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Abstract. We present an up-to-date survey of theoretical concepts and results in
the field of one-dimensional magnetism and of their relevance to experiments and
real materials. Main emphasis of the chapter is on quantum phenomena in models of
localized spins with isotropic exchange and additional interactions from anisotropy
and external magnetic fields.

Three sections deal with the main classes of model systems for 1D quantum
magnetism: S = 1/2 chains, spin chains with S > 1/2, and S = 1/2 Heisenberg
ladders. We discuss the variation of physical properties and elementary excitation
spectra with a large number of model parameters such as magnetic field, anisotropy,
alternation, next-nearest neighbour exchange etc. We describe the related quantum
phase diagrams, which include some exotic phases of frustrated chains discovered
during the last decade.

A section on modified spin chains and ladders deals in particular with mo-
dels including higher-order exchange interactions (ring exchange for S=1/2 and
biquadratic exchange for S=1 systems), with spin-orbital models and mixed spin
(ferrimagnetic) chains.

The final section is devoted to gapped one-dimensional spin systems in high
magnetic field. It describes such phenomena as magnetization plateaus and cusp
singularities, the emergence of a critical phase when the excitation gap is closed by
the applied field, and field-induced ordering due to weak three-dimensional coupling
or anisotropy. We discuss peculiarities of the dynamical spin response in the critical
and ordered phases.

1.1 Introduction

The field of low-dimensional magnetism can be traced back some 75 years ago:
In 1925 Ernst Ising followed a suggestion of his academic teacher Lenz and
investigated the one-dimensional (1D) version of the model which is now well
known under his name [1] in an effort to provide a microscopic justification
for Weiss’ molecular field theory of cooperative behavior in magnets; in 1931
Hans Bethe wrote his famous paper entitled ’Zur Theorie der Metalle. I.
Eigenwerte und Eigenfunktionen der linearen Atomkette’ [2] describing the
’Bethe ansatz’ method to find the exact quantum mechanical ground state
of the antiferromagnetic Heisenberg model [3], for the 1D case. Both papers
were actually not to the complete satisfaction of their authors: The 1D Ising
model failed to show any spontaneous order whereas Bethe did not live up to
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the expectation expressed in the last sentence of his text: ’In einer folgenden
Arbeit soll die Methode auf räumliche Gitter ausgedehnt . . . werden’ (’in a
subsequent publication the method is to be extended to cover 3D lattices’).

In spite of this not very promising beginning, the field of low-dimensional
magnetism developed into one of the most active areas of today’s solid state
physics. For the first 40 years this was an exclusively theoretical field. Theo-
rists were attracted by the chance to find interesting exact results without
having to deal with the hopelessly complicated case of models in 3D. They
succeeded in extending the solution of Ising’s (classical) model to 2D (which,
as Onsager showed, did exhibit spontaneous order) and in calculating excita-
tion energies, correlation functions and thermal properties for the quantum
mechanical 1D Heisenberg model and (some of) its anisotropic generalizati-
ons. In another line of research theorists established the intimate connection
between classical models in 2D and quantum mechanical models in 1D [4,5].
An important characteristic of low-dimensional magnets is the absence of
long range order in models with a continuous symmetry at any finite tempe-
rature as stated in the theorem of Mermin and Wagner [6], and sometimes
even the absence of long range order in the ground state [7].

It was only around 1970 when it became clear that the one- and two-
dimensional models of interest to theoretical physicists might also be relevant
for real materials which could be found in nature or synthesized by ingenious
crystal growers. One of the classical examples are the early neutron scattering
experiments on TMMC [8]. Actually, magnets in restricted dimensions have
a natural realization since they exist as real bulk crystals with, however,
exchange interactions which lead to magnetic coupling much stronger in one
or two spatial directions than in the remaining ones. Thus, in contrast to 2D
lattices (on surfaces) and 2D electron gases (in quantum wells) low D magnets
often have all the advantages of bulk materials in providing sufficient intensity
for experiments investigating thermal properties (e.g. specific heat), as well
as dynamic properties (in particular quantum excitations) by e.g. neutron
scattering.

