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Introduction

The conference was organised by David R. Morrison (Duke University, Durham) and by
Werner Nahm (Physikalisches Institut der Universität Bonn).
String theory is the field of mathematical physics which has created by far the most in-
tense interactions between mathematicians and theoretical physicists in the past years.
It contains a perturbative domain which is described by two–dimensional superconformal
quantum field theories and mathematically well defined. Non–perturbative string theory
(M–theory) has made much progress in recent years and promises new insights, but it is
not yet well understood from any point of view.
Perturbative string theories have a moduli space with many rational points (this may
generalise to the non–perturbative domain). Their classification is very far from being
complete, but makes steady progress. The understanding of theories with continuous
parameters, most importantly of the sigma models on Calabi–Yau manifolds, is rapidly
gaining in maturity, such that decisive break–throughs seem possible in the near future.
Non–perturbative string theory involves solitonic objects (branes) of higher dimension.
Since strings can end on them, the study of boundary states in perturbative string theory
has become important. Further interesting new results concern the breaking of supersym-
metry.
A major tool in non–perturbative string theory is the study of its low mass states, which
yield conventional quantum field theories. The conjectured dualities of some of them have
been put into a firm mathematical context by Seiberg and Witten. One expects these
dualities to lift to all states of the string theory. Moreover, they also involve physics in
more than ten dimensions (membranes in eleven dimensions and F–theory).
Dualities between string theories yield deep relations between so far unconnected objects
in algebraic field theory. In particular, the mirror symmetry between varieties should gen-
eralise to certain bundles on them. So far, this is best understood for varieties constructed
by elliptic or K3 fibrations.
In many cases, the mathematical consequences of the physical conjectures can be checked
independently. This also means that some standard objects of physics like quantum field
theories gain in mathematical interest and credibility. We do not know yet if string theory
is a true model of nature, but it certainly contributes a lot to bridging the gap between
physics and mathematics.
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Collection of Abstracts (in chronological order)

Monday:

Peter Goddard (DAMTP, Cambridge)
Axiomatic conformal field theory
A rigorous approach to conformal field theory which, as with the historical origins of string

theory, states from a family of amplitudes; these amplitudes are meromorphic densities.
They define a meromorphic conformal field theory (or chiral algebra), leading naturally
to the definition of topological vector spaces between which the vertex operators act as
continuous operators. The assumption of Möbius invariance enables the proof of the duality
relation V(ϕ, z)V(ψ, ζ) = V(V(ϕ, z − ζ)ψ, ζ) for vertex operators. Up to this point the
theory is extremely general but the key assumption of cluster decomposition is a substantial
restriction which implies the uniqueness of the vacuum and the spectrum of L0, the scaling
generator, is bounded below.
Representations of the meromorphic theory (chiral algebra) can be introduced in a way
analogous to the definition of the theory itself. The representation condition is equivalent
to the existence of a suitable (family of) state(s) in the meromorphic theory itself. The
conditions satisfied by these states lead naturally to the definition of Zhu’s algebra. Zhu’s
theorem states that the representations of Zhu’s algebra are in essence in correspondence
with the representations of the meromorphic theory. The finite–dimensionality of Zhu’s
algebra is a key criterion in defining an amenable class of conformal field theories.
(This is joint work with Matthias Gaberdiel.)

Anne Taormina (Durham, England)

Representations of the affine Lie superalgebra ŜL(2|1) and N=2 strings
The general theory of admissible representations of affine Lie algebras and superalgebras

developed by Kac and Wakimoto shows the existence of a large class on noninteger level
representations sharing many important features of the integrable representations (in par-
ticular, nice transformations under the modular group) when the level k is of the form
u(k + h∨) = k◦ + h∨, with h∨ the dual Coxeter number of the corresponding Lie (su-
per)algebra, and k◦, u ∈ ZZ+.

In this talk, the affine Lie superalgebra ŝl(2|1) at fractional level k of the form k + 1 = p
u
,

p, u ∈ Z+, gcd(p, u) = 1 is shown to play a rôle in the description of noncritical N=2
strings when the matter coupled to supergravity is minimal, i.e. is taken in an N=2 super
Coulomb gas representation with central charge cmatter = 3(1 − 2p

u
. Some aspects of the

theory of its admissible representations are discussed in the more general context of the

exceptional affine Lie superalgebra ̂D(2|1;α)k. In particular, two field representations of

ŝl(2|1) at level k = 1
u
− 1 are discussed. The first is an analogue of the Wakimoto modules

which are needed in the description of the physical spectrum of the noncritical N=2 strings.

