nomenon is that only a certain set of these fractional numbers
ν can be observed in experiments: despite ongoing attempts
in varying the purity (or disorder), the external magnetic field
and various other parameters, the set of observed fractions has
not changed considerably over the last few years.2–5

It was realized quite early that the FQHE shows all signs
of universality and large scale behavior.6,7 Independence of
the geometrical details of the probe and its size hints towards
an effective purely topological field theory description. In-
deed, since the quantum Hall effect is essentially a (2+1)-
dimensional problem, the effective theory is regarded to be
dominated by the topological Chern-Simons term a ∧ da in-
stead of the Maxwell term trF 2 Some good reviews on the
theory of the FQHE are.8–11

However, one is ultimately interested in a microscopic de-
scription of the FQHE. One may start with the task of finding
eigenstates of an exact microscopic Hamiltonian. This can be
done numerically for small numbers of electrons. The great
achievement of Laughlin was to realize how a many-particle
wave function looks like if it is to respect a few common sense
symmetry constraints:12

ΨL(zn) =
∏

1≤i<j≤N

(zi − zj)2p+1 exp
(
− 1

4

∑
1≤i≤N

|zi|2
)
. (1)

We now know that Laughlin’s wave functions are extremely
good approximations to the true ground states, and they
are exact solutions for Hamiltonians with certain short-range
electron-electron interactions. They describe fractional quan-

tum Hall states (FQH states) with filling ν = 1/(2p + 1),
p ∈ Z+. Soon after, various so-called hierarchical schemes
were developed yielding ground state wave functions for other
rational filling factors.13–17 The important point to note here is
that the ground state eigenfunctions are time-independent up
to a trivial global phase. Thus, one might view them as solu-
tions of a (2+0)-dimensional problem. This is, more or less,
the main idea behind all attempts to describe the bulk wave
functions in terms of conformal field theory (CFT) correla-
tors.

The Laughlin wave functions describe special incompress-
ible quantum states of the electrons, so-called quantum
droplets. Incompressibility is connected to the existence
of energy gapless excitations on the border of the quantum
state.6,7,18–23 The latter can successfully be described in terms
of CFTs with current algebras as chiral symmetries. Fur-
thermore, there is an exact equivalence between the (2+1)-
dimensional Chern-Simons theory in the bulk and the (1+1)-
dimensional conformal field theory on the boundary describ-
ing the edge excitations.24 We note here that, naturally, such
CFTs have to be unitary, since they describe the time evolution
of spatially one-dimensional waves propagating on S1.

However, Laughlin’s bulk wave functions in a static (2+0)-
dimensional setting show a striking resemblance to correlation
functions of a free Euclidean CFT put on the (compactified)
complex plane. This resemblance has motivated quite a num-
ber of works trying to find a CFT description of bulk wave
functions in the FQHE.25–28 Most approaches assumed from
the beginning that these “bulk” theories are unitary. We stress
here that this assumption is void, since the bulk wave func-
tions one typically wants to represent are time-independent
eigenfunctions. Moreover, most approaches represented the
bulk wave functions in terms of building blocks belonging to
classes of CFTs with continuous parameters, e.g., the Gaus-
sian c = 1 CFTs. The immanent problem with these ap-
proaches is that there is no principle selecting the wave func-
tions for experimentally observed filling fractions. Therefore,
almost all approaches so far easily accommodate arbitrary ra-
tional filling factors. On the other hand, it is not entirely sur-
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prising that the bulk wave function should have something to
do with CFT. As mentioned above, the observable quantities
of the quantum Hall system are largely independent of the pre-
cise form and size of the sample. Thus, the normalized charge
distributions of the electrons should be invariant under scal-
ing (up to an exponential factor) and area preserving changes
of the shape of the sample. The first symmetry is linked to
conformal invariance, the latter to theW1+∞-algebra.29,30 In
fact, it is known that in the two-dimensional case global scal-
ing invariance implies full conformal invariance under certain
benign circumstances.

Interestingly, there exists a particularly enigmatic FQH
state with ν = 5/2. This is one of the very few states with
an even denominator filling. Of course, attempts have been
made to describe proposed bulk wave functions for this state
with the help of CFT correlators.21,25,31,32 In this case, how-
ever, it turned out that this can only be done if the CFT in
question has central charge c = −2. Thus, for this FQH
state we necessarily have to use a non-unitary theory. On
the other hand, this CFT is well known, it is the b/c-spin sys-
tem of two anti-commuting fields with spins one and zero, re-
spectively. Therefore, following the proposal of Haldane and
Rezayi it naturally yields precisely the object to be expected in
this FQH state, namely spin singlet states of paired electrons.
In addition, the c = −2 CFT contains a Z2-twisted sector
created by a primary field µ of conformal scaling dimension
hµ = −1/8, which accurately describes the effect of single
flux quanta piercing the quantum droplet. Thus, this theory
successfully characterizes the ground state and its physically
expected excitations with the correct fractional statistics, and
only these. The Haldane-Rezayi state is motivated geometri-
cally and proposes spin singlet electron states to be the funda-
mental objects responsible for the even denominator plateau.
However, there are strong experimental indications that the
ν = 5/2 FQH state is spin polarized which were investigated
numerically by Morf.33

Nonetheless, the present paper starts from the geometrical
viewpoint of the Haldane-Rezayi FQH state via a non-unitary
spin-system CFT to revisit the question, how FQH state bulk
wave functions can be represented in terms of CFTs. In con-
trast to other approaches we will drop the assumption that
these CFTs should be unitary because there is no physical rea-
son for it. This enables us to concentrate on a different class
of CFTs, namely the b/c-spin systems of two anti-commuting
fields of spins j and (1 − j), respectively. Locality forces
j ∈ Z/2 such that we confine ourselves to a discrete series
of CFTs. It will turn out that our ansatz not only naturally
explains all experimentally observed filling fractions, but, in
addition, does not predict new unobserved series.

Besides these convenient features our approach yields a
beautiful geometrical picture for the CFTs we use to represent
the bulk wave functions. Additionally, we find correlations of
spin j (or spin 1− j) composite fermions with flux quanta of
precisely the fractional statistics which are theoretically pre-
dicted from first principles. These statistics, say 1/m, mani-
fest themselves naturally in the presence of Zm-twists which
in turn have the geometrical meaning of replacing the com-
plex plane by an m-fold ramified covering of itself. Thus, the

bulk wave functions finally are recast in a language of com-
plex analysis, i.e., j- or (1−j)-differentials on Zm-symmetric
Riemann surfaces.

Most of the observed filling fractions ν ∈ Q have an odd
denominator, which comes from the basic fact that the ele-
mentary entities in the quantum Hall system are fermions. It
turns out that unpaired fermions correspond to spin systems
with spin j half-integer (remember that the paired electrons
singlets in the Haldane-Rezayi state were described by an
integer-spin system). An essential part of our paper is that
we will propose a new hierarchical scheme in which filling
fractions can be derived from others by means of forming
more and more paired singlets. Besides Jain’s principle se-
ries, this yields further series precisely catching all confirmed
filling fractions. Unobserved filling fractions are no problem
within our scheme, since they all lie at the far end of our se-
ries or are characterized by series of higher order. In contrast
to this, most other hierarchical schemes predict certain un-
observed fractions, since prominent experimentally confirmed
ones can only be realized at a certain order k within the hier-
archy while others obtained at smaller orders of the hierarchy
do not show up in experiments. The problem is the lack of a
physical reason why the corresponding low order FQH state
does not exist, but the higher order FQH state derived from it
in the hierarchy. Thus, we believe that our scheme provides a
natural explanation for the completeness of the set of exper-
imentally accessible filling fractions which does not run into
this problem.

Our paper proceeds as follows: To be as self-contained as
possible we collect the essential formulae and concepts of
CFT in section two. We are not very general here, since we
only concentrate on those facts which are relevant for the spe-
cial CFTs, i.e., the spin systems, that we will use throughout
the reminder of the paper. The reader unfamiliar with CFT
might consult the following books.34,35

In section three, we briefly review the basic idea of Laugh-
lin leading to his seminal trial wave functions. Furthermore,
we present the appropriate generalization of these within the
picture of Jain which allows to describe a large class of
FQH states in terms of an effective integer quantum Hall ef-
fect (IQHE) of effective elementary particles, the composite
fermions (CFs). We favor this idea, since our CFT ansatz con-
tains fields which can naturally be identified with such com-
posite fermions. Moreover, Jain’s picture has the advantage
to realize most of the prominently observed filling fractions
within the first level of its hierarchical scheme.

