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1 Introduction

Infinite dimensional symmetry algebras play a major role in two-dimensional conformal

field theory (CFT). In particular, the Hilbert spaces of the best known CFTs, the minimal

models [BPZ84], decompose into irreducible highest weight representations of such alge-

bras. More generally, the characters of the representations are an essential ingredient for

a CFT. They can be written as χ(q) = q−
c
24 TrqL0 , with c being the central charge and L0

the Virasoro zero mode, and hence encode the energy spectrum (at least certain sectors).

The trace is usually taken over an irreducible highest weight representation and the factor

q−
c
24 guarantees the needed linear behavior under modular transformations.

The minimal models are distinguished by the central charge, which can be parameterized

by two coprime integers p and p′ (w.l.o.g. we set p > p′) as

cp,p′ = 1− 6
(p− p′)2

pp′
, (1.1)

and the highest weights

hp,p′

r,s =
(pr − p′s)2 − (p− p′)2

4pp′
(1.2)

with 1 ≤ r < p′ and 1 ≤ s < p. Their characters are constructed as formal power series

χ in some variable q = e2πiτ , τ ∈ h (upper half-plane). Non-unique bases of the Hilbert

spaces in two dimensional CFTs establish the existence of several alternative character

formulae. From both a mathematical and physical point of view, further interest attaches

to the so-called fermionic sum representations for a character, which first appeared in the

context of the Rogers-Schur-Ramanujan identities [Rog94, Sch17, RR19] (for a ∈ {0, 1})

∞∑
n=0

qn(n+a)

(q)n

=
∞∏

n=1

1

(1− q5n−1−a)(1− q5n−4+a)
(1.3)

with

(q)n =
n∏

i=1

(1− qi) and per definition (q)0 = 1 and (q)∞ = lim
n→∞

(q)n . (1.4)

These identities coincide with the two characters of the M(5, 2) minimal model (normal-

ized to 1 at q = 0). By using Jacobi’s triple product identity (see e.g. [And84]), the r.h.s.

of (1.3) can be transformed to give a simple example of what is called a bosonic-fermionic

q-series identity :

∞∑
n=0

qn(n+a)

(q)n

=
1

(q)∞

∞∑
n=−∞

(qn(10n+1+2a) − q(5n+2−a)(2n+1)) . (1.5)
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The so-called bosonic expression on the r.h.s. of (1.5) corresponds to two special cases of

the general character formula for minimal models M(p, p′) [RC84]

χ̂p,p′

r,s = q
c
24
−hp,p′

r,s χp,p′

r,s =
1

(q)∞

∞∑
n=−∞

(qn(npp′+pr−p′s) − q(np+s)(np′+r)) (1.6)

with χ̂p,p′
r,s being the normalized character. The symmetry χp,p′

r,s = χp,p′

p′−r,p−s follows from

(1.2). Since (1.6) is computed by eliminating null states from the Hilbert space of a free

chiral boson [?], it is referred to as bosonic form. Its signature is the alternating sign, which

reflects the subtraction of null vectors. The factor (q)∞ keeps track of the free action of

the Virasoro ’raising’ modes. Furthermore, it can be expressed in terms of Θ-functions

(2.7), which directly point out the modular transformation properties of the character.

In contrast, the fermionic sum representation possesses a remarkable interpretation in

terms of quasi-particles for the states, obeying Pauli’s exclusion principle. In the first

systematic study of fermionic expressions [KKMM93b], sum representations for all char-

acters of the unitary Virasoro minimal models and certain non-unitary minimal models

were given. The list of expressions was augmented to all p and p′ and certain r and s in

[BMS98]. Eventually, the fermionic expressions for the characters of all minimal models

were presented in [Wel05]. Such a fermionic expression, which is a generalization of the left

hand side of (1.3), is a linear combination of fundamental fermionic forms. A fundamental

fermionic form [BMS98, Wel05, DKMM94] is∑
~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c∏j
i=1(q)i

r∏
i=j+1

[
g(~m)

mi

]
q

(1.7)

with A ∈ Mr(Q), ~b ∈ Qr, c ∈ Q, 0 ≤ j ≤ r, g a certain linear, algebraic function in the

mi, 1 ≤ i ≤ r, and the q-binomial coefficient defined as[
n

m

]
q

=


(q)n

(q)m(q)n−m
if 0 ≤ m ≤ n

0 otherwise
. (1.8)

