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Null vectors are generalized to the case of indecomposable representations which are
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1 Introduction

It is now nearly fifteen years ago since the concept of rationality of conformal field the-
ory (CFT) made its first appearance through the minimal models of Belavin, Polyakov and
Zamolodchikov [1]. Since then rational conformal field theories (RCFTs) established them-
selves as a main tool in modern theoretical physics.

Now it becomes increasingly apparent that so-called logarithmic conformal field theories
(LCFTs), first encountered and shown to be consistent in [21], are not just a peculiarity but
merely a generalization of ordinary 2-dimensional CFTs with broad and growing applications.
One may well say that LCFTs contain ordinary rational conformal field theories (RCFTs)
as just the subset of theories free of logarithmic correlation functions. However, logarithmic
divergences are sometimes quite physical, and so there is an increasing interest in these
logarithmic conformal field theories.

These logarithms have been found by now in a multitude of models such as the WZNW
model on the supergroup GL(1, 1) [36], the cp,1 models (as well as non-minimal cp,q models)
[15, 19, 21, 23, 24, 35], gravitationally dressed conformal field theories [4], WZNW models
at level 0 [27, 6], and some critical disordered models [7, 30]. Also, the Yangian structure
of WZNW models seems to be connected to LCFTs [3]. The theory of indecomposable
representations of the Virasoro algebra (which are a particular feature of LCFTs in general)
was developed in [35], and logarithmic correlation functions were considered in general in
[20, 25, 26, 32, 38], see also [34] about consequences for Zamolodchikov’s C-theorem.

First applications to physical systems include the study of (multi-)critical polymers and
percolation in two dimensions [8, 15, 37, 39], two-dimensional turbulence and magneto-
hydrodynamics [17, 33], the quantum Hall effect [16, 22, 30, 40], and also gravitational
dressing [4, 25, 26] as well as disorder and localization effects [7, 29, 30]. They also play a
role in the so called unifying W algebras [5] and are believed to be important for studying
the problem of recoil in the theory of strings and D-branes [2, 10, 27, 28, 31] as well as
target-space symmetries in string theory in general [27].

Although LCFTs are mainly considered with respect to the Virasoro algebra, the concept
is more general allowing for Jordan cell structures with respect to extended chiral symmetry
algebras (e.g. current algebras) as first introduced in [26]. Let us briefly recall what We mean
by Jordan cell structure. Suppose we have two operators Φ(z),Ψ(z) with the same conformal
weight h. As was first realized in [21], this situation leads to logarithmic correlation functions
and to the fact that L0, the zero mode of the Virasoro algebra, can no longer be diagonalized:

L0|Φ〉 = h|Φ〉 ,
L0|Ψ〉 = h|Ψ〉 + |Φ〉 , (1.1)

where we worked with states instead of the fields themselves. The field Φ(z) is then an
ordinary primary field, whereas the field Ψ(z) gives rise to logarithmic correlation functions
and is therefore called a logarithmic partner of the primary field Φ(z). We would like to note
that two fields of the same conformal dimension do not not automatically lead to LCFTs
with respect to the Virasoro algebra. Either, they differ in some other quantum numbers
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(for examples of such CFTs see [14, 18]), or they form a Jordan cell structure with respect to
an extended chiral symmetry only (see [25] for a description of the different possible cases).

This paper aims in generalizing the concept of singular vectors to the case of LCFTs,
and concentrates – for the sake of simplicity – on the case of LCFTs with respect to the
Virasoro algebra. A singular or null vector |χ〉 is a state which is orthogonal to all states,

〈ψ|χ〉 = 0 ∀ψ , (1.2)

where in our case the scalar product is given by the Shapovalov form. Such states can
be considered to be identically zero, and it is precisely the existence of such states which
“makes” CFTs (quasi-)rational by dividing the ideals generated by them out of the Verma
modules. This is, of course, well known since [1, 11], leading to degenerate conformal families
etc.

A pair of fields Φ(z),Ψ(z) forming a Jordan cell structure brings the problem of off-
diagonal terms produced by the action of the Virasoro field, such that the corresponding
representation is indecomposable. Therefore, if |χΦ〉 is a null vector in the Verma module
on the highest weight state |Φ〉 of the primary field, we cannot just replace |Φ〉 by |Ψ〉 and
obtain another null vector.

Before we define general null vectors for Jordan cell structures, we present a formalism
which might be useful in the future for all kinds of explicit calculations in the LCFT setting.
This formalism, which we introduce in section two, has the advantage that the Virasoro
modes are still represented as linear differential operators, and that it is compact and elegant
allowing for arbitrary rank Jordan cell structures. Moreover, the connection between LCFTs
and supersymmetric CFTs, which one could glimpse here and there [15, 6, 36, 37] (see also
[9]), seems to be a quite fundamental one. The second half of section two is then devoted to
apply our formalism to the definition of logarithmic null vectors.

Section three entirely consists of one very explicit example, our other explicit results are
presented in the Appendix. This example treats the c3,1 = −7 model, which is the next
model in the series of cp,1 LCFTs after the well known c2,1 = −2 theory. One Jordan cell
is spanned by two fields of conformal weight h = −1

4
. The primary field alone corresponds

to the irreducible sub-representation with a null vector at level two divided out, but the
complete Jordan cell should have a logarithmic null vector at level 4, which is then explicitly
constructed.

Next, we consider the consequences of the existence of logarithmic null vectors in section
four: Their existence is subject to much stronger constraints as the ordinary null vectors on
primary fields are. However, they do exist also in CFTs with central charge c = cp,q from the
minimal series, if the minimal models are augmented by including certain fields from outside
the conformal grid, as first argued in [15]. As far as LCFTs with respect to the Virasoro
algebra are concerned, we achieve a classification of all possible cases: Perhaps surprisingly,
only models from the generalized minimal series

cp,q = 1 − 6
(p− q)2

pq
p, q ∈ Z − {0} coprime (1.3)

can feature logarithmic null vectors. On one side, these include rational models with c < 1,
i.e. augmented minimal models and cp,1 models, as well as a certain c = 1 model with the
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conformal weights determined by the general formula

hr,s(cp,q) =
(pr − qs)2 − (p− q)2

4pq
r, s ∈ Z+ (1.4)

with p = q = 1 (this corresponds to the Gaussian c = 1 model at the self-dual radius
R = 1/

√
2). On the other side, we also find LCFTs for c ≥ 25 which formally amounts to

replacing p 7→ −p. These theories are certainly not rational with respect to the Virasoro
algebra alone, nor are they unitary, but may be insofar interesting as this is the realm of
Liouville theory with its puncture operator [4, 10, 25]. We conclude this section with two
plots of CFT spectra in the (h, c) plane, one showing the spectra of ordinary primary fields,
the other showing the spectra of Jordan cells of primary fields and their logarithmic partners.
They nicely visualize arguments of our earlier work (second reference of [15]) on the origin
of LCFTs as limiting points in the space of RCFTs.

2 Setup of Problem and Formalism

LCFTs are characterized by the fact that some of their highest weight representations are
indecomposable. This is usually described by saying that two (or more) highest weight states
with the same highest weight span a non-trivial Jordan cell. In the following we call the
dimension of such a Jordan cell the rank of the indecomposable representation.

Therefore, let us assume that a given LCFT has an indecomposable representation of
rank r with respect to its maximally extended chiral symmetry algebra W. This Jordan cell
is spanned by r states |w0, w1, . . . ;n〉, n = 0, . . . , r−1 such that the modes of the generators
of the chiral symmetry algebra act as

Φ
(i)
0 |w0, w1, . . . ;n〉 = wi|w0, w1, . . . ;n〉 +

n−1
∑

k=0

ai,k|w0, w1, . . . ; k〉 , (2.1)

Φ(i)
m |w0, w1, . . . ;n〉 = 0 for m > 0 , (2.2)

where usually Φ(0)(z) = T (z) is the stress energy tensor which gives rise to the Virasoro

field, i.e. Φ
(0)
0 = L0, and w0 = h is the conformal weight. For the sake of simplicity, we

concentrate in this paper on the representation theory of LCFTs with respect to the pure
Virasoro algbra such that (2.1) reduces to

L0|h;n〉 = h|h;n〉 + (1 − δn,0)|h;n− 1〉 , (2.3)

Lm|h;n〉 = 0 for m > 0 , (2.4)

where we have normalized the off-diagonal contribution to 1. As in ordinary CFTs, we have
an isomorphism between states and fields. Thus, the state |h; 0〉, which is the highest weight
state of the irreducible subrepresentation contained in every Jordan cell, corresponds to an
ordinary primary field Ψ(h;0)(z) ≡ Φh(z), thereas states |h;n〉 with n > 0 correspond to the
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so-called logarithmic partners Ψ(h;n)(z) of the primary field. The action of the modes of the
Virasoro field on these primary fields and their logarithmic partners is given by

Λ−k(z)Ψ(h;n)(w) =
(1 − k)h

(z − w)k
Ψ(h;n)(w)− 1

(z − w)k−1

∂

∂w
Ψ(h;n)(w)−(1−δn,0)

λ(1 − k)

(z − w)k
Ψ(h;n−1)(w) ,

(2.5)
with λ normalized to 1 in the follwing. As it stands, the off-diagonal term spoils writing the
modes Λ−k(z) as linear differential operators.