Section four is the core of our paper. More general Laugh-
lin type trial wave functions in the lowest Landau level (LLL)
projection are obtained from multilayer states which are de-
rived from Chern-Simons theory. In this scheme, all essential
information can be understood to be encoded in a certain ma-
trix K describing the coupling of the layers, i.e., of different
quantum fluids. It respects many general principles, such as
topological order. Evident physical properties lead to severe
constraints on these K-matrices, which will be seen to coin-
cide nicely with the constraints we find for our spin system
CFTs. Step by step we develop the b/c-spin approach in terms
of beginning with the simplest case of the principal main se-
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ries of Jain’s hierarchy. All other confirmed filling fractions
are consecutively obtained by pairing of CFs to spin singlet
states. This can be done to a lower or higher degree result-
ing in our novel hierarchical scheme being independent of the
pure Chern-Simons formalism. By this, we do not have to
make use of the principle of particle-hole duality that is not
suitable to form a hierarchy of states by order of stability. Fur-
thermore, our pairing scheme, which is represented by tensor-
ing the spin CFTs with additional spin-singlet b/c-spin sys-
tems of central charge c = −2, puts severe constraints on the
possible form of the bare K-matrix, restricting it essentially
to block form. After developing our approach to the point that
all observed filling fractions are obtained and certain promi-
nent rational numbers, which were never experimentally con-
firmed, are ruled out within our approach, we finally provide
some predictions for future experiments.

In the concluding fifth section, we summarize our results
and try to put them into context. We also mention unsolved
problems and some directions for possible research in the fu-
ture. The appendix contains some sketchy remarks, that the
space of states of our non-unitary theories appropriately coin-
cides with the space of states of the (1+1)-dimensional theo-
ries describing the edge excitations.

II. CONFORMAL FIELD THEORY

During the last decades conformal field theory (CFT) be-
came one of the most powerful tools of modern theoretical
physics.36 Surely, one of the most important impulses came
from statistical mechanics: CFT is well-known for its appli-
cability to statistical systems at criticality. At a continuous
phase transition the correlation length diverges and the system
becomes scale invariant. In two dimensions this usually im-
plies conformal invariance of the system. If the corresponding
CFT is identified and found to be rational we can derive the
partition function and the problem is solved in a very elegant
and effective way. Apart from that there are lots of phenom-
ena, for instance bosonization, in solid state physics involving
CFT even if it is not apparent at first sight. Often when geo-
metrical or topological aspects arise CFT is close at hand and
allows to derive global properties without detailed knowledge
of microscopic structures.

We want to stress that this paper deals with bulk CFTs in
2+0 dimensions. Therefore, it does not make sense to argue
about unitarity, time evolution and similar aspects. Of course,
the corresponding edge theory has to be unitary, but this im-
plies no crucial restriction for the bulk part.

The theories used in our picture are the b/c-spin systems that
were analyzed in detail by Knizhnik.37,38 They are described
by the action

S =
∫

d2z b(z)∂̄c(z) + h.c. (2)

Here, b(z) and c(z) are anti-commuting conformal fields of
weight j ∈ Z/2, and 1 − j respectively, where z is a coordi-
nate in the complex plane. Mathematically spoken the fields
b(z) and c(z) describe j- and 1 − j-differentials. Therefore,

they are directly related to the cohomology of the topologi-
cal space they live on. Furthermore, these theories are chi-
ral CFTs so we can treat the holomorphic part independently.
This nicely coincides with the fact that FQH states considered
in the lowest Landau level (LLL) are described by holomor-
phic wave functions.
By variation of the action via path integral we get the equa-
tions of motion:

(∂̄c(z))b(z′) = (∂̄b(z))c(z′) = δ2(z − z′, z̄ − z̄′)
and ∂̄b(z) = ∂̄c(z) = 0 . (3)

In classical terms we would expect

(∂̄c(z))b(z′) = (∂̄b(z))c(z′) = 0 . (4)

Thus, the normal-ordered product of the two fields in order to
satisfy (4) reads:

:b(z)c(z′) : = b(z)c(z′)− 1
z − z′

. (5)

In 2d CFT a product of local chiral operators can be expanded
in an operator valued Laurent series with meromorphic func-
tions as coefficients. In the evaluation of correlators these so-
called operator product expansions (OPEs) play an important
role. The OPEs of the two fields b(z) and c(z′) can be read
off directly from (5):

b(z)c(z′) ∼ 1
z − z′

, c(z)b(z′) ∼ 1
z − z′

. (6)

Here, ‘∼’ denotes ‘equivalent up to regular terms’. These reg-
ular terms vanish if evaluated in a correlator.

The energy-momentum tensor T (z) of the theory can be
derived by varying the action S with respect to the induced
metric. This yields

T (z) = (1− j): (∂b(z))c(z) :− j:b(z)(∂c(z)) : . (7)

In principle there are just a few facts we have to know about
a general CFT: the central charge c and the set of conformal
weights {hi} of its fields are two of them. They can be derived
by OPEs involving the energy-momentum tensor:

T (z)b(w)∼ j

(z − w)2
b(w) +

1
z − w

∂wb(w) , (8)

T (z)c(w)∼ 1− j
(z − w)2

c(w) +
1

z − w
∂wc(w) , (9)

T (z)T (w)∼
1
2 (−12j2 + 12j − 2)

(z − w)4
+

2
(z − w)2

T (w)

+
1

z − w
∂wT (w) . (10)

Equations (8) and (9) can be understood as the definition of a
primary conformal field, the numerator of the first term of the
OPE yields its conformal weight h. The third OPE contains a
so-called anomalous term that is not proportional to the field
itself or its derivatives. This term is due to the existence of a
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central extension of the algebra of conformal symmetries. In
fact, in all CFTs the OPE of T (z) with itself reads

T (z)T (w)∼ c/2
(z − w)4

+
2

(z − w)2
T (w)

+
1

z − w
∂wT (w) . (11)

We find

cb/c−spin = −2(6j2 − 6j + 1) . (12)

For j 6= 1
2 the central charge is negative (as j ∈ Z/2). There-

fore, the b/c-spin systems used in our scheme are non-unitary.
We will briefly discuss this issue and how our approach fits
together with the unitary edge theories in the appendix. Fur-
thermore, there exists an additional symmetry of the action.
Under the simultaneous transformation

b(z)→ b(z) exp(iα) and c(z)→ c(z) exp(−iα) (13)

the action remains unchanged. The corresponding conserved
spin current j(z) reads:

j(z) = −:b(z)c(z) : (14)

with its conserved charge

Q(iα),j =
1

2πi

∮
0

dz (iα)j(z) . (15)

To stress it again, the b/c-spin systems are directly related to
the topology they live on. In our picture we are interested in
Riemann surfaces (RS) with global Zn-symmetry. This means
that every branch point is of order n and that all monodromy
matrices can be diagonalized simultaneously . It is sufficient
to do the calculation locally for a single branch point at z0.
The results can be directly extended to m branch points.