The interest in low-dimensional, in particular one-dimensional magnets
developed into a field of its own because these materials provide a unique
possibility to study ground and excited states of quantum models, possible
new phases of matter and the interplay of quantum fluctuations and thermal
fluctuations. In the course of three decades interest developed from classical
to quantum mechanics, from linear to nonlinear excitations. From the theore-
tical point of view the field is extremely broad and provides a playground for
a large variety of methods including exact solutions (using the Bethe ansatz
and the mapping to fermion systems), quantum field theoretic approaches
(conformal invariance, bosonization and the semiclassical nonlinear σ−model
(NLSM)), methods of many-body theory (using e.g. Schwinger bosons and
hard core bosons), perturbational approaches (in particular high order series
expansions) and finally a large variety of numerical methods such as exact
diagonalization (mainly using the Lanczos algorithm for the lowest eigen-
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values but also full diagonalization), density matrix renormalization group
(DMRG) and Quantum Monte Carlo (QMC) calculations.

The field of one-dimensional magnets is characterized by strong interac-
tions between theoretical and experimental research: In the early eighties,
the seminal papers of Faddeev and Takhtajan [9] who revealed the spinon
nature of the excitation spectrum of the spin-1

2 antiferromagnetic chain, and
Haldane [10] who discovered the principal difference between chains of integer
and half-integer spins caused an upsurge of interest in new quasi-1D magne-
tic materials, which substantially advanced the corresponding technology. On
the other hand, in the mid eighties, when the interest in the field seemed to
go down, a new boost came from the discovery of high temperature supercon-
ductors which turned out to be intimately connected to the strong magnetic
fluctuations which are possible in low D materials. At about the same time
a new boost for experimental investigations came from the new energy range
opened up for neutron scattering experiments by spallation sources. Further
progress of material science triggered interest in spin ladders, objects staying
“in between” one and two dimensions [11]. At present many of the pheno-
mena which turned up in the last decade remain unexplained and it seems
safe to say that low-dimensional magnetism will be an active area of research
good for surprises in many years to come.

It is thus clear that the field of 1D magnetism is vast and developing ra-
pidly. New phenomena are found and new materials appear at a rate which
makes difficult to deliver a survey which would be to any extent complete.
Our aim in this chapter will be to give the reader a proper mixture of stan-
dard results and of developing topics which could serve as an advanced in-
troduction and stimulate further reading. We try to avoid the overlap with
already existing excellent textbooks on the subject [12–14], which we recom-
mend as complementary reading. In this chapter we will therefore review
a number of issues which are characteristic for new phenomena specific for
one-dimensional magnets, concentrating more on principles and a unifying
picture than on details.

Although classical models played an important role in the early stage
of 1D magnetism, emphasis today is (and will be in this chapter) on models
where quantum effects are essential. This is also reflected on the material side:
Most investigations concentrate on compounds with either Cu2+-ions which
realize spin- 1

2 or Ni2+-ions which realize spin 1. Among the spin-1
2 chain-like

materials, CuCl2·2NC5H5 (Copperpyridinchloride = CPC) is important as
the first quantum chain which was investigated experimentally [15]. Among
today’s best realizations of the spin-1

2 antiferromagnetic Heisenberg model
we mention KCuF3 and Sr2CuO3. Another quasi-1D spin-1

2 antiferromagnet
which is widely investigated is CuGeO3 since it was identified in 1992 as
the first inorganic spin-Peierls material [16]. The prototype of ladder ma-
terials with spin-1

2 is SrCu2O3; generally, the SrCuO materials realize not
only chains and two-leg ladders but also chains with competing interactions
and ladders with more than two legs. Of particular interest is the material
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Sr14Cu24O41 which can be easily synthesized and consists of both CuO2 zig-
zag chains and Cu2O3 ladders. A different way to realize spin-1

2 is in chains
with Co++-ions which are well described by a pseudospin 1

2 : The free Co-
ion has spin 3

2 , but the splitting in the crystal surrounding is so large that
for the interest of 1D magnetism only the low-lying doublet has to be ta-
ken into account (and then has a strong tendency to Ising-like anisotropy,
e.g. in CsCoCl3). Among the spin-1 chain-like materials, CsNiF3 was impor-
tant in the classical era as a ferromagnetic xy-like chain which allowed to
demonstrate magnetic solitons; for the quantum S=1 chain and in particular
the Haldane gap first (Ni(C2H8N2)2NO2(ClO4) = NENP) and more recently
(Ni(C5H14N2)2N3(PF6) = NDMAP) are the most important compounds. It
should be realized that the anisotropy is usually very small in spin-1

2 chain
materials with Cu2+-ions whereas S=1 chains with Ni2+-ions, due to spin-
orbit effects, so far are typically anisotropic in spin space. An increasing
number of theoretical approaches and some materials exist for alternating
spin-1 and 1

2 ferrimagnetic chains and for chains with V2+−ions with spin
3
2 and Fe2+-ions with spin 2, however, to a large degree this is a field for
the future. Tables listing compounds which may serve as 1D magnets can be
found in earlier reviews [17, 18]; for a discussion of the current experimental
situation, see the Chapter by Lemmens and Millet in this book.

