[P1] Virasoro-Algebra, zentrale Ladung

Zeigen Sie, dass die Virasoro-Algebra des quantisierten Strings folgende Form hat:

$$[L_m, L_n] = (m-n) L_{m+n} + \frac{c}{12} m(m+1)(m-1) \delta_{m+n,0}$$
.

Gehen Sie dazu von dem Ansatz

$$[L_m, L_n] = (m-n) L_{m+n} + A_m \delta_{m+n,0}$$

aus. Verwenden Sie die Jacobi-Identität für drei Generatoren L_m , L_n und L_k mit m+n+k=0 und k=1. Des weiteren betrachten Sie die Matrixelemente $\langle 0|[L_1,L_{-1}]|0\rangle$ und $\langle 0|[L_2,L_{-2}]|0\rangle$.

[P2] Eigenschaften der Virasoro-Algebra

Zeigen bzw. untersuchen Sie folgende Eigenschaften der Virasoro-Algebra:

- (a) Wie wirkt sich eine Änderung der Normalordnungskonstanten a des Operators L_0 aus?
- (b) Die gesamte Virasoro-Algebra wird von den Generatoren $L_{\pm 1}$ und $L_{\pm 2}$ erzeugt.
- (c) Die von $L_{\pm 1}$ und L_0 erzeugte Unteralgebra hat keine zentrale Ladung und lässt den Grundzustand $|0\rangle$ invariant.
- (d) Die Vektorfelder $-z^{m+1}\partial_z$ sind eine Darstellung der klassischen Virasoro-Algebra auf dem Raum der meromorphen Funktionen auf \mathbb{C} .
- (e) Welche Transformationen generiert die von $L_{\pm 1}$ und L_0 erzeugte Unteralgebra auf \mathbb{C} ?