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Abstract

The periods of arbitrary abelian forms on hyperelliptic Riemann surfaces, in particular the periods of
the meromorphic Seiberg-Witten differential λSW, are shown to be in one-to-one correspondence with
the conformal blocks of correlation functions of the rational logarithmic conformal field theory with
central charge c = c2,1 = −2. The fields of this theory precisely simulate the branched double covering
picture of a hyperelliptic curve, such that generic periods can be expressed in terms of certain generalised
hypergeometric functions, namely the Lauricella functions of type FD.
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I. Introduction

In a seminal work [1], Seiberg and Witten found the exact low-energy effective action of four-dimensional
N=2 supersymmetric SU(2) Yang-Mills theory. Soon, this was generalised to general simple gauge groups [2].
At the heart of the exact solution lies a certain Riemann surface, in the case of a simple, simply-laced gauge
group a hyperelliptic one, which constitutes the moduli space of the Yang-Mills theory. All information,
in particular the scalar modes and the prepotential, are encoded in this hyperelliptic curve and a special
meromorphic differential form associated to it, the so-called Seiberg-Witten differential λSW. The task of
exactly solving the low-energy effective field theory is then reduced to essentially computing the periods of
λSW.

In this paper, we will achieve the computation of the Seiberg-Witten periods in a new way, expressing
them in terms of conformal blocks of a very special conformal field theory (CFT) with central charge c = −2.
This theory belongs to a rather new class of CFTs, which has been studied in some detail only recently [3],
the so-called logarithmic conformal field theories (LCFTs). First encountered and shown to be consistent in
[4], they are not just a peculiarity but merely a generalisation of ordinary two-dimensional CFTs with broad
and growing applications [5]. As is particularly true for Seiberg-Witten models, logarithmic divergences are
sometimes quite physical, and so there is an increasing interest in these logarithmic conformal field theories.
The relevance of LCFT in the Seiberg-Witten context has first been observed in [12].

Furthermore, this application illuminates the geometry behind logarithmic CFT. It is well known that
vertex operators on worldsheet CFTs in string theory describe the equivalent of Feynman graphs with outer
legs by simulating their effect on a Riemann surface as punctures. Now, in the new setting of moduli spaces
of low-energy effective field theories, pairs of vertex operators describe the insertion of additional handles
to a Riemann surface, simulating the resulting branch cuts. So, in much the same way as a smooth but
infinitely long stretched tube attached to an otherwise closed worldsheet, standing for an external state, is
replaced by a puncture with an appropriate vertex operator, so a smooth additional handle, standing for an
intersecting 4-brane on the 5-brane worldvolume in the type IIA picture of low-energy effective field theories,
is replaced by branch cuts with appropriate vertex operators at its endpoints. Hence, operator product
expansions (OPEs) of such vertex operators simulating branch points, poles etc. on the curve represented
as a branched covering Z : Σ → CP1 provide an intuitive way of understanding what happens when, for
instance, intersecting 4-branes run into each other or shrink to zero size.

This letter is organised as follows: In section II we briefly discuss the hyperelliptic curves and the Seiberg-
Witten differential in the form relevant to our approach. Section III recapitulates the construction of 1-
differentials on hyperelliptic curves in terms of vertex operators, emphasising why this leads to a logarithmic
CFT. Then we compute the Seiberg-Witten periods in terms of conformal blocks in section IV, expressing
them in terms of certain special functions. We conclude this last section with a brief discussion and outlook.

II. Seiberg-Witten Solutions of Supersymmetric
Four-Dimensional Yang-Mills Theories

Of particular interest for the exact Seiberg-Witten low-energy effective field theory solutions of supersym-
metric Yang-Mills theories is the understanding of the moduli space of vacua, which in many cases turns
out to be a hyperelliptic Riemann surface. The BPS spectrum of such a model is entirely determined by the
periods of a special meromorphic 1-differential on this Riemann surface, the Seiberg-Witten differential λSW.
Let αi, β

j denote a canonical basis of the homology of the Riemann surface, αi ∩ βj = δ j
i , then the scalar

modes are simply given as ai =
∮

αi
λSW, aj

D =
∮

βj λSW. They carry electric and magnetic charges respec-

tively, and the mass of a BPS state with charges (q,g) is then given as m(q,g) ∼ |qiai + gja
j
D|, momentarily

