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Abstract

G.M.T. Watts derived in his paper [20] that in two dimensional
critical percolation the crossing probability Πhv satisfies a fifth or-
der differential equation which includes another one of third order
whose independent solutions describe the physically relevant quanti-
ties 1,Πh,Πhv.

We will show that this differential equation can be derived from
a level three null vector condition of a rational c = −24 CFT and
suggest a new interpretation of the generally known CFT properties
of percolation.
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1 A brief review of percolation properties

According to Langlands et al [15], critical percolation in two dimensions has
interesting features in conformal field theory such as the conformal invari-
ance of the three independant crossing probabilites 1, Πh, Πhv. For Πh, Cardy
[5] was already able to derive an exact solution with the help of boundary
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conformal field theory which matches the numerical data to a high accu-
racy. Starting from this background, Watts [20] motivated how Πhv can be
expressed by a correlation function of boundary operators in the Q → 1
limit of the Q-state Potts model and deduced a differential equation of fith
order that agrees with the simulations. Additionally he observed that the
three physically relevant solutions already satisfy a third order differential
equation.

In the previous literature, several arguments have been given to describe
the crossing probabilities in two dimensional critical percolation as conformal
blocks of a four point correlation function of (h = 0)-operators in a c = 0
conformal field theory (CFT), using a second (third) level null vector to get
Πh (Πhv). The most prominent are

(1.) (for c = 0) the Beraha numbers Q = 4 cos2
(

π
n

)
(with n usually denoted

as m + 1 = 2, 3, 4 . . . which in most Potts models are related to the
central charge by c = 1− 6

m(m+1)
[5]);

(2.) (for c = 0) the differential equation for Πh can as well be derived by
the Stochastic/Schramm Loewner Evolution (SLE) which strengthens
the first argument;

(3.) (for h = 0) the ratio of the partition functions for free boundary con-
ditions to Z = 1 of percolation (as suggested by Cardy [5]);

(4.) (for c = h = 0) the interpretation of the central charge as describing
the finite size effects of the energy.

To understand the first point, we give a brief review on the Q-state Potts
model. On a simply connected compact region with a piecewise differen-
tiable boundary the horizontal crossing probability Πh is defined through
the partition function (Cardy [5], Wu [21], Kleban [12])

Z =
∏
(r,r′)

(
1 + xδs(r),s(r′)

)
=
∑

G

QNcxNb , (1)

where x = p
1−p

for Q → 1 and the rightmost sum running over all possible
graphs of Nb bonds in Nc clusters. By expanding it in powers of x we can
extend the Q-state Potts model to Q ∈ R.

Πh describes the probability of having a connection from, e.g., one piece
X = (x0, x1) of the boundary to another disjoint part Y = (x2, x3) where the
spins are fixed to values α and β, respectively, while on the rest we have free
boundary conditions (for a more detailed introduction see [3]). Hereby any
region which can be mapped onto the real axis by a conformal transformation
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is equivalent (for corners we may get singular behavior but no discontinuities
at the corresponding points). For α 6= β, it is given by [12]

Π(X, Y ) = lim
Q→1

(
1− Zαβ

Zαα

)
. (2)

In terms of boundary changing operators from free (f) to fixed (α, β) condi-
tions, we get

Zα,β = Zf〈φ(f |α)(x0)φ(α|f)(x1)φ(f |β)(x2)φ(β|f)(x3)〉. (3)

In the infinite volume limit, these quantities diverge for Q 6= 1, but by taking
a closer look at the partition function of the Potts Model for Q → 1, we find
for a minimal model with central charge c = 0 the partition function to be
Z = 1 in this limit.

For Πh, the φ are h1,2 boundary operators, while the results for Πhv con-
tain other boundary operators that can be identified by comparison with
known Potts models (i.e. for Q = 2, 3) to have weight h1,3. Another motiva-
tion for this ansatz can be found by letting the length of the segment with
free boundary conditions tend to zero. Therefore we know from fusion rules,
that

φ(α|f) × φ(f |β) ∼ δαβ + φ(α|β) (4)

which means that the fusion of two φ(1,2) boundary operators yields a φ(1,3)

field (see Cardy [5], Kleban [12]).
So far, it seems very reasonable to choose c = 0 to describe percolation,

but, unfortunately, a minimal model c(3,2) = 0 is not very interesting, since
its field content only consists of two h = 0 fields – φ(1,1) and φ(1,2). Thus just
taking the limit Q → 1 in the Q-state Potts Model can not provide us with
the necessary boundary changing operators corresponding to a φ(1,3) field as
suggested by Cardy [2].