The aim of this section is mainly to prepare a formalism in which the Virasoro modes
are expressed as linear differential operators. To this end, we introduce a new – up to now
purely formal – variable θ with the property θr = 0. We may then view an arbitrary state
in the Jordan cell, i.e. a particular linear combination

Ψh(a)(z) =
r−1
∑

n=0

anΨ(h;n)(z) , (2.6)

as a formal series expansion describing an arbitrary function a(θ) in θ, namely

Ψh(a(θ))(z) =
∑

n

an
θn

n!
Ψh(z) . (2.7)

This means that the space of all states in a Jordan cell can be described by tensoring the
primary state with the space of power series in θ, i.e. Θr(Ψh) ≡ Ψh(z) ⊗ C[[θ]]/I, where
we devided out the ideal generated by the relation I = 〈θr = 0〉. In fact, the action of the
Virasoro algebra is now simply given by

Λ−k(z)Ψh(a(θ))(w) =

(

(1 − k)h

(z − w)k
− 1

(z − w)k−1

∂

∂w
− λ(1 − k)

(z − w)k

∂

∂θ

)

Ψh(a(θ))(w) . (2.8)

Clearly, Ψ(h;n)(z) = Ψh(θ
n/n!)(z), but we will often simplify notation and just write Ψh(θ)(z)

for a generic element in Θr(Ψh). However, the context should always make it clear, whether
we mean a generic element or really Ψ(h;1)(z). The corresponding states are denoted by
|h; a(θ)〉 or simply |h; θ〉. To project onto the kth highest weight state of the Jordan cell, we

just use ak|h; k〉 = ∂k
θ |h; a(θ)〉

∣

∣

∣

θ=0
. In order to avoid confusion with |h; 1〉 we write |h; I〉 if

the function a(θ) ≡ 1.
It has become apparent by now that LCFTs are somehow closely linked to supersym-

metric CFTs [15, 6, 36, 37] (see also [9]). We suggestively denoted our formal variable by θ,
since it can easily be constructed with the help of Grassmannian variables as they appear in
supersymmetry. Taking N = r − 1 supersymmetry with Grassmann variables θi subject to
θ2

i = 0, we may define θ =
∑r−1

i=1 θi. More generally, θ and its powers constitute a basis of
the totally symmetric, homogenous polynomials in the Grassmannians θi.

Finally, we remark that the θ variables are associated not with the coordinates the fields
are localized in coordinate space, but with the positions the fields are localized in h-space
(the Jordan cells). Therefore, the θ variables will be labeled by the conformal weight they
refer to, whenever the context makes it necessary.
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Operator Product Expansion and Correlation Functions.

Now we would like to recover n-point correlation functions within our formalism. To this
end we consider the general operator product expansion (OPE) of fields with Jordan cell
structure. First, we note that according to [15], the fusion rules of indecomposable repre-
sentations can be split with respect to the Jordan cell structure, despite the fact that these
representations are indecomposable. Hence, the fusion rules can be given in the general form

[(hi; l)] × [(hj ;m)] =
∑

k,n

N
(k,n)
(i,l)(j,m)[(hk;n)] . (2.9)

Since the vanishing of any fusion coefficient implies the vanishing of the corresponding struc-
ture function in the operator product expansion, we can factorize the structure functions as
C·
·· = C̃·

··N
·
··. Then, the OPE of two fields of a LCFT reads

Ψ(hi;l)(z)Ψ(hj ;m)(z
′) =

∑

k,n

N
(k,n)
(i,l)(j,m)(∂hi

+ ∂hj
)n−|l−m|C̃k

ij(z − z′)Ψ(hk;n)(z
′) . (2.10)

As in the ordinary case, the homogenous functions turn out to be C̃k
ij(z − z′) = C̃k

ij · (z −
z′)hk−hi−hj . The appearance of the derivatives is due to the behavior of correlation functions
with logarithmic fields as in [20, 32]. It is very helpful to view the logarithmic partners
of a primary field as producing the additional solutions for differential equations (for the
correlation functions) in case of a degenerate solution space. The latter occurs if several
points in the spectra of CFTs flow together if one moves to an LCFT point in CFT space
(see the second work in [15] as well as the last section of this paper for more details). It is then
natural that the operator product expansion of two fields, which on the right hand side has
fields whose highest weights would flow together at the LCFT point, must exhibit logarithmic
corrections. A nice and precise explanation of this can be found in [25]. Essentially, if we
momentarily suppose that we have some kind of a free field representation of our CFT, the
fields are Φh(α)(z) = : exp(iαφ(z)) : with a certain function h = h(α), and in case that two
of these fields have conformal weights which flow together, we may write

Φh(α)+ε(z) − Φh(α)(z) = ε
∂

∂h
Φh(α)(z) + O(ε2) = ε

(

h(α)

α

)−1
∂

∂α
Φh(α)(z) + O(ε2)

= ε

(

h(α)

α

)−1

iφ(z)Φh(α)(z) + O(ε2) . (2.11)

It is then easy to see that the appearance of φ(z) does precisely cause the logarithmic
corrections in the correlation functions. Plugged into OPEs, it follows that these can be
written as derivatives with respect to h, acting on the structure functions.

The precise power of the logarithmic corrections (i.e. the precise power of the derivative
terms) is fixed by the possible “logarithmic defects” on the right hand side of the OPE (or
equivalently the fusion rules), as the power scaling law of the ordinary structure constants
is fixed by the dimensional defect on the right hand side of the OPE. However, it can be
infered from the fusion rules that, contrary to the dimensional defect, the “logarithmicity”
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is insofar not additive as, e.g., the fusion rules of two representations at the same level in
their respective Jordan cells start with the ordinary irreducible sub-representation. More
generally, the power of the logarithms in the structure functions of an OPE depends on the
difference of the levels in the Jordan cells on the left hand side, which results in the above
power for the derivatives [20]. In general we end up with an OPE expression as

Ψhi
(a(θi))(z)Ψhj

(b(θj))(z
′) = (2.12)

∑

k

C̃k
ijΨhk





∑

n





∑

l,m

al

l!

bm
m!
N

(k,n)
(i,l)(j,m)(∂hi

+ ∂hj
)n−|l−m|





θn
k

n!



 (z′)(z − z′)hk−hi−hj

for |z − z′| ≪ 1. It is convenient to write the cumbersome expression for the precise state
within the hk-Jordan cell as f(θk) = (a(θi) × b(θj))(θk) as the expansion of the product
a(θi)b(θj) for [hi] × [hj ] − [hk] → 0 such that the right hand side can be rewritten as a sum
over certain fields Ψhk

(f(θk))(z
′). These fields become operators of the form

Ψhk
(f(θk))(z

′) =
∑

s

Ψhk
(fs(θk))(z

′)

(

−2
∂

∂hk

)s

, (2.13)

where fs(θk) denotes the corresponding part in the expansion (a(θi) × b(θj))(θk). This re-
sembles precisely the way, the Virasoro field became an differential operator with respect
to the conformal weight [32]. If ri, rj denote the ranks of the Jordan cell fields of the left
hand side, we see that the maximal difference which can occur is r− 1 with r = max(ri, rj).
Hence, if the rank of the Jordan cell on the right hand side is rk < r, negative powers for the
derivatives might occur. However, as a matter of fact, the corresponding fusion coefficients
will vanish.

From this all n-point functions can be obtained, if the standard n-point functions of ordi-
nary primary fields are known. As an example, we consider the 2-point functions. Plugging
in the OPE from above, we have simply
〈

Ψ(hi;l)(z)Ψ(hj ;m)(z
′)
〉

= δijC̃
0
ij

∑

n

N
(0;n)
(i;l)(j;m)(∂hi

+ ∂hj
)n−|l−m|(z − z′)−hi−hj

〈

Ψ(0;n)(z
′)
〉

.

(2.14)
Now, we have to note the important fact that in LCFT, the only non-vanishing 1-point
function is not the ordinary identity, but instead we have

〈

Ψ(0;n)(z)
〉

= δn,r0−1 . (2.15)

For example, the LCFT with c = −2 is known to have a realization via a system of two
anticommuting fields θ(z), θ̄(z) with spin zero (do not confuse these with our θ variables).
It is well known that correlation functions of this theory are only non-trivial if a term
θ(z)θ̄(z) is included in the measure (and hence in the correlation functions), e.g. 〈I(z)〉 = 0,
but 〈θ(z)θ̄(z′)〉 = 1. A nice and detailed discussion of this can be found in [22]. Similar
facts hold for general LCFTs. As a consequence, 2-point functions are only non-zero, if
their degree in θ0 is maximal. Since 2-point functions vanish if the fields are from different
Jordan cells, the maximal degree is the same for both fields and so unambigous. From this
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follows that all LCFTs must in particular have the identity in a Jordan cell whose rank
determines the maximal rank of all other fields.∗ For completeness, we mention that under
field conjugation (with respect to the fusion rules) Ψ 7→ Ψ∗, the Jordan cell structure is
simply mapped as a(θ) 7→ a∗(θ) = θr−1a(θ−1), such that e.g. the conjugate of the primary
field is the top field in the Jordan cell. This ensures that the 2-point functions of a field
and its conjugate always yield the usual (non-logarithmic) result. Hence, we define in- and
out-states as |Ψh(a(θ))〉 = limz→0 Ψh(a(θ))(z)|〉 and 〈Ψh(a(θ))| = 〈| limz→∞ z2hΨh(a

∗(θ))(z).
Note that the out-state of the identity is therefore its top level logarithmic partner – as it
should be.

These considerations generalize to the case of n-point functions. Therefore, we may say
that a LCFT is of rank r if its identity operator forms a Jordan cell of rank r, and it is then
convenient to include θr−1

0 into the measure for correlation functions
〈

n
∏

i=1

Ψhi
(ai(θi))(zi)

〉

=
∫

DΨθr−1
0

n
∏

i=1

Ψhi
(ai(θi))(zi) exp(−S(Ψ)) , (2.16)

such that only correlation functions of maximal degree in θ0 are non-zero. Here θ0 denotes
the θ variable of the h = 0 Jordan cell, since we assumed that this is the only Jordan cell
representation which yields a non-zero correlcation function after contracting the n-point
function via insertion of OPEs down to a 1-point function. Hence, θ0 behaves in much
the same way, as θ(z)θ̄(z′) does in the c = −2 model. Actually, in this case, we can just
view the θ0 variable as the product of the zero modes of the anticommuting scalar fields,
from which c = −2 is constructed. However, no such construction is known for higher rank
LCFTs, nor do the other models of the cp,1 series allow such a realization. The latter are
presumably constructed from twisted parafermionic fields, i.e. fields of integer spin which
satisfy parafermionic anticommutation relations, since their 4-point function resemble the
ones of Zp orbifold CFTs. Explicit realizations of this kind are left for future work.

Logarithmic Null Vectors.

Next, we derive the consequences of our formalism. An arbitrary state in a LCFT of level n
is a linear combination of descendants of the form

|ψ(θ)〉 =
∑

k

∑

{n1+n2+...+nm=n}

b
{n1,n2,...,nm}
k L−nm

. . . L−n2
L−n1

|h; k〉 (2.17)

which we often abbreviate as

|ψ(θ)〉 =
∑

|n|=n

L−n
bn(θ)|h〉 . (2.18)

We will mainly be concerned with calculating Shapovalov forms 〈ψ′(θ′)|ψ(θ)〉 which ultima-
tively cook down (by commuting Virasoro modes through) to expressions of the form

〈ψ′(θ′)|ψ(θ)〉 = 〈h′; a′(θ′)|
∑

m

fm(c)(L0)
m|h; a(θ)〉 , (2.19)

∗In the whole discussion we assumed that 1-point functions of fields with h 6= 0 vanish, which is not
necessarily true for non-unitary theories [41]. The more general case of non-zero vacuum expectation values
leads to considerable modifications of all correlation functions, which we will consider in a later work.
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where we explicitly noted the dependence of the coefficients on the central charge c. Combin-
ing (2.19) with (2.18) we write 〈ψ′(θ′)|ψ(θ)〉 = 〈h′; a′(θ′)|f

n
′,n(L0, C)|h; a(θ)〉 for the Shapo-

valov form between two monomial descendants, i.e.