neglecting possible residue terms in case of the presence of hypermultiplets.
A general hyperelliptic Riemann surface can be described in terms of two variables Z,w in polynomial

form
w2 + 2A(Z)w + B(Z) = 0 (2.1)
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with A(Z), B(Z) ∈ C[Z]. After a simple coordinate transformation in y = w + A(Z), this takes on the more
familiar form y2 = A(Z)2 − B(Z). But we might also write the hyperelliptic curve in terms of a rational
map. Dividing (2.1) by A(Z)2 and putting w̃ = w/A(Z) + 1, we arrive at the representation

(1− w̃)(1 + w̃) =
B(Z)
A(Z)2

. (2.2)

This form is very appropriate in the frame of Seiberg-Witten models, since the Seiberg-Witten differential
can be read off directly: The rational map R(Z) = B(Z)/A(Z)2 is singular at the zeroes of B(Z) and A(Z),
and is degenerate whenever its Wronskian W (R) ≡ (∂ZA(Z)2)B(Z) − A(Z)2(∂ZB(Z)) vanishes. This is
precisely the information encoded in λSW which for arbitrary hyperelliptic curves, given by a rational map
R(Z), can be expressed as

λSW =
Z

2πi
d(log

1− w̃

1 + w̃
) =

1
2πi

d(log R(Z))
Z

w̃
=

1
2πi

W (A(Z)2, B(Z))
A(Z)B(Z)

Z dZ

y
. (2.3)

It is this local form of the Seiberg-Witten differential which serves as a metric ds2 = |λSW|2 on the Riemann
surface, and it is this local form which arises as the tension of self-dual strings coming from 3-branes in type
II string theory compactifications on Calabi-Yau threefolds.∗

Let us, for the sake of simplicity, concentrate on N=2 SU(Nc) Yang-Mills theory with Nf massive
hypermultiplets. Then, the hyperelliptic curve y2 = A(x)2 −B(x) takes the form

y2 =

(
xNc −

Nc∑
k=2

skxNc−k

)2

− Λ2Nc−Nf

Nf∏
i=1

(x−mi) =
2Nc∏
j=1

(x− ej) , (2.4)

where we have absorbed any dependency of A(x) =
∏Nc

k=1(x−ãk) on the mi, which is the case for Nf > Nc, in
a redefinition of the classical expectation values ãk or sk respectively. Then, the Seiberg-Witten differential
reads

λSW(SU(Nc)) =
1

2πi

∏Nc+Nf−1
l=0 (x− zl)∏2Nc

j=1

√
x− ej

∏Nf

i=1(x−mi)
dx , (2.5)

where the zl denote the zeroes of 2A(x)′B(x) − A(x)B(x)′, and z0 = 0. As a result, the total order of the
general Seiberg-Witten form (2.3) vanishes, (1+Nc +Nf − 1) · (1)+ (2Nc) · (− 1

2 )+ (Nf ) · (−1) = 0 implying
that λSW has a double pole at infinity. We note that the periods of the Seiberg-Witten form are hence
contour integrals with paths encircling pairs (ei, ej) and with an integral kernel of the form

λSW ∼
∏

i

(x− xi)ri ,
∑

i

ri = 0 , ri ∈ {0,± 1
2 ,±1} , (2.6)

where the branch points ei are a subset of the singular points xi of the integral kernel.

III. The c = −2 Logarithmic CFT and 1-Differentials

The idea to represent general j-differentials (j ∈ Z/2 due to locality) in terms of fields of a CFT is actually
not new. We will follow here the approach put forward by Knizhnik [7], restricted to the case of interest,
j = 1 and hyperelliptic curves, i.e. all branch points have ramification number two. As we will demonstrate,
this CFT approach to the theory of Riemann surfaces naturally leads to a logarithmic CFT.