A Zn-symmetric RS can be locally represented by
a branched covering of the compactified complex plane(
Ĉ = C ∪ {∞}

)
with the following map:

z : RS→ Ĉ , z(y) = z0 + yn . (16)

We identify the RS locally by n sheets of Ĉ via the inverse
map of (16). The b/c-spin fields living on the RS are therefore
represented by an n-dimensional vector of identical copies of
the b/c-fields b(l)(z) and c(l)(z) on the complex plane with
boundary conditions

Π̂z0b
(l)(z) = b(l+1)(z) , l = 0, . . . , n− 1 ,

b(n)(z) = b(0)(z) , (17)

where

Π̂z0 : (z − z0)→ (z − z0) exp(2πi) . (18)

For further investigation we introduce a Fourier basis

bk(z) =
n−1∑
l=0

exp
(
−2πi(k + j(1− n))l

n

)
b(l)(z) ,

ck(z) =
n−1∑
l=0

exp
(

+2πi(k + j(1− n))l
n

)
c(l)(z) . (19)

This basis diagonalizes Π̂z0 :

Π̂z0bk(z) = exp
(

+2πi(k + j(1− n))
n

)
bk(z) ,

Π̂z0ck(z) = exp
(
−2πi(k + j(1− n))

n

)
ck(z) . (20)

As a consequence the conserved spin current (14) becomes
single-valued. Therefore, the corresponding charge vector αk

identified with the branch point z0 is

αk = −k + j(1− n)
n

. (21)

Now we bosonize the theory. This means that we express the
spin fields in terms of exponentials of analytic scalar bosonic
fields Φk

bk(z)=:exp (+iΦk(z)) : ,
ck(z)=:exp (−iΦk(z)) : . (22)

This yields that the branch point of the Zn-symmetric RS is
related to a primary conformal field of the b/c-spin system:

V~α(z0) = :exp
(
− i

n−1∑
k=0

αkΦk

)
: . (23)

It is called Vertex operator and has conformal weight

h~α =
n−1∑
k=0

hαk
=

n−1∑
k=0

(
1
2
α2

k − (j − 1
2
)αk

)
. (24)

As these fields are of central importance in our context, let us
look a bit more carefully at them. They are primary conformal
fields arising in the most general case from the CFT of the free
boson with an embedded background charge and are defined
by

V`(z) = :exp (i`Φ(z)) : . (25)

Here, Φ(z) is a free scalar bosonic field with conformal
weight h = 0. The OPE reads

Φ(z)Φ(w) ∼ − ln(z − w) . (26)

The energy-momentum tensor is given by

T (z) = −1
2
:∂zΦ(z)∂zΦ(z) : + iα0∂

2Φ(z) , (27)

where α0 is a background charge placed at infinity. This leads
to the following OPEs:

T (z)T (w)∼
1
2 (1− 12α2

0)
(z − w)4

+
2

(z − w)2
T (w)

+
1

z − w
∂wT (w) , (28)

(z)∂Φ(w)∼ 2iα0

(z − w)3
+

1
(z − w)2

∂wΦ(w)

+
1

z − w
∂2

wΦ(w) . (29)
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The background charge is derived from (28) and (12)

α0 =
1
2
− j (30)

in order to bosonize the theory correctly. Furthermore, it fol-
lows from (29) that ∂Φ is not a primary conformal field unless
the background charge vanishes. In fact, even Φ itself is not
primary, as it is expected from (26). Due to the logarithmic
term in its OPE the Vertex operator is the remaining candidate
for a primary field. In fact,

T (z)V`(w)∼ `
2/2− α0`

(z − w)2
V`(w) +

1
z − w

∂wV`(w) (31)

proves that Vk(z) is primary with conformal weight h =
`2/2 + (j − 1/2)`. This is indeed the result of (24).

Having a closer look at (21) we immediately find that the
charge vector of the Vertex operator is dominated by the Zn-
symmetry of the RS. The spin j simply provides an offset
which is just visible in the conformal weight of the fields since
the phase is determined by αk mod 1. In addition we have to
distinguish between two different types of fields. First, there
are twist fields that contain the full information of the branch
point. Therefore, the charge vector ~α has to keep track of an-
alytic continuation. For example, given a Z3-symmetric RS
and j = 3/2, the charge vector is derived as

~αn=3,j=3/2 = ( 1 , 2/3 , 1/3 ) . (32)

Secondly, there are projective fields. Their charge components
are identical as if we simply had an n-fold copy of Ĉ. This
yields charge vectors ~αp with

~αp
1 = . . . = ~αp

n ∈
{

0,
1
n
, . . . , 1

}
. (33)

We stress once more the important role of the charge vectors
~α. Besides local chiral fields, whose charge vectors have inte-
ger valued components only, we include fractional ones (33).
The effect of the corresponding vertex operators is to precisely
simulate the action of a branch point of ramification number
n. This is exactly the effect we expect from fractional statis-
tics of quasi-particles. Thus, we incorporate the statistics into
a geometrical setting, where the complex plane is replaced by
an n-fold ramified covering of itself, created by flux quanta
piercing it.

Naturally, we expect to find the projective fields in order to
describe FQH states in the lowest Landau level (LLL) projec-
tion correctly. Since the bosons Φk are free fields, the corre-
lators of their Vertex operators read

〈Ω |V~α1(z1) · . . . · V~αn
(zn)| 0 〉 =

n∏
i<j

(zi − zj)~αi·~αj , (34)

where 〈Ω | is an out-state connected to the background charge
at infinity.

The set of equations (33) and (34) including their geometric
features is all we need to derive the LLL projected FQH bulk
wave functions for filling fractions 0 ≤ ν ≤ 1.

III. LAUGHLIN STATES

To begin the analysis of the FQHE that was first discovered
by Tsui, Störmer and Gossard1 it is natural to start with the
Laughlin states. Their wave functions are given by

ΨL(zj) = N
n∏

k<l

(zk − zl)2p+1 exp
(
− 1

4

n∑
i

|zi|2
)
, (35)

where p ∈ N, zi = xi+iyi is the position of the i-th electron in
unified complex coordinates and N is a normalization factor.

These wave functions describe a uniform incompressible
quantum fluid of electrons in the LLL widely separated from
each other that obey phase correlations as if carrying 2p
flux quanta of the magnetic field. They are completely anti-
symmetric, correspond to filling fractions ν = 1

2p+1 and were
conceived by Laughlin12 as the variational ground state wave
functions for the model Hamiltonian

H=
n∑
k

[
1

2m

(
~
i
∇k −

e
c
~A(~rk)

)2

+ Vbg(~rk)

]

+
n∑

k<l

e2

|~rk − ~rl|
. (36)

Here, Vbg is a potential of a background charge distribution
that neutralizes the electrons’ Coulomb repulsion. This guar-
antees that the system is stable. The vector potential is taken
in the symmetric gauge

~A(~r) =
B

2
(−y, x, 0) . (37)

We stress that electron-electron interaction is a crucial ne-
cessity for the FQHE. In contrast to the IQHE, which can
be understood as a one-particle effect involving disorder, the
fractional regime is found to be a strongly correlated system
(SCS).

Furthermore, the modulus squared of the wave function
is equivalent to the Boltzmann distribution of a 2d one-
component plasma. This yields further information with re-
spect to the thermodynamic limit,

|Ψ|2 = exp(−βΦ) , (38)

where β = 1/(2p+ 1) and

Φ = −2(2p+ 1)2
n∑

k<l

ln |zk − zl|+
2p+ 1

2

n∑
k

|zk|2 . (39)

Hence, for small p the system is a liquid rather than a Wigner
crystal.

Another important property is the incompressibility of the
Laughlin states. This leads to the existence of plateaus in the
Hall conductance. The Laughlin ground state can be extended
with respect to quasi-hole excitations by introducing a simple
polynomial factor

Ψexc. =N (ζi)
∏
k,l

(zk − ζl)
∏
r<s

(zr − zs)2p+1

×exp
(
− 1

4

∑
i

|zi|2
)
. (40)
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Here, the ζi denote the positions of the quasi-hole excita-
tions. With respect to (39) the excited states, in contrast to
the ground states, have a non-uniform charge distribution. In
comparison with the 2d plasma one can calculate a charge
deficit of e

2p+1 at the point ζi, which means that the quasi-
holes are fractionally charged.

Thus, in order to analyze their statistics more carefully, we
derive the Berry connection, first stated by Arovas et al.,39

from the normalization factor (a detailed comment on the
derivation is provided in chapter 2 of Stone’s book10):

Ψexc. =N
∏
k,l

(zk − ζl)
∏
r<s

(zr − zs)2p+1(ζr − ζs)
1

2p+1

×exp
[
− 1

4

∑
i

(
|zi|2 +

1
2p+ 1

|ζi|2
)]
. (41)

Therefore, the quasi-particles obey fractional statistics and the
non-holomorphic part in the wave function describing quasi-
particle interactions gives rise to the complex geometry the
Laughlin states are built on. This geometrical features are di-
rectly embedded in the b/c-spin systems. Given a filling frac-
tion ν = 1/(2p+1) we identify a Z2p+1-symmetric projective
field with the electron e− and another one with the flux quan-
tum Φ, respectively.