〈h′; a′(θ′)|f
n
′,n(L0, C)|h; a(θ)〉 = 〈h′; a′(θ′)|Ln′

1
Ln′

2
. . . L−n2

L−n1
|h; a(θ)〉 . (2.20)

More generally, since L0|h; a(θ)〉 = (h+∂θ)|h; a(θ)〉, it is easy to see that an arbitrary function
f(L0, C) ∈ C[[L0, C]] acts as

f(L0, C)|h;n〉 =
∑

k

1

k!

(

∂k

∂hk
f(h, c)

)

|h;n− k〉 , (2.21)

and therefore f(L0, C)|h; a(θ)〉 = |h; ã(θ)〉, where with a(θ) =
∑

n an
θn

n!
we have

ãn =
∑

k

an+k

k!

∂k

∂hk
f(h, c) . (2.22)

This puts the convenient way of expressing the action of L0 on Jordan cells by derivatives
with respect to the conformal weight h, which appeared earlier in the literature, on a firm
ground. Moreover, from now on we do not worry about the range of summations, since all
series automatically truncate in the right way due to the condition θr = 0.

It is evident that choosing a(θ) = I extracts the irreducible subrepresentation which is
invariant under the action of L0. All other non-trivial choices of a(θ) yield states which
are not invariant under the action of L0. The existence of null vectors of level n on such a
particular state is subject to the conditions that

∑

|n|=n

f
n
′,n(L0, C)bn(θ, h, c)|h〉 ≡

∑

|n|=n

f
n
′,n(L0, C)

∑

k

bnk (h, c)|h; k〉 = 0 ∀ n′ : |n′| = n . (2.23)

Notice that we have the freedom that each highest weight state of the Jordan cell comes with
its own descendants. These conditions determine the bnk (h, c) as functions in the conformal
weight and the central charge. Clearly, for a(θ) = I this would just yield the ordinary results
as knonw since BPZ [1], i.e. the solutions for bn0 (h, c). The question of this paper is, under
which circumstances null vectors exist on the whole Jordan cell, i.e. for non-trivial choices of
a(θ). Obviously, these null vectors, which we call logarithmic null vectors can only constitute
a subset of the ordinary null vectors. From (2.21) we immediately learn that the conditions
imply

s−1
∑

k=0

∑

|n|=n

bnk (h, c)
1

(s− 1 − k)!

∂s−1−k

∂hs−1−k
f
n
′,n(h, c) = 0 ∀ n′ : |n′| = n , 1 ≤ s ≤ r , (2.24)

which can be satisfied if we put

bnk (h, c) =
1

k!

∂k

∂hk
bn0 (h, c) . (2.25)
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In fact, choosing the bnk (h, c) in this way allows one to rewrite the conditions as total deriva-
tives of the standard condition for bn0 (h, c). Keeping in mind that each Jordan cell module
of rank r has Jordan cells of ranks r′, 1 ≤ r′ ≤ r, as submodules, we can find intermediate
null vector conditions, where the null vector only lies in the rank r′ submodule (think of
r′ = 1 as a trivial example), if we restrict the range of s in (2.24) accordingly. Of course,
this determines the bnk (h, c) only up to terms of lower order in the derivatives such that the
conditions finally take the general form

∑

k

λk

k!

∂k

∂hk





∑

|n|=n

f
n
′,n(h, c)bn0 (h, c)



 = 0 ∀ n′ : |n′| = n , (2.26)

which, however, does not yield any different results. Moreover, the coefficients bnk (h, c) can
only be determined up to an overall normalization. Clearly, there are p(n) coefficients,
where p(n) denotes the number of partitions of n into positive integers. This means that
only p(n) − 1 of the standard coefficients bn0 (h, c) are determined to be functions in h, c

multiplied by the remaining coefficient, e.g. b
{1,1,...,1}
0 (if this coefficient is not predetermined

to vanish). In order to be able to write the coefficients bnk (h, c) with k > 0 as derivatives with

respect to h, one needs to fix the remaining free coefficient b
{1,1,...,1}
0 = hp(n) as a function of

h. The choice given here ensures that all coefficients are always of sufficient high degree in
h.∗ Clearly, this works only for h 6= 0. To find null vectors with h = 0 needs some extra
care. One foolproof choice is to put the remaining free coefficient to exp(h). The problem
is that the Hilbert space of states is a projective space due to the freedom of normalization,
and that we used h as a projective coordinate in this space, which only works for h 6= 0.

It is important to understand that the above is only a necessary condition due to the
following subtelty: The derivatives with respect to h are done in a purely formal way. But
already determining the standard solution bn0 (h, c) is not sufficient in itself, and the conditions
for the existence of standard null vectors yield one more constraint, namely h = hi(c) or
vice versa c = ci(h) (the index i denotes possible different solutions, since the resulting
equations are higher degree polynomials ∈ C[h, c]). These constraints must be plugged
in after performing the derivatives and, as it will turn out, this will severely restrict the
existence of logarithmic null vectors, yielding only some discrete pairs (h, c) for each level
n. Moreover, the set of solutions gets rapidly smaller if for a given level n the rank r of
the assumed Jordan cell is increased. Since there are p(n) linearly independent conditions
for the bn0 (h, c) of a standard null vector of level n, a necessary condition is r ≤ p(n). As
mentioned above, h is not a good coordinate for h = 0, but ci(h) still is∗∗. Therefore, for
h = 0 we should use c for normalization, meaning that for h = 0, the ci(h) have to be
plugged in before doing the derivatives.

The next section gives one rather explicit example, but further details about our calcula-
tions (e.g. how to find logarithmic null vectors with h=0) can also be found in the Appendix,

∗We usually choose the least common multiple of the denominators of the resulting rational functions
in h, c of the other coefficients in order to simplify the calculations. This, however, occasionaly leads to
additional – trivial – solutions which are the price we pay for doing all calculations with polynomials only.

∗∗Again, this is only true as long as c 6= 0. The special point (c = 0, h = 0) unfortunately cannot be
treated within our scheme, but must be checked by direct calculations.
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where we mainly collect and comment our explicit results.

3 An Example

In this section we want to demonstrate what a logarithmic null vector is and under which
conditions it exists. Null vectors are of particular importance for rational CFTs. For any
CFT given by its maximally extended symmetry algebra W and a value c for the central
chrage we can determine the so-called degenerate W-conformal families which contain at
least one null vector. The corresponding heighest weights turn out to be parametrized by
certain integer labels, yielding the so-called Kac-table. If W = {T (z)} is just the Virasoro
algebra, all degenerate conformal families have highest weights labeled by two integers r, s,

hr,s(c) =
1

4

(

1

24

(

√

(1 − c)(r + s) −
√

(25 − c)(r − s)
)2

− 1 − c

6

)

. (3.1)

The level of the (first) null vector contained in the conformal families over the highest weight
state |hr,s(c)〉 is then n = rs.

LCFTs have the special property that there are at least two conformal families with
the same highest weight state, i.e. that we must have h = hr,s(c) = ht,u(c). This does
not happen for the so-called minimal models since their truncated conformal grid precisely
excludes this. However, LCFTs may be constructed for example for c = cp,1, where formally
the conformal grid is empty, or by augmenting the field content of a CFT by considering
an enlarged conformal grid. However, if we have the situation typical for a LCFT, we have
two non-trivial and different null vectors, one at level n = rs and one at n′ = tu where we
assume without loss of generality n ≤ n′. Then the null vector at level n is an ordinary null
vector on the highest weight state of the irreducible sub-representation |h; 0〉 of the rank 2
Jordan cell spanned by |h; 0〉 and |h; 1〉, but what about the null vector at level n′?

Let us consider the particular LCFT with c = c3,1 = −7. This LCFT admits the highest
weights h ∈ {0, −1

4
, −1

3
, 5

12
, 1, 7

4
} which yield the two irreducible representations at h1,3 = −1

3

and h1,6 = 5
12

as well as two indecomposable representations with so-called staggered module
structure (roughly a generalization of Jordan cells to the case that some highest weights differ
by integers [19, 35]) constituted by the triples (h1,1 =0, h1,5 =0, h1,7 =1) and (h1,2 = −1

4
, h1,4 =

−1
4
, h1,8 = 7

4
). We note that similar to the case of minimal models we have the identification

h1,s = h2,9−s such that the actual level of the null vector might be reduced. In the following
we will determine the null vectors at level 2 and 4 for the rank 2 Jordan cell with h = −1

4
.

First, we start with the level 2 null vector, whose general ansatz is

|χ(2)
h,c〉 =

(

b
{1,1}
0 L2

−1 + b
{2}
0 L−2

)

|h; a(θ)〉 +
(

b
{1,1}
1 L2

−1 + b
{2}
1 L−2

)

|h; ∂θa(θ)〉 , (3.2)

where we explicitly made clear how we counteract the off-diagonal action of the Virasoro
null mode. It is well known that up to an overall normalization we have

b
{1,1}
0 = 3h , b

{2}
0 = −2h(2h+ 1) , (3.3)
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such that according to the last section we should put

b
{1,1}
1 = 3 , b

{2}
1 = −8h− 2 . (3.4)

The matrix elements 〈h|L2 ∂
k
θ |χ(2)

h,c〉
∣

∣

∣

θ=0
, k = 0, 1, do give us further constraints, namely

c = −2h
8h− 5

2h+ 1
, 0 = −2h

16h2 + 16h− 5

2h+ 1
. (3.5)

From these we learn that only for h ∈ {0, −5
4
, 1

4
} we may have a logarithmic null vector (with

c = 0, 25, 1 respectively). Therefore, the level 2 null vector for h = −1
4

of the c = −7 LCFT
is just an ordinary one.