In the case of hyperelliptic curves, j-differentials are constructed by two pairs of anticommuting fields
φ(j),`, φ(1−j),` of spin j, 1− j respectively, one pair for each sheet of the Riemann surface Σ represented as a

∗This form is equivalent to the one for integrable Toda systems with spectral curve z+1/z+r(t) = z+1/z+2A(t)/
√

B(t) = 0,

where λSW = t d(log z) is nothing other than the Hamilton-Jacobi function of the underlying integrable hierarchy. However,
the price paid for this very simple form of λSW is that r(t) is now only a fractional rational map.
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branched covering of CP1, where the sheets are enumerated by ` = 0, 1. We denote the covering map by Z.
The point is that such fields behave as differentials of weight j under conformal transformations,

φ(j),`(Z ′, Z̄ ′)
(

dZ ′

dZ

)j

= φ(j),`(Z, Z̄) . (3.1)

We assume that the operator product expansion (OPE) be normalised as

φ(j),`(Z ′)φ(1−j),`(Z) ' I (Z ′ − Z)−1 + regular terms (3.2)

with I denoting the identity operator. On each sheet, we have an action

S(`) =
∫

φ(j),` ∂̄φ(1−j),` d2Z =
∫

φ(1),` ∂̄φ(0),` , (3.3)

where integration runs over the Riemann surface Σ, and a stress energy tensor which takes the form

T (`) = −jφ(j),` ∂φ(1−j),` + (j − 1)φ(1−j),` ∂φ(j),` = −φ(1),` ∂φ(0),` (3.4)

giving rise to a central extension c = cj ≡ −2(6j2 − 6j + 1), i.e. in our case c = c1 = −2.
Let now a genus g hyperelliptic curve be given as y2 =

∏2g+2
k=1 (Z − ek) such that infinity would not be

a branch point. At each branch point ek, we can locally invert this to Z(y) ∼ ek + y2 such that in its
vicinity y(Z) ∼ (z − ek)1/2. Let us denote the operation of moving a point around ek by π̂ek

. It acts on the
j-differentials with the boundary conditions

π̂ek
φ(j),`(Z) = (−)2jφ(j),`+1 mod 2(Z) (3.5)

in the vicinity of ek. Since the Z2 symmetry of Σ is global, we can diagonalize π̂ globally by choosing a new
basis via a discrete Fourier transform,

φ
(j)
k = φ(j),0 + (−)j−kφ(j),1 , (3.6)

with k = 0, 1, such that π̂aφ
(j)
k = (−)k−jφ

(j)
k for a any branch point. We can now define chiral currents

Jk = :φ(j)
k φ

(1−j)
k :, ∂̄Jk = 0, which are single valued functions near a. It follows then that a branch point a

carries charges qk = 1
2 (j − k) = 1

2 (1− k) with respect to these currents.
In order to do explicit calculations we bosonize with two analytic scalar fields ϕk, k = 0, 1, normalised in

the usual way 〈ϕk(z)ϕl(z′)〉 = −δkl log(z − z′). Clearly, we have φ
(j)
k = :exp(−iϕk):, φ

(1−j)
1−k = :exp(+iϕk):,

Jk = i∂ϕk, and Tk = 1
2 :JkJk:+ 1

2∂Jk. Hence, we have a Coulomb gas CFT with background charge 2α0 = 1.
We define general vertex operators with charge q = (q0, q1) as Vq(a) = :exp(iq·ϕ(a)): which have conformal
scaling dimensions h(q) = h0 + h1 with hk = 1

2 (q2
k − qk). Note that branch points are trivial objects in the

k = 1 sector such that it suffices to only consider the k = 0 sector from now on.
Of course, correlators in free field realization of CFT are only non-zero, if they satisfy the charge neutrality

condition. For example, the only non-vanishing two-point functions are 〈V2α0−q(z)Vq(z′)〉 = A(z− z′)−2h(q),
where A is arbitrarily fixed by normalisation of the fields. However, a careful analysis shows [8] that the
branch point representing vertex operator does not have a conjugate field as we expect it. The charge of
a branch point is q = α0 = 1/2 such that 2α0 − q = q, i.e. the branch point vertex operator appears to
be self-conjugate. However, this is not true, 〈V1/2(z)V1/2(z′)〉 = 0. It turns out that the correct partner of
this field is Λ1/2 = ∂qVq|q=α0