In fact, if we include the φ(1,3) field into the spectrum of our conformal
field theory with vanishing central charge, the partition function will not be
equal to one. More precisely, including this field with conformal weight h1,3 =
1/3 into the spectrum leads to a logarithmic conformal field theory, [10, 11]
and references therein. The representation with this conformal weight is
indecomposable, containing an irreducible sub-representation with character

χ1,3(q) =
1

η(q)

∑
n∈Z

(2n + 1)q3(4n+1)2/8 , (5)

where η(q) denotes the Dedekind η-function q1/24
∏

n≥1(1 − qn). This loga-
rithmic conformal field theory is a so-called augmented minimal model, and
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it is rational in the sense that it possesses only finitely many indecomposable
or irreducible representations. However, the resulting modular invariant par-
tition function for this model is, up to terms proportional to log(qq̄), given
by the partition function of a c = 1 theory1 with radius of compactification
given by 2R2 = 1/(2 · 3) = 1/6, namely

Z =
1

|η(q)|2

(
|Θ0,6(q)|2 + 2

5∑
λ=1

|Θλ,6(q)|2 + |Θ6,6(q)|2
)

, (6)

Θλ,k(q) =
∑
n∈Z

q(2kn+λ)2/4k . (7)

The logarithmic corrections cannot be fixed in magnitude by the requirement
of non-negative integer coefficients in their respective q-expansions, but we
mention for completeness that

Zfull[α, β] = Z + α
log(qq̄)

|η(q)|2
5∑

λ=1

|(∂Θ)λ,6(q)|2 + β log(qq̄)2|E2(q)|2 , (8)

(∂Θ)λ,k(q) =
∑
n∈Z

(2kn + λ)q(2kn+λ)2/4k , (9)

and E2(q) is the Eisenstein series of modular weight two. Such modular
invariants can be found by solving the modular differential equation, which
must be satisfied by any finite-dimensional representation of the modular
group in terms of modular functions (with multiplicative systems). Usually,
it suffices to know one character of the conformal field theory, e.g. the vacuum
character, and the spectrum, i.e. the conformal weights of all admissible
irreducible or indecomposable representations [8, 9]. In any case, including
the field φ(1,3) from the boundary of the Kac-table of the c(3,2) = 0 minimal
model results in an enlarged theory with partition function definitely not
being equal to one.

Now we will take a look at the second argument for c = 0 from Stochas-
tic/Schramm Loewner Evolution (SLE). Apparently, there are no results for
the horizontal-vertical-crossing since up to now SLE has only been considered
for φ(1,2) operators which are not feasible for Πhv. Although the issues dis-
cussed above concerning the insufficient field content of the minimal model
with c = 0 do not apply within the SLE setting, we will show that SLE does
not necessarily force us to take a CFT with vanishing central charge c = 0.

Cardy [4] described, how SLE can be applied to calculate crossing prob-
abilities. Simply speaking, a path evolves by a Brownian motion of speed

1Note that the effective central charge of this model is ceff = c− 24hmin = 1.
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κ = 6 which repeatedly hits the real axis. In a configuration where the
motion starts from a point a0 on the real axis running all over the complex
upper half plane with x1 < a0 < x2 being the end points of the crossing
intervals, one of the points will be ”swallowed” first. For x1 being the first
to be hit by the graph, there obviously exists a free path along the outer line
of the graph, for x2 it is quite as obvious that this is not the case. Thus the
probability that there is a crossing between (a0, x2) to (−∞, x1) is given by
a Bessel process, described by a differential equation(

2

x1 − a0

∂

∂x1

+
2

x2 − a0

∂

∂x2

+
κ

2

∂2

∂a2
0

)
P (x1, x2; a0) . (10)

From translational invariance we get ∂a0 = −∂x1 − ∂x2 and from conformal
invariance, we know, that P is a function of the ratio η = x2−a0

x1−a0
. This is

exactly the same differential equation one yields with CFT for percolation
from a two level null vector [5]. There is also a general expression, relating the
speed of the Brownian motion κ to the central charge and thus the highest
weight states of the Virasoro algebra (i.e. [1], [4])

cκ =
(3κ− 8)(6− κ)