The charge vectors are related to the statistics, thus (2p+1)-
dimensional and take the form

~αe− =
(

1, . . . , 1
)
, ~αΦ =

( 1
2p+ 1

, . . . ,
1

2p+ 1

)
. (42)

The correlators (34) yield the correct wave functions (35) and
(41) up to the exponential factor:

ΨL=
〈
Ω

∣∣V~αe−
(z1) · . . . · V~αe−

(zn)
∣∣ 0

〉
=

n∏
i<l

(zi − zl)2p+1 , (43)

Ψexc=
〈
Ω

∣∣ n∏
i=1

V~αe−
(zi)

k∏
j=1

V~αΦ
(ζj)

∣∣0 〉
=

n,k∏
r,s

(zr − ζs)
n∏

i<l

(zi − zl)2p+1
k∏

p<q

(ζp − ζq)
1

2p+1 .(44)

We have to make a comment here: In our approach, the CFT
always lives on a ramified covering of the compactified com-
plex plane, i.e., on the Riemann sphere. On the other hand, the
FQH system lives on a certain chunk of the plane, the sample.
Thus, in a correct treatment, wave functions of the FQH sys-
tem must be elements of a suitable test space. It turns out that
this is the Bargmann space.40 The elements of the Bargmann
space for N complex variables are of the form

ψ({z}) = p(z1, . . . , zN )
N∏

i=1

exp(−ci|zi|2) .

There are further restrictions on the constants ci and on
the multi-variate polynomial p({z}) whenever the function

ψ({z}) is symmetric or anti-symmetric under certain permu-
tations of its arguments. The only effect of the exponential
factor is to guarantee a sufficient fast decay of the modu-
lus squared of the wave function if one or more of its argu-
ments become large. It can be shown rigorously that this fac-
tor is absent if the FQH problem is considered in a different
setting, i.e., on a sphere pierced by the field of a magnetic
monopole positioned in its centre. This idea was first stated
by Haldane.15 Since this is a compact space, so is the support
of the wave function. When computing bulk wave functions in
terms of CFT correlators, we automatically move to this latter
setting on the compact sphere. Thus, it is natural to expect
that the CFT picture reproduces the bulk wave functions on
the sphere and not on the plane. However, for completeness,
we mention that it is possible to reproduce the exponential
factors within the CFT picture by explicitly including a homo-
geneous background charge distribution confining the support
of the wave function as it was shown by Moore and Read.25,41

We can deduce that the Zn-symmetry of the RS the spin
fields live on has a one-to-one correspondence with the statis-
tics and charges of the (quasi-)particles in the Laughlin states,
e.g., the (2p + 1)-dimensional charge vectors (42) yield the
wave functions (44), and n = 2p+ 1. Furthermore, the scalar
products of the charge vectors determine the particles’ inter-
action, i.e., order of zeros in the polynomial terms of the wave
functions. We stress that in spite of the electron with elemen-
tary charge obeying simple fermionic statistics the field’s na-
ture has a geometric background in terms of the topology of
the RS. This will become more apparent in states of higher
order.

Beyond Laughlin

As already pointed out the FQHE is a strongly corre-
lated system (SCS). In such systems interactions dominate the
physics and long range effects take place. Well known ex-
amples are superconductivity and the Hubbard model which
can be described in terms of effective theories. The common
feature of these theories is the demand for the existence of
effective particles in the system, e.g., Cooper pairs (supercon-
ductivity) or spinons and holons (Hubbard model). Concern-
ing the FQHE one widely accepted effective theory with di-
rect correspondence to experimental facts was developed by
Jain.16,42,43 He explained the fractional effect by introducing
the composite fermion (CF) model. A CF consists of one
electron with a number of pairs of flux quanta of the mag-
netic field attached to it. Jain showed that the FQHE is an
effective IQHE for the CFs and proposed sequences of states
to appear in a certain order. These are found in agreement
with experimental data.

With respect to trial wave functions the attachment of p
pairs of flux quanta is conducted by multiplying the IQHE
wave function ΨI (filling fraction νI) with a polynomial Jas-
trow factor

ΨCF =
N∏

i<j

(zi − zj)2pΨI . (45)
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The filling fraction of the CF state is then derived as

νCF =
νI

2pνI + 1
. (46)

Here, νI corresponds to the IQH state ΨI. This procedure
neither destroys the correlations of the system nor the incom-
pressibility of the state. Laughlin’s wave functions with fill-
ing fraction ν = 1/(2p+ 1) are the simplest examples of this
scheme. We start from a ν = 1 IQH state Ψ1 and attach p
pairs of flux quanta:

ΨL=
N∏

i<j

(zi − zj)2p
N∏

i<j

(zi − zj) exp
(
− 1

4

∑
i

|zi|2
)

︸ ︷︷ ︸
Ψ1

.(47)

In principle, it is possible to get any rational number as filling
factor by applying Jain’s construction repeatedly. This forms
the hierarchical scheme of Jain. Thus, instead of starting with
an IQH state, one starts with a FQH state obtained from Jain’s
construction, and forms new CFs out of the old ones by attach-
ing additional pairs of flux quanta. The new filling fraction is
obtained via (46) by replacing νI by νCF to obtain a new filling
ν′CF. In this way, arbitrarily continued fractions of the form

ν=[2p1, . . . , 2pn, νI]=
1

2p1 +
1

2p2 +
1

. . .
2pn +

1
νI

(48)

can be constructed, and thus arbitrary positive rational num-
bers ν < 1. However, this hierarchical scheme shares with
all the other hierarchical schemes that it soon produces way
too many unobserved filling fractions. Moreover, it is crucial
to invoke the principle of particle-hole duality in order to get
some of the experimentally confirmed filling fractions within
the first few levels of the hierarchy. Unfortunately, the set of
all experimentally observed FQH states can not be character-
ized by particle-hole duality very well since related states do
not necessarily have to share physical features, e.g., size of
the energy gap and width of the plateau. Thus, if a hierarchi-
cal scheme is to represent the experimental order of stability
and to describe sets and series of FQH states in a proper way,
particle-hole duality should not be taken into account.

IV. MULTILAYER STATES AND CFT APPROACH

Not relying on particle-hole duality as an argument and
without predicting unobserved fractions, we derive sequences
of all FQH states (0 ≤ ν ≤ 1) observed up to now in agree-
ment with experimental data2–5 with a very few exceptions.
Furthermore, a unifying scheme for the construction of bulk
wave functions in terms of CFT correlators is provided. To
arrive at these wave functions we have to generalize Jain’s
composite fermion (CF) approach to multilayer states. One
way to provide this is to start from an effective field theory.

It is well-known that QED in (2+1) dimensions consists of
a Maxwell part and a topological Chern-Simons term. It is
true that the latter is neglectable compared to the first one in
many cases, but it was rigorously shown that it dominates the
FQH regime.7 Therefore, the FQH system can be described in
terms of an effective Chern-Simons theory. It turns out that
a FQH system can consist of several quantum fluids which
may be coupled to each other. Each fluid i is described in the
effective field theory by a vector potential aµ

i in addition to
the external fieldAµ with couplings κi. For completeness, we
provide the general form of the Lagrangian:

L=− 1
4π
aiµKijε

µνλ∂νajλ−
e
2π
κiAµε

µνλ∂νaiλ+. . . , (49)

where we left out possible other terms such as the contribution
of the quasi-hole current. To introduce this concept of mul-
tilayer states we follow the original theory of Wen.44,45 The
complete Lagrangian contains various couplings and sources
which are irrelevant for our purposes. The only important
conclusion in our context is that the internal structure of a so-
called m-layer FQH state is encoded in the invertible m ×m
matrix Kij describing the couplings of different layers or
quantum fluids with each other. This matrix encodes vari-
ous information of the FQH state, e.g., the filling fraction,
topological order, ground state degeneracy and the structure
of corresponding trial wave functions. As a result, for a spin-
polarized electron system Kij can be written in compact form
and has to satisfy the following conditions (represented in the
symmetric electron basis of Chern-Simons theory):

Kij =
{

odd integer i = j
integer i 6= j

. (50)

The filling fraction is

νK =
m∑
i,j

K−1
ij . (51)

In addition, the trial wave functions can be read off directly:

ΨK =
N∏

i<j

m∏
µ

(z(µ)
i − z(µ)

j )Kµµ

N∏
i,j

m∏
µ<λ

(z(µ)
i − z(λ)

j )Kµλ .(52)

Jain’s Main Series

To follow Jain’s approach (45) we start from a double-layer
IQH state ΨI with two filled Landau levels (LLs):

Kij =
(

1 0
0 1

)
, ν = 2 . (53)

These two layers do not interact. Attaching p pairs of flux
quanta to each electron yields

Kij =
(

2p+ 1 2p
2p 2p+ 1

)
, ν =

2
4p+ 1

. (54)
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The flux quanta introduce interactions between different lay-
ers. Two filled LLs of CFs correspond to a LLL FQH state.
Generalized to m layers we obtain

Kij =



2p+ 1 2p · · · · · · 2p

2p 2p+ 1
. . .