= iϕV1/2, such that 〈Λ1/2(z)V1/2(z′)〉 = B(z − z′)1/4 and 〈Λ1/2(z)Λ1/2(z′)〉 =
(C − 2B log(z − z′))(z − z′)1/4. The constants A,B, C are now no longer entirely free. SL(2, C) invariance
of the two-point functions requires that A = 0, B = 〈2iϕV2α0〉 ≡ 1, C = 0. Although this field Λ1/2 is a
proper primary field with respect to the stress energy tensor, it will cause logarithmic terms in the OPE
with other primary fields. It will also give rise to other fields of this form, Λq = (∂qh(q))−1∂qVq = i

q−a0
ϕVq

which are the logarithmic partners to the primary fields V1−q. Note that the latter definition of Λq is only
valid for q 6= α0 = 1

2 . The conformal Ward identities forced us to put 〈V1〉 = 〈V0〉 = 〈I〉 = 0, while
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〈Λ1〉 = 1. This might seem strange but can be seen to be quite natural in a realization of this CFT by a
pair of anticommuting scalar fields with manifest SL(2, C) invariance, where the path integrals vanish unless
zero modes are inserted [9]. In fact, the naive definition det ∂̄(j) =

∫
Dφ(j),`Dφ(1−j),` exp(S(`)) = 0, due to

nj − n1−j = (2j − 1)(g − 1) zero modes of ∂̄-holomorphic j- and (1− j)-differentials on a genus g Riemann
surface.

To summarise, the c = −2 CFT of 1-differentials inevitably becomes logarithmic when we add to its field
content the branch point representing vertex operator V1/2. The reason is its proper conjugate field Λ1/2,
needed to cancel off the n1−j = 1 scalar zero mode. Hence, reducing an arbitrary correlation function with
vertex operators Vq and logarithmic partners Λq ultimately will result in picking out only such nested OPEs,
which lead to the only non-vanishing one-point functions 〈Λq〉. For example, the logarithmic partner of the
identity, Λ1, has the OPE Λ1(z)Λ1(z′) = I − 2 log(z − z′)Λ1(z′) + . . . Hence, 〈Λ1(z)Λ1(z′)〉 = −2 log(z −
z′)〈Λ1〉 = −2 log(z − z′).

From the above follows that we can replace the operator for a branch point by µ(a) = V1/2(a) + Λ1/2(a).
We will work with reduced correlators〈〈∏

i

Φqi(zi)

〉〉
≡
∏
k<l

(zk − zl)−qkql

〈∏
i

Φqi(zi)

〉
(3.7)

where the canonical free part has been divided off, Φ = V,Λ. The reduced correlator is thus equal to
the screening charge integrals still necessary to ensure charge neutrality. Under conformal transformations
z 7→ M(z), a correlator transforms with weights

(
∂zM(z)|z=zi

)h(qi) for each field Φqi(zi). For the reduced
correlators, the exponent simply has to be replaced by −qi/2.

We can now express an arbitrary abelian differential on the hyperelliptic curve Σ : y2 =
∏2g+2

k=1 (Z−ek) =∏g+1
k=1(Z − e−k )(Z − e+

k ) in terms of fields of the c = −2 LCFT. In fact, with the above notations

ω =
∏M

i=1(Z − zi)∏2g+2
k=1

√
Z − ek

∏N
j=1(Z − pj)

dZ =
M∏
i=1

V−1(zi)
2g+2∏
k=1

µ(ek)
N∏

j=1

V1(pj) φ
(1)
0 (Z) . (3.8)

It is then clear that a contour integral along a closed path γ defines a conformal block∮
γ

ω =

〈〈
VQ(∞)

M∏
i=1

V−1(zi)
2g+2∏
k=1

µ(ek)
N∏

j=1

V1(pj)

〉〉
(γ)

, (3.9)

where Q = 2−
∑

qi = 1+M −N −g is the charge of a pole at infinity such that charge neutrality is ensured
by insertion of only one screening charge Q− =

∮
J− with J− ≡ φ

(1)
0 being the 1-differential (note that

2α0 = 1 and that φ
(1)
0 ∼ V−1 changes the charge by −1). We now choose (part of)∗ the basis of conformal

blocks to coincide with the canonical homology basis of cycles, i.e. γ ∈ {αi, β
i}1≤i≤g which can be choosen

as αi = C(e−
i

,e+
i

), βi = C(e+
i

,e−
g+1)

. Here, C(a,b) denotes a closed path encircling a, b.