The second can be constructed out of the representations of two ŝl(2) affine Lie algebras
at dual levels k = 1

u
− 1 and k′ = u− 1.
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Ronen Plesser (Duke University, Durham)
T–duality can fail
(joint work with Paul Aspinwall)
T–duality is the statement that string theory in a spacetime of the form M× S1, where S1

has radius R, is invariant under the exchange R→ 1
R
. This important, intrinsically stringy

symmetry has been used to learn much about the theory. In this work we showed that in
some circumstances nonperturbative effects destroy the symmetry.
To all orders in the perturbation expansion, string theory is determined by CFT. In CFT
the duality follows in a direct way from the presence of an enhanced SU(2) gauge symmetry
when R = 1. In compactification on T2 the Z2

2 symmetry is enhanced to SL(2,Z). In
compactification of the heterotic string on K3 × T2, we show that T–duality is “broken”
in the following sense: the classical monodromies of “flat” coordinates are modified when
the heterotic coupling is non–zero. The locus corresponding to R = 1 splits much as in
Seiberg–Witten theory into two loci about which we have infinite monodromy. This makes
it impossible to define a “size” variable in a consistent manner for R≈1 and smaller, so
that the statement of T–duality loses its meaning.
Computations including nonperturbative effects are possible by string–string duality which
relates the entire question to a problem in tree–level type IIA strings on a Calabi–Yau
threefold.

Dieter Lüst (Humboldt–Universität, Berlin)
Gauge theories from branes
The recent progress in the understanding of non–perturbative effects in string theory is

largely linked to the discovery of several kinds of duality symmetries (S–duality, T–duality)
and of D–branes as the solitons in type IIA, B superstrings. D–branes give rise to non-
abelian gauge interactions where the nonabelian gauge bosons correspond to open strings
which can move on the world volume at the D–branes. Non–trivial gauge models with mat-
ter fields and reduced number of supersymmetries (N=2 and N=1 supersymmetry in four
dimensions) are obtained by placing the D3 branes on a transversal singularity of ADE type
(non–compact Calabi–Yau space). In particular, we discussed hyper quotient singularities
(generalised conifold singularities) in this talk. In a T–dual picture the ADE singularities
can be equivalently described by a net of NS 5–branes with the D–branes suspended in
between. This picture is quite convenient, since the configuration of NS and D–branes can
be embedded into 11–dimensional M–theory. In this way one can obtain non–perturbative
informations about the corresponding gauge theories, and the conjecture is that (part of)
the non–perturbative moduli space of the gauge theories is described by the moduli space
of the brane embedded in M–theory. In particular, for N=2 supersymmetric models the
Seiberg–Witten curve emerges in a geometric way as the shape of the embedded M–theory
branes. We show that for N=1 supersymmetric gauge theories a supersymmetric 3–cycle
(special Lagrangian submanifold in C3) plays the analogous role of the Seiberg–Witten
curve and encodes many non–perturbative properties of N=1 gauge theories.
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Terry Gannon (University of Alberta, Edmonton)
Fusion rings and their symmetries
Arguably, there are few things the world needs less than another formal treatment of fusion

rings. My main justification is the surprising lack of cross–fertilisation between the different
areas in which this type of algebraic structure arises. In my talk I tried to sketch a general
theory, give a few examples of where fusion rings arise, and point out a few directions for
future study which seem natural.
I also alluded to the question of automorphisms of the fusion rings corresponding to affine
algebras, or equivalently symmetries of their fusion coefficients. There are the permutation
π of the level k highest weights Pk

+(g) which obey Nπν
πλ,πµ = Nν

λ,µ ∀λ, µ, ν ∈ Pk
+(g). This

is equivalent to finding all pairs (π, π ′) of permutations which obey Sλ,µ = Sπλ,πµ ∀λ, µ,
where S is the (Kac–Peterson) matrix diagonalising the fusions. These symmetries have
been classified for all affine algebras, and most of them correspond to symmetries of the
extended Coxeter–Dynkin diagram of g.

Tuesday:

Antonella Grassi (University of Pennsylvania, Philadelphia)
On the topological Euler characteristic of CY 3–folds and the anomaly formula
(based on work with D. Morrison)
We consider an elliptic Calabi–Yau 3fold X, with sections. There is a natural way to

associate a group G to X (if dim X = 2, via Kodaira’s classification, one can assign to each
singular fiber the algebraic group corresponding to the Dynkin diagram of the configuration
of the exceptional divisors). This correspondence has no intrinsic explanation (at least not
yet) within algebraic geometry; it is instead natural from the point of view of physics
(F–theory/heterotic duality and gauge theory). In particular, an “anomaly formula” must
vanish.
We show that, under certain “general” assumptions, there is a simple mathematical formu-
lation of the anomaly formula. The analysis of the anomaly formula (via the topological
Euler characteristic of CY 3folds) implies a natural correspondence between representations
of Lie groups, 3fold singularities and their resolutions.
Our results are in agreement with the predictions in the physics literature but we cover
also other cases.