2κ
, (11)

hκ
r,s =

(rκ− 4s)2 − (κ− 4)2

16κ
. (12)

Hence, c = 0 and h1,2 = 0 for κ = 6 which has been shown to describe Πh in
two dimensional critical percolation [18]. Additionally, Bauer and Bernard
[1] stated a direct correspondence between the Q-state Potts model and SLE

Q = 4 cos2

(
4π

κ

)
, κ ≥ 4, (13)

by matching the known value of the dimension of the boundary changing
operator for the Q-state Potts model with hκ

1,2.
The third argument makes use of the form of the partition function of the

c = 0 model. But as we already have shown, the partition function for the
augmented c = 0 model is not the same as for the minimal c = 0 model and
thus especially not equal to unity. From this argument, we will show, that
we do not longer have to choose h = 0 operators as suggested by Cardy [5].

Regarding the problem mentioned above with only a single region with
fixed boundary conditions, in the Q → 1 limit, we have

Zα = Zf〈φ(f |α)(x0)φ(α|f)(x1)〉 = Zf × (x0 − x1)
2h. (14)
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In the minimal model, both partition functions are equal to unity, thus h = 0,
but in the extended model, we do not know the exact form of Zf , hence the
boundary operator is not a priori fixed in its dimension.

The last point addresses the transformation back onto the original region
that is described by the formula

〈φ0(w0)φ1(w1) . . .〉 =
∏

i

|w′(zi)|−hi〈φ0(z0)φ1(z1) . . .〉. (15)

The expression has a physical meaning in the general non scale invariance of
critical systems which picks up a factor (L/L0)6ac with L being the overall
size of the region, L0 some non universal microscopic scale (i.e. the lattice
spacing), c the (effective) central charge and a being dependent on the geom-
etry (i.e. a = −π/γ if the boundary operator sits in a corner with an interior
angle γ, see [5],[12]). Since percolation is assumed to be scale invariant, the
effect of the conformal mapping should vanish. But the physical properties of
our system only depend on the differential equation arising from null vectors,
thus this condition only has to hold in this sense.

We remark here that the above argument of finite size scaling effects re-
lies on an analysis of the asymptotic behavior of the partition function. This
behavior, however, depends on the central charge only modulo 24. Moreover,
invariance of the correlation functions holds in any conformal field theory,
as long as the Jacobian transformation factors are properly accounted for.
We will see below that within our proposal, where the crossing probabilities
are obtained from a CFT with non-vanishing central charge, we have quo-
tients of correlation functions such that the final expressions have all desired
properties.

Recapitulating, we state that the assumptions on percolation should be
reconsidered, since most arguments do not seem to be as strict as stated
before, i.e. the central charge arguments most times refer to an effective
central charge ceff = c− 24hmin where hmin is the weight of the ground state.
Thus ceff > c in the case of non-unitary theories with negative weights. Thus,
the arguments for h = 0 are either problematic due to the c = 0 minimal
model being nearly empty or are connected with the central charge. Hence,
once we agree on the proposal that we should work with the augmented, and
therefore non-unitary, c = 0 model, we also have to deal with the effective
charge in that model – which is the same for both theories,

c(6,1) = −24 ≡ 0 = c(3,2) mod 24 . (16)
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2 The Watts differential equation

As already mentioned, Watts [20] derived a fifth order differential equation for
Πhv, starting from a c = 0 theory with h1,2 = 0 boundary changing operators
following Cardy’s ansatz for Πh. But obviously, it is not so easy to derive the
null vectors in the c = 0 theory, since if we say that L−1|0〉 is a null state,
than by just taking the generic form of a level two null state with c(3,2) = 0,
(L2

−1 − 2/3L−2)|0〉 , we see that L−2 is a null vector, too, and everything
vanishes. Consequently, there can be no “direct” null vector on the fifth level
whatsoever. Interestingly, the ansatz of a level three null vector acting on a
weight 2 field yields a correct differential equation for the horizontal-vertical-
crossing probability in percolation. In a c = 0 theory, it seems strange, that
in contrary to the results for Πh, the Πhv boundary operators cannot be
identified directly [12]. Considering the asymptotic behavior, one can find
the correct expressions for Πh and Πhv [13] by taking linear combinations of
the three physically relevant solutions of

d3

dx3
(x(x− 1))

4
3

d

dx
(x(x− 1))

2
3

d

dx
F (x) , (17)

where x is the crossing ratio and F the conformally mapped crossing proba-
bility. The equation factorizes into [13](

d2

dx2
(x(x− 1)) +

1

2x− 1

d

dx
(2x− 1)2

)
d

dx
(x(x−1))

1
3

d

dx
(x(x−1))

2
3

d

dx
F (x) ,

(18)
where the rightmost part already provides us with the three expected solu-
tions for the crossing probabilities in percolation.