Next, we look at the level 4 null vector with the general ansatz

|χ(4)
h,c〉 =

(

b
{1,1,1,1}
0 L4

−1 + b
{2,1,1}
0 L−2L

2
−1 + b

{3,1}
0 L−3L−1 + b

{2,2}
0 L2

−2 + b
{4}
0 L−4

)

|h; a(θ)〉 (3.6)

+
(

b
{1,1,1,1}
1 L4

−1 + b
{2,1,1}
1 L−2L

2
−1 + b

{3,1}
1 L−3L−1 + b

{2,2}
1 L2

−2 + b
{4}
1 L−4

)

|h; ∂θa(θ)〉 .

Considering the possible matrix elements determines the coefficients up to overall normal-
ization as

b
{1,1,1,1}
0 = h4(1232h3 − 2466h2 − 62h2c+ 1198h− 296hc+ 13hc2 + 5c3 + 92c2 + 128c− 144) ,

b
{2,1,1}
0 = −4h4(1120h4 − 2108h3 + 140h3c+ 428h2 − 66h2c+ 338h− 323hc+ 90hc2

+ 60c2 − 78 + 99c) ,

b
{3,1}
0 = 24h4(96h5 − 332h4 + 44h4c+ 382h3 − 8h3c+ 4h3c2 − 53h2c+ 12h2c2 − 235h2

+ 11hc2 + 14hc+ 65h− 6 + 3c+ 3c2) ,

b
{2,2}
0 = 24h4(32h3 − 36h2 + 4h2c+ 8hc+ 22h+ 3c− 3)(3h2 + hc− 7h + 2 + c) ,

b
{4}
0 = −4h4(550h+ 3c3 − 224h2c + 66hc2 + 748h3 − 48 + 2508h4 + 11hc3 + 41h2c2

− 40h3c− 3008h5 + 12h2c3 + 120h3c2 − 184h4c+ 102hc+ 27c2 − 1698h2

+ 18c+ 4h3c3 + 768h6 + 448h5c+ 76h4c2) . (3.7)

Even for ordinary null vectors at level 4 we have p(4) = 5 conditions, but due to the freedom

of overall normalization only 4 conditions have been used so far. The last, 〈h|L4 |χ(4)
h,c〉

∣

∣

∣

θ=0
=

0, fixes the central charge as a function of the conformal weight to

c ∈
{

−2
h(8h− 5)

2h+ 1
,−2

5

8h2 + 33 − 41h

3 + 2h
,−3h2 − 7h+ 2

h+ 1
, 1 − 8h

}

. (3.8)

If we again put bn1 (h, c) = ∂hb
n

0 (h, c) we obtain the additional constraint 〈h|L4 ∂θ|χ(4)
h,c〉

∣

∣

∣

θ=0
=

0, i.e.

0 = −4h3(−14308h3c2 + 6600h− 528c+ 30hc3 + 1239840h5 − 113592h2 + 5290hc+ 144c2

+ 462h2c3 + 4368h3c3 + 275hc4 + 360h2c4 + 3296h4c3 + 74240h6c+ 25632h5c2

+ 67584h7 + 595224h3 − 25812h2c− 12712h3c+ 11574h2c2 − 2475hc2 − 1287136h4

+ 60c4 − 249408h5c+ 324c3 − 12192h4c2 − 504320h6 + 187040h4c+ 140h3c4) , (3.9)
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in which we may insert the four solutions for c to obtain sets of discrete conformal weights
(and central charges in turn). The Appendix contains the explicit calculations for all possible
Virasoro logarithmic null vectors up to level 5. Here, we are only interested in the null vector
for h = −1

4
. And indeed, the first two solutions for c admit (among others) h = −1

4
to satisfy

(3.9) with the final result for the null vector

∣

∣

∣χ
(4)
h=−1/4,c=−7

〉

=
(

315
128
L4
−1 − 525

64
L−2L

2
−1 + 315

128
L2
−2 − 105

64
L−3L−1 − 105

64
L−4

) ∣

∣

∣

−1
4

; (α1θ
1 + α0θ

0)
〉

+
(

−2463
128

L4
−1 + 2485

64
L−2L

2
−1 + 1241

64
L−3L−1 − 1383

128
L2
−2 + 821

64
L−4

) ∣

∣

∣

−1
4

; (α1θ
0)
〉

.

(3.10)

This shows explicitly the existence of a non-trivial logarithmic null vector in the rank 2 Jor-
dan cell indecomposable representation with highest weight h = −1

4
of the c3,1 = −7 rational

LCFT. Here, α0, α1 are arbitrary constants such that we may rotate the null vector arbitrar-
ily within the Jordan cell. However, as long as α1 6= 0, there is necessarily always a non-zero
component of the logarithmic null vector which lies in the irreducible sub-representation.
Although there is the ordinary null vector built solely on |h; 0〉, there is therefore no null
vector solely built on |h; 1〉, once more demonstrating the fact that these representations are
indecomposable.

4 Kac Determinant and Classification of LCFTs

As one might imagine from the Appendix, it is quite a time consuming task to construct
logarithmic null vectors explicitly. However, if we are only interested in the pairs (h, c) of
conformal weights and central charges for which a CFT is logarithmic and owns a logarithmic
null vector, we don’t need to work so hard.

As already explained, logarithmic null vectors are subject to the condition that there
exist fields in the theory with identical conformal weights. As can be seen from (3.1), there

are always fields of identical conformal weights if c = cp,q = 1 − 6 (p−q)2

pq
is from the minimal

series with p > q > 1 coprime integers. However, such fields are to be identified in these
cases due to the existence of BRST charges [12, 13]. Equivalently, this means that there are
no such pairs of fields within the truncated conformal grid

H(p, q) ≡ {hr,s(cp,q) : 0 < r < |q|, 0 < s < |p|} . (4.1)

It is worth noting that our explicit calculations for the data collected in the Appendix
indeed produced “solutions” for the well known null vectors in minimal models, but these
“solutions” never had a non-trivial Jordan cell structure. For example, at level 3 we find a
solution with c = c2,5 = −22

5
and h = h2,1 = h3,1 = −1

5
) which, however, is just the ordinary

one. This was to be expected because each Verma module of a minimal model has precisely
two null vectors (this is why all weights h appear twice in the conformal grid, hr,s = hq−r,p−s).
We conclude that logarithmic null vectors can only occur if fields of equal conformal weight
still exist after all possible identifications due to BRST charges (or due to the embedding
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structure of the Verma modules [11]) have been taken into account. For later convenience,
we further define the boundary of the conformal grid as

∂H(p, q) ≡ {hr,p(cp,q) : 0 < r ≤ |q|} ∪ {hq,s(cp,q) : 0 < s ≤ |p|} , (4.2)

∂2H(p, q) ≡ {hq,p(cp,q)} .

These three sets reflect the possible three embedding structures of the corresponding Verma
modules which are of type III±, III◦±, and III◦◦± respectively [11].

In our earlier work we have argued that LCFTs are a very general kind of conformal
theories, containing rational CFTs as the special subclass of theories without logarithmic
fields. In the case of minimal models we showed that logarithmic versions of a CFT with
c = cp,q can be obtained by augmenting the conformal grid. This can formally be achieved
by considering the theory with c = cαp,αq. The explicit calculations of null vectors in the
present paper, however, did not show the existence of logarithmic fields for minimal models,
the reason being simply that the levels of null vectors considered here are too small. Let
us look at minimal c2n−1,2 models, n > 1. Fields within the conformal grid are ordinary
primary fields which do not posses logarithmic partners. Therefore, pairs of primary fields
with logarithmic partners have to be found outside the conformal grid, and according to
our earlier work [15] and [19] must lie on the boundary ∂H(p, q) (note that the corner point
is not an element). Notice that for cp,1 models this condition is easily met because the
conformal grid H(p, 1) = ∅. Fields outside the boundary region which have the property
that their conformal weights are h′ = h+ k with h ∈ H(p, q), k ∈ Z+ do not lead to Jordan
cells (they are just descendants of the primary fields). For example, the c5,2 = −22

5
model

admits representations with h = h1,8 = h3,2 = 14
5

which do not form a logarithmic pair and
are just descendants of the h = −1

5
representation. Therefore, even for the c2n−1,2 models

with their relatively small conformal grid, the lowest level of a logarithmic null vector easily
can get quite large. In fact, the smallest minimal model, the trivial c3,2 = 0 model, can
be augmented to a LCFT with formally c = c9,6 which has a Jordan cell representation for
h = h2,2 = h2,4 = 1

8
. The logarithmic null vector already has level 8 and reads explicitly

∣

∣

∣χ
(8)
h=1/8,c=0

〉

=
(

10800L8
−1 − 208800L−2L

6
−1 + 928200L2

−2L
4
−1 − 1060200L3

−2L
2
−1 + 151875L4

−2 + 252000L−3L
5
−1

− 631200L−3L−2L
3
−1 + 207000L−3L

2
−2L−1 − 1033200L2

−3L
2
−1 + 360000L2

−3L−2 − 1249200L−4L
4
−1

+ 4165200L−4L−2L
2
−1 − 1133100L−4L

2
−2 + 176400L−4L−3L−1 + 593100L2

−4 + 624000L−5L
3
−1

− 720000L−5L−2L−1 − 429300L−5L−3 + 1206000L−6L
2
−1 − 455400L−6L−2 − 206100L−7L−1

− 779400L−8)
∣

∣

1
8 , a(θ)

〉

+
(

76800L−3L−2L
3
−1 + 755200L−3L

2
−2L−1 − 2596800L2

−3L
2
−1 + 106400L2

−3L−2 + 179712L−4L
4
−1

+ 123648L−4L−2L
2
−1 + 3621120L−4L−3L−1 − 857856L2

−4 + 739200L−5L
3
−1 − 5832000L−5L−2L−1

+ 992800L−5L−3 + 3444000L−6L
2
−1 − 154800L−6L−2 − 2210400L−7L−1 + 488000L−8

) ∣

∣

1
8 , ∂a(θ)

〉

,

up to an arbitrary state proportional to the ordinary level 4 null vector. This shows that
minimal models can indeed be augmented to logarithmic conformal theories. Level 8 is
actually the smallest possible level for logarithmic null vectors of augmented minimal models.
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On the other hand, descendants of logarithmic fields are also logarithmic, giving rise to
the more complicated staggered module structure [35]. Thus, whenever for c = cp,q the
conformal weight h = hr,s with either r ≡ 0 mod p, s 6≡ 0 mod q, or r 6≡ 0 mod p, s ≡ 0, the
corresponding representation is part of a Jordan cell (or a staggered module structure).