Bobby Samir Acharya (Queen Mary College, London)
M–theory, Joyce orbifolds and super Yang–Mills
M–theory compactified on a 7–manifold with G2–holonomy J (henceforth referred to as a

Joyce manifold) gives a model for physical theories in four dimensional Minkowski space-
time which at low energies (and at a smooth point in the moduli space M(J) of G 2

holonomy metrics) can be described as N=1 supergravity theories. The matter content
may be summarised as b2(J) U(1) vector multiplets and b3(J) chiral multiplets (bi(J) are
the Betty numbers of J). Such theories are relatively uninteresting physically due to the
fact that the gauge symmetry is abelian: U(1)b2(J).
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By constructing a “local model” we proposed that interesting physics arises when J becomes
singular as one moves around in the moduli space M(J).

The “local model” is topologically a non–compact Joyce orbifold O :≡ C2×T3

G
, with G a

finite subgroup of G2.

The singularities of O are of the form {0}×T 3

K
, where {0} ∈ C2 is the singularity in C2

Γ(ADE)

with Γ(ADE) a finite subgroup of SU(2) and K ∼= G
Γ(ADE)

acts freely on T3.
This model gives rise at low energies to super Yang–Mills theory with ADE gauge group,
N=1 supersymmetry and no matter multiplets.
We calculated the superpotential and argued that it is generated by fractional membrane
instantons which “wrap” the singularities of O. This superpotential agrees precisely with
that which may be calculated from the field theory. This is the main result.
It shows that

(i) M–theory “understands” quantum Yang–Mills theories which are strongly interacting
in the infrared (low energy) regime. The real world is described by just such a Yang–
Mills theory (QCD); we just do not understand everything we would like to about
QCD.

(ii) The dynamically generated superpotential is generated by “instantonic” objects of
fractional charge which are difficult to see in field theory.

The result we described is intrinsically quantum in nature since it is subtly related to
anomalies (or lack of them) in M–theory. We hope it will have some bearing on under-
standing nature.

Victor V. Batyrev (Universität Tübingen)
Stringy Hodge numbers
Let X be a quasi–projective normal algebraic variety with at worst log–terminal singulari-

ties and ̺ : Y→ X a log–resolution of singularities such that the support of the exceptional
locus of ̺ is a normal crossing divisor D = D1 ∪ . . . ∪ Dr and

KY = ̺∗KX +

r∑

i=1

aiDi (all ai > −1).

We introduce a rational function Est(X; u, v) ∈Q[u, v] by the following formula:

Est(X; u, v) =
∑

J⊂{1,... ,r}

E(D0
J; u, v)

∏

j∈J

1− uv

1− (uv)aj+1

where
E(Z; u, v) =

∑
p,q

ep,q(Z)upvq

ep,q(Z) =
∑
k≥0

(−1)khp,q(Hk
c(Z,C)) and

D0
J = {y ∈ Y : y ∈ Dj ⇔ j ∈ J}.
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The important fact about Est(X; u, v) is the following:

Theorem: Est(X; u, v) does not depend on the choice of the resolution of singularities
̺ : Y→ X.

1. The function Est(X; u, v) allows to define stringy Hodge numbers hp,q
st (X) of singular

projective algebraic varieties X.

Def.: Assume that X is a projective algebraic variety with at worst Gorenstein canonical
singularities and Est(X; u, v) is a polynomial. Then we define hp,q

st (X) by the formula

Est(X; u, v) =
∑

p,q

(−1)p+qhp,q
st (X)upvq.

2. The function Est(X; u, v) allows to formulate the topological mirror duality test even in
the case, when Est(X; u, v) is not polynomial. For a mirror pair (X, X̂) one expects:

Est(X; u, v) = (−u)dEst(X̂; u−1, v) d = dim X = dim X̂.

3. The specialisation u = v = 1 gives the following formula for the stringy Euler number
of X:

est =
∑

J⊂{1,... ,r}

e(D0
y)

∏

j∈J

1

aj + 1
,

where e(D0
J) is the usual Euler number of D0

J. In the case, when X = V/G where G is a
finite group acting on V and the covering V→ X is umramified in codimension 1 one has:

Theorem:

est :=
1

|G|

∑

g,h
[g,h]=1

e(Vg ∩ Vh), where Vg = {x ∈ V : gx = x}.

This formula for est(X) has appeared in the paper “Strings on orbifolds” by Dixon,
Harvey, Vafa and Witten in 1989.