This third order differential equation has neither direct interpretation as
a third level null vector in a c = 0 theory (more precisely: there is no such
vector in this theory), nor does it arise from h = 0 boundary operators. In
contrary, we will show, that we obtain it from the null vector of an h1,3 = −2

3

field acting on a correlator containing h1 = h2 = h1,3 = −2
3

and h3 = 1,
which, for a level three null vector condition, is a unique solution.

The level 3 null vector has for t = 1
2
(h + 1) = p/q the generic form [17]

|χ(3)
h 〉 =

(
L3
−1 − 2(h + 1)L−1L−2 + (h + 1)(h + 2)L−3

)
|h〉 .

We will be a little bit more elaborate on this subject, since there are many
errors in the equations found in the canonical literature (i.e. see [6] on pages
288).
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Transforming this expression into a differential operator made out of the
L−n defined by

L−n(z) =
∑

i

(
(n− 1)hi

(zi − z)n
− 1

(zi − z)n−1
∂zi

)
, (19)

acting on a 4-point function

F (z, z1, z2, z3) ≡ 〈φh(z)φh1(z1)φh2(z2)φh3(z3)〉 , (20)

yields a quite lengthy expression. Replacing again all derivatives ∂zi
by

expressions only containing the derivative ∂z with respect to z and finally
putting {z1, z2, z3} 7→ {0, 1,∞}, results in the following ordinary third order
differential equation for F (z) ≡ F (z, 0, 1,∞):

0 =
d3

dz3
F (z) + 2(h + 1)

2z − 1

z(z − 1)

d2

dz2
F (z)

+ (h + 1)

(
h− 2h1

z2
+

h− 2h2

(z − 1)2
− 2

h3 − h− h1 − h2

z(z − 1)
+

h

z(z − 1)

)
d

dz
F (z)

+ h(h + 1)

(
−2h1

z3
− 2h2

(z − 1)3
+

(2z − 1)(h + h1 + h2 − h3)

z2(z − 1)2

)
F (z) . (21)

Comparing this result to a simplified version of the differential equation given
by Watts [20](

d3

dz3
+

5(2z − 1)

z(z − 1)

d2

dz2
+

4

3z(z − 1)

d

dz

)
F (z) = 0 . (22)

we know that this equation should be reproduced by (21) for an appropriate
choice of h, h1, h2, h3. However, (22) does not possess a term proportional to
F itself (not to one of its derivatives). Clearly, in this form, this could only
be the case for h = 0 or h = −1. One can easily see, that there are no triples
{h1, h2, h3} for these values of h such that (21) becomes equivalent to (22).
But there is a simple and natural way out, since we know something about
the generic form of a 4-point function of four primary fields. For example,
any function F (z, 0, 1,∞), which is invariant under global conformal trans-
formations, must be of the form F (z) = zµ01(z − 1)µ02f(z). Using such an
ansatz in (21) and pulling the differential operators through the pre-factor
yields a modified differential equation for f(z). Nicely, f(z) satisfies exactly
(22), if we put h = h1 = h2 = −2/3 and h3 = −1. This implies c = −24,
since then the representation with highest weight h = −2/3 indeed possesses
a null vector at level 3. Furthermore, the exponents µ01 = µ02 = 1/3 are
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exactly what one expects from the generic solution µij = 1
3

∑
k hk−hi−hj of∑

j 6=i µij = −2hi, i.e. (−2/3−2/3−2/3−1)/3+2/3+2/3 = −1+4/3 = 1/3.
To summarize, the conformal blocks of the 4-point function

〈Φh=−2/3(z)Φh1=−2/3(0)Φh2=−2/3(1)Φh3=−1(∞)〉 = zµ01(1− z)µ02f(z) (23)

of the c = −24 theory are in one-to-one correspondence with the solutions of
Watts’ differential equation.