The question of whether a CFT is logarithmic really makes sense only in the framework
of (quasi-)rationality. Therefore, we can assume that c and all conformal weights are ra-
tional numbers. It can then be shown that the only possible LCFTs with c ≤ 1 are the
“minimal” LCFTs with c = cp,q. Using the correspondence between the Verma modules
Vh,c ↔ V−1−h,26−c one can further show that LCFTs with c ≥ 25 might exist with (for-
mally) c = c−p,q. Again, due to an analogous (dual) BRST structure of these models, pairs
of primary fields with logarithmic partners can only be found outside the conformal grid
H(−p, q) = {hr,s(c−p,q) : 0 < r < q, 0 < s < p}, a fact that can also be observed in our
direct calculations. For example, at level 4 we found a candidate solution with c−3,2 = 26
and h4,1 = h1,3 = −4. But again, the explicit calculation of the null vector did not show any
logarithmic part.

The existence of null vectors can be seen from the Kac determinant of the Shapovalov
form M (n) = 〈h|L

n
′L−n

|h〉, which factorizes into contributions for each level n. The Kac
determinant has the well known form

detM (n) =
n
∏

k=1

∏

rs=k

(h− hr,s(c))
p(n−rs) . (4.3)

A consequence of Section 2 is that a necessary condition for the existence of logarithmic
null vectors in rank r Jordan cell representations of LCFTs is that ∂k

∂hk

(

detM (n)
)

= 0 for

k = 0, . . . , r − 1. It follows immediately from (4.3) that non-trivial common zeros of the
Kac determinant and its derivatives at level n only can come from the factors whose powers
p(n− rs) = 1, i.e. rs = n and rs = n− 1. For example

∂

∂h

(

detM (n)
)

=
∑

n−1≤rs≤n

1

(h− hr,s(c))
detM (n)

+
∑

1≤rs≤n−2

p(n− rs)

(h− hr,s(c))
detM (n) , (4.4)

whose first part indeed yields a non-trivial constraint, whereas the second part is zero when-
ever detM (n) is. Clearly (4.4) vanishes at h = hr,s(c) up-to one term which is zero precisely
if there is one other ht,u(c) = h. This is the condition stated earlier. Solving it for the central
charge c we obtain

c =



















−(2t− 3u+ 3s− 2r)(3t− 2u+ 2s− 3r)

(u− s)(t− r)

−(2t− 3u− 3s+ 2r)(3t− 2u− 2s+ 3r)

(u+ s)(t+ r)

. (4.5)

With an ansatz c(x) ≡ 1 − 6 1
x(x+1)

we find

x ∈
{

u− s

t− r + s− u
,

r − t

t− r + s− u
,

s+ u

t+ r − u− s
,

t+ r

u+ s− t− r

}

, (4.6)
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i.e. x ∈ Q. This proves our first claim that logarithmic null vectors only appear in the
framework of (quasi-)rational CFTs. The further claims follow then from the well known
embedding structure of Verma modules for central charges with rational x (which by the
way ensures c ≤ 1 or c ≥ 25, where at the limiting points xc→1 → ∞ and xc→25 → −1

2
).

Obviously, null vectors in rank r Jordan cells with conformal weight h require the exis-
tence of r different solutions (ri, si) such that hri,si

(c) = h. Up to level 5 there is only one
case with r > 2, namely the rank 3 logarithmic null vector of the c = c−1,1 = 25 theory with
h = h2,2 = h1,3 = h3,1 = −3.

What remains is to find the numbers r, s, t, u (or more generally ri, si). The allowed
solutions must satisfy the conditions stated above: A quadruple (r, s, t, u) parametrizes a
logarithmic null vector, if with c = c(r, s, t, u) one of the solutions (4.5) for the central
charge, both hr,s(c), ht,u(c) ∈ ∂H(c) where H(c) ≡ H(x, x + 1) is the conformal grid of
the Virasoro CFT with central charge c = c(x). This gives the conformal weights of the
“primary” logarithmic pairs, the other possibilities are of the form h ∈ ∂H(c) mod Z+ and
belong to “descendant” logarithmic pairs. We use quotation marks because the logarithmic
partner of a primary field is not primary in the usual sense.

As an example, we consider the by now well known models with c = cp,1, p > 1. Precisely
all fields in the extended conformal grid (obtained by formally considering c = c3p,3) except
h1,p and h1,2p as well as their “duals” h2,2p and h2,p form tripels (h1,r = h1,2p−r, h1,2p+r) which
constitute a rank 2 Jordan cell with an additional Jordan cell like module staggerd into it
(for details see [35]). The excluded fields form irreducible representations without any null
vectors and are all ∈ ∂2H(p, 1) mod Z+. Similar results hold for the c = c−p,1, p > 1,
models. However, all these LCFTs are only of rank 2. The only cases of higher rank LCFTs
seem to be particular c = 1 and c = 25 theories. Notice that such theories are necessarily
nonunitary , i.e. the Shapovalov form is necessarily not positive definite. However, since we
are able to explicitly construct these theories, e.g. the explicit null vectors in the Appendix,
there is no doubt that these theories exist. The reason is that the c±p,1, p > 1, theories still
have additional symmetries such that a truncation of the conformal grid to finite size still
can be constructed, while the c = 1 and c = 25 theories presumably are only quasirational,
their conformal grid being infinite in at least one direction.

To support our general statements, we give all non-trivial solutions up to level 20, which
are not cp,±1 models, in the following table. This means that we list only logarithmic ex-
tensions of minimal models. The levels risi of the null vectors are given in decreasing order
for each central charge. As a general fact, the null vector with the lowest level in a given
Jordan cell belongs to the irreducible subrepresentation and is an ordinary one, all others
are logarithmic.

One further comment is in order here: Minimal models may be augmented by including
the fields from the boundary of the conformal grid. However, this alone does not suffice to get
a rational LCFT. The staggered module structure [35] suggests that we also must include
the fields from the “next” boundaries modulo p, q, i.e. fields with conformal weights in
∂kH(2p, 2q), k = 1, 2, as well as hq,s, hr,p with q < r < 2q, p < s < 2p. This is also supported
by analogous results for cp,1 models and their fusion rules [15, 19], where fusion closes if the
full (staggered) modules are considered. However, the question whether this really leads to a
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closed fusion product and therefore to rational models of augmented minimal models is left
to future work. Nonetheless, our formalism suggests that the operator product expansion
(OPE) of logarithmic fields, as discussed in section two, closes within logarithmic fields such
that there is a maximal rank for all Jordan cell structures. However, as concluded in section
two, the identity operator of a CFT determines the degree of its “logarithmiticity” because its
Jordan cell structure determines which correlation functions can be non-zero. Augmented
minimal models do not seem to have logarithmic partners of the identity field itself, but
they do have a degenerate vacuum (which thus forms a trivial diagonal Jordan cell). This
degeneracy is presumably sufficient to ensure that correlation functions of logarithmic fields
do not vanish. At least, our formalism is constructed in such a way that it can smoothly be
applied to operators Φ with Jordan cell structure as e.g.

(

Φ λ
0 Φ

)(

|h;1〉
|h;0〉

)

even in the case λ→ 0,
i.e. in the case that representations just have a multiplicity > 1.

c hri,si

c9,2 = −46
3

h2,10 = h2,8 = −5
8

c7,2 = −68
7

h2,8 = h2,6 = −3
8

h2,9 = h2,5 = −9
56

h2,10 = h2,4 = 11
56

c5,2 = −22
5

h2,6 = h2,4 = −1
8

h2,7 = h2,3 = 7
40

h3,5 = h1,5 = 2
5

h2,8 = h2,2 = 27
40

h2,9 = h2,1 = 11
8

h2,10 = h4,5 = 91
40

c5,3 = −3
5

h3,6 = h3,4 = 1
12

h4,5 = h2,5 = 7
20

c3,2 = 0 h4,5 = h2,4 = h2,2 = 1
8

h4,4 = h2,5 = h2,1 = 5
8

h3,6 = h3,3 = h1,3 = 1
3

h2,6 = h4,3 = 35
24

h2,7 = h4,2 = 21
8

h5,3 = h1,6 = 10
3

h2,8 = h4,1 = 33
8

h2,9 = h6,3 = 143
24

h2,10 = h6,2 = 65
8

c4,3 = 1
2

h3,5 = h3,3 = 1
6

h4,4 = h2,4 = 5
16

h3,6 = h3,2 = 35
48

h5,4 = h1,4 = 21
16

c4,−3 = 51
2

h5,4 = h2,8 = −325
16

h3,6 = h6,2 = −851
48

h4,4 = h1,8 = −245
16

h3,5 = h6,1 = −85
6

c3,−2 = 26 h2,10 = h8,1 = −217
8

h2,9 = h6,3 = −551
24

h4,5 = h2,8 = h6,2 = −153
8

h3,6 = h5,3 = h1,9 = −52
3

h4,4 = h2,7 = h6,1 = −125
8

h2,6 = h4,3 = −299
24

h2,5 = h4,2 = −77
8

h3,3 = h1,6 = −25
3

h2,4 = h4,1 = −57
8

c5,−3 = 133
5

h4,5 = h1,10 = −387
20

h3,6 = h6,1 = −205
12

c5,−2 = 152
5

h2,10 = h4,5 = −851
40

h2,9 = h4,4 = −147
8

h2,8 = h4,3 = −627
40

h3,5 = h1,10 = −72
5

h2,7 = h4,2 = −527
40

h2,6 = h4,1 = −87
8

c7,−2 = 250
7

h2,10 = h4,3 = −1075
56

h2,9 = h4,2 = −943
56

h2,8 = h4,1 = −117
8

c9,−2 = 124
3

h2,10 = h4,1 = −147
8

The (h, c) Plane: Null Vectors with Level rs ≤ 400.

It might be illuminating, and the author is fond of plots anyway, to plot the sets ∂kH(p, q),
k = 0, 1, 2, for a variety of CFTs. The product pq is roughly a measure for the size of the
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CFT since the size of the conformal grid and thus the field content is determined by it. Thus,
it seems reasonable to plot all sets with pq ≤ n where we have chosen n = 400.