If j = r, then the fundamental fermionic form reduces to the form that is found in Nahm’s

conjecture (see e.g. [Nah04])

fA,~b,c(τ) =
∑

~m∈(Z≥0)r

restrictions

q ~mtA~m+~bt ~m+c

(q)~m

, (1.9)

which makes a prediction whether for a given matrix A there exist ~b and c such that (1.9)

is a modular function.1 The bosonic representations are in general unique, whereas there

is usually more than one fermionic expression for the same character.

1The constant c is not to be confused with the central charge cp,p′ .
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In addition to the noted minimal models, there exist other theories that have more

symmetries than just the Virasoro algebra. They are generated by modes of currents

different from the energy-momentum tensor. Possible extensions lead to free fermions,

Kač-Moody algebras, Superconformal algebras orW-algebras. Here we focus on characters

of representations of these extended symmetry algebras (especially of the W-algebras),

which contain the Virasoro algebra as a subalgebra. Specifically, we are interested in the

W(2, 2p−1, 2p−1, 2p−1) series of so-called triplet algebras [Kau91], which constitute the

best understood examples of logarithmic conformal field theory (LCFT) models2 and have

central charges cp,1 = 1− 6 (p−1)2

p
. For LCFTs, almost all of the basic notions and tools of

(rational) CFTs, such as null vectors, (bosonic) character functions, partition functions,

fusion rules, modular invariance, have been generalized by now. The main difference to

ordinary rational CFTs such as the minimal models is the occurence of indecomposable

representations. By contributing a complete set of fermionic character expressions for the

W(2, 2p − 1, 2p − 1, 2p − 1) models with p ≥ 2 (which we refer to as the cp,1 models),

we provide further evidence to answer the question about whether these models, although

they lie outside the usual classification scheme of rational CFTs, are nonetheless bona fide

theories.

Furthermore, as mentioned above, fermionic sum representations for characters ad-

mit an interpretation in terms of fermionic quasi-particles, as shown in [KM93] (see also

[KKMM93a]). This can be easily seen from the sum (1.9) with the help of combinatorics:

The number of additive partitions PM(N, N ′) of a positive integer N into M distinct3

non-negative integers which are smaller than or equal to N ′ is stated by [Sta72]

∞∑
N=0

PM(N, N ′)qN = q
1
2
M(M−1)

[
N ′ + 1

M

]
q

, (1.10)

which in the limit N ′ →∞ takes the form

lim
N ′→∞

∞∑
N=0

PM(N, N ′)qN = q
1
2
M(M−1) 1

(q)M

. (1.11)

Applying (1.11) to the fermionic sum representation (1.9) leads to

r∏
i=1

 ∞∑
mi

restrictions

∞∑
N=0

Pmi
(N)qN+(bi+

1
2
)mi+

Pr
j=1 Aijmimj− 1

2
m2

i

 , (1.12)

where PM(N) = limN ′→∞ PM(N, N ′). The constant c has been omitted, since it would

just result in an overall shift of the energy spectrum. For the quasi-particle interpretation,

2For reviews, see [Flo03, Gab03] and references therein.
3The requirement of distinctiveness expresses the fermionic nature of the quasi-particles, i.e. Pauli’s

exclusion principle.
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the characters are regarded as partition functions Z for left-moving excitations with the

ground-state energy scaled out

χ ∼ Z =
∑
states

e−
Estates

kT =
∞∑
l=0

P (El)e
− El

kT (1.13)

with T being the temperature, k the Boltzmann’s constant, El the energy and P (El)

the degeneracy of the particular energy level l. This means that if we assume massless

single-particle energies

e(pi
α) = vpi

α (1.14)