As a concluding remark we note that h = −2/3 corresponds to a reducible
but indecomposable representation of the c(6,1) = −24 theory. Hence, it is
natural and inevitable, that correlation functions involving more than one
field of this type will contain conformal blocks with logarithmic divergencies.
Indeed, the Watts fifth-order differential equation has three solutions plus
two with logarithmic divergencies. However, the third-order equation has
only three regular solutions, which is in agreement with the fusion rules of
this logarithmic CFT, where the irreducible sub-representation with highest
weight h = −2/3 satisfies [−2/3]∗ [−2/3] = [0]+[−2/3]+[1]. Further details
will be worked out later.

Additionally, c = −24 has a very interesting field content. Taking a
look at the relevant entries of the Kac-Table (only the first row is needed,
since the conformal grid of this model is obtained by formally considering
the conformal grid for c(18,3) = c(3·6,3·1))

0 −3
8
−2

3
−7

8
−1 −25

24
−1 −7

8
−2

3
−3

8
0 11

24
1 13

8
7
3

25
8

4

we encounter that the critical exponents that are assumed to come up in
percolation appear shifted by 1, i.e. h1,2 = −3

8
and h1,4 = −7

8
. Thus descen-

dants of those fields could describe the physical properties of percolation. It
should be mentioned that the h0,0 = h1,6 = −25

24
field appears in the table

as well which is important for it not to vanish as it would in ordinary c(t,1)

minimal models [8, 9, 14]. This field is the so-called pre-logarithmic field
whose operator product expansion with itself gives rise to the indecompos-
able representations. All conformal weights which appear twice in the above
table belong to such indecomposable representations.

Further support for our conjecture that the rational logarithmic conformal
field theory with central charge c = c(6,1) = −24 might describe percolation is
given by the following remarkable observation. The partition function of this
theory is equivalent to the partition function eq. (8) of the extended c = 0
theory discussed above. More precisely, we have [8, 9] that

Zc(6,1)=−24[α] = Zfull[α, β = 0] . (24)
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Therefore, the non-logarithmic parts of the two partition functions, which
actually count the states, are identical.

On the other hand, this is not entirely surprising. Many arguments,
which favour a conformal field theory with vanishing central charge for the
description of two-dimensional percolation, rely on the modular properties
of the partition function. These properties cannot fix the central charge
uniquely, but only modulo 24. Surely enough, c(6,1) = −24 ≡ 0 = c(3,2) mod
24, and the effective central charges are equal to one for both theories.

If we still want to describe percolation as a c = 0 theory and still do
not want to reject the interpretation of Watts’ differential equation as a
Level three null vector, we may construct a tensorized CFT consisting of
the c = −24 and a c = 24 part. Therefore, any correlation function or
field factorizes into two parts, one for each of the two CFTs, i.e. ΦH(z) =
Φh,c=−24(z)⊗ ΦH−h,c=+24(z). However, since the 4-point function

Fc=−24(z) = 〈Φ−2/3(z)Φ−2/3(0)Φ−2/2(1)Φ−1(∞)〉c=−24

already yields as solutions the desired crossing probabilities, the second fac-
tor,

Gc=+24(z) = 〈Φh(z)Φh1(0)Φh2(1)Φh3(∞)〉c=+24

should be trivial. To make the picture perfect, we could try to achieve

f(z) = Fc=−24(z)Gc=+24(z) =⇒ Gc=+24(z) = z−1/3(z − 1)−1/3 .

The easiest way to get that result is to assume that G(z) is, essentially,
a 3-point function 〈Φ1/3(z)Φ1/3(0)Φ1/3(1)I(∞)〉c=−24. It remains to clarify
whether such a correlator exists and is non-vanishing in a c = +24 theory.

But what about the results already derived and proven consistent with
numerical simulations for Πh if percolation was described by a c(1,6) = −24
theory?

As already mentioned above, the horizontal crossing probability is deter-
mined by a second order differential equation interpreted as a level two null
vector condition arising from φ(1,2) which has the weight h = h1,2 = −3

8
in

this case. Therefore we have to solve(
1

t

d2

dz2
+

2z − 1

z(z − 1)

d

dz
− h1

z2
− h2

(z − 1)2
+

h + h1 + h2 − h3

z(z − 1)

)
F (z) = 0.

(25)
with t = p

q
being related to the central charge and thus determining h.