To make the structure of the (h, c) plane better visible, we transformed the variables via

x 7→ sign(x) log(|x| + 1) for x = h, c , (4.7)

which amounts in a double logarithmic scaling of the axes both, in positive as well as in
negative direction. The conformal weights are plotted in horizontal direction, the central
charges along the vertical direction. The following plots show only the part of the (h, c)
plane which belongs to c ≤ 1 CFTs, i.e. minimal models and cp,1 LCFTs, p > 0. The other
“half” with c ≥ 25 shares analogous features. Due to the map (4.7) the vertical range of
roughly [−5.5, 1.0] coresponds to −240 ≤ c ≤ 1, whereas the horizontal range [−5.5, 5.0]
does roughly correspond to −240 ≤ h ≤ 148. To guide the eye for better orientation, we
give here for the lables ±{0, 1, 2, 3, 4, 5} the corresponding values of h, c, which are in the
same oder ±{0, 1.718, 6.389, 19.086, 53.598, 147.413}.

c :l
h :↔

-6

-5

-4

-3

-2

-1

0

1

-3 -2 -1 0 1 2 3 4 5

Figure 1: All the spectra (H(p, q), cp,q) for all p, q > 0 coprime such that
pq ≤ 400, which constitutes the set of all irreducible highest weight representations
of minimal models. This means that for each central charge c we plotted all
conformal weights h from within the truncated conformal grid H(p, q) = {hr,s :
0 < r < q, 0 < s < p}. See text for details about the logarithmic scaling x 7→
sign(x) log(|x| + 1) for x = h, c, to make the pattern structure of the spectra of
minimal models better visible (cross ref. equation 4.7).
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c :l
h :↔

-6

-5

-4

-3

-2

-1

0

1

-3 -2 -1 0 1 2 3 4 5

Figure 2: All the spectra (∂H(p, q), cp,q) for all p, q > 0 coprime such that
pq ≤ 400, which constitutes the set of all Jordan cell representations, i.e. all
conformal weights where fields with logarithmic partners exist. This means that
for each central charge c we plotted all conformal weights h from the boundary of
the truncated conformal grid ∂H(p, q) = {hq,s : 0 < s ≤ p} ∪ {hr,p : 0 < r ≤ q}.
The logarithmic scaling is the same as in Figure 1, see text for details about it
(equation 4.7).

We did not plot (∂2H(p, q), cp,q) since these points just lie at the left border of the point-
set in figure 1, they belong to the highest weight representations with type III◦◦± embedding
structure of Verma modules. If one would put both plots above each other, one might
infer from them that the set of logarithmic representations precisely lies on the “forbidden”
curves of the pointset of ordinary highest weight representations. This illustrates the fact
that logarithmic representations appear, if the conformal weights of two highest weight
representations become identical.

As discussed in our earlier work [15], this situation arises in the limit of series of minimal
models cp1,q1

, cp2,q2
, cp3,q3

, . . .with limi→∞ piqi = ∞. Usually, the field content of these theories
increases with i, but it might happen that in the limit pi and qi become almost coprime. More
precisely, a sequence such as for example {cαp,(α+1)q}α∈Z+

converges to a limiting theory with
central charge limα→∞ cαp,(α+1)q = cp,q. Therefore, we expect a rather small field content at
the limit point since the conformal weights of the cαp,(α+1)q theories also approach the ones
of the cp,q model (modulo Z). A more detailed analysis (second reference in [15]) reveals that
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indeed conformal weights approach each other giving rise for Jordan cells. Hence, the theory
at the limit point, while having central chrage cp,q actually is a LCFT. The plots presented
here clearly visualize this topology of the space of CFTs in the (h, c) plane of their spectra.

To summarize, our results strongly suggest that augmented minimal models form rational
logarithmic conformal field theories in the same sense as the cp,1 models do. The only
difference between the former and the latter is that for the cp,1 models H(p, 1) = ∅. We
know since BPZ [1] that under fusion H(p, q) × H(p, q) → H(p, q), and since [19, 15] that
under fusion H ′(p, q) ×H ′(p, q) → H ′(p, q) with H ′(p, q) = ∂H(p, q) ∪ ∂2H(p, q), if we deal
with the full indecomposable representations. Therefore, the only difficulty can come from
mixed fusion products of type H(p, q) × H ′(p, q) which traditionally (without logarithmic
operators) are zero due to decoupling. The formalism presented in section 2, however, yields
non-zero fusion products by paying the price that representations from H(p, q) appear with
non-trivial multiplicities (because of the fact that the corresponding OPEs yield fields on the
right hand side with h ∈ H(p, q) mod Z, which have a non-trivial dependence on the formal
θ variables. As mentioned before, a more detailed analysis of augmented minimal models is
left for future work.

Acknowledgment: I would like to thank Ralph Blumenhagen, Victor Gurarie, Ian Kogan
and in particular Ziad Maassarani for discussions and comments. I am also very grateful to
Ralf Krafft. This work has been supported by the Deutsche Forschungsgemeinschaft.
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A Appendix

We present explicit results for all possible Virasoro logarithmic null vectors up to level 5.
The null vector at level 1 is trivial, |χ(1)

h=0,c〉 = L−1|0〉. There can be no logarithmic null
vector at this level. For null vectors of level n > 1 we make the general ansatz

|χ(n)
h,c〉 =

∑

j

∑

|n|=n

bnj (h, c)L−n

∣

∣

∣h; ∂j
θa(θ)

〉

(A.1)

and define matrix elements

N
(n)
k,l =

∂k

∂θk





∑

j

∑

|n|=n

bnj (h, c)
〈

h
∣

∣

∣L
n
′

l
L−n

∣

∣

∣h; ∂j
θa(θ)

〉





∣

∣

∣

∣

∣

∣

θ=0

=
k
∑

j=0

∑

|n|=n

bnj (h, c)
1

j!

∂j

∂hj
〈h|L

n
′

l
L−n

|h〉 , (A.2)

where n′
l is some enumeration of the p(n) different partitions of n. Since the maximal

possible rank of a Jordan cell representation which may contain a logarithmic null vector
is r ≤ p(n), we consider N (n) to be a p(n) × p(n) square matrix. Our particular ansatz is
conveniently chosen to simplify the action of the Virasoro modes on Jordan cells. Notice,
that the derivatives with respect to the conformal weight h do not act on the coefficients
bnj (h, c). Of course, we assume that a(θ) has maximal degree in θ, i.e. deg(a(θ)) = r − 1.

The Logarithmic Null Vectors at Level 2.

As an example, at level 2 we have p(2) = 2 and the matrix N (2) reads

N (2) =







b
{1,1}
0 (8h2 + 4h) + 6b

{2}
0 h b

{1,1}
0 (16h+ 4) + 6b

{2}
0 + b

{1,1}
1 (8h2 + 4h) + 6b

{2}
1 h

6b
{1,1}
0 h+ b

{2}
1

(

4h + 1
2
c
)

6b
{1,1}
0 + 4b

{2}
1 + 6b

{1,1}
1 h + b

{2}
1

(

4h+ 1
2
c
)





 .

(A.3)
A null vector is logarithmic of rank k ≥ 0 if the first k + 1 columns of N (n) are zero, where
k = 0 means an ordinary null vector. As described in the text, one first solves for ordinary
null vectors (such that the first column vanishes up to one entry). This determines the
bn0 (h, c). Then one puts bnk (h, c) = 1

k!
∂k

hb
n

0 (h, c). Without loss of generality we may then
assume that all entries except the last row are zero. In our example, this procedure results
in

N (2) =





0 0

10h2 − 16h3 − 2h2c− hc 20h− 48h2 − 4hc− c



 , (A.4)

where b
{1,1}
k = 1

k!
∂k

h(3h) and b
{2}
k = 1

k!
∂k

h(−2h(2h+1)) upto an overall normalization. The last
step is trying to find simultanous solutions for the last row, i.e. common zeros of polynomials
∈ C[h, c]. In our example, N

(2)
2,1 = 0 yields c = 2h(5− 8h)/(2h+ 1). Then, the last condition
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becomes N
(2)
2,2 = −2h(16h2 + 16h− 5)/(2h+ 1) = 0 which can be satisfied for h ∈ {0, −5

4
, 1

4
}.

From this we finally obtain the explicit logarithmic null vectors at level 2:

(h, c) |χ(2)
h,c〉

(0, 0) (3L2
−1 − 2L−2) |0; a(θ)〉

(1
4
, 1) (3L2

−1 − 3L−2)
∣

∣

∣

1
4
; a(θ)

〉

− 4L−2

∣

∣

∣

1
4
; ∂θa(θ)

〉

(−5
4
, 25) (3L2

−1 + 3L−2)
∣

∣

∣

−5
4

; a(θ)
〉

− 4L−2

∣

∣

∣

−5
4

; ∂θa(θ)
〉

Note, that according to our formalism, h = 0, c = 0 does not turn out to be a logarithmic
null vector at level 2. Here and in the following the highest order derivative ∂k

θ a(θ) indicates
the maximal rank of a logarithmic null vector to be k (and hence the maximal rank of the
corresponding Jordan cell representation to be r = k + 1). It is implicitly understood that
a(θ) is then chosen such that the highest order derivative yields a non-vanishing constant.

All null vectors are normalized such that all coefficients are integers. Clearly, they are
not unique since with |χ(θ)〉 =

∑

k

∣

∣

∣χk; ∂
k
θa(θ)

〉

every vector

|χ′(θ)〉 =
∑

k

∣

∣

∣

∣

∣

∣

χk;
∑

l≥0

λk,l∂
k+l
θ a(θ)

〉

(A.5)

is also a null vector.

The Logarithmic Null Vectors at Level 3.