IV. Periods of the Seiberg-Witten Differential

Let us start with a warm up by calculating the periods of the only holomorphic one-form for the torus,
i.e. for gauge group SU(2). The torus in question is given by y2 = (x2 − u)2 − Λ4 with the four branch
points e1 =

√
u− Λ2, e2 = −

√
u + Λ2, e3 = −

√
u− Λ2, e4 =

√
u + Λ2. The standard periods of the

holomorphic form dx/y are easily computed (where the normalization has been fixed to be in accordance
with the asymptotic behavior of a and aD in the weak coupling region). With ξ = 1/M(e4) = (e1−e4)(e3−e2)

(e2−e1)(e4−e3)

∗Further singular points zi, pj of ω can either be multiplied out to yield a sum of smaller integral kernels, or simply contribute
residual terms. But we can treat them on equal footing with the branch points ek in the CFT picture by analytic continuation
of correlation functions with qi 6∈ Z/2 to these particular values.

4



the inverse crossing ratio, ξ = (u−
√

u2 − Λ4)/(u +
√

u2 − Λ4), we have

π1 =
∂a

∂u
=

√
2

2π

∫ e3

e2

dx

y
=

√
2

2π
〈〈µ(e1)µ(e2)µ(e3)µ(e4)〉〉(e2,e3)

=
√

2
2π

(e3 − e2)−
1
2 (e4 − e1)−

1
2 〈〈µ(∞)µ(1)µ(0)µ(M(e4))〉〉(0,1)

=
√

2
2

(e2 − e1)−
1
2 (e4 − e3)−

1
2 2F1( 1

2 , 1
2 ; 1; ξ) , (4.1)

The other period is obtained in complete analogy by exchanging e2 with e1, yielding

π2 =
∂aD

∂u
=
√

2
2π

∫ e3

e1

dx

y
=
√

2
2

(e1 − e2)−
1
2 (e4 − e3)−

1
2 2F1( 1

2 , 1
2 ; 1; 1− ξ) . (4.2)

Here and in the following, (generalized) hypergeometric functions with arguments such as 1−ξ are understood
as expansions around 1 − ξ and should be analytically continued to a region around ξ. This will result in
the desired logarithmic divergencies. For example, with the usual Frobenius process we find (the factor
π = Γ(1

2 )2 stems from the formula for analytic continuation of hypergeometric functions)

π 2F1( 1
2 , 1

2 ; 1; 1− ξ) = 2F1( 1
2 , 1

2 ; 1; ξ) log(ξ) +
∞∑

n=0

(
∂

∂ε

( 1
2 + ε)n( 1

2 + ε)n

(1 + ε)n(1 + ε)n

)∣∣∣∣
ε=0

ξn (4.3)

= 2F1( 1
2 , 1

2 ; 1; ξ) log(ξ) + ∂ε 3F2(1, 1
2 + ε, 1

2 + ε; 1 + ε, 1 + ε; ξ)
∣∣
ε=0

.

These results are, of course, well known. Less known might be the fact that for the case without hyper-
multiplets, Nf = 0, we can express the periods of the Seiberg-Witten form by the Lauricella function F

(3)
D .

In fact,

a(u) =
√

2
2π

∫ e3

e2

4x2 dx

y
=

2
√

2
π

〈〈V2(∞)µ(e1)µ(e2)µ(e3)µ(e4)V−2(0)〉〉(e2,e3)

=
2
√

2
π

e2
1

(e3 − e2)
1
2 (e4 − e1)

1
2
〈〈µ(∞)µ(1)µ(0)µ(M(e4))V−2(M(0))V2(M(∞))〉〉(0,1)

= 2
√

2
e2
3

(e4 − e3)
1
2 (e2 − e1)

1
2
F

(3)
D ( 1

2 , 1
2 ,−2, 2, 1; ξ, η, $) , (4.4)

with the second inverse cross ratio η = 1/M(0) = e1(e2−e3)
(e1−e2)e3

, and $ = 1/M(∞) = e2−e3
e2−e1

the inverse of
the image of the double pole at infinity. The Lauricella D-type functions are generalized hypergeometric
functions in several variables, given as power series (with (a)n = Γ(a + n)/Γ(a) the Pochhammer symbol)

F
(n)
D (a, b1, b2, . . . , bn, c;x1, x2, . . . , xn) =

∞∑
m1=0

∞∑
m2=0

. . .