We will limit ourselves mostly to models of localized spins Sn with an
exchange interaction energy between pairs, Jn,m (Sn · Sm) (Heisenberg mo-
del), to be supplemented by terms describing (spin and lattice) anisotropies,
external fields etc., when necessary. Whereas for real materials the coupling
between the chains forming the 1D system and in particular the transition
from 1D to 2D systems with increasing interchain coupling is of considerable
interest, we will in this chapter consider only the weak coupling limit and
exclude phase transitions into phases beyond a strictly 1D character. With
this aim in mind, the most important single model probably is the S = 1/2
(Sα = 1

2σ
α) XXZ model in 1D

H = J
∑

n

{
1
2
(
S+

n S
−
n+1 + S−

n S
+
n+1

)
+∆Sz

nS
z
n+1

}
. (1.1)

We have decomposed the scalar product into longitudinal and transverse
terms

S1 · S2 = Sz
1S

z
2 +

1
2
(
S+

1 S
−
2 + S−

1 S
+
2

)
(1.2)

(S± = Sx ± iSy) and we note that the effect of the transverse part for
S = 1/2 is nothing but to interchange up and down spins, | ↑ ↓〉 ←→ | ↓
↑〉 (apart from a factor of 1

2 ). The Hamiltonian of (1.1), in particular for
antiferromagnetic coupling, is one of the important paradigms of both many-
body solid state physics and field theory. Important for the discussion of its
properties is the presence of symmetries leading to good quantum numbers
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such as wave vector q (translation), Sz
tot (rotation about z-axis), Stot (general

rotations, for |∆| = 1) and parity (spin inversion).
This chapter will present theoretical concepts and results, which, howe-

ver, are intimately related to experimental results. The most important link
between theory and experiment are the spin correlation functions or resp.
dynamical structure factors which for a spin chain are defined as follows:

Sα,α(q, ω) =
∑

n

∫
dtei(qn−ωt)〈Sα

n (t)Sα
0 (t = 0)〉 (1.3)

Sα,α(q) =
∑

n

eiqn〈Sα
nS

α
0 〉 =

1
2π

∫
dωSα,α(q, ω). (1.4)

S(q, ω) determines the cross section for scattering experiments as well as line
shapes in NMR and ESR experiments. A useful sum rule is the total intensity,
obtained by integrating S(q, ω) over frequency and wave vector,

1
4π2

∫
dωSα,α(q, ω) =

1
2π

∫
dqSα,α(q) = 〈(Sα

0 )2〉 (1.5)

which is simply equal to 1
3S(S + 1) in the isotropic case.

1.2 S = 1
2 Heisenberg Chain

The S = 1
2 XXZ Heisenberg chain as defined in (1.1) (XXZ model) is both

an important model to describe real materials and at the same time the
most important paradigm of low-dimensional quantum magnetism: it allows
to introduce many of the scenarios which will reappear later in this chap-
ter: broken symmetry, the gapless Luttinger liquid, the Kosterlitz-Thouless
phase transition, gapped and gapless excitation continua. The XXZ model
has played an essential role in the development of exact solutions in 1D ma-
gnetism, in particular of the Bethe ansatz technique. Whereas more details
on exact solutions can be found in the chapter by Klümper, we will adopt in
this section a more phenomenological point of view and present a short sur-
vey of the basic properties of the XXZ model, supplemented by an external
magnetic field and by some remarks for the more general XYZ model,

H = J
∑

n

{
(1 + γ)Sx

nS
x
n+1 + (1− γ)Sy

nS
y
n+1 +∆Sz

nS
z
n+1
}

−gµBH
∑

n

Sn (1.6)

as well as by further typical additional terms such as next-nearest neighbor
(NNN) interactions, alternation etc. We will use a representation with posi-
tive exchange constant J > 0 and we will frequently set J to unity, using it
as the energy scale.
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1.2.1 Ferromagnetic Phase

For ∆ < −1 the XXZ chain is in the ferromagnetic Ising phase: the ground
state is the saturated state with all spins aligned in either z or −z direction,
i.e., the classical ground state with magnetization Sz

tot = ± 1
2N , where N is

the number of sites. This is thus a phase with broken symmetry: the ground
state does not exhibit the discrete symmetry of spin reflection Sz → −Sz,
under which the Hamiltonian is invariant. In the limit ∆ = −1 this symmetry
is enlarged to the full rotational symmetry of the isotropic ferromagnet.