Viacheslav V. Nikulin (Steklov Mathematical Institute)
Algebraic surfaces with finite polyhedral Kähler cone
We consider non–singular projective algebraic surfaces X over C with finite polyhedral

Kähler cone (X ∈ fpkc).
Classification of 3–folds (e.g. Calabi–Yau) with fpkc would be of great interest, and one
can consider the 2–dimensional case as a model. We expect that surfaces X ∈ fpkc have
very interesting quantum cohomology related with automorphic forms (e.g. Borcherds type
automorphic products).
A surface X ∈ fpkc has natural invariants ̺ = rk NS(X), δE = maxD∈Exc(X){−D2}, pE =
maxD∈Exc(X)pa(D). Here Exc(X) is the set of all exceptional curves on X. We prove
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Theorem:

X ∈ fpkc has an ample effective divisor h such that h2 ≤ N(̺, δR), and has a very ample
divisor h′ such that h′2 ≤ N(̺, δE, ̺E). Here we suppose that ̺ ≤ 3. In this sense the set
X ∈ fpkc is bounded for fixed ̺ ≤ 3, δE, pE.
We give examples which show that the theorem is not valid if one does not fix one of the
invariants ̺, δE, pE.
Because of the theorem, it is interesting to classify X ∈ fpkc for small ̺, δE, pE.
For δE = 1, pE = 0 we get non–singular Del Pezzo surfaces. We give a classification of
X ∈ fpkc with δE = 2, pE = 0. It contains K3, Enriques, minimal resolutions of Del Pezzo
with Du Vál singularities, rational surfaces and nef(–K).

Ralph Blumenhagen (Humboldt–Universität, Berlin)
Non–tachyonic orientifolds of type 0B in various dimensions
Type 0B string theory is a non–supersymmetric string theory in ten space–time dimensions.

It is plagued with an inconsistency namely the appearance of a tachyon in the spectrum.
It was shown, that one can define an orbifold of this model, in which the tachyonic mode is
projected out. One can cancel all RR–tadpoles by introducing two kinds of D9–branes in
the background. However, a dilaton tadpole survives which can be cured by the Fischler–
Susskind mechanism. Equipped with this ten–dimensional string theory, compactifications
to six and four dimensions were investigated. After cancelling all RR–tadpoles by in-
troducing suitable D–branes, we arrived at non–supersymmetric anomaly free low energy
effective field theories. Phenomenologically, these models have some interesting features,
as a purely bosonic gauge group and fermionic matter in non–singlet representations of the
gauge group.

Wednesday:

Mic~ael Flohr (King’s College, London)
Logarithmic conformal field theory on Riemann surfaces and applications to
strings, branes and Seiberg–Witten models
Logarithmic conformal field theory (LCFT) is a generalisation of conformal field theory

where correlation functions may exhibit logarithmic divergencies.
A prominent example is the simple b–c ghost system of two anticommuting fields of spin 1
and 0, which has central charge c = −2. Following old ideas of Knizhnik, b–c systems on
Riemann surfaces Σ can be considered as b–c systems on IP1, where Σ is represented as a
branched covering of IP1 and the effect of branch points is simulated by appropriate vertex
operators Vq(z) = : exp(iqϕ(z)) : (ϕ being a free field) which are added to the spectrum
of the CFT. We concentrate on the simplest case, Σ being hyperelliptic. It is shown that
including the branch point vertex operator V 1

2
necessarily leads to a LCFT. This can al-

ready be seen in the case Σ = torus, represented as a double covering of IP1 which 4 branch
points. The b–c system represents 1– and 0–differentials. Periods of such differentials are
expressed as correlation functions, e.g. πγ =

∮
γ
ω = 〈〈V 1

2
(e1)V 1

2
(e2)V 1

2
(e3)V 1

2
(e4)〉〉(γ),
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where e1, . . . , e4 are the branch points of the torus and 〈〈. . . 〉〉 means that the correlation
function is divided by its free part. The curve γ defines the contour of the screening charge
integration, yielding a basis of conformal blocks. In the above case, two linearly indepen-
dent blocks exist, one of them exhibiting a logarithmic singularity. Such logarithms occur
precisely, when screening charge integration contours get pinched due to insertions of op-
erator product expansions. As a consequence, the theory must be enlarged by logarithmic
partners of vertex operators, Λq(z) = ∂

∂z
Vq(z). In the case of the c = −2 b–c system, one

still can construct a consistent theory, but there exist many more consistent LCFTs.
One particular application is Seiberg–Witten theory of N=2 supersymmetric Yang–Mills
theory. The scalar modes are given by the periods of a certain meromorphic 1–form λSW

associated to a Riemann surface Σ which encodes the moduli space of the Seiberg–Witten
theory. Representing Σ and this 1–form as above with vertex operators allows to compute
these periods as correlation functions, which can be expressed in terms of Lauricella FD–
functions. Asymptotic regions of the moduli space, where certain BPS states become light,
are particularly simple, since they correspond to branch points flowing together (shrinking
cycles), i.e. insertions of OPEs.
Other applications include the computation of periods of Calabi–Yau string compactifica-
tions.
A physical interpretation is yet incomplete, but might be related to a description of Seiberg–
Witten theory in terms of intersecting branes, the latter forming an interacting “gas”
described by our LCFT.