(v referred to as the fermi velocity, spin-wave velocity, speed of sound or speed of light),

where pi
α denotes the quasi-particle α of ’species’ i (1 ≤ i ≤ r), and if in (1.12) we set

q = e−
v

kT , (1.15)

we deduce that the partition function corresponds to a system of quasi-particles that are

of r different species and which obey the Pauli exclusion principle

pi
α 6= pi

β for α 6= β and all i , (1.16)

but whose momenta pi
α are otherwise freely chosen from the sets

Pi =
{
pi

min, p
i
min + 1, pi

min + 2, . . . , pi
max

}
(1.17)

with minimum momenta

pi
min(~m) =

[
((A− 1

2
)~m)i + bi +

1

2

]
(1.18)

and with the maximum momenta pi
max either infinite if i ≤ j in (1.7) or, if i > j, finite

and dependent on ~m, ~b and g. Since the fermionic character expressions we present for

the cp,1 series of LCFTs are all of the type (1.9), we will only deal with the case that

all pi
max = ∞ in this article, i.e. the spectra are not bounded from above. This means

that a multi-particle state with energy El may consist of exactly those combinations of

quasi-particles of arbitrary species i, whose single-particle energies e(pi) add up to El and

where Pauli’s principle holds for any two quasi-particles of that combination unless they

belong to different species. Possible sum restrictions then result in the requirement that

certain particles may only be created in conjunction with certain others.

The outline of the article is as follows: In section 2, the bosonic character expressions

for the LCFT models corresponding to central charge cp,1 are given and the fermionic

counterparts are obtained. In section 3, it is shown that the new fermionic character

expressions correctly lead to dilogarithm identities. In section 4, we provide a physical

interpretation of the results of section 2.
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2 Characters of the Triplet Algebras

W(2, 2p − 1, 2p − 1, 2p − 1)

2.1 Highest Weight Representations

A minimal model with central charge cp,p′ admits highest weights hp,p′
r,s (see (1.2)) with

1 ≤ r < p′ and 1 ≤ s < p. In contrast, the h-values of all 3p−1 inequivalent representations

for the LCFT models with cp,1 and chiral symmetry algebra W(2, 2p−1, 2p−1, 2p−1) can

be read off the extended conformal grid of the augmented minimal model [Flo97, EF06],

corresponding formally to central charge c3p,3. For example, in the case p = 2 and c2,1 =

−2, the only possible highest weights are h ∈ {−1
8
, 0, 3

8
, 1}, where h = 0 corresponds to two

inequivalent representations [GK96]. In comparison to the singlet algebra W(2, 2p − 1),

which is too small to obtain a rational cp,1 model, the triplet algebra now serves as its

maximally extended symmetry algebra. The way to get theW-algebra characters is to sum

up appropriate subsets of Virasoro characters of degenerate highest weight representations,

keeping in mind that only those highest weights are permitted which differ by integers and

taking care of multiplicities caused by the su(2) symmetry among the triplet of chiral fields

of conformal weight 2p− 1.

2.2 Characters in Bosonic Form

Analyzing the action of the triplet algebras on the degenerate Virasoro representations

[GK96, Flo96] as well as the modular transformation properties of the vacuum character

allows to find a complete set of character functions for the cp,1 models that is closed under

modular transformations [Flo97]:

χ0,p =
Θ0,p

η
representation to hp,1

1,p (2.1)

χp,p =
Θp,p

η
hp,1

1,2p (2.2)

χ+
λ,p =

(p− λ)Θλ,p + (∂Θ)λ,p

pη
hp,1

1,p−λ (2.3)

χ−λ,p =
λΘλ,p − (∂Θ)λ,p

pη
hp,1

1,3p−λ (2.4)

χ̃+
λ,p =

Θλ,p + iαλ(∇Θ)λ,p

η
hp,1

1,p+λ (2.5)

χ̃−λ,p =
Θλ,p − iα(p− λ)(∇Θ)λ,p

η
hp,1

1,p+λ (2.6)
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where 0 < λ < p, k = pp′ = p, λ = pr − p′s = pr − s and with the Jacobi-Riemann

Θ-function defined as

Θλ,k(τ) =
∑
n∈Z

q
(2kn+λ)2

4k , (2.7)

the affine Θ-function defined as

(∂Θ)λ,k(τ) =
∑
n∈Z

(2kn + λ)q
(2kn+λ)2

4k (2.8)

and the Dedekind η-function defined as

η(q) = q1/24(q)∞ . (2.9)

Here, q = e2πiτ , τ ∈ h (upper half-plane), λ is called the index and k the modulus. The