When an external magnetic field in z-direction is considered, the Zeeman
term as included in (1.6), HZ = −gµBH

∑
n S

z
n, has to be added to the Ha-

miltonian. Since HXXZ commutes with the total spin component Sz
tot, the ex-

ternal magnetic field results in an additional energy contribution −gµBHSz
tot

without affecting the wave functions. The symmetry under spin reflection is
lifted and the saturated ground state is stabilized.

The low-lying excited states in the ferromagnetic phase are magnons with
the total spin quantum number Sz

tot = 1
2N − 1 and the dispersion law (valid

for general spin S)

ε(q) = 2JS (1− cos q − (∆+ 1)) + 2gµBHS. (1.7)

These states are exact eigenstates of the XXZ Hamiltonian. In zero field
the excitation spectrum has a gap at q = 0 of magnitude |∆| − 1 for ∆ <
−1. At ∆ = −1 the discrete symmetry of spin reflection generalizes to the
continuous rotational symmetry and the spectrum becomes gapless. This is a
consequence of Goldstone’s theorem: the breaking of a continuous symmetry
in the ground state results in the emergence of a gapless excitation mode.
Whereas the ground state exhibits long range order, the large phase space
available to the low-lying excitations in 1D leads to exponential decay of
correlations at arbitrarily small finite temperatures following the theorem of
Mermin and Wagner [6].

Eigenstates in the subspace with two spin deviations, Sz
tot = N−2 can be

found exactly by solving the scattering problem of two magnons. This results
in the existence of bound states below the two magnon continuum (for a
review see [19]) which are related to the concept of domain walls: In general
two spin deviations correspond to 4 domains walls (4 broken bonds). However,
two spin deviations on neighboring sites correspond to 2 domain walls and
require intermediate states with a larger number of walls, i.e. higher energy, to
propagate. They therefore have lower energy and survive as a bound state.
General ferromagnetic domain wall states are formed for smaller values of
Sz

tot The ferromagnetic one-domain-wall states can be stabilized by boundary
fields opposite to each other. They contain admixtures of states with a larger
number of walls, but for ∆ < −1 they remain localized owing to conservation
of Sz

tot [20]. A remarkable exact result is that the lowest magnon energy is
not affected by the presence of a domain wall [21]: the excitation energy is
|∆|−1 both for the uniform ground state and for the one domain wall states.
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We mention two trivial, but interesting consequences of (1.7) which can
be generalized to any XXZ-type Hamiltonian conserving Sz

tot:
(i) For sufficiently strong external magnetic field the classical saturated state
is forced to be the ground state for arbitrary value of ∆ and the lowest
excitations are exactly known. If the necessary magnetic fields are within
experimentally accessible range, this can be used for an experimental deter-
mination of the exchange constants from the magnon dispersion (an example
in 2D are recent neutron scattering experiments on Cs2CuCl4 [22]).
(ii) The ferromagnetic ground state becomes unstable when the lowest spin
wave frequency becomes negative. This allows to determine e.g. the boundary
of the ferromagnetic phase for ∆ > −1 in an external field as H = Hc with
gµBHc = ∆+ 1.

1.2.2 Néel Phase

For ∆ > +1 the XXZ chain is in the antiferromagnetic Ising or Néel phase
with, in the thermodynamic limit, broken symmetry and one from 2 degene-
rate ground states, the S = 1/2 remnants of the classical Néel states. The
spatial period is 2a, and states are described in the reduced Brillouin zone
with wave vectors 0 ≤ q ≤ π/a. The ground states have Sz

tot = 0, but finite
sublattice magnetization

Nz =
∑

n

(−1)n Sz
n. (1.8)

and long range order in the corresponding correlation function. In contrast
to the ferromagnet, however, quantum fluctuations prevent the order from
being complete since the sublattice magnetization does not commute with
the XXZ Hamiltonian. For periodic boundary conditions and large but finite
N (as is the situation in numerical approaches), the two ground states mix
with energy separation ∝ exp(−const × N) (for N → ∞). Then invariance
under translation by the original lattice constant a is restored and the original
Brillouin zone, 0 ≤ q ≤ 2π/a, can be used.