Following the same procedure for level 3 null vectors, we first obtain two branches of solutions
c = ci(h), namely

c1(h) = −2h
8h− 5

1 + 2h
, c2(h) = −3h2 − 7h+ 2

h+ 1
. (A.6)

Clearly, c1(h) is the same solution as obtained at level 2, meaning the trivial fact that each
level 2 null vector is also a null vector at level 3. On the other hand, these solutions need
not all be redundant, because it might happen that a null vector at level n, which turned
out to be just an ordinary one, becomes a logarithmic null vector at a higher level n′ > n.
The results for level 3 are:

(h, c) |χ(3)
h,c〉 (trivial solutions)

(−1
5
, −22

5
) (175L3

−1 + 350L−2L−1 − 154L−3)
∣

∣

∣

−1
5

; a(θ)
〉

(0, 0) (−3L3
−1 + 2L−2L−1 + 2L−3) |0; a(θ)〉

(1
2
, 1

2
) (14L3

−1 − 28L−2L−1 − 7L−3)
∣

∣

∣

1
2
; a(θ)

〉
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(h, c) |χ(3)
h,c〉 (logarithmic null vectors)

(0,−2) (−L3
−1 + 2L−2L−1) |0; a(θ)〉 − L−3 |0; ∂θa(θ)〉

(1
4
, 1) (−9L3

−1 + 9L−2L−1 + 9L−3)
∣

∣

∣

1
4
; a(θ)

〉

+ (28L3
−1 − 16L−2L−1 − 16L−3)

∣

∣

∣

1
4
; ∂θa(θ)

〉

(1, 1) (3L3
−1 − 12L−2L−1 + 6L−3) |1; a(θ)〉

+ (7L3
−1 − 34L−2L−1 + 23L−3) |1; ∂θa(θ)〉

(−3, 25) (−49L3
−1 − 196L−2L−1 − 294L−3) |−3; a(θ)〉

+ (7L3
−1 + 126L−2L−1 + 287L−3) |−3; ∂θa(θ)〉

(−5
4
, 25) (−147L3

−1 − 147L−2L−1 − 147L−3)
∣

∣

∣

−5
4

; a(θ)
〉

+ (28L3
−1 + 224L−2L−1 + 224L−3)

∣

∣

∣

−5
4

; ∂θa(θ)
〉

(−2, 28) (−45L3
−1 − 90L−2L−1 − 90L−3) |−2; a(θ)〉

+ (7L3
−1 + 86L−2L−1 + 104L−3) |−2; ∂θa(θ)〉

From this we can infer that the first three solutions are only ordinary null vectors, and that
all remaining solutions correspond to rank 2 Jordan cell highest weight representations. We
also find the solutions already obtained at level 2, as is to be expected. Some care has to be
taken with the solution h = 0, c = −2. The c = c2,1 = −2 model is well known and has a rank
2 Jordan cell structure for the h = 0 representation. So, we would expect a logarithmic null
vector of level 3, since the logarithmic partner of the primary field Ψ(h=0;0)(z) ≡ Φ1,1(z) = I

is the field Ψ(h=0;1)(z) ≡ Φ1,3(z). However, our standard ansatz does not reveal this null
vector. The secret of this special solution is that the irreducible sub-representation at h = 0
is the vacuum representation, which always contains a level 1 null vector. Therefore, we
have the additional freedom to add a “zero” via

∣

∣

∣χ
(3)
h=0,c

〉

7→
∣

∣

∣χ
(3)
h=0,c

〉

+
(

αL2
−1 + βL−2

)

L−1 |0; ∂θa(θ)〉 . (A.7)

Moreover, such special solutions with h=0 do not satisfy our proposed general relation that
bn1 (h, c)|h=0,c=ci(0)

= ∂hb
n

0 (h, c)|h=0,c=ci(0)
with c = ci(h) the appropriate general solution for

the central charge for generic h (note that the level 1 null vector in the vacuum representation
is independent of c). The reason for this is that for h 6= 0 we can use h as a homogeneous
coordinate in the projective space of states (due to the freedom of normalization). For h = 0
the only coordinate left is c and hence we must calculate

bnk (h, c)|h=0,c=ci(0)
=

1

k!
∂k

hb
n

0 (h, ci(h))

∣

∣

∣

∣

h=0
(A.8)

instead, where the central charge has been replaced in advance by the appropriate solution
c = ci(h) for generic h.

It follows, that under certain circumstances h = 0 representations may be extended to
Jordan cell structure of rank at least 2. This is expected due to the fact that all cp,1

rational LCFTs have a rank 2 Jordan cell representation containing the vacuum (identity)
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representation. However, these representations have a more complicated structure, because
they form together with a representation on h=1 a staggered indecomposable module [35].

The recipe to find such null vectors with h= 0 is simple. One observes that L0|0; k〉 =
(1−δk,0)|0; k − 1〉. It is then easy to see that the only non-trivially vanishing matrix elements
at level n are of the form 〈0; a′(θ)|L

n
′L−n

|0; a(θ)〉 where both partitions n′ = {n′
1, n

′
2, . . .},

n = {n1, n2, . . .} do not contain 1. Restricting ourselves to the case of rank 2 Jordan cells,
and putting the coefficients bn0 (0, c) to zero where n does not contain 1, we are left solely
with conditions for bn1 (0, c), 1 6∈ n, and c, which depend on the bn0 (0, c), 1 ∈ n. For n = 2 we

would have to find a solution for b
{2}
1 and c which both depend only on one variable, b

{1,1}
0 , so

it is not surprising that we didn’t find any. For n = 3 however, we again have two constraints
(b

{3}
1 , c), but now also two variables (b

{1,1,1}
0 , b

{2,1}
0 ). For n = 4 we have three constraints and

three variables etc., in general there are p2(n) + 1 constraints and p(n) − p2(n) variables,
where p2(n) is the number of partitions of n not containing 1.

The Logarithmic Null Vectors at Level 4.

The next results are given without further comments and with trivial (non logarithmic)
solutions omitted. Level n = 4 is the smallest level where we find a logarithmic null vector
of rank 3, namely with h = −3, c = 25.

(h, c) |χ(4)
h,c〉

(− 1
4 ,−7) (315L4

−1 + 315L2
−2 − 210L−3L−1 − 210L−4 − 1050L−2L

2
−1)

∣

∣

−1
4 ; a(θ)

〉

+ (−878L−3L−1 + 2577L4
−1 − 11830L−2L

2
−1 + 3657L2

−2 − 1718L−4)
∣

∣

−1
4 ; ∂θa(θ)

〉

(0,−2) (L4
−1 − 2L−2L

2
−1 − 2L−3L−1) |0; a(θ)〉 + 2L−4 |0; ∂θa(θ)〉

(3
8 ,−2) (1260L4

−1 + 2835L2
−2 + 1260L−3L−1 − 1890L−4 − 6300L−2L

2
−1)

∣

∣

3
8 ; a(θ)

〉

+ (3832L−3L−1 + 2152L4
−1 − 14120L−2L

2
−1 + 9882L2

−2 − 7008L−4)
∣

∣

3
8 ; ∂θa(θ)

〉

(0, 1) (−3L4
−1 + 12L−2L

2
−1 − 6L−3L−1) |0; a(θ)〉 + (−16L2

−2 + 12L−4) |0; ∂θa(θ)〉
(1, 1) (−60L4

−1 + 240L−2L
2
−1 + 120L−3L−1 − 240L−4) |1; a(θ)〉

+ (−89L4
−1 + 476L−2L

2
−1 + 118L−3L−1 − 716L−4) |1; ∂θa(θ)〉

(9
4 , 1) (45L4

−1 + 405L2
−2 + 630L−3L−1 − 810L−4 − 450L−2L

2
−1)

∣

∣

9
4 ; a(θ)

〉

+ (1996L−3L−1 + 110L4
−1 − 1220L−2L

2
−1 + 1206L2

−2 − 2772L−4)
∣

∣

9
4 ; ∂θa(θ)

〉

(− 21
4 , 25) (−990L4

−1 − 8910L2
−2 − 33660L−3L−1 − 65340L−4 − 9900L−2L

2
−1)

∣

∣

−21
4 ; a(θ)

〉

+(45946L−3L−1 + 901L4
−1 + 11650L−2L

2
−1 + 12861L2

−2 + 102234L−4)
∣

∣

−21
4 ; ∂θa(θ)

〉

(−3, 25) (63504L4
−1 + 254016L−2L

2
−1 + 635040L−3L−1 + 762048L−4) |−3; a(θ)〉

+ (59283L4
−1 + 110124L−2L

2
−1 + 148302L−3L−1 + 76356L−4) |−3; ∂θa(θ)〉

+ (−15104L4
−1 − 186920L−2L

2
−1 − 63504L2

−2 − 450920L−3L−1 − 575628L−4)
∣

∣−3; ∂2
θa(θ)

〉

(− 27
8 , 28) (77220L4

−1 + 173745L2
−2 + 849420L−3L−1 + 1042470L−4 + 386100L−2L

2
−1)

∣

∣

−27
8 ; a(θ)

〉

+ (269896L−3L−1 + 71336L4
−1 + 150760L−2L

2
−1 − 148374L2

−2 + 113616L−4)
∣

∣

−27
8 ; ∂θa(θ)

〉

(−2, 28) (13860L−2L
2
−1 + 27720L−3L−1 + 27720L−4 + 6930L4

−1) |−2; a(θ))〉
+ (1577L4

−1 − 9716L−2L
2
−1 − 3564L2

−2 − 18640L−3L−1 − 21412L−4) |−2; ∂θa(θ)〉
(− 11

4 , 33) (208845L4
−1 + 696150L−2L

2
−1 + 208845L2

−2 + 1253070L−3L−1 + 1253070L−4)
∣

∣

−11
4 ; a(θ)

〉

+ (58354L4
−1 − 244540L−2L

2
−1 − 304086L2

−2 − 525036L−3L−1 − 684156L−4)
∣

∣

−11
4 ; ∂θa(θ)

〉
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The Logarithmic Null Vectors at Level 5.

Again, we only list the non-trivial results. Searching for logarithmic null vectors produces a
high amount of trivial solutions (mostly from minimal models). Indeed, although minimal
models contain pairs of operators Φr,s(z), Φt,u(z) with hr,s(c) = ht,u(c), these operators are
not different ones, but are identified with each other. Therefore, the existence of logarithmic
operators is bound to the non-existence of a BRST operator such that these pairs of operators
get identified in the BRST invariant representation modules. It has been shown for the cp,1

models that one of the BRST charges becomes a local operator and thus an element of the
field content of the theory itself, spoiling the usual field identifications in minimal models.