Θ-functions satisfy the symmetries

Θλ,k = Θ−λ,k = Θλ+2k,k (2.10)

(∂Θ)−λ,k = −(∂Θ)λ,k . (2.11)

Θλ,k(τ)

η(τ)
is a modular form of weight zero with respect to the generators T : τ 7→ τ+1 and S :

τ 7→ − 1
τ

of the modular group PSL(2, Z). But since
(∂Θ)λ,k(τ)

η(τ)
is a modular form of weight

one with respect to S, some of the above character functions are of inhomogeneous modular

weight, thus leading to S-matrices with τ -dependent coefficients. However, adding

(∇Θ)λ,k(τ) =
log q

2πi

∑
n∈Z

(2kn + λ)q
(2kn+λ)2

4k , (2.12)

one finds a closed finite dimensional representation of the modular group with constant

S-matrix coefficients.

Note that (2.5) and (2.6) are not characters of representations in the usual sense. Actu-

ally, these are regularized character functions and the α-dependent part has an interpreta-

tion as torus vacuum amplitudes [FG06]. In the limit α → 0, they become the characters

of the full reducible but indecomposable representations.

2.3 Fermionic Character Expressions for W(2, 3, 3, 3)

We present fermionic sum representations for all characters of all cp,1 models. All of them

consist of only one fundamental fermionic form. In this section, we present in detail the

fermionic expressions for the case p = 2 and then generalize to p > 2 in the next section.
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In the case of p = 2, the bosonic characters read:

χ+
1,2 =

Θ1,2 + (∂Θ)1,2

2η
vacuum irrep V0 to h1,1 = 0 (2.13)

χ0,2 =
Θ0,2

η
irrep to h1,2 = −1

8
(2.14)

χ1,2 =
Θ1,2

η
indecomp. rep R0(⊃ V0) to h1,3 = 0 (2.15)

χ2,2 =
Θ2,2

η
irrep to h1,4 = 3

8
(2.16)

χ−1,2 =
Θ1,2 − (∂Θ)1,2

2η
irrep to h1,5 = 1. (2.17)

When α → 0, the general forms (2.5) and (2.6) lead to the character expression (2.15)

[Kau95, Flo97]. Actually, there exist two indecomposable representations, R0 and R1,

which, however, are equivalent and thus share the same character.

The fermionic expression for
Θλ,k(τ)

η(τ)
can be calculated from its bosonic counterpart via

the Durfee rectangle identity

∞∑
n=0

qn2+nk

(q)n(q)n+k

=
1

(q)∞
(2.18)

(see e.g. [And84]) to be the sum-restricted r-fold q-hypergeometric series

Λλ,k(τ) =
Θλ,k(τ)

η(τ)

=
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”
~m+ 1

2

“
λ

−λ

”t
~m+λ2

4k
− 1

24

(q)~m

=
∑

~m∈(Z≥0)2

m1+m2≡1 (mod 2)

q
1
4

~mt
“

k 2−k
2−k k

”
~m+ 1

2

„
−(k−λ)

k−λ

«t

~m+
(k−λ)2

4k
− 1

24

(q)~m

(2.19)

with (q)~m =
∏r

i=1(q)mi
, r = 2 [KMM93].4 This serves for (2.14) to (2.16) and is in

agreement with Nahm’s conjecture (see e.g. [Nah04]), which predicts that for a matrix

of the form A = 1
2

“
α 1−α

1−α α

”
with rational coefficients, there exist a vector ~b ∈ Qr and a

constant c ∈ Q such that (1.9) is a modular function.

4Note that (2.19) is not unique just as (2.7): According to (2.10), the vector may be changed in certain
ways along with the constant.
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The fermionic expressions of the remaining two characters may be calculated as follows:

By using (∂Θ)1,2

η3(q)
= 1 and the easily proven identity

η(q) = q
1
24

∞∑
n=0

(−1)nq(
n+1

2 )

(q)n

(2.20)

by Euler (see e.g. [And84]), which implies that

η2(q) = η̃2(q,−1) with η̃2(q, z) =
∑

~m∈(Z≥0)2

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m+ 1

12 zm1+m2

(q)~m

, (2.21)

and by using furthermore the relation

∑
~m∈(Z≥0)2

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m

(q)~m

=
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“
1

−1

”t
~m

(q)~m

(2.22)

(which follows essentially from
∑∞

m=0
qm(m+1)/2

(q)m
= 1

2

∑∞
m=0

qm(m−1)/2

(q)m
), the remaining two

characters also yield expressions which consist of only one fundamental fermionic form.