Phillipe Ruelle (Université Louvain–la–Neuve)
Symmetries in boundary conformal field theories
Boundary conditions in a boundary conformal field theory can be examined in the light

of an internal symmetry, of any. This talk has focussed more specifically on the Virasoro
minimal models on a cylinder (or an annulus). A minimal model is specified, from its
modular invariant partition function, by a pair of simple Lie algebras (A,G) where G is of
ADE type, and has a symmetry group equal to the group of automorphisms of the Dynkin
diagram of G (with one exception). That symmetry can be thought of as a generalisation
of the spin flips of the Ising model.
The torus twisted partition functions can be explicitly computed and give information
about the fields that arise in the different monodromy sectors. Similarly on the cylinder,
the partition functions can be determined once the boundary conditions are known. For
the minimal models, all this can be made very explicit. It turns out that the most essential
features are encoded in the product Dynkin graph A×G.
The boundary conditions are indeed labelled by the nodes of A × G, and using the torus
data, one can see that the symmetry group acts on them by automorphisms of the Dynkin
graph of G. Restricting to the invariant boundary conditions, one can then compute the
twisted cylinder partition function and determine the charges of the various fields. In turn,
these provide non–trivial selection rules on the reflection coefficients and on the boundary
operator product coefficients.
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Christoph Schweigert (ETH Hönggerberg, Zürich)
D–brane conformal field theory and traces on bundles of conformal blocks
It is explained that conformally invariant boundary conditions can be associated to the

irreducible representations of a finite–dimensional semi simple algebra, the classifying al-
gebra.
The classifying algebra generalises the fusion algebra: its structure constants are the traces
of the action of certain automorphisms on spaces of conformal blocks (Such traces also
appear in the Verlinde formula for non–simply connected groups.). Various conjectures for
such formulae have been discussed.

Thursday:

Katrin Wendland (Physikalisches Institut der Universität Bonn)
Aspects of conformal field theory on K3
(joint work with Werner Nahm)
Any supersymmetric conformal field theory with central charge c = 6 and N = (4, 4)

supersymmetry corresponds to string propagation on a K3 surface or a four dimensional
torus. Given that the moduli space of Einstein metrics on a K3 surface is understood to
quite some extent, a precise comprehension of the correspondence between conformal field
theory and geometrical data might therefore provide a key to the classification problem of
N = (4, 4), c = 6 superconformal field theories on K3.
Here – as a first step – we concentrate on “point by point” matches. One example of
this is the K3 obtained as blown up Z4–orbifold of a four–torus, allowing a very detailed
matching of conformal field theory and geometrical data. This model was conjectured
to coincide with Gepner’s (2)4 and with the Z2–orbifold of a torus with SO(8)–lattice
but vanishing B–field by Eguchi/Ooguri/Taormina/Yang, who showed that their partition
functions agree. By studying the (1,0) current algebra and deformations of the theory, we
give further evidence for the first correspondence but rule out the second. Adding simple
currents to the (2)4 and devoting the appropriate B–field for the Z2–orbifold we construct
models with enhanced symmetry which we conjecture to agree. Partition function, current
algebra and state by state matching support this strongly, as well as an agreement with
the SU(2)4

1 torus model. Here we consider the pure conformal field theory picture (leaving
aside extended degrees of freedom), in which we seem to have found a crossing point of
torus and K3 moduli spaces.
A next step to be taken would be the precise localisation of our examples within the
“moduli space of K3 surfaces with B–field”.

Bruce Hunt (MPI für Mathematik in den Naturwissenschaften, Leipzig)
CY–fibered Calabi–Yau manifolds
A specially interesting class of Calabi–Yau varieties are given by those which possess a

fibration, X → B. In this case the fiber must also be Calabi–Yau and there are strong
restrictions on the base B. In general the complex modulus of the fiber does change, but
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there are cases where one gets fibrations of constant modulus. One construction of these
was discussed in this talk.
Let V1, V2 be the weighted hypersurfaces defined by

V1 = {x2
0 + p(x1, . . . , xn) = 0} ⊂ IP(w0,... ,wn) =: IPw

V2 = {y2
0 + q(y1, . . . , ym) = 0} ⊂ IP(v0,... ,vm) =: IPv

X = {p(t1, . . . , tn)− q(z1, . . . , zm) = 0} ⊂ IP(v0w1,... ,v0wn,w0v1,... ,w0vm) = IPv,w