(h, c) |χ(5)
h,c〉

(− 1
2 ,− 25

2 ) (168L5
−1 − 840L−2L

3
−1 − 378L−3L

2
−1 + (−504L−4 + 672L2

−2)L−1 + 168L−3L−2

− 84L−5)
∣

∣

−1
2 ; a(θ)

〉

+ (−260L5
−1 − 6316L−2L

3
−1 + 1425L−3L

2
−1 + (6576L2

−2 + 864L−4)L−1 + 2076L−5

+ 1308L−3L−2)
∣

∣

−1
2 ; ∂θa(θ)

〉

(− 1
4 ,−7) (−4095L5

−1 + 13650L−2L
3
−1 + 16380L−3L

2
−1 + (8190L−4 − 4095L2

−2)L−1 − 8190L−3L−2

+ 4095L−5)
∣

∣

−1
4 ; a(θ)

〉

+ (−13641L5
−1 + 86150L−2L

3
−1 + 78564L−3L

2
−1 + (−27201L2

−2 + 5442L−4)L−1 + 81L−5

− 52482L−3L−2)
∣

∣

−1
4 ; ∂θa(θ)

〉

(0,−7) (9L5
−1 − 60L−2L

3
−1 + 64L2

−2L−1 − 6L−3L
2
−1 − 36L−4L−1) |0; a(θ)〉

+ (−32L−3L−2 + 12L−5) |0; ∂θa(θ)〉
(0,−2) (−L5

−1 + 9L−2L
3
−1 − 14L2

−2L−1 + 4L−3L
2
−1 + 4L−4L−1) |0; a(θ)〉

+ (7L−3L−2 + L−5) |0; ∂θa(θ)〉
(3
8 ,−2) (−13860L5

−1 + 69300L−2L
3
−1 + 55440L−3L

2
−1 + (−6930L−4 − 31185L2

−2)L−1 − 62370L−3L−2

+ 31185L−5)
∣

∣

3
8 ; a(θ)

〉

+ (32L5
−1 + 36800L−2L

3
−1 + 18352L−3L

2
−1 + (−55368L2

−2 + 4636L−4)L−1 + 69228L−5

− 110736L−3L−2)
∣

∣

3
8 ; ∂θa(θ)

〉

(1,−2) (90L5
−1 − 900L−2L

3
−1 + 540L−3L

2
−1 + (−1080L−4 + 1440L2

−2)L−1 − 720L−3L−2

+ 360L−5) |1; a(θ)〉
+ (433L5

−1 − 3910L−2L
3
−1 + 1878L−3L

2
−1 + (6568L2

−2 − 6276L−4)L−1 + 1012L−5

− 3464L−3L−2) |1; ∂θa(θ)〉
(0, 1) (−3L5

−1 + 12L−2L
3
−1 + 6L−3L

2
−1 − 12L−4L−1) |0; a(θ)〉 + (−32L−3L−2 + 20L−5) |0; ∂θa(θ)〉

(1
4 , 1) (−7785L5

−1 + 9450L−2L
3
−1 + 48060L−3L

2
−1 + (46710L−4 − 1665L2

−2)L−1 − 26370L−3L−2

+ 45045L−5)
∣

∣

1
4 ; a(θ)

〉

+ (18058L5
−1 − 49260L−2L

3
−1 − 24168L−3L

2
−1 + (39362L2

−2 − 46068L−4)L−1 − 6706L−5

+ 7556L−3L−2)
∣

∣

1
4 ; ∂θa(θ)

〉

(1, 1) (3600L−5 + 300L5
−1 − 1200L−2L

3
−1 − 1800L−3L

2
−1) |1; a(θ)〉 + (157L5

−1 − 1100L−2L
3
−1

− 1242L−3L
2
−1 + (−512L2

−2 + 2400L−4)L−1 + 256L−3L−2 + 7540L−5) |1; ∂θa(θ)〉
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(h, c) |χ(5)
h,c〉 (continued)

(9
4 , 1) (−525L5

−1 + 5250L−2L
3
−1 − 2100L−3L

2
−1 + (−5250L−4 − 4725L2

−2)L−1 − 9450L−3L−2

+ 23625L−5)
∣

∣

9
4 ; a(θ)

〉

+ (−646L5
−1 + 7860L−2L

3
−1 − 6504L−3L

2
−1 + (−8334L2

−2 − 7860L−4)L−1 + 54270L−5

− 16668L−3L−2)
∣

∣

9
4 ; ∂θa(θ)

〉

(4, 1) (10920L5
−1 − 218400L−2L

3
−1 + 589680L−3L

2
−1 + (−1703520L−4 + 698880L2

−2)L−1

− 1397760L−3L−2 + 2271360L−5) |4; a(θ)〉
+ (22973L5

−1 − 495860L−2L
3
−1 + 1491702L−3L

2
−1 + (1703232L2

−2 − 4610268L−4)L−1

+ 6714864L−5 − 3755904L−3L−2) |4; ∂θa(θ)〉
(− 21

4 , 25) (−22770L5
−1 − 227700L−2L

3
−1 − 1001880L−3L

2
−1 + (−3051180L−4 − 204930L2

−2)L−1

− 409860L−3L−2 − 4713390L−5)
∣

∣

−21
4 ; a(θ)

〉

+ (−14173L5
−1 − 81010L−2L

3
−1 − 210716L−3L

2
−1 + (−18261L2

−2 − 211166L−4)L−1

+ 126477L−5 − 36522L−3L−2)
∣

∣

−21
4 ; ∂θa(θ)

〉

(−8, 25) (243540L5
−1 + 4870800L−2L

3
−1 + 27763560L−3L

2
−1 + (119821680L−4 + 15586560L2

−2)L−1

+ 62346240L−3L−2 + 319524480L−5) |−8; a(θ)〉
+ (−201067L5

−1 − 4833140L−2L
3
−1 − 30958458L−3L

2
−1 + (−18063808L2

−2

− 149094204L−4)L−1 − 437525104L−5 − 80048512L−3L−2) |−8; ∂θa(θ)〉
(−3, 25) (494629L5

−1 + 166300L−2L
3
−1 − 8361514L−3L

2
−1 + (−8372784L2

−2 − 42795892L−4)L−1

− 86217192L−5 − 15363936L−3L−2) |−3; a(θ)〉
+ (−254016000L−1L−4 − 31752000L−2L

3
−1 − 111132000L−3L

2
−1 − 285768000L−5

− 7938000L5
−1) |−3; ∂θa(θ)〉

+ (210105L5
−1 + 20103300L−2L

3
−1 + 74383470L−3L

2
−1 + (197235360L−4 + 13547520L2

−2)L−1

+ 20321280L−3L−2 + 266025060L−5)
∣

∣−3; ∂2
θa(θ)

〉

(− 5
4 , 25) (−522018L5

−1 − 200340L−2L
3
−1 − 1437912L−3L

2
−1 + (−3132108L−4 + 321678L2

−2)L−1

+ 449820L−3L−2 − 2810430L−5)
∣

∣

−5
4 ; a(θ)

〉

+ (112097L5
−1 + 886810L−2L

3
−1 + 2533260L−3L

2
−1 + (−350215L2

−2 + 4848726L−4)L−1

+ 4498511L−5 − 412174L−3L−2)
∣

∣

−5
4 ; ∂θa(θ)

〉

(−4, 26) (−658350L5
−1 − 4389000L−2L

3
−1 − 15800400L−3L

2
−1 + (−39501000L−4 − 2633400L2

−2)L−1

− 5266800L−3L−2 − 52668000L−5) |−4; a(θ)〉
+ (−66567L5

−1 + 1411570L−2L
3
−1 + 6502092L−3L

2
−1 + (3205032L2

−2 + 21063180L−4)L−1

+ 37048440L−5 + 7128264L−3L−2) |−4; ∂θa(θ)〉
(−2, 28) (−235620L5

−1 − 415800L−2L
3
−1 − 1413720L−3L

2
−1 + (−2827440L−4 + 110880L2

−2)L−1

+ 110880L−3L−2 − 2716560L−5) |−2; a(θ)〉
+ (33601L5

−1 + 535350L−2L
3
−1 + 1481478L−3L

2
−1 + (93608L2

−2 + 3042156L−4)L−1

+ 3302084L−5 + 180728L−3L−2) |−2; ∂θa(θ)〉
(− 27

8 , 28) (−554268L5
−1 − 2771340L−2L

3
−1 − 8868288L−3L

2
−1 + (−19676514L−4 − 1247103L2

−2)L−1

− 2494206L−3L−2 − 23694957L−5)
∣

∣

−27
8 ; a(θ)

〉

+ (9632L5
−1 + 1526208L−2L

3
−1 + 5327280L−3L

2
−1 + (2238744L2

−2 + 13829124L−4)L−1

+ 0919684L−5 + 4477488L−3L−2)
∣

∣

−27
8 ; ∂θa(θ)

〉
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(h, c) |χ(5)
h,c〉 (continued)

(−5, 28) (−24024L5
−1 − 240240L−2L

3
−1 − 864864L−3L

2
−1 + (−2306304L−4 − 384384L2

−2)L−1

− 960960L−3L−2 − 3843840L−5) |−5; a(θ)〉
+ (−5792L5

−1 + 28595L−2L
3
−1 + 165576L−3L

2
−1 + (269976L2

−2 + 713808L−4)L−1

+ 2087148L−5 + 867132L−3L−2) |−5; ∂θa(θ)〉
(−4, 33) (−12186720L5

−1 − 81244800L−2L
3
−1 − 235609920L−3L

2
−1 + (−503717760L−4

− 86661120L2
−2)L−1 − 173322240L−3L−2 − 671623680L−5) |−4; a(θ)〉

+ (81693L5
−1 + 37104780L−2L

3
−1 + 121415478L−3L

2
−1 + (98074688L2

−2

+ 308044644L−4)L−1 + 546134192L−5 + 217814656L−3L−2) |−4; ∂θa(θ)〉
(− 11

4 , 33) (−30421755L5
−1 − 101405850L−2L

3
−1 − 283936380L−3L

2
−1 + (−547591590L−4

− 30421755L2
−2)L−1 − 60843510L−3L−2 − 578013345L−5)

∣

∣

−11
4 ; a(θ)

〉

+ (2904546L5
−1 + 81047140L−2L

3
−1 + 219449816L−3L

2
−1 + (77929626L2

−2

+ 457905228L−4)L−1 + 582191814L−5 + 136340532L−3L−2)
∣

∣

−11
4 ; ∂θa(θ)

〉

(− 7
2 , 77

2 ) (−66512160L5
−1 − 332560800L−2L

3
−1 − 848030040L−3L

2
−1 + (−1596291840L−4

− 266048640L2
−2)L−1 − 465585120L−3L−2 − 1862340480L−5)

∣

∣

−7
2 ; a(θ)

〉

+ (4370107L5
−1 + 196391660L−2L

3
−1 + 526060563L−3L

2
−1 + (360913408L2

−2

+ 1102564968L−4)L−1 + 1629758776L−5 + 659098684L−3L−2)
∣

∣

−7
2 ; ∂θa(θ)

〉
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