∞∑
mn=0

(a)m1+m2+...+mn(b1)m1(b2)m2 . . . (bn)mn

(c)m1+m2+...+mn(1)m1(1)m2 . . . (1)mn

xm1
1 xm2

2 . . . xmn
n , (4.5)

whenever |x1|, |x2|, . . . , |xn| < 1. Its integral representation has the form of a CFT screening integral,
Γ(a)Γ(c−a)

Γ(c) F
(n)
D (a, b1, . . . , bn, c;x1, . . . , xn) =

∫ 1

0
ua−1(1− u)c−a−1

∏n
i=1(1− uxi)−bi du. For n = 1, it reduces

to the ordinary Gauss hypergeometric function 2F1(a, b1; c;x1), and for n = 2, it is nothing else than the
Appell function F1(a; b1, b2; c;x1, x2). A great deal of information on these functions may be found for
example in the book [10] by Exton. An important fact is that F

(n)
D satisfies the following system of partial

differential equations of second order:(1− xj)
n∑

k=1

xk
∂2

∂xk∂xj
+ (c− (a + bj + 1)xj)

∂

∂xj
− bj

n∑
k=1
k 6=j

xk
∂

∂xk
− abj

F = 0 , (4.6)
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where j = 1, . . . , n. Interestingly, this remains true even in the case that massive hypermultiplets are present
(Nf > 0), while the Picard-Fuchs equations now are of third order. However, the price paid is an artifically
enlarged number of variables. Furthermore, we easily can write down differential equations of second and
third order for each field in the correlator which is proportional to F

(n)
D , depending on whether the field is

degenerate of level two, e.g. µ = Ψ1,2, V−1 = Ψ2,1, or three as V1 = Ψ1,3 (where we consider the c = −2
CFT as the degenerate model with c = c2,1) according to [11]. We extensively exploit the special properties
of these functions in our forthcoming paper [6].

Again, we may obtain the dual period by exchanging e2 with e1, yielding

aD(u) = 2
√

2
e2
3

(e4 − e3)
1
2 (e1 − e2)

1
2
F

(3)
D ( 1

2 , 1
2 ,−2, 2, 1; 1− ξ, 1− η, 1−$) . (4.7)

The two periods given above are by construction the a(α) and a(β) periods respectively. It is worth noting
that the dependency on three variables is superficial, since all cross ratios are solely functions in the four
branch points. Indeed, we have ξ = $2, η = −$. The inverse crossing ratios have the nice property
that they tend to zero for |u| � 1, e.g. ξ ∼ ( 1

2
Λ2

u )2 + O(u−4). Hence, the overall asymptotics of a(u)

and aD(u) is entirely determined by the prefactors, which are a(u) ∼ 2
√

2e2
3√

e4−e3
√

e2−e1
∼
√

2u + O(u−
1
2 ) and

aD(u) ∼
√

2e2
3

π
√

e4−e3
√

e1−e2
log(ξ) ∼ i

π

√
2u log(u) + O(u−

1
2 log(u)). Expanding a(u) as a power series in 1/u

yields the familiar result

a(u) =
√

2u

[
1− 1

16
Λ4

u2
− 15

1024
Λ8

u4
− 105

16384
Λ12

u6
− 15015

4194304
Λ16

u8
+ O(u−10)

]
=

√
2
√

u + Λ2
2F1(− 1

2 , 1
2 , 1;

2Λ2

u + Λ2
) . (4.8)

The strength of the CFT picture becomes apparent when asymptotic regions of the moduli space are to
be explored. Then, OPE and fusion rules provide easy and suggestive tools. For example, the asymptotics
of a(u) and aD(u) follow directly from the OPE of the field µ as discussed in the preceeding section. The
logarithmic partners of primary fields appear precisely, if the contour of the screening charge integration
gets pinched between the two fields whose OPE is inserted. Thus, the choice of contour together with
the choice of internal channels (due to inserted OPEs) determines which term of the OPE µ(z)µ(0) ∼
z1/4(V1(0) + Λ1(0) − 2 log(z)V1(0) + . . .) is picked. So, when expanded in ξ, both periods, a(u) and aD(u)
have asymptotics according to inserting the OPEs µ(e2)µ(e3) and µ(e1)µ(e4). Keeping in mind (3.7) when
inserting an OPE, we find with eij = ei − ej

a(u) ∼ [e12e13e42e43]
−1/4 e1e2

e3e4
[e34 〈〈V2(∞)V1(e3)V1(e4)V−2(0)〉〉+ . . .]