The following is a list of the fermionic expressions for all five characters of the LCFT

model corresponding to central charge c2,1 = −2:

χ+
1,2 =

∑
~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m+ 1

12

(q)~m

(2.23)

χ0,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m− 1

24

(q)~m

(2.24)

χ1,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2

“
1

−1

”t
~m+ 1

12

(q)~m

(2.25)

χ2,2 =
∑

~m∈(Z≥0)2

m1+m2≡0 (mod 2)

q
1
2

~mt(1 0
0 1)~m+

“
1

−1

”t
~m+ 11

24

(q)~m

(2.26)

χ−1,2 =
∑

~m∈(Z≥0)2

m1+m2≡1 (mod 2)

q
1
2

~mt(1 0
0 1)~m+ 1

2(1
1)

t
~m+ 1

12

(q)~m

. (2.27)

Using the equality to the bosonic representation of the characters, these give bosonic-

fermionic q-series identities generalizing the left and right hand sides of (1.5). In (2.24)

to (2.26), also the last line of (2.19) may be used, where m1 + m2 ≡ 1 (mod 2).
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It is remarkable that, although two of the bosonic characters have inhomogeneous mod-

ular weight, there is a uniform fermionic representation for all five characters with the

same matrix A in every case. But on the other hand, this is a satisfying result, since this

is also the case for all other models for which fermionic character expressions are known:

Their different modules are only distinguished by the linear term in the exponent, not by

the quadratic one. Note that the fact that the quadratic form is diagonal fits well with

the description of the c = −2 model in terms of symplectic fermions [Kau95, Kau00], see

section 4.

2.4 Fermionic Character Expressions for p > 2

We now generalize the results of the foregoing section to p > 2 and present fermionic sum

representations for all characters of the LCFT models corresponding to central charge cp,1.

All of them consist of a single fundamental fermionic form.

The matrix A in the case of p = 2 can be understood as the degenerate inverse Cartan

matrix of the series of Lie algebras Dp. Then, generalizing to the case p > 2, we checked

numerically up to k = 5 to high order and assume it for k > 5 that the fermionic character

expressions for the cp,1 models5 can be expressed as follows and indeed equal the bosonic

ones (cf. (2.1)-(2.6)), the latter being redisplayed on the r.h.s. for convenience:

χλ,k =
∑

~m∈(Z≥0)k

mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~bt

λ,k ~m+c?
λ,k

(q)~m

=
Θλ,k

η
(2.28)

χ+
λ′,k =

∑
~m∈(Z≥0)k

mk−1+mk≡0 (mod 2)

q
~mtC−1

Dk
~m+~b′

+t

λ′,k ~m+c?
λ′,k

(q)~m

=
(k − λ′)Θλ′,k + (∂Θ)λ′,k

kη
(2.29)

χ−λ′,k =
∑

~m∈(Z≥0)k

mk−1+mk≡1 (mod 2)

q
~mtC−1

Dk
~m+~b′

−t

λ′,k ~m+c?
k−λ′,k

(q)~m

=
λ′Θλ′,k − (∂Θ)λ′,k

kη
(2.30)

for 0 ≤ λ ≤ k and 0 < λ′ < k, where k = p since p′ = 1 and (~bλ,k)i = λ
2
(±δi,k−1 ∓ δi,k)

for 1 ≤ i ≤ k, (~b′
+

λ′,k)i = max{0, λ′ − (k − i − 1)} for 1 ≤ i < k − 1 and (~b′
+

λ′,k)i = λ′

2
for

k − 1 ≤ i ≤ k, (~b′
−
λ′,k)i = (~b′

+

k−λ′,k)i and c?
λ,k = λ2

4k
− 1

24
.6 Thus, as in the previous section,

5This means the characters and not the torus vacuum amplitudes (2.5) and (2.6). Note that lim
α→0

χ̃+
λ,k =

lim
α→0

χ̃−λ,k = χλ,k for 0 < λ < k.
6Note that in (2.28), also mk−1 + mk ≡ 1 (mod 2) may be used as restriction, but then the vector and

the constant change to ~bk−λ,k and c?
k−λ,k, respectively (cf. (2.19)).
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the p× p matrix A = C−1
Dp

is the same for all characters corresponding to a fixed p, i.e. for

a fixed model. This is in agreement with previous results on fermionic expressions, since it

is known to also be the case for the characters of a given minimal model (see e.g. [Wel05]).