...

...
. . . . . . . . .

...

...
. . . 2p+ 1 2p

2p · · · · · · 2p 2p+ 1


, (55)

which corresponds to νp = m/(2mp + 1). This implies the
following sequences of filling fractions:

ν1=
1
3
,

2
5
,

3
7
,

4
9
,

5
11
,

6
13
,

7
15
,

8
17
,

9
19
,

10
21
, . . .

ν2=
1
5
,

2
9
,

3
13
,

4
17
,

5
21
,

6
25
, . . .

ν3=
1
7
,

2
13
,

3
19
, . . . (56)

ν4=
1
9
,

2
17
, . . .

...

These are limited by the Wigner crystal regime for ν → 0
depending on the quality of the sample. Therefore, the series
for p ≥ 5 were still not observed. On the other hand we have
a cutoff if m, the number of LLs of CFs building the state, is
increased. In terms of an effective IQHE this corresponds to
the classical limit Beff → 0.

The trial wave functions (52) are LLL projections of the
true FQH states. To do the projection properly CFs of different
LLs labelled by (µ) have to be distinguished. The resulting
wave function is anti-symmetric only within each LL, anti-
symmetrization over different LLs is unphysical and would
yield a vanishing ΨK in most cases.

The complete set of states for the sequences (56) is in-
cluded in the b/c-spin system approach, (quasi-)particles, their
charges and statistics are described in terms of Z2mp+1-
symmetric projective fields. As before, p labels the number
of pairs of flux quanta attached to the electron and m is the
number of filled CF LLs. Each layer µ ∈ {1, . . . , m} is con-
nected with a (2mp+ 1)-dimensional charge vector:

~α
(µ)
i =

 1 1 ≤ i ≤ 2p
1 i = 2mp+ 2− µ
0 otherwise

. (57)

This yields

~α(µ) · ~α(λ) = 2p+ δµ, λ . (58)

Naively one might have expected a (2p + 1)m-dimensional
charge vector for an m-layer state. However, this would
mean that the flux quanta were independent for each layer.

Identifying these or, equivalently, the base spaces of the m
copies of the ramified complex plane immediately leads to
(2p + 1)m − (m − 1) = 2mp + 1. The correlators (34)
are hence derived to read

Ψp, m(z(µ)
i ) = 〈Ω |

m∏
µ

V~α(µ)(z(µ)
1 ) · . . . · V~α(µ)(z(µ)

N ) | 0 〉

N∏
i<j

m∏
µ

(z(µ)
i − z(µ)

j )2p+1
N∏
i,j

m∏
µ<λ

(z(µ)
i − z(λ)

j )2p .(59)

Equation (59) generalizes the result of (44) and the basic Jain
series (56) with νp = m

2mp+1 are identified.

Composite Fermion Pairing

Concerning other filling fractions all known hierarchical
systems13,15,43,46,47 invoke the principle of particle-hole dual-
ity, relating, for example the series

ν1=
1
3
,

2
5
,

3
7
,

4
9
,

5
11
,

6
13
,

7
15
,

8
17
,

9
19
,

10
21
, . . . (60)

and

ν
(1)
1 =

2
3
,

3
5
,

4
7
,

5
9
,

6
11
,

7
13
,

8
15
,

9
17
,

10
19
, . . . . (61)

The latter is of type ν(1)
p = m

2mp−1 and can naively be repre-
sented in terms of m-layer K-matrices

Kij =
{

2p− 1 i = j
2p i 6= j

. (62)

This does not suit our approach in its basic form: it demands
the existence of charge vectors ~α and ~β corresponding to dif-
ferent layers with

~α 2 = ~β 2 = 2p− 1 and ~α · ~β = 2p  . (63)

This is not possible since it contradicts Schwarz’ inequality
and indicates that these ‘dual’ series possess completely new
physical features. The analytic structure of the wave function
(52) for K-matrices (62) exhibits that CFs living in the same
layer repulse each other with the power of (2p − 1) while
those of different layers repulse themselves by 2p. This sug-
gests the existence of an effectively attractive CF interaction
within a LL, i.e., pairing. This is induced by the c = −2 log-
arithmic b/c-spin system with spin j = 1 as it was proven for
the Haldane-Rezayi state which was discussed for some time
as proposal to describe the even-denominator filling fraction
ν = 5/2.21,25,31,32

In analogy to (22) the fields b(z) and c(z) can be bosonized
on a ramified covering of the compactified complex plane lo-
cally representing the Zn-symmetric RS in terms of Vertex
operators:

b~γ(z)=:exp
(

+ i~γ~Φ(z)
)
:

c~γ(z)=:exp
(
− i~γ~Φ(z)

)
:

γk ∈ {0 , 1} . (64)
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In terms of CFT the pairing effect of the CFs is described by
b(z)∂c(z′). The OPE

b~γ(z)∂c~γ(z′) ∼ ~γ 2

(z − z′)2
(65)

yields the so-called Pfaffian form Pf(zi, z
′
i) if the fields (65)

are evaluated in a correlator:

〈Ω |
N∏

i=1

b~γ(zi)∂z′i
c~γ(z′i)| 0 〉 = ~γ 2Pf(zi, z

′
i) ,

Pf(zi, z
′
i) ≡

∑
σ∈SN

sgn(σ)
N∏

i=1

1
(zi − z′σ(i))

2
. (66)

In this way, the ν(1)
p series can be identified by the same fields

as the basic Jain series (59) if additional inner-LL pairings are
included. To find a physical and stable system we expect all
CF LLs to be paired. In order to describe this in a proper
way, each layer µ ∈ {1, . . . ,m} possesses an m-dimensional
charge vector:

~γ
(µ)
i = δµ, i ⇒ ~γ(µ) · ~γ(λ) = δµ, λ . (67)

The CFs themselves correspond to the charge vectors (57).
Thus, the wave function reads

Ψ(1)
p, m(z(µ)

i )=〈Ω |
m∏
µ

V~α(µ)(z(µ)
1 ) · . . . · V~α(µ)(z(µ)

2N )| 0 〉

×〈Ω |
m∏
µ

N∏
i=1

b~γ(µ)(z(µ)
i )∂zi+1c~γ(µ)(z(µ)

i+1)| 0 〉

=
m∏
µ

Pf(z(µ)
i , z

(µ)
N+i)

×
2N∏
i<j

m∏
µ

(z(µ)
i − z(µ)

j )2p+1

︸ ︷︷ ︸
(?)

2N∏
i,j

m∏
µ<λ

(z(µ)
i − z(λ)

j )2p . (68)

We want to stress that equation (68) is in principle completely
independent of the Chern-Simons approach. Nonetheless, it
can be related to the K-matrix (62). Concerning trial wave
functions, the Pfaffian cancels two powers of the paired CF
contribution to (?). Thus, paired CFs repulse each other by
(z(µ)

i − z(µ)
j )2p−1 in either wave function (52) and (68). Ad-

ditionally, both yield the same filling fractions

ν(1)
p, m =

m

2mp− 1
. (69)

Yet there is another subtlety. It can be shown that the pro-
cedure of attaching flux quanta as proposed in Wen’s origi-
nal Chern-Simons approach for spin-polarized states can not
be extended to systems with non-trivial geometry,48 e.g., the
paired CF states represented by (68). As a consequence, the
corresponding K-matrices can not be represented in a com-
pact form with respect to global gauge transformations. Min-
imal alternative theories are suggested, e.g., for the case of

spin-polarized states,49 but despite their beautiful and funda-
mental approach to FQH systems in terms of symmetries, they
lack proposing of trial wave functions and at the moment can
not be discussed in this context. However, the CFT approach
proposed in this paper allows to face these problems from a
completely different viewpoint and is thought of to imply geo-
metrically motivated restrictions and consequences rather than
to derive them from first principles.