∼ [e12e13e42e43]
−1/4 e1e2e4

e3
[〈〈V2(∞)Λ1(e4)V−2(0)〉〉+ . . .]

∼
√

2u + . . . , (4.9)

where the three-point functions evaluate trivially. In a similar fashion, we obtain

aD(u) ∼ 1
iπ

[e12e13e42e43]
−1/4 e1e2

e3e4
[e34 〈〈V2(∞)Λ1(e3)Λ1(e4)V−2(0)〉〉+ . . .]

∼ 1
iπ

[e12e13e42e43]
−1/4 e1e2e4

e3
[−2 log(e4 − e3) 〈〈V2(∞)Λ1(e3)V−2(0)〉〉+ . . .]

∼ i

π

√
2u [log(u) + 2 log(2) + . . .] . (4.10)

Of course, other internal channels can be considered. In particular, we may insert the OPE for |e1− e3| � 1
to get the behavior of the periods for the case u −→ Λ2. In fact, aD(u) and a(u) exchange their rôle since now
the monopole becomes massless. Put differently, duality in Seiberg-Witten models cooks down to crossing
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symmetry in our c = −2 LCFT. The leading term can be read off from aD(u) above (the OPE factors turn
out to be the same upto a braiding phase) to be proportional to i(u−Λ2)/

√
2Λ2. The relative normalization

of the logarithmic operator Λ1 with respect to its primary partner is fixed by considering aD(u) as the
analytic continuation of a(u) via crossing symmetry yielding a factor of (iπ)−1.

There is one further BPS state which can become massless, since there is one further zero of the discrim-
inant

∆(y2(x)) = (det ∂̄(j= 1
2 ))

8 =

(〈
2g+2∏
i=1

V1/2(ei)

〉
c=1

)8

=
∏
j<k

(ej − ek)2 , (4.11)

namely e2 −→ e4. This is a dyonic state with charge (q, g) = (−2, 1), meaning that both, the α cycles as well
as the β cycle, get pinched in this limit. It follows that both, a(u) as well as aD(u), will receive logarithmic
corrections when u −→ −Λ2, which is well known to be the case.

Within the CFT picture, higher gauge groups as well as additional (massive) flavours are treated in the
same way. Hence, we obtain for the SU(2) case with Nf < 4 hypermultiplets, after simple algebra in the
numerator,

λSW =
1

2πi

xdx

y
∏Nf

k=1(x−mk)

4x

Nf∏
k=1

(x−mk)− (x−
√

u)(x +
√

u)
Nf∑
k=1

∏
l 6=k

(x−ml)


=

dx

2πi

(4−Nf )
x2

y
+ Nf

u

y
−

Nf∑
k=1

mk

(
x2

y(x−mk)
− u

y(x−mk)

) , (4.12)

such that we immediately can express the periods of the Seiberg-Witten form in 4-point and 5-point functions.
Using x2

y(x−mk) = x+mk

y + m2
k

y(x−mk) to rewrite the last term, we obtain∮
λSW =

1
2πi

(4−Nf ) 〈〈V2(∞)µ(e1)µ(e2)µ(e3)µ(e4)V−2(0)〉〉 + uNf 〈〈µ(e1)µ(e2)µ(e3)µ(e4)〉〉 (4.13)

−
Nf∑
k=1

mk

[
〈〈V1(∞)µ(e1)µ(e2)µ(e3)µ(e4)V−1(−mk)〉〉 − (u−m2

k) 〈〈V−1(∞)µ(e1)µ(e2)µ(e3)µ(e4)V1(mk)〉〉
]

as the CFT expression. We recover hence the well know result that for all mk = 0 the scalar modes have
roughly the same form as in the Nf = 0 case. The above results in the following expression (x(·) = 1/M(·)
denote the inverse crossing ratios)∮

λSW =

 (4−Nf )e2
3

(e4 − e3)
1
2 (e2 − e1)