Note that in [KKMM93a], fermionic expressions for the characters of the free boson with

central charge c = 1 and compactification radius r =
√

p
2

[Gin88] have been obtained.

Those characters equal (2.28). Thus, some of the expressions in (2.28) already appeared

in [KKMM93a], but only for λ = 0 and λ = k and only for the special case ~b = ~0.

2.5 More Fermionic Forms

Some of the summands of the bosonic character expressions of the triplet algebras

W(2, 2p − 1, 2p − 1, 2p − 1) resemble the Kač-Peterson characters of the affine Lie al-

gebra A
(1)
1 [KP84]. Fermionic expressions for those characters are known, but most of

them are not of type (1.9) but instead involve q-binomial coefficients. We display in short

the known fermionic expressions and present new fermionic expressions of type (1.9) below.

Note the fermionic expressions for the irreducible integrable representations of A
(1)
1 at

level k − 2 [BLS95]

(∂Θ)λ,k(τ)

η3(τ)
=

∞∑
m1,...,mk−1=0

(~m′)i≡( ~Q(λ))i (mod 2)

q ~mtBk ~m+c]
λ,k

(q)m1(q)m2

k−1∏
i=3

[
d(1

2
(2− CAk−2

)~m′)i−1e
mi

]
q

(2.31)

for 0 < λ < k with ~m′t = (m1 + m2, m3, m4, . . . ,mk−1) and

4Bk = Ck + CAk−1
, (Ck)ij =


−1 if i + j is even and i + j ≤ 4

2 if i + j is odd and i + j ≤ 4

0 if i + j > 4

, (2.32)

where CAk
is the Cartan matrix of the Lie algebra Ak

∼= s`k+1 and c]
λ,k = 2λ2+k−2kλ

8k
.

Given any x ∈ R, dxe and bxc mean the next integer greater than or equal to x and

the next integer less than or equal to x, respectively. The following restrictions hold for

the sum variables: (~m′)i = ( ~Q(λ))i (mod 2) with ~Q(λ) = ((
∑bλ

2
−1c

j=0 δi,λ−(2j+1))i : i ∈
{1, . . . , k − 2}) ∈ (Z2)

k−2, i.e. ~Q(λ) is either of the form (1, 0, 1, 0, . . . , 1, 0, 0, 0, . . . , 0) if λ

is odd or of the form (0, 1, 0, 1, . . . , 1, 0, 0, 0 . . . , 0) if λ is even.7

7The number and the placement of entries 1 in the latter vector may be changed in certain ways, but
then an inner product ~bt ~m with the k − 1-component vector ~bt = ( 1

2 ,− 1
2 , 0, . . . , 0) has to be added to

the quadratic form in the numerator of (2.31).
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For λ = 1 and λ = k − 1, there exists another expression. In both cases, it consists of

a single fundamental fermionic form without sum restrictions and has 2(k − 2) different

sum indices.

For λ = 1, it reads [FS93]

(∂Θ)1,k(τ)

η3(τ)
=

∑
~m∈(Z≥0)2(k−2)

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+c[

1,k

(q)~m

, (2.33)

where CA2 is as above, C−1
Tk

is the inverse of the k×k Cartan matrix of the tadpole graph8

and the constant c[
λ,k = λ2

4k
− 1

8
.

For λ = k − 1, we present the following fermionic expression:

(∂Θ)k−1,k(τ)

η3(τ)
=

∑
~m∈(Z≥0)2(k−2)

q
1
2

~mt(CA2
⊗C−1

Tk−2
)~m+(~a2⊗~bk−2)t ~m+c[

k−1,k

(q)~m

(2.34)

with ~at
2 = (1,−1) and ~bt

k = (1, 2, 3, . . . , k). It has been checked numerically up to k = 4

and high order and is assumed to hold for higher values of k.

