Perturbation theory for interacting ϕ^4 scalar field theory

Consider a scalar field theory with quartic self-interaction, described by:

\[\mathcal{L} = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - \frac{1}{2} m^2 \phi^2 - \frac{\lambda}{4!} \phi^4. \]

In quantum field theory, all n-point correlation functions can be encoded in a single object called the generating functional, $Z[J]$, as:

\[G_n(x_1, x_2, \ldots, x_n) = i^{-n} \left[\frac{\delta^n Z[J]}{\delta J(x_1) \delta J(x_2) \cdots \delta J(x_n)} \right]_{J=0}. \]

For the ϕ^4 theory, the generating functional is given by:

\[Z[J] = \frac{\exp \left[\left(-i \frac{\delta}{\delta J(z)} \right)^4 \right] \left[\frac{Z_0[J]}{Z_0[0]} \right]}{\exp \left[\left(-i \frac{\delta}{\delta J(z)} \right)^4 \right] \left[\frac{Z_0[J]}{Z_0[0]} \right]}_{J=0}, \]

where Z_0 is the free generating functional:

\[Z_0[J] = Z_0[0] \exp \left[-\frac{1}{2} \int d^4x d^4y J(x) D_F(x-y) J(y) \right]. \]

Assuming small interaction coupling, $\lambda \ll 1$, we can use perturbation theory. The Feynman rules for the ϕ^4 theory read:

\[\begin{align*}
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \quad \bullet \quad \bullet \\
\end{array}
\end{array} & = D_F (x-y) \\
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \\
\end{array}
\end{array} & = \int d^4z \ D_F(x-z) i \bar{J}(z) \\
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \\
\end{array}
\end{array} & = \int d^4z \ \int d^4y \ i \bar{J}(z) \ D_F(x-y) i \bar{J}(y) \\
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \\
\end{array}
\end{array} & = \left(-i \frac{\lambda}{4!} \right) \int d^4z \\
\begin{array}{c}
\begin{array}{c}
\bullet \quad \bullet \\
\end{array}
\end{array} & = \left(-i \frac{\lambda}{4!} \right) \int d^4z \\
\end{align*} \]
1 (a) Apply the functional derivative \(\frac{1}{i} \frac{\delta}{\delta J(x)} \) to \(Z_0[J] \), and draw the corresponding diagram. What does \(\frac{1}{i} \frac{\delta}{\delta J(x)} \) do to a diagram?

(b) By expanding \(Z[J] \) to first order in \(\lambda \), and applying \(\frac{\delta}{\delta J(x)} \) four times, show that to \(\mathcal{O}(\lambda) \):

\[
Z[J] = \frac{1}{\left[1 - i \frac{1}{3!} \int d^4x \left(3(D_F(0))^2 + 6D_F(0) \left(\int d^4y D_F(x - y) J(y) \right) + \left(\int d^4y D_F(x - y) J(y) \right)^4 \right) \right] Z_0[0]} \]

You may choose whether to work explicitly or to use the Feynman diagrams.

(c) Show that the vacuum diagrams, which diverge, cancel thanks to the normalization.

2 The four-point function reads:

\[
\Gamma_4(x_1, x_2, x_3, x_4) = \left(\begin{array}{c}
\begin{array}{c}
1 \quad 3 \\
\hline
3 & +
\end{array}
\end{array} \right) + \left(\begin{array}{c}
\begin{array}{c}
1 \quad 4 \\
\hline
3 & +
\end{array}
\end{array} \right) + \left(\begin{array}{c}
\begin{array}{c}
1 \quad 2 \\
\hline
3 & +
\end{array}
\end{array} \right) + \left(\begin{array}{c}
\begin{array}{c}
1 \quad 2 \\
\hline
3 & 4
\end{array}
\end{array} \right) + \mathcal{O}(\lambda^2)
\]

What diagrams appear in \(G_4(x_1, x_2, x_3, x_4) \) at \(\mathcal{O}(\lambda^2) \)? Take the symmetry factors into account!

3 Only the connected Feynman diagrams in a correlation function contribute to the non-trivial (off-diagonal) part of the \(S \) matrix. Show to \(\mathcal{O}(\lambda) \) that the functional \(W[J] = -i \ln Z[J] \) generates only the connected diagrams of \(G_4(x_1, x_2, x_3, x_4) \).