Theorem:

The map

Φ : IPw × IPv → IPv,w

((x0, . . . , xn), (y1, . . . , ym)) 7→ (y
w1
w0

0 x1, . . . , y
w1
w0

0 xn, x
v1
v0

0 y1, . . . , x
v1
v0

0 ym)

restricts to V1 × V2 to a generically finite to one map. If gcd(v0,w0, ℓ) = 1, then X ≃
V1 × V2/µℓ (µ = ℓth roots of unity) is the quotient of V1 × V2 by a group of order ℓ. If
w0 > 1, then if X has a Calabi–Yau resolution X̃, X̃ has a fibration onto a desingularisation
B of V1/µℓ ⇔ V2 has a Calabi–Yau resolution.
An interesting consequence of this is in the case of usual projective space, i,e., unit weights.

Corollary:

Let X = {xd
1 + . . . + xd

n = 0} ⊂ IPn−1 be a Fermat hypersurface of degree d, {n1, . . . , nλ}
a partition of n with ni ≥ 2 ∀i, xik, i = 1, . . . , λ, k = 1, . . . , ni corresponding coordinates.
Then X is birational to the quotient of Π(λ Fermat hypersurfaces)

X1 × . . .× Xλ, Xi = {xd
i0 + . . .+ xd

inλ
= 0}

by a group Z/dZ acting on the xi0, i = 1, . . . , λ.

Claudio Bartocci (Università di Genova)
Mirror symmetry for K3 surfaces In his talk delivered at the ’94 International Congress

of Mathematicians M. Kontsevich conjectured that mirror symmetry could be interpreted
as an equivalence of triangulated categories over mirror pairs of Calabi–Yau manifolds
X and X̂. This conjecture fits convincingly into the setting of Strominger–Yau–Zastow
interpretation of mirror symmetry. According to their approach – very roughly speaking,
both X and X̂ are Calabi–Yau manifolds admitting a fibration whose fibers are special
Lagrangian tori; the mirror dual should be regarded as the moduli space of deformations of
a special Lagrangian torus equipped with a flat U(1)–bundle. In order to state Kontsevich’s
conjecture, we have to define a suitable modification of the so–called Fukarya category on
X, that we will denote by SF(X). Objects of SF(X) are pairs U = (M, E), where M is a
special Lagrangian submanifold of X and E is a flat vector bundle on M. Morphisms turn
out to be rather complicated. Since two special Lagrangian cycles intersect (generically)
in a finite number of points, we set Hom(U1,U2) =

⊕
p∈M1∩M2

HomC(E1|p, E2|p).
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The vector space Hom(U1,U2) has a Z–graduation induced by the Maslov index defined
at each point p. Moreover an A00–category structure is defined, by introducing suitably
defined linear maps:

mk : Hom(U1,U2)⊗ . . .⊗ Hom(Uk,Uk+1) −→ Hom(U1,Uk+1).

Kontsevich’s conjecture claims the existence of an equivalence of triangulated categories be-
tween the derived category of SF(X) and D Coh(X̂) (a, more precisely, as recently suggested
by Polishchuk, a refined version of this category endowed of an A00–category structure).
The conjecture was proven by Polishchuk and Zastow in the case of elliptic curves.
In my talk I show that Kontsevich’s conjecture holds for K3 surfaces. We consider an
elliptic, M–polarised K3, X, equipped with a fibration whose fibers are special Lagrangian
tori. It is then possible – generically on the moduli space of M–polarised K3 surfaces – to fix
a hyper–Kähler metric on X such that the K3 surfaced X̂ obtained by a π

2
rotation of the

complex structure of X is M̌–polarised (we are using Nikulin–Dolgachev’s terminology).
Thus, X and X̂ are a mirror pair. The category SF(X) is essentially trivial due to the
following facts: 1. special Lagrangian cycles on X always intersect transversally, since they
are algebraic cycles on X̂; 2. the Maslov index is trivial; 3. generically, mk = 0 for all
k 6= 2, and m2 is then an associative composition. It should be noticed that the triviality
of SF(X) is related to the triviality of the quantum cohomology of K3 surfaces. Thus, it is
possible to identify SF(X) with an additive subcategory C(X̂) of the category of coherent
OX̂–modules: C(X̂) is the category of coherent sheaves supported on a divisor of X̂.
In order to obtain a mirror map satisfying physical requirements, we have to compose the
equivalence D(SF(X))

∼
−→ D(C(X̂)) with the equivalence of the derived category given

by the relative Fourier–Mukai transform S : D(X̂) → D(Jac(X̂)), where Jac(X̂) is the
compactified Jacobian of the elliptically fibered K3 X̂.