The elementary excitations in the antiferromagnetic Ising phase are de-
scribed most clearly close to the Ising limit ∆ → ∞ starting from one of
the two ideal Néel states: Turning around one spin breaks two bonds and
leads to a state with energy ∆, degenerate with all states resulting from
turning around an arbitrary number of subsequent spins. These states have
Sz

tot = ±1, resp. 0 for an odd, resp. even number of turned spins. They are ap-
propriately called two-domain wall states since each of the two broken bonds
mediates between two different Néel states. The total number of these states
is N(N − 1): there are N2/4 states with Sz

tot = +1 and Sz
tot = −1 (number

of turned spins odd) and N2/2 −N states with Sz
tot = 0 (number of turned

spins even). These states are no more eigenstates when ∆−1 is finite, but
for ∆−1 
 1 they can be dealt with in perturbation theory, leading to the
excitation spectrum in the first order in 1/∆ [23]
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ω(q, k) = ∆+ 2 cos q cos 2Φ (1.9)

= ε(
q

2
+ Φ) + ε(

q

2
− Φ) (1.10)

with

ε(k) =
1
2
∆+ cos 2k. (1.11)

q is the total momentum and takes the values q = 2πl/N with l = 1, 2 . . . N/2,
Φ is the wave vector related to the superposition of domain walls with dif-
ferent distances and for Sz

tot = ±1 takes values Φ = mπ/(N + 2) with
m = 1, 2 . . . N/2. Φ is essentially a relative momentum, however, the pre-
cise values reflect the fact that the two domain walls cannot penetrate each
other upon propagation. The formulation of (1.10) makes clear that the ex-
citation spectrum is composed of two entities, domain walls with dispersion
given by (1.11) which propagate independently with momenta k1, k2. These
propagating domain walls were described first by Villain [24], marking the
first emergence of magnetic (quantum) solitons. A single domain wall is ob-
tained as eigenstate for an odd number of sites, requiring a minimum of one
domain wall, and therefore has spin projection Sz

tot = ± 1
2 . A domain wall

can hop by two sites due to the transverse interaction whence the argument
2k in the dispersion.

n

Sn
−

Ĥ
...

Neel

2 DW

(a)

0 ππ/2
q

0.5

1

E
/∆

 ∆=10 (b)

Fig. 1.1. Domain wall picture of elementary excitations in the Néel phase of the
XXZ S = 1

2 chain: (a) acting with S−
n on the Néel state, one obtains a “magnon”

which decays into two domain walls (DW) under repeated action of the Hamilto-
nian; (b) the two-DW continuum in the first order in ∆, according to (1.9)

Figure 1.1 shows the basic states of this picture and the related dispersi-
ons. The two domain wall dispersion of (1.9) is shown in the reduced Brillouin
zone; the full BZ can, however, also be used since the corresponding wave fun-
ctions (for periodic boundary conditions) are also eigenstates of the transla-
tion by one site. The elementary excitations in the antiferromagnetic Ising
phase thus form a continuum with the relative momentum of the two domain
walls serving as an internal degree of freedom.
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1.2.3 XY Phase

For −1 < ∆ < +1 and zero external field the XXZ chain is in the XY phase,
characterized by uniaxial symmetry of the easy-plane type and a gapless
excitation continuum. Whereas the full analysis of this phase for general ∆
requires the use of powerful methods such as Bethe ansatz and bosonization,
to be discussed in later chapters, an approach in somewhat simpler terms is
based on the mapping of S = 1

2 spin operators in 1D to spinless fermions via
the nonlocal Jordan-Wigner transformation [25,26]:

S+
n = c†n eiπ

∑n−1
p=1 c†

pcp , Sz
n = c†ncn −

1
2
. (1.12)

When a fermion is present (not present) at a site n, the spin projection is
Sz

n = + 1
2 (− 1

2 ). In fermion language the XXZ Hamiltonian reads

HXXZ = J
∑

n

{1
2
(
c†ncn+1 + c†n+1cn

)
+∆

(
c†ncn −

1
2
)(
c†n+1cn+1 −

1
2
)}

− gµBH
∑

n

(
c†ncn −

1
2

)
(1.13)