3 Dilogarithm Identities

To support the fermionic character expressions we derived in section 2.4, we show in this

section that it is possible to correctly extract dilogarithm identities from them. The effec-

tive central charge of the given LCFT model should be expressible as a sum of dilogarithm

functions evaluated at certain algebraic numbers, where these numbers are determined by

the matrix A in the quadratic form in the exponent of the fermionic character expression.

Dilogarithm identities for the central charges and conformal dimensions exist for at least

large classes of rational CFTs. It is conjectured [NRT93] that all values of the effective

central charges occurring in non-trivial rational CFTs can be expressed as one of those

rational numbers that consist of a sum of an arbitrary number of dilogarithm functions

evaluated at algebraic numbers from the interval (0, 1). Thus, the study of dilogarithm

identities arising from CFTs, e.g. the set of effective central charges that can be expressed

with a fixed number N in (3.1), gives further insight into the classification of all rational

CFTs.

8The CTk
Cartan matrix differs from the CAk

Cartan matrix only by a 1 instead of a 2 in the lower right
corner.
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Dilogarithm identities are relations of the form

1

L(1)

N∑
i=1

L(xi) = d (3.1)

with xi an algebraic, d a rational number, N being the size of the matrix A in the fermionic

form, and L being the Rogers dilogarithm (see e.g. [Lew58, Lew81]), defined for 0 < x < 1

by

L(x) =
∞∑

n=1

xn

n2
+

1

2
log(x) log(1− x) . (3.2)

The Rogers dilogarithm admits an analytic continuation on the complex plane as a multi-

valued analytical function of x. The dilogarithm and its generalization, the polylogarithm,

appear in a lot of branches of mathematics and physics (see e.g. [Kir95]).

The effective central charge is a quantity originating from the properties of the CFT

characters with respect to modular transformations. It is the same for all p of the LCFTs

corresponding to central charge cp,1 and it is given by

cp,1
eff = cp,1 − 24hp,1

min = 1 . (3.3)

The xi in (3.1) are obtained by using the common saddle point analysis of the fermionic

character (see e.g. [NRT93]), implying that the place of d in (3.1) is taken by the effective

central charge of the conformal field theory in question. This leads to a set of algebraic

equations

xi =
N∏

j=1

(1− xj)
Aij+Aji (3.4)

that determine the xi, with A = C−1
Dp

in the case of W(2, 2p− 1, 2p− 1, 2p− 1).

Although those cp,1 theories are non-minimal models on the edge of the conformal grid,

it is still possible (numerically solving (3.4)) to correctly extract the well-known infinite

set of dilogarithm identities

1

L(1)

(
2 L(

1

p
) +

p−1∑
j=2

L(
1

j2
)

)
= 1 ∀ p ≥ 2 (3.5)

(which can be found in [Kir92] and references therein). This supports the fermionic sum

representations presented in section 2.4 for the characters of the W(2, 2p−1, 2p−1, 2p−1)

triplet algebras.
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4 Quasi-Particle Interpretation

Our remarks on the cp,1 series with its underlying tripletW-algebra are based on the quasi-

particle interpretation [KM93, KKMM93a, KKMM93b] for the minimal models, where the

underlying symmetry algebra is the Virasoro algebra.

4.1 The c = −2 Model

We start with the case p = 2, i.e. c2,1 = −2. In contrast to the characters for the minimal

models, these characters are the traces over the representation modules of the triplet W-

algebra, instead of the Virasoro algebra only. However, although highest weight states

are labeled by two highest weights in this case, h and w as the eigenvalues of L0 and W0

respectively, we consider only the traces of the operator qL0− c
24 . It turns out that these

W-characters are given as infinite sums of Virasoro characters, for example [Flo96]

χ|0〉 =
∞∑

k=0

(2k + 1)χVir
|h2k+1,1〉 . (4.1)

Let us now come to the vacuum character (2.23) for the c2,1 model, which features the

interesting sum restriction m1 + m2 ≡ 0 (mod 2) expressing the fact that particles of type

1 and 2 must be created in pairs. Thus, the existence of one-particle states for either

particle species is prohibited. Therefore, the single-particle energies must be extracted

out of the observed multi-particle energy levels.