It is worth mentioning that the bulk wave functions result-
ing from this CFT scheme including pairing are given by two
factors in terms of correlation functions, as indicated in (68).
The factor representing the pairing has a different geometri-
cal meaning, when the vertex operators are again viewed as
generating non-trivial Riemann surfaces. The pairing intro-
duces poles into the picture of branched ramified coverings
of the Riemann sphere, such that the CFT description leaves
the realm of compact Riemannian geometry. Whether a con-
nection to the above mentioned observations48,49 can be made,
must remain open at this time.

Reconsidering (68), we identify the first order paired series:

ν
(1)
1 =

2
3
,

3
5
,

4
7
,

5
9
,

6
11
,

7
13
,

8
15
,

9
17
,

10
19
, . . .

ν
(1)
2 =

1
3
,

2
7
,

3
11
,

4
15
,

5
19
,

6
23
, . . .

ν
(1)
3 =

1
5
,

2
11
,

3
17
, . . . (70)

ν
(1)
4 =

1
7
,

2
15
, . . .

...

This proposal can be extended in a natural way imagining that
the structure of paired CF singlets is not restricted to be an
inner-LL effect. Two LLs of CFs that are completely paired
among each other can form a new incompressible quantum
liquid and can hence interact with other blocks or single layers
of paired droplets. Related to Wen’s original Chern-Simons
approach, we find two natural series of K-matrices (Ke, o)ij

with an even and an odd number of layers, respectively:65

(Ke, o)ij =


2p− 1 i=j
2p− 2 i 6=j, 2(k−1)+1≤ i, j≤ 2k,

where (1 ≤ k ≤ b)
2p otherwise

. (71)

Here, b is the number of paired 2× 2-blocks. The first series,
given a 2b-layer FQH state, reads:

(Ke)ij =



2p− 1 2p− 2 2p · · · 2p

2p− 2 2p− 1 2p
. . .

...

2p 2p
. . . 2p 2p

...
. . . 2p 2p− 1 2p− 2

2p · · · 2p 2p− 2 2p− 1


, (72)
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with ν(2) e
p = 2b/(4bp − 3). The latter, given a 2b + 1-layer

FQH state, has a remaining solely self-paired layer and corre-
sponds to filling fractions

ν(2) o
p =

2b+ 3
2p(2b+ 3)− 3

. (73)

Together, they yield the second order paired series:

ν
(2) e
1 =

4
5
,

(
6
9

)
,

8
13
,

10
17
, . . . ν

(2) e
2 =

2
5
,

4
13
, . . . ,

ν
(2) o
1 =

5
7
,

7
11
,

(
9
15

)
, . . . ν

(2) o
2 = . . . .

(74)

Fractions in brackets are not coprime and also appear in other
series. This indicates that these states can exist in different
forms of quantum liquids. We are now able to generalize this
scheme to the case of n×n blocks of paired LLs and derive the
n-th order series. There exist n− 1 sub-series determined by
the number r of remaining solely self-paired LLs, e.g., r = 0
in the even case for second order and r = 1 in the odd case,
respectively. Let b denote the number of fully paired blocks
then the m × m-matrix K(n)

p, m with m = bn + r of the n-th
order paired FQH state reads:

(
K(n)

p, m

)
ij

=


2p− 1 i=j
2p− 2 i 6=j, (k−1)n+1≤ i, j≤ kn,

where (1 ≤ k ≤ b)
2p otherwise

. (75)

The corresponding filling fractions are

ν
(n) r
p, m =

bn+ r(2n− 1)
2p(bn+ r(2n− 1))− (2n− 1)

. (76)

By this, we deduce the third order states confirmed by
experiment66 (higher orders do not yield additional observed
fractions):

ν
(3) 0
1 =

[
6
7

]
,

9
13
, . . . ν

(3) 1
1 =

8
11
, . . . ν

(3) 2
1 = . . .

ν
(3) 0
2 =

3
7
, . . . ν

(3) 1
2 = . . . ν

(3) 2
2 = . . .

(77)

Spending a closer look on (75) the question arises to what
extent our access to FQH pairing is too restrictive. One
could imagine more general K-matrices with band-like or
even more complicated structures yielding arbitrary ν. For
example, ν = 4/11, a state that was recently confirmed by
experiment,5 could be realized by

Kij =

 3 2 2 4
2 3 4 2
2 4 3 2
4 2 2 3

 . (78)

This K-matrix describes a ring of two second order blocks.
Remarkably, the result of a detailed analysis of equation (76)
shows that certain fractions do not appear, for example 7/9,

10/13, 5/13, and 4/11, indicating that if they exist they pre-
sumably have to be another kind of FQH fluid. This set of
fractions was very recently confirmed by Pan and Störmer50

and seemingly manifests itself due to CF-CF interactions. As
exactly these fractions lie beyond the access of our scheme,
the b/c-spin systems motivate a reasonable physical constraint
for the Chern-Simons formalism in order to classify FQH
states. We directly deduce this from the CFT picture of the
fields given by (64). If we had an off-block pairing structure,
there would exist a triple of

b ~γ1(z
(1)
i )∂c ~γ1(z

(1)
j ) , b ~γ2(z

(2)
i )∂c ~γ2(z

(2)
j ) ,

b ~γ3(z
(3)
i )∂c ~γ3(z

(3)
j ) , (79)

with the charge vectors obeying the following set of equations:

~γ1
2 = ~γ2

2 = ~γ3
2 = 1 , ~γ1 · ~γ2 = ~γ1 · ~γ3 = 1 ,

and ~γ2 · ~γ3 = 0 . (80)

Since their components are restricted to be either 0 or 1, we
end up with a contradiction:

~γ1 = ~γ2 = ~γ3 and ~γ2 6= ~γ3  . (81)

As a consequence the most general K-matrix for a correct
description of paired FQH states is restricted to be built from
blocks:

(
Kb, nb

p, m

)
ij

=



2p− 1 i=j

2p− 2 i 6=j, 1+
k−1∑
l=1

nl≤i, j≤
k∑

l=1

nl,

where (1 ≤ k ≤ b)
2p otherwise

.(82)

Here, b denotes the number of blocks and nb their correspond-
ing size. Therefore,m =

∑b
l=1 nb , if we denote singly paired

layer by nb = 1. We stress that the new series of filling frac-
tions νb, nb

p obtained from (82) are rather unlikely to be seen in
experiments as their K-matrices are less symmetric than the
ones given by (75). Since it is quite difficult to derive a gen-
eral formula for νb, nb

p , we simply provide the only additional
fraction that may be seen in the nearer future:

ν
2, (3,2)
1 =

19
23

. (83)

Therefore, the set of matrices (75) remains as the natural
candidate to describe series of paired FQH states by order
of stability. The corresponding bulk wave functions Ψ(n)

p, m

of the n-th order paired FQH states can be calculated as a
direct generalization of (68). Given the matrix K

(n)
p, m , an

m-dimensional charge vector with respect to a paired block
B ∈ {1, . . . , b+ r} (either n× n or a remaining 1× 1 layer)
is identified with each layer µ :

~γ
(µ)
i = δB(µ), i ⇒ ~γ(µ) · ~γ(λ) = δB(µ), B(λ) . (84)
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Additionally, each layer k possesses a (2mp+1)-dimensional
charge vector for the CFs:

~α
(µ)
i =

 1 1 ≤ i ≤ 2p
1 i = 2mp+ 2− µ
0 otherwise

⇒ ~α(µ) · ~α(λ) = 2p+ δµ, λ . (85)

Let I denote the set of paired LLs, e.g., I =
{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} describes a triple-layer
state with ν(2) 1

p, 3 = 5
10p−3 where we find a 2 × 2-block of the

first two LLs while the third is solely self-paired. The wave
functions read

Ψ(n)
p, m(z(µ)

i )=〈Ω |
m∏
µ

V~α(µ)(z(µ)
1 ) · . . . · V~α(µ)(z(µ)

2N )| 0 〉

×〈Ω |
∏

(µ, λ)∈I

N∏
i=1

b~γ(µ)(z(µ)
i )∂zi+1c~γ(λ)(z(λ)

i+1)| 0 〉

=
∏

(µ, λ)∈I

Pf(z(µ)
i , z

(λ)
N+i)

×
2N∏
i<j

m∏
µ

(z(µ)
i − z(µ)

j )2p+1
2N∏
i,j

m∏
µ<%

(z(µ)
i − z(%)

j )2p

︸ ︷︷ ︸
Ψp, m(z

(µ)
i )

, (86)

where Ψp, m(z(µ)
i ) is the bulk wave function of the basic Jain

series (59).
Combining equations (56), (70), (74), and (77) we find the

complete set of experimentally confirmed filling fractions by
order of stability except for ν= 4/11, which is presumably a
non-Abelian FQH state falling outside our approach, ν=7/9,
ν = 10/13, and ν = 5/13. We find a natural cutoff if either
the number of participating CF LLs m increases or ν → 0.
Series of more complicated CFs (larger p) are less developed,
complete pairings (r = 0) are favored and each series pre-
cisely keeps track of the stability of the FQH states found in
experiments whereas no unobserved fraction is predicted.