For general ∆ the XXZ chain is thus equivalent to an interacting 1D fermion
system. We discuss here mainly the simplest case ∆ = 0 (XX model), when
the fermion chain becomes noninteracting and is amenable to an exact analy-
sis in simple terms to a rather large extent: For periodic boundary conditions
the assembly of free fermions is fully described by the dispersion law in wave
vector space

ε(k) = J cos k − gµBH. (1.14)

Each of the fermion states can be either occupied or vacant, corresponding
to the dimension 2N of the Hilbert space for N spins with S = 1

2 . The
ground state as the state with the lowest energy has all levels with ε(k) ≤ 0
occupied: For gµBH > J all fermion levels are occupied (maximum positive
magnetization), for gµBH < −J all fermion levels are vacant (maximum
negative magnetization) whereas for intermediate H two Fermi points k =
±kF exist, separating occupied and vacant levels. This is the regime of the
XY phase with a ground state which is a simple Slater determinant. For
H = 0, as assumed in this subsection, the Fermi wave vector is kF = π/2 and
the total ground state magnetization vanishes. Magnetic field effects will be
discussed in Sect. 1.2.7.

We note that periodic boundary conditions in spin space are modified
by the transformation to fermions: the boundary term in the Hamiltonian
depends explicitly on the fermion number Nf and leads to different Hamil-
tonians for the two subspaces of even, resp. odd fermion number. For fixed
fermion number this reduces to different sets of allowed fermion momenta
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k: If the total number of spins N is even, the allowed values of fermion
momenta are given by kn = 2πIn/N , where the numbers In are integer (half-
odd-integer) if the number of fermions Nf = Sz

tot + N
2 is odd (even). The

total momentum of the ground state is thus P = Nfπ. The same two sets
of k-values are found in the Bethe ansatz solution of the XXZ chain. The
complication of two different Hilbert spaces is avoided with free boundary
conditions, giving up translational symmetry.

Static correlation functions for the XX model can be calculated for the
discrete system (without going to the continuum limit) [26]. The longitudinal
correlation function in the ground state is obtained as

〈0|Sz
nS

z
0 |0〉 = −1

4

(
2
πn

)2

(1.15)

for n odd, whereas it vanishes for even n �= 0. The transverse correlation
function is expressed as a product of two n/2×n/2 determinants; an explicit
expression is available only for the asymptotic behavior [27]

〈0|Sx
nS

x
0 |0〉 = 〈0|Sy

nS
y
0 |0〉 ∼ C

1√
n
, C ≈ 0.5884 . . . (1.16)

A discussion of these correlation functions for finite temperature has been gi-
ven by Tonegawa [28]. Static correlation functions can also be given exactly
for the open chain, thus accounting for boundary effects, see e.g. [29]. Dy-
namic correlation functions cannot be obtained at the same level of rigor as
static ones since they involve transitions between states in different Hilbert
spaces (with even resp. odd fermion number). Nevertheless, detailed results
for the asymptotic behavior have been obtained [30] and the approach to cor-
relation functions of integrable models using the determinant representation
to obtain differential equations [31] has emerged as a powerful new method.

Quantities of experimental relevance can be easily calculated from the
exact expression for the free energy in terms of the basic fermion dispersion,
(1.14),

F = −N kB T

[
ln 2 +

2
π

∫ π
2

0
dk ln cosh

(
ε(k)
2kBT

)]
. (1.17)

An important quantity is the specific heat whose low-temperature behavior
is linear in T :

C(T ) � πT

6vF
, (1.18)

where vF = (∂ε/∂k)|k=kF
= J is the Fermi velocity.

Low-lying excitations are also simply described in the fermion picture:
They are either obtained by adding or removing fermions, thus changing the
total spin projection Sz

tot by one unity and adding or removing the energy
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ε(k), or particle-hole excitations which do not change Sz
tot. Creating a general

particle-hole excitation involves moving a fermion with momentum ki inside
the Fermi sea to some momentum kf outside the Fermi sea. It is clear that
moving a fermion just across the Fermi point costs arbitrarily low energy:
the excitation spectrum is gapless. It is easily seen that for a given total mo-
mentum q = kf − ki a finite range of excitation energies is possible, thus the
spectrum of particle-hole excitations is a continuum with the initial momen-
tum k = ki as internal degree of freedom:

ω(q, k) = ε(k + q)− ε(k). (1.19)

The resulting continuum for Sz
tot = 0 is shown in Fig. 1.2.Sz

tot = ±1 exci-
tations result from the one-fermion dispersion, but develop a continuum as
well by adding particle-hole excitations with appropriate momentum; those
excitations involve changing the number of fermions by one which implies a
change of the total momentum by π, and thus the Sz

tot = ±1 spectrum is the
same as in Fig. 1.2 up to the shift by π along the q axis.