Applying (1.11) to the fermionic sum representation (2.23) of the vacuum character

leads to

χ+
1,2 =

( ∞∑
m1=0

∞∑
N=0

Pm1(N)qN+m1

)( ∞∑
m2=0

m2≡m1 (mod 2)

∞∑
N=0

Pm2(N)qN+m2

)
, (4.2)

where the constant c has been omitted, since it would just result in an overall shift of

the energy spectra. Using massless single-particle energies (1.14) and setting (1.15) in

(4.2) then results in the partition function (1.13) corresponding to a system of two quasi-

particle species, with both species having the momentum spectrum N≥1, i.e. a multi-

particle state with energy El may consist of exactly those combinations of an even number

of quasi-particles, having momenta pi
α (i ∈ {1, 2}), whose single-particle energies e(pi

α)

add up to El and where the momenta pi
α ∈ N≥1 of each two of the quasi-particles in

that combination are distinct unless they belong to different species, i.e. they respect the

exclusion principle. Formally, these spectra belong to two free chiral fermions with periodic
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boundary conditions. Note in this context the physical interpretations in [Kau95, Kau00],

in which the CFT for c2,1 = −2 is generated from a symplectic fermion, a free two-

component fermion field of spin one.

4.2 The p > 2 Relatives

Besides the best understood LCFT with central charge c2,1 = −2, some general remarks

on its cp,1 relatives are alluded here to conclude this section.

The restrictions mp−1 + mp ≡ Q (mod 2) (Q denotes the total charge of the system) in

(2.28) to (2.30) imply that the quasi-particles p−1 and p are charged under a Z2 subgroup

of the full symmetry of the Dp Dynkin diagram [KKMM93a], while all the others are

neutral. This charge reflects the su(2) structure carried by the triplet W-algebra such

that all representations must have ground states, which are either su(2) singlets or su(2)

doublets. In comparison to the c2,1 = −2 model, there exist p quasi-particles in each

member of the cp,1 series, exactly two of which can only be created in pairs, while the

others do not have this restriction. These observations suggest the following conjecture:

The cp,1 theories might possess a realization in terms of free fermions such that they are

generated by one pair of symplectic fermions and p−2 ordinary fermions. Such realizations

are unknown so far, except for the well-understood case p = 2, and are a very interesting

direction of future research.

Contrary to the case of p = 2, the quasi-particles do not decouple here: The minimal

momenta for the quasi-particle species, which are given in (1.18), depend on the numbers

of quasi-particles of the different species in the state. But as in the case of p = 2, the

momentum spectra are not bounded from above.

5 Conclusion

The results of our article provide further evidence for the well-definedness of the logarith-

mic conformal field theories corresponding to central charge cp,1:

Despite the inhomogeneous structure of the bosonic character expressions in terms of

modular forms, there exist fermionic quasi-particle sum representations with the same

matrix A (cf. (1.9)) for all characters of each cp,1 model. In particular, the matrix A is

the inverse of the Cartan matrix of the simply-laced Lie algebra Dp, where p = 2 can be

understood as the degenerate case. Therefore, those expressions fit well into the known

scheme of fermionic character expressions for other conformal field theories.
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Physically, in each cp,1 model, this indicates that there is a set of p − 2 fermionic

quasi-particle species, the members of which may be combined freely - nevertheless

obeying Pauli’s exclusion principle - in building an arbitrary multi-particle state, and

additionally a set of two species, the members of which may only appear in an even

or odd number, depending on the sector of the theory. In all cases except p = 2, the

possible quasi-particle momenta obey non-trivial restrictions (1.18) for their minimum

momenta, depending on the numbers of quasi-particles of each species in the state.

Moreover, since the fermionic character expressions are of the form (1.9) for all p ≥ 2,

the momentum spectra are unbounded from above. Being rational CFTs [GK96, CF06],

it is furthermore satisfying that the fermionic character expressions of the outlined

theories - although they are non-minimal models on the edge of the conformal grid

- lead correctly to a well-known infinite set of dilogarithm identities, which supports

the fermionic expressions for the characters of the cp,1 models that we present in this article.
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