From the numerical simulation of Langlands et. al. [15] we know, that
Cardy’s formula [5] for Πh derived from a level two null vector in a c = 0
minimal model should be the outcome. Thus we know that F (z) should be
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of the form 2 F1(1/3, 2/3, 4/3, z). A simple calculation yields h1 = h2 =

h3 = h1,4 − 7
8

and F1(z) = (z(z − 1))
1
4 · z 1

3 2 F1(1/3, 2/3, 4/3, z) as well as

F2(z) = (z(z − 1))
1
4 as the second solution. Hence in comparison to Cardy,

the crossing probability for percolation is given by their quotient F1/F2. Now
our solution for Πh has exactly the same properties as described in [15] and
thus is zero for z → 1 and one for z → 0, as desired.2 The normalization is
obtained by considering the identity

3Γ
(

2
3

)
Γ2
(

1
3

) 2 F1(1/3, 2/3, 4/3, z) = 1−
3Γ
(

2
3

)
Γ2
(

1
3

) (1− z)
1
3 2 F1(1/3, 2/3, 4/3, 1− z).

(26)

Hence the correct normalization constant must be
3Γ( 2

3)
Γ2( 1

3)
.

This result is remarkable, since it contains the two fields for critical ex-
ponents in percolation, i.e. h1,2 = −3

8
and h1,4 = −7

8
.

Another important thing to be considered are the results of SLE for perco-
lation, showing the equivalence of Cardy’s formula and the results for κ = 6.
At first we have to state that the frequently cited proof of Smirnow [18] only
holds for site percolation on a triangular lattice, and according to himself
and Werner [19], the method used in [18] can not be applied directly to bond
percolation on the square lattice as discussed in this paper. Additionally, we
know that at one point in the derivation of the differential equation for the
SLEκ-process, namely the identification evolution operator A with a level
two null vector of a CFT [1], the assumption, that h1,2 = 0 is made. It
has consequences on the relation between the coefficients of the differential
equation (κ, c and h1,2) and the evolution operator,

A = −2L−2 +
κ

2
L2
−1 vs. L−2 −

3

2(2h1,2 + 1)
L2
−1. (27)

Hence, we know that
κ

4
=

3

2(2h1,2 + 1)
. (28)

Obviously, this leaves us with κ = 6 if we restrict ourselves to h = 0 in our
ansatz for percolation (or equivalently c(3,2) = 0 which means 3

2(2h1,2+1)
= 1

t
=

q
p

= 3
2
). But since there are no compulsory conditions to justify this ansatz

as explained before, we may question why we should not try h = −3
8

and

2This means that if we consider a rectangle whose corners are mapped clockwise in
decreasing order to the zi with r := (z3 − z0)/(z1 − z0), r → 0 and r → ∞, respectively.
Note that 0 < z < 1 and therefore the correct mapping on the upper complex plane is
taking z0 → z, z1 → 0, z2 →∞ and z3 → 1.
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thus κ = 24 or h = 4 and κ = 2
3
. Unfortunately, up to now there has been

no investigation of these SLEs.
There is, however, one possibility to try to elucidate this question further.

In [16], a generalization of the SLE process related to percolation is proposed,
which yields generalized probabilities, depending on a parameter b and given
by the formula

Π(b; z) = zb+ 1
6 2F1(

1

6
+ b,

1

2
+ b; 1 + 2b; z) . (29)

Obviously, b = 1/6 reproduces the case relevant for percolation, and thus
this is referred to as a generalization of Cardy’s formula. It is clear that (29)
cannot be given in terms of 4-point functions for all values of b for one and
the same CFT with fixed central charge, But we can try to check, whether
(29) can be reproduced by 4-point functions of CFTs whose central charges c
depend on the choice b. We restrict ourselves to the case of positive rational
b ∈ Q, b = p/q. We then further require that all four fields in the correlator
shall be degenerate primary fields, i.e. have conformal weights hr,s(c) from
the Kac-table.

Thus, we have to match the general solution of the second-order differen-
tial equation (25) for a level two null field with the desired expression (29).
This leads to the result

F (z) = [z(1− z)]−
2
3
hΠ(b; z) , h1 = 36b2−(4h−1)2

24(2h+1)
, h2 = h3 = −h(2h−1)

3(2h+1)
,

(30)
where we used that t = 3

2
(2h + 1)−1. Now, h = h1,2 is a member of the

Kac-table by construction, but we have to check, whether h1 and h2 can also
be chosen from the same Kac-table, since c is already fixed by the choice of h
via c = 13− 6(t + 1/t). Let us assume that b = p/q > 0, and that h2 = hr,s,
h3 = hr′,s′ . Plugging h = h1,2 into the solutions for h1 and h2, and then
solving for s and s′, respectively, leads to the diophantine equations

s = t

(
r ± 2

p

q

)
, s′ = t

(
r′ ± 1

3

)
. (31)

There are various solutions to this, but clearly t = lcm(3, pq) and thus
c = c(t,1) will it always make possible to find positive r, r′, s, s′ such that
all conformal weights are from the Kac-table.