Matthias R. Gaberdiel (DAMTP, Cambridge)
Non–BPS Dirichlet branes
It is explained how Dirichlet branes can be constructed and analysed without reference

to their space–time supersymmetry properties. In this approach they are described by
coherent boundary states of the closed string theory that satisfy a number of conditions
(i) the boundary states are physical states, i.e. are GSO–invariant and invariant under the
appropriate orbifold (or orientifold) projections, and (ii) the open strings that are induced
by the boundary state have consistent interactions with the original closed string theory.
For the case of the familiar Type II theories these conditions reproduce the known D–brane
spectrum, but these techniques can also be used for theories that break supersymmetry
completely (such as Type 0B or its orientifold) or for Dirichlet branes that break super-
symmetry completely in an otherwise supersymmetric theory. Non–BPS Dirichlet branes
of the latter kind play an important role in understanding string–string duality beyond the
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BPS spectrum, in particular for the string theories

IIB T4/I4(−1)FL T IIA T4/I4 {= K3 at orbifold point}

S

∣∣∣∣∣

∣∣∣∣∣ S

IIBT4/ΩI4 HeteroticT4

where perturbative stable non–BPS states of the theories in the lower line correspond to
non–BPS D–branes in the theories in the top line.
(joint work with Oren Bergman)

Tony Pantev (University of Pennsylvania, Philadelphia)
Mirror symmetry and vector bundles
We consider several features of the quantum mirror symmetry duality as manifested in the

moduli spaces of Euclidean D–branes of type II string compactification.
For the type I sector of the compactification the moduli space of the Euclidean D–branes
is identified with a component of the moduli space of semistable sheaves on a Calabi–Yau
3–fold X. We use secondary Abel–Jacobi maps and Fourier–Mukai transforms along the
fibers of elliptic fibrations to construct special coordinates in this moduli space.
Concretely if S

π
→ B is an elliptic K3 surface with an involution σ : S → S acting along

the fibers of π and such that σ acts as −1 on the holomorphic (2,0) form on S consider the
Borcea–Voisin CY 3–fold X obtained from resolving (S × E)/(σ,±1) for an elliptic curve
E.
If p : X → Q is the elliptic fibration on X induced by π : S→ B and if N is a component
of the moduli space of rank n sheaves on X that are of degree 0 along the fibers of p, then
one builds natural coordinates on N in two steps. First identify N with a moduli space
of spectral data (C,L) where C ⊂ X is a surface covering Q n:1 and L → C is a line
bundle. This is achieved via a standard relative Fourier–Mukai transform along the fibers
of p : X → Q. The next step is to consider Green’s secondary AJ map for C ⊂ X: The
extension class eC⊂X of the extension of MHS

0 −→
H2(C)

H2(X)
−→ H3(X,C) −→ Ker(H3(X)→ H3(C)) −→ 0

can be interpreted as a homomorphism

eC⊂X : Ker
(
H3(X)→ H3(C)

)
Z
−→

H2(C)Z

H2(X)Z

⊗ S1.

Evaluating on the holomorphic 3–form of X and projecting on H2,0(C) we obtain a map

(moduli of C′s) −→ H0(Ω2
C)

/(
H2(C)Z

H2(X)Z

)
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which can serve as coordinates.
This map matches Vafa’s coordinates in the A–model and provides a basis for comparing
the appropriate correlators.

Friday:

Antoine Coste (Université Paris–Sud)
Questions about SL2(Z/NZ) representations occurring in RCFT’s
(In Memoriam C. Itzykson) SL2(Z) representations carried by characters of rational con-

formal field theories have many interesting properties:
We have checked W. Nahm’s “working hypothesis” formulated at the birth of this field:
For sl(N)k, Γ(m) is in the kernel if m is the order of T. A proof uses classical O series
results.
Another point of view is that there are additional relations satisfied by S, T together with
Tm = 1 in order to make the quotient a finite quotient of SL2(Z/mZ).
One can explicitly enumerate the q3(1 − 1

p
) elements SL2(Z/mZ) when q is p primary.

However, presentation of SL2(Z/mZ) by generators including Cartan–torus elements and
relations still fascinates me.
Galois properties of these representations are also striking: σ(Sab) = εσ(a)Sσ(a) b) = · · · .
Let me point to attention of reader that Altschuler, Ruelle and Thiran pointing out its
cocycle nature, recently simplified the study of Ĝ sign in terms of sl(2) factors.
What properties characterise these representations?
Another such property is that Pasquier Verlinde formula gives structure constants of a
based Zsing.
Factoring it by Q we get an algebra and it has been explained that it contains divisions
of 0 because the absence of nilpotents since Kawai makes it Q isomorphic to a product of
number fields.
For ŝl(2)n−2 this corresponds to factorisation of Tchebicheff polynomials into irreducibles.
We know in general how to build up idempotents.
It is possible to formulate various axiomatics for these mathematical objects in order to
include various situations such as centers of group algebras, representation rings, algebraic
integer rings.
So many and so various relationships with smart mathematics.