We want to make another comment on the fact that the ν =
7/9 state is established that weak. If we naively assumed the
series

ν =
k

2k − 5
=

6
7
,

7
9
,

8
11
,

9
13
, . . . ,

we would consider ν = 7/9 to be more likely to appear than
ν = 8/11. Furthermore, it can not be argued that 7/9 is dom-
inated by the ν = 1 plateau since ν = 4/5 exists. This seems
rather unusual or even exceptional but is precisely predicted
by our approach since 7/9 is assumed to belong to another
class of quantum Hall fluids. Therefore, the series in figure 1
simply indicate where new fractions given by (76) will show
up. By our hierarchical order of stability the following fill-
ing fractions are predicted if experimental circumstances are
improved in the future (we just indicate fractions with denom-
inator d ≤ 29).

TABLE I: Expected Hall fractions

p νp ν
(1)
p ν

(2)
p ν

(3)
p ν

(4)
p

1
11

23

11

21

11

19
,

12

21

11

17
,

12

19
,

13

21

8

9
,

11

15
,

18

29

2
7

29

7

27

5

17
,

6

21

6

19
,

8

27

8

25

3
4

25

4

23

4

21
,

5

27

4
3

25

3

23

4

29

Quasi-Particle Excitations

One of the most striking results in the study of the FQHE
was the discovery of quasi-particles with fractional charges
and statistics.12 Experimentally it has been proven very diffi-
cult to measure them (even for the Laughlin states) and a lot
of effort is spent to analyze them in more detail. The two sets
of wave functions (59) and (86) describe the electron ground
state for a given filling fraction ν. As already shown for the
Laughlin series the geometric features of excitations respon-
sible for statistics and charges are directly embedded in the
b/c-spin systems and are related to the Zn-symmetry of the
RS the fields live on, i.e., the dimension of the CF charge vec-
tors (85). However, a basic quasi-particle excitation of an m-
layer state has to be considered more carefully. First of all,
we would like to have trivial statistics of a quasi-particle with
respect to the CFs. Thus, we should expect ~αΦ · ~α

(µ)
CF = 1,

where ~α(µ)
CF is the charge vector of the CF in the µ-th layer as

given by (57). The naive solution

~αΦ =
( 1

2mp+1
, . . . ,

1
2mp+1

)
, (~αΦ)2 =

1
2mp+1

(87)

yields the value ~αΦ · ~α
(µ)
CF = 2p+1

2pm+1 , which is not an integer
for m > 1. A simple generalized solution exists, namely

~αΦ,i =
1

2pm+ 1


m 1 ≤ i ≤ 2p
1 2pm+ 2−m ≤ i ≤ 2pm+ 1
0 otherwise

,

(88)
which coincides with (42) for m = 1. By this, we obtain the
desired result for all layers. Furthermore,

~αΦ · ~αΦ =
1

(2pm+ 1)2
(2pm2 +m) =

m

2pm+ 1
, (89)

which yields the correct quasi-particle statistics for anm-layer
state since each layer contributes 1/(2pm+ 1).

Therefore, the quasi-particle excitations of the wave func-
tions Ψp, m and Ψ(n)

p, m are predicted to carry a phase Θ ∼
π/(2mp + 1) and have the charge q ∼ e/(2mp + 1).as it is
shown in Table II. Since several filling fractions, e.g., 2/5,
belong to more than one series and, thus, exist in different
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FIG. 1: Observed Hall fractions in the interval 0 ≤ ν ≤ 1. Established fractions are labelled by ‘2’. The symbol ‘+’ denotes cases that exceed
our scheme. The basic Jain series νp approximate 1/2p from below, the corresponding first order paired series ν(1)

p from above (both marked
by continuous lines) as well as the higher order series ν(n)

p (marked by dashed lines ).

TABLE II: Quasi-particle statistics for confirmed FQH states

Θ ν Θ ν

π
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1
3

π

15
7
15
,

7
13
,

(
9
15

)
π

5
1
5
,

2
5
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π

17
2
17
,
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,
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17
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,
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,
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3
13
,

3
11
,

3
7
,

6
13
,

6
11
,

(
6
9

)
π

25
6
25
,

6
23

forms of quantum liquids, we also find various types of quasi-
particles. Direct experimental observations are still difficult,
and — as far as we know — good indications solely exist
for the Laughlin series. Thus, the correct identification of the
quasi-particle within the spectrum of our CFT must remain

open. We finally note that our choice (57) for the charge vec-
tors of the CF and (88) for the quasi-particles is not unique,
although physically motivated, particularly simple and sym-
metric. The ambiguity is not disturbing since most other solu-
tions are related to ours by a change of basis within the tensor
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product of the CFTs. The advantage of our approach is that
the CFTs themselves are confined to a discrete series leaving
not much room for arbitrariness.

V. SUMMARY AND OUTLOOK

The success of the analysis of the Haldane-Rezayi state via
c = −2 spin systems32,51 stimulated our approach. With a
few general and physically motivated assumptions restricting
to a discrete set of CFTs we were able to construct a hierar-
chical scheme that precisely keeps track of experimental re-
sults. Developing these features in a natural and simple way,
we consecutively derived, with a few exceptions, the complete
set of filling fractions by order of stability in the FQH regime
of 0 ≤ ν ≤ 1 without predicting fractions not confirmed by
experiment.

More precisely, we constructed CFTs yielding geometrical
descriptions of FQH states. Since odd-denominator fillings re-
fer to fermionic statistics, the natural choice are (j, 1− j) b/c-
spin systems with j half-integer. Moreover, the statistics of the
flux quanta, as suggested by Jain’s composite fermion picture,
are now more general such that we are led to consider Rie-
mann surfaces with global Zn-symmetry. Representing these
surfaces as n-fold ramified covering of the complex plane, the
effect of a flux quantum is geometrically the same as a branch
point. The CFT correlators are then sections of certain vec-
tor bundles. The bulk ground state wave function is given
by a correlator of vertex operators whose twist numbers are
purely fermionic resembling the quantum numbers of a com-
posite fermion. With these ingredients we obtained bulk wave
functions for the principal main series ν = m

2pm+1 . It turned
out that our choice of CFTs has not only a direct geometric
interpretation, but furthermore puts severe constraints on pos-
sible FQH states. The description of the FQHE via an ef-
fective Chern-Simons theory leads to a classification of FQH
states in terms of the so-called K-matrices. Our approach
rules out many K-matrices corresponding to Wen’s original
theory, since the corresponding bulk wave functions can not
be written in factorized form in terms of CFT correlators.

Besides the main series of Jain, we obtain other filling frac-
tions by one further principle. Not relying on the so-called
particle-hole duality, which is not suitable to develop a hier-
archy of states in correspondence with experiments, we intro-
duce pairings of composite fermions instead. This leads to a
new hierarchy of states obtained from the principal series by a
growing number of pairings that are effectively described by
additional CFTs, namely the already mentioned c = −2 spin
singlet systems. The requirement that the bulk wave func-
tion can be written in terms of factorized CFT correlators de-
mands that only pairings leading to K-matrices in block form
are possible. By this, we nearly obtain all experimentally
observed filling fractions. However, the great strength and
predictive power we see in our approach is that it precisely
avoids all filling fractions which are supposed to be formed
from more complicated CF-CF interactions. Our ansatz yields
a natural order of stability in perfect agreement with experi-
mental data suggesting a clear picture of series which can be

observed up to a given maximal numerator of ν. Thus, we
are able to denote the next members of these series, as indi-
cated by Fig. 1 and Table I, which might be observed under
improved experimental conditions.