Finally, we observe that F (z) is only proportional to the desired quantity
Π(b; z). Again, we would like to have that the quotient of the two conformal
blocks, or correlations functions, gives the probability, Π(b; z) = F1(z)/F2(z).
To this end, we would need that F1 = F and that F2 is simply F2(z) = [z(1−
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z)]−
2
3
h. This is possible, if the charge balance, in a free field realisation of the

CFT, adds up to the background charge, such that no screening integrations,
which lead to a non-trivial F2(z), are necessary. This yields us a further
condition, since the charges are

αr,s =
1

2
(r − 1)

√
t +

1

2
(1− s)

1√
t
, α0 =

1

2

(√
t− 1√

t

)
. (32)

We must have α1,2 + αr,s + 2αr′,s′ = 2α0. There is no good solution to this,
but one easily can check that α1,2 + 3αr′,s′ = 2α0 is automatically fulfilled.
We therefore arrive at the result that for all b = p/q > 0, a logarithmic
CFT with central charge c = c(t,1), t = lcm(3, pq), reproduces the generalized
version of Cardy’s formula as follows: Since t is always divisible by three, we
put t = 3t′, t′ ∈ N, and have

Π(b; z) =
〈φ(1,2)(z)φ(1,3t′(1±2b))(0), φ(1,2t′)(1)φ(1,2t′)(∞)〉
〈φ(1,2)(z)φ(1,2t′)(0), φ(1,2t′)(1)φ(1,2t′)(∞)〉

. (33)

Note that 3t′(1±2b) is always an integer. For b < 1, we can choose the minus
sign, otherwise, we should choose the plus sign. Both cases are within the
augmented Kac-table for the rational logarithmic models with central charge
c(3t′,1).

Interestingly, the known solution for b = 1/6 in terms of a CFT with
c(3,2) = 0 cannot be extended in a unified fashion to a series of CFTs for all
rational b. Although this is no rigorous proof, this result might indicate that
our proposal is more natural.

3 Conclusion and perspective

In this paper, we have shown that if we want to describe two dimensional
bond percolation within a conformal field theory, using a level three null
vector condition to get a differential equation for horizontal-vertical crossing
probability Πhv that fits the numerical data, we have to take c = −24. This
solution is unique.

Additionally, there are no strict arguments contradicting our result, even
not from the derivation of the horizontal crossing probability Πh whose form
has already been proven in the literature, since it can be explained in our
c = −24 CFT proposal as well. Hence the question remains if we should
consider percolation being rather a c = −24 than the commonly assumed
c = 0 theory. Although we have presented several arguments indicating that
our proposal is more natural, and that some arguments in favour of the c = 0
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theory are problematic (particularly the serious issue of having a partition
function Z = 1 and simultaneously a φ(1,3) field in the spectrum of the c = 0
theory), we do not have a strict proof for our solution.

But there are still open questions that arise when considering SLE. The
two most obvious are

• Can we describe the horizontal vertical crossing probability using the
SLE formalism?

• Is there an SLE corresponding to bond percolation on the square lat-
tice? If yes, what are its properties? Is the proof explicit in both
directions? Does it endorse or destroy the ansatz of c = −24?

Besides the discussion whether one or the other ansatz is correct, another
important issue is to investigate in more detail the close relationship between
conformal field theories whose central charges differ by multiples of 24, es-
pecially why c = −24 and c = 0 have so many similar properties concerning
percolation.

Note added: After completion of this work, we were kindly informed that
our first question has been answered recently by Julien Dubedat [7]. There is
a rigorous derivation of Watts’ crossing formula in terms of certain SLE pro-
cesses which depend on more parameters than the classical κ-SLE mentioned
above. This immediately raises the new question whether such generalized
SLE processes have a description in terms of conformal field theory. Perhaps,
our work might hint towards a positive answer to this question.
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