0  π  2π
 q

0

0.5

1

1.5

2

 ω
/J

 H=0
(a)

Fig. 1.2. Excitation spectrum of the spin- 1
2 XY chain in the Sz

tot = 0 subspace

For ∆ �= 0 the interacting fermion Hamiltonian can be treated in pertur-
bation theory [32]; from this approach and more generally from the Bethe
ansatz and field-theoretical methods it is established that the behavior for
−1 < ∆ < +1 is qualitatively the same as the free fermion limit ∆ = 0
considered so far: the excitation spectrum is gapless, a Fermi point exists
and correlation functions show power-law behavior. The Heisenberg chain in
the XY regime thus is in a critical phase. This phase is equivalent to the so-
called Tomonaga-Luttinger liquid [33]. The fermion dispersion to first order
in ∆ is obtained by direct perturbation theory starting from the free fermion
limit [34] (in units of J),

ε(k) = ∆− λ+ cos q

−(2∆/π) θ(1− λ)
{

arccosλ− (1− λ2)1/2 cos q
}
, (1.20)

where λ = gµBH/J , and θ is the Heaviside function.
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Finally we indicate how these results generalize for γ > 0, i.e. (see (1.6))
when the rotational symmetry in the xy-plane is broken and a unique prefer-
red direction in spin space exists: ∆ = 0 continues to result in a free fermion
system, but the basic fermion dispersion acquires a gap and the ground state
correlation function 〈0|Sx

nS
x
0 |0〉 develops long range order [26].

1.2.4 The Isotropic Heisenberg Antiferromagnet and Its Vicinity

The most interesting regime of the S = 1/2 XXZ chain is ∆ ≈ 1, i.e. the
vicinity of the isotropic Heisenberg antiferromagnet (HAF). This important
limit will be the subject of a detailed presentation in the chapters by Cabra
and Pujol, and Klümper, with the use of powerful mathematical methods of
Bethe ansatz and field theory. Here we restrict ourselves to a short discussion
of important results.

The ground state energy of the HAF is given by

E0 = −NJ ln 2 (1.21)

The asymptotic behavior of the static correlation function at the isotropic
point is [35–37]

〈0|Sn · S0|0〉 ∝ (−1)n 1
(2π)

3
2

√
lnn
n

. (1.22)

This translates to a weakly diverging static structure factor at q ≈ π,

S(q) ∝ 1
(2π)

3
2
| ln |q − π| | 32 . (1.23)

The uniform susceptibility at the HAF point shows the logarithmic correc-
tions in the temperature dependence [38]

χ(T ) =
1

π2J

(
1 +

1
2 ln(T0/T )

+ . . .

)
; (1.24)

this singular behavior at T → 0 was experimentally observed in Sr2CuO3
and SrCuO2 [39]. The elementary excitations form a particle-hole continuum
ω(q, k) = ε(q+k)− ε(k), obtained from fundamental excitations with disper-
sion law

ε(k) =
π

2
J | sin k| (1.25)

which are usually called spinons. This dispersion law was obtained by des-
Cloizeaux and Pearson [40], however, the role of ε(k) as dispersion for the
basic constituents of a particle-hole continuum was first described by Faddeev
and Takhtajan [9].
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When the HAF point is crossed, a phase transition from the gapless XY-
regime to the gapped antiferromagnetic Ising regime takes place which is
of the Kosterlitz-Thouless type: the Néel gap opens up with nonanalytic
dependence on ∆− 1 corresponding to a correlation length

ξ ∝ eπ/
√

∆−1 (1.26)

The divergence of the transverse and the longitudinal structure factors differs
when the HAF is approached from the Ising side in spite of the isotropy at
the HAF point itself [37].