The main advantage of our scheme is that it avoids arbi-
trariness and the concept of pairing is not exceptional as well.
First of all, it precisely agrees with the natural and geometrical
motivation and structure of the Haldane-Rezayi state. A nice
discussion is provided by these papers.52,53 Moreover, pairing
effects are indicated by numerical studies,54,55 and are in anal-
ogy to similar phenomena in other fields of condensed mat-
ter physics, such as certain exactly integrable models in the
context of BCS pairing.56 Although our proposed bulk wave
functions which describe paired FQH states differ from the
ones predicted by the naive K-matrix formalism, they share
important asymptotic features. This stimulates the question
how a valid Chern-Simons approach that covers non-Abelian
states on a non-trivial geometrical setting has to look like and
how trial wave functions can be derived from it. A check of
our bulk wave functions should be done numerically, but is
beyond the scope of this paper.

Our description in terms of b/c-spin systems seems to be
sufficiently complete. It should be possible to incorporate
FQH states from non-Abelian Chern-Simons theories57,58 as
well, since we believe that the geometric principle remains un-
changed. The main difference lies in the nature of the quasi-
particle excitations. In our approach, non-trivial statistics is
a consequence of the twists introduced by the flux quanta
and is – in the LLL – always of Abelian nature since all
monodromies are simultaneously diagonalized. Non-Abelian
statistics is involved and can not be represented within the
simple CFTs we used. However, we point out that the c = −2
CFT coming into play with pairing is actually a logarithmic
CFT and thus includes fields with non-diagonalizable mon-
odromy action.32 In order to understand this in more detail,
we would have to work with the full twist fields, not only the
projective ones. This immediately leads to further restrictions
for the twist fields in order to be inserted in a correlator. If the
twists are summed over all insertions they have to be trivial in
all n copies of the b/c-spin system we consider. However, at
this stage, the full description of quasi-particle excitations re-
mains an unsolved problem. Another one is the correct choice
of the spin system, i.e., of the conformal weights (j, 1 − j)
of the field b(z) and c(z). This problem is related to the fact
that our b/c-spin systems possess partition functions which are
equivalent to Gaussian c = 1 models. Unfortunately, the par-
tition function of a (j, 1 − j) system is closely related to the
partition function of any other (j′, 1−j′) system, in particular
if j−j′ ∈ Z. Thus, CFT alone is not able to fix j. However, if
we take the composite fermion as the basic object, we might
expect that the FQH state involving composite fermions made
out of electrons with p attached pairs of flux quanta should
correspond to spin j = 1

2 (2p + 1) fields in the CFT descrip-
tion. These should be elementary in the sense that the spec-
trum of the CFT does not contain fermionic fields with smaller
spin in the non-twisted sector. Moreover, the twists related to
the quasi-particle excitations should have a minimal charge of
α = 1/(2pm + 1) for an m layer state, since this is the ex-
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pected fractional statistics. The fractional charge is entirely
determined by the geometry, i.e., by the number of sheets in
the covering of the complex plane. But the requirement that
the composite fermions shall be the effective elementary par-
ticles fixes j = 1

2 (2p+ 1) or j = 1
2 (2p+ 3) due to the duality

j ←→ 1− j. A very interesting question is, whether an effec-
tive theory of transitions between different FQH states could
yield a mechanism how our CFTs are mapped onto each other,
e.g., along the lines of the following papers.28,59

Finally, we point out that our scheme should be understood
as a proposal. Although we provided a stringent geometri-
cal setting which identified our choice of CFTs, we can not
connect these CFTs to the full (2+1)-dimensional bulk the-
ory via rigorous first principles. For instance, and in contrast
to the (1+1)-dimensional edge theory, there is no mathemat-
ical rigorous theorem which would allow us to invoke some
sort of Chern-Simons versus CFT equivalence. Furthermore,
our expressions for the bulk wave functions in terms of CFT
correlators, as all existing proposals for bulk wave functions,
should be understood as trial ones, since exact solutions are
not known (this even applies to the Laughlin wave functions).
Comparison with others obtained from numerical diagonal-
ization of the exact Hamiltonian can only be made for a small
number of electrons and not in the thermodynamic limit. On
the other hand, trial wave functions such as the ones con-
ceived by Laughlin possess many special features or symme-
tries, e.g., topological order or incompressibility, i.e., symme-
try under area-preserving diffeomorphisms.

We hope that future research will reveal the physical nature
of such properties such that the connection with CFT is even-
tually put on firmer ground and trial wave functions are more
thoroughly checked or even derived from first principles.

APPENDIX A: DISCUSSION ON UNITARITY

It might seem disturbing that the CFTs proposed to de-
scribe the FQH bulk regime are non-unitary. We stress again
that these CFTs are not meant to yield the bulk wave func-
tions from a dynamical principle, nor do they provide an ef-
fective Hamiltonian. Moreover, since the relevant states are
stationary eigenstates of the of a full (2+1)-dimensional sys-
tem, no time evolution is involved. In this sense, the bulk the-
ory can be reduced to a truly Euclidean one which is (2+0)-
dimensional. The topological nature of the full (2+1)-d sys-
tem suggests the bulk theory to be at least scale invariant.
Thus, the assumption that bulk wave functions should have a
CFT description is reasonable, but the requirement that these
CFTs should be unitary is not necessary and does not con-
tain any physically relevant information. The bulk CFT de-
scribes purely geometry, namely how the corresponding wave
functions can be understood in terms of vector bundles over
Riemann surfaces.60 As we have argued in the main text, the
fractional statistics of the quasi-particle excitations results in
a multi-valuedness of the wave functions, considered as func-
tions over the complex plane. One of the central features of
our approach is to replace this setting by the geometrically
more natural scheme of holomorphic functions over a rami-

fied covering of the complex plane leading to the non-unitary
(j, 1− j) b/c-spin systems.

However, the question of unitarity is not irrelevant. In order
to be consistent, we should require that our ansatz fits together
with the (1+1)-d CFTs describing edge excitations. These de-
scribe waves propagating along the one-dimensional edge of
the quantum droplet and hence necessarily have to be unitary.
This also follows from the strict one-to-one correspondence of
(2+1)-dimensional Chern-Simons theories on a manifold M
with unitary (1+1)-dimensional CFTs living on the boundary
∂M . Consistency requires that the space of states of either
CFT, the edge and the bulk one, should be equivalent. In other
terms, both should have the same partition functions. Fortu-
nately, the b/c-spin systems have well-known partition func-
tions which are indeed equivalent to those of certain c = 1
Gaussian models. These latter unitary CFTs are precisely the
candidates for the description of the edge excitations which
are most widely used.67

To be more explicit, we consider a spin (j, 1 − j) b/c-spin
system in some twisted sector with twist α. The full character
of this system, including the ghost number, is defined as

χ(j,α)(q, z) ≡ trH(α)qL
(j,α)
0 −

cj
24 zj

(α)
0 , (A1)

where we have clearly indicated that the mode expansions of
the Virasoro field and the ghost current depend on the twist
sector. Explicitly computed, these characters read:

χ(j,α)(q, z)=q
1
2 (j+α)(j+α+1)+ 1

12 zα

×
∞∏

n=1

(1 + zqn+(j+α)−1)(1 + z−1qn−(j+α)) . (A2)

It is evident from this formula that the characters (almost) only
depend on (j + α). In particular, we obtain the equivalence:

χ(j,α)(q, z) = z
1
2−jχ( 1

2 ,α+j− 1
2 ) . (A3)

Thus, the Virasoro characters (putting z = 1) of the b/c-
spin systems are all equivalent to characters of the complex
fermion with c = 1 where the twist sectors α get mapped to
others with α+ j − 1

2 . Thus, all sectors which are mapped in
this way keep their statistics, since j ∈ Z+ 1

2 andα ≡ α+j− 1
2

mod 1. A more detailed analysis61–64 reveals that the par-
tition functions are indeed equivalent. This extends to the
c = −2 spin system describing pairing.32,51 Therefore, the
space of states of b/c-spin systems with twists α = k/m,
k = 0, . . . ,m − 1, is equivalent to the space of states of a
rational c = 1 (Z2 orbifold) theory with radius of compactifi-
cation 2R2 = 1/m. The careful reader should note that this
equivalence holds. Although we always consider m copies of
our b/c-spin systems, we work in an Abelian projection where
the charges (or twists) of all copies of the fields are closely re-
lated to each other. Since they are not chosen independently,
we only get one copy of the Hilbert space.
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