Andreas Wißkirchen (Physikalisches Institut der Universität Bonn)
Landau–Ginzburg vacua of string, M– and F–theory at c=12
(joint work with Monika Lynker and Rolf Schimmrigk)
Theories in more than ten dimensions play an important role in understanding nonpertur-

bative aspects of string theory. Four dimensional compactifications of such theories can
be constructed via Calabi–Yau (CY) fourfolds. These models will be analysed particularly
efficiently in the Landau–Ginzburg (LG) phase of the linear σ−model, when available. We
focus on those σ−models which have both a LG phase and a geometric CY phase de-
scribed by a hypersurface in weighted projective five–space. Assuming the hypersurface to
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be transverse, one can construct an algorithm to find all possible weight systems. Some of
the pertinent properties of these 1,100,055 models, such as cohomology, mirror symmetry
and fibration structure, are presented. Using this data we plan to construct many dual
pairs

F(CY4)←→ Het(V→ CY3)

where V is a vector bundle of rank ≥ 3 (or a sheaf) over the CY threefold.

Dražen Adamović (University of Zagreb)
Representation theory of some irrational vertex algebras In

this talk we consider vertex algebras associated to highest weight representations of affine
Lie algebras and superconformal algebras. Vertex algebras associated to affine Lie algebras
at an integer level are rational and their irreducible representations are WZWN–models.
On a rational admissible level the representation is much complicated. We present the
decomposition result for ŝl2 vertex algebras (obtained in joint work with A. Miles). In

the second part of the talk we apply the representation theory of ŝl2 vertex algebras to
vertex algebras associated to the N=2 superconformal algebra and describe its irreducible
modules.

Markus Rosellen (MPI für Mathematik, Bonn)
Mirror symmetry of Frobenius manifolds In the

first part of my talk I gave an introduction to Frobenius manifolds (FM). I motivated this
structure as “topological special geometry” on the deformation space of a topological CFT,
gave the definition and the A– and B–model of a CY–manifold (Quantum cohomology,
Barannikov–Kontsevich construction, respectively) as two very important examples of it.
In the second part I discussed in detail the FM structure of Dubrovin on Hurwitz spaces
H which is the 1–dimensional (global) case of Landau–Ginzburg models/Saits frameworks
which constitute the third large class of FMs. I introduced the hierarchy of primitive forms
which pull back the Grothendieck residue pairing to flat metrics on H having all the same
rotation coefficients. In the third part I stated the theorem that on any semisimple FM
the space of flat metrics with fixed rotation coefficients (i.e. a solution of the Darboux–
Egoroff equations) form such a hierarchy. I compared this hierarchy of metrics (where the
multiplication of the FM is fixed) with the deformations of the multiplication at tree–level
by gravitational descendant (where the metric on the FM is fixed).

Berichterstatter: Andreas Wißkirchen, Bonn
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Institut für Physik
Humboldt Universität Berlin
Unter den Linden 6

10099 Berlin

Prof.Dr. David R. Morrison
Dept. of Mathematics
Duke University
P.O.Box 90320

Durham , NC 27708
USA

Prof.Dr. Werner Nahm
Physikalisches Institut
Universität Bonn
Nußallee 12

53115 Bonn

Prof.Dr. Viacheslav V. Nikulin
Max-Planck-Institut
Gottfried-Claren-Str. 26

53225 Bonn

Dr. Tony Pantev
Department of Mathematics
University of Pennsylvania

Philadelphia , PS 19104-6395
USA

17



Prof.Dr. Ulf Persson
Department of Mathematics
University of Michigan

Ann Arbor , MI 48103
USA

Prof.Dr. Ronen Plesser
Department of Physics
Duke University
P.O. Box 90305

Durham , NC 27708-0305
USA

Dr. Andreas Recknagel
MPI für Gravitationsphysik
Schlaatzweg 1

14473 Potsdam

Markus Rosellen
Max-Planck-Institut für Mathematik
Vivatsgasse 7

53111 Bonn

Prof.Dr. Philippe Ruelle
Institut de Physique Theorique
Universite Catholique de Louvain
Chemin du Cyclotron, 2

B-1348 Louvain-la-Neuve

Emanuel Scheidegger
Fachbereich Physik
Universität München
Theresienstraße 37

80333 München

Dr. Martin Schlichenmaier
Fakultät für Mathematik und
Informatik
Universität Mannheim

68131 Mannheim

Christoph Schweigert
Institut für Theoretische Physik
ETH Zürich
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