1
2
F

(3)
D ( 1

2 , 1
2 ,−2, 2, 1;x(e4), x(0), x(∞)) (4.14)

+
uNf

(e2 − e1)
1
2 (e4 − e3)

1
2

2F1( 1
2 , 1

2 ; 1; x(e4))

−
Nf∑
k=1

mk(e3 + mk)
(e2 − e1)

1
2 (e4 − e3)

1
2
F

(3)
D ( 1

2 , 1
2 ,−1, 1, 1;x(e4), x(−mk), x(∞))

+
Nf∑
k=1

mk(u−m2
k)

(e2 − e1)
1
2 (e4 − e3)

1
2 (e3 −mk)

F
(3)
D ( 1

2 , 1
2 , 1,−1, 1;x(e4), x(mk), x(∞))

 .

Since the F
(3)
D Lauricella functions have a negative integer as one of the numerator parameters, they can be

expanded as polynomials in F1 Appell functions, i.e. 5-point functions via

F
(3)
D (a; b, b′, b′′; c;x, y, z) =

∞∑
m=0

(a)m(b′)mym

(1)m(c)m
F1(a + m; b, b′′; c + m;x, z) , (4.15)
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since this expansion truncates for b′ ∈ Z−. Of course, we could have expressed this from the beginning by
only one correlation function proportional to F

(2Nf +3)
D of 2Nf + 3 variables, as indicated in (3.9), which is

to be contrasted with the approach taken in [12].
As one further example, we consider SU(3) without hypermultiplets, where R(Z) = Λ6/(Z3 − uZ + v)2

such that the resulting hyperelliptic curve has six branch points ei and its metric |λSW|2 possesses three
zeroes zj . We get∮

γ

λSW = 2
〈〈

V2(∞)µ(e1) . . . µ(e6)V−1(−
√

u/3)V−1(0)V−1(
√

u/3
〉〉

(γ)
(4.16)

=
3∏

i=1

(∂eiM(ei))
1
4

6∏
i=4

(
∂ei

M(ei)
M(ei)2

) 1
4 3∏

j=1

(
∂zj M(zj)
M(zj)2

)− 1
2

lim
z→∞

(
z2∂zM(z)

M(z)2

)
× F

(7)
D ( 1

2 , 1
2 , 1

2 , 1
2 ,−1,−1,−1, 2, 1;x(e4), x(e5), x(e6), x(0), x(−

√
u/3), x(

√
u/3), x(∞)) ,

whith the last equality valid for γ = α1 ≡ C(e2, e3). This Lauricella D-system for seven variables provides
the complete set of all periods. There exist more compact expressions in the literature for this case, where
the Appell function F4 is involved [13]. However, presenting the solution in this way is more transparent,
if we view the moduli space of low-energy effective field theory as created from string- or M -theory, e.g. as
intersecting NS-5 and D-4 branes. Then, the branch points ei and mass poles mk are the directly given data
– they denote the endpoints of the intersections. It remains to interpret the zeroes of the Seiberg-Witten
form within the brane picture, since they appear on equal footing with the other singular points in our CFT
approach. Moreover, this approach suggests that BPS states from geodesic integration paths [14] joining
two zeroes of λSW can be described in much the same way as the more familiar BPS states connected to
the periods. The zeroes of λSW correspond to branching points in the fibration of Calabi-Yau threefold
compactifications of type II string theory, and the corresponding BPS states are related to 2-branes ending
on the 5-brane worldvolume R4 × Σ.

Expressing the Seiberg-Witten periods in terms of correlation functions reveals a further complication in
exploring the moduli space of low-energy effective field theories. These periods depend only on the moduli sk

and perhaps masses ml. So, for the SU(3) example above, the periods really depend only on two variables,
u, v. However, λSW in its factorized form naturally leads to a 10-point function! The complete set of solutions
of the associated Lauricella F

(7)
D system which covers all of C7 is actually quite large, and exceeds by far the

set of periods obtainable from simple paths enclosing two of the singular points (Pochhamer paths).
The reason behind all this enrichment is buried in the fact that we are dealing with a Riemann surface

together with an associated metric λSW. A detailed analysis of all these features relies on a deeper knowledge
of the analytic properties of Lauricella functions and will be carried out in our forthcoming paper [6].
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