In contrast to the behavior of the isotropic HAF, the correlation functions
for ∆ < 1 do not exhibit logarithmic corrections and the asymptotic behavior
in the ground state is given by

〈0|Sx
n · Sx

0 |0〉 = (−1)nAx
1
nηx

, 〈0|Sz
n · Sz

0 |0〉 = (−1)nAz
1
nηz

, (1.27)

where

ηx = η−1
z = 1− arccos∆

π
. (1.28)

For |∆| < 1 presumably exact expressions for the amplitudes Ax, Az have
been given in [41,42].

1.2.5 The Dynamical Structure Factor of the XXZ Chain

Two-Domain Wall Picture of the Excitation Continua

The dynamical structure factor S(q, ω) of the XXZ chain for low frequencies
is dominated by the elementary excitations for the HAF as well as in the
Ising and XY phases. The common feature is the presence of an excitation
continuum as was made explicit in the Néel phase and for the free fermion
limit above and stated to be true for the HAF.

In the Néel phase a one-domain wall state was seen to have Sz
tot = ±1/2.

The only good quantum number is Sz
tot and two domain walls can combine

into two states with Sz
tot = 0 and two states with Sz

tot = ±1 with equal
energies (in the thermodynamic limit) but different contributions to the DSF.
When the isotropic point is approached these four states form one triplet and
one singlet to give the fourfold degenerate spinon continuum.

For all phases the excitation continuum emerges from the presence of two
dynamically independent constituents. The spinons of the isotropic HAF can
be considered as the isotropic limit of the Néel phase domain walls. The
domain wall picture applies also to the XY phase: A XY-phase fermion can
be shown to turn into a domain wall after a nonlocal transformation [43] and
adding a fermion at a given site corresponds to reversing all spins beyond that
site. Thus the domain wall concept of the antiferromagnetic Ising regime is in
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Fig. 1.3. Spinon continuum for various anisotropies ∆ (reproduced from [46])

fact a general concept unifying the dynamics in the regime +∞ > ∆ > −1,
i.e. up to the transition to the ferromagnetic regime.

The one-DW dispersion as well as the appearance of a continuum with
an energy gap for ∆ > 1 agrees with the results obtained from Bethe ansatz
calculations [44, 45] taken in lowest order in 1/∆. We make use of the full
Bethe ansatz results for finite values of 1/∆ to show a a numerical evalua-
tion of these results. Figure 1.3 demonstrates that the gapped, anisotropic
two spinon continuum develops continuously from the antiferromagnetic Ising
phase into the gapless spinon continuum of the isotropic Heisenberg antifer-
romagnet. To make contact with the isotropic limit, in Fig. 1.3 spectra in the
Néel phase are presented using the extended Brillouin zone (the Bethe ansatz
excitations can be chosen as eigenfunctions under translation by one site).
Although these graphs are suggestive the precise relation between the Bethe
ansatz excitation wave functions and the lowest order domain wall ones (cf.
Fig. 1.1) is difficult to establish.

Frequency Dependence of S(q, ω)

In the XY regime (including the limit of the HAF) the asymptotic spa-
tial dependence of the static correlation function is generalized to the time-
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dependent case by replacing n2 by (n−vt)(n+vt) (v is the spin wave velocity).
This leads immediately to the most important property of the dynamic struc-
ture factor, namely the appearance (at T = 0) of an edge singularity at the
lower threshold of the continuum:

Sα,α(q, ω) ∝ 1
(ω2 − ω(q)2)1− ηα

2
θ(ω2 − ω(q)2) (1.29)

(obtained by bosonization for S = 1/2 in the zero temperature and long
wavelength limit, by Schulz [47]) with exponents ηα depending on the ani-
sotropy ∆ as given in (1.28) above. This expression is consistent with the
exact result obtained for the longitudinal DSF of the XX model using the
free fermion approach [48,49]:

Szz(q, ω) = 2
1√

4J2 sin2 ( q
2

)
− ω2

Θ(ω − J sin q)Θ(2J sin
q

2
− ω); (1.30)

the XX model is however peculiar since there is no divergence in Szz at the
lower continuum boundary.

This edge singularity is of essential relevance for experiments probing the
dynamics of spin chains in the XY phase including the antiferromagnetic
point and we therefore give a short survey of the phenomenological, more
physical approaches in order to provide an understanding beyond the formal
results.

The singularity is already obtained on the semiclassical level in an ex-
pansion in 1/S. This approach served to interpret the first experimental ve-
rification of the infrared singularity by neutron scattering experiments on
the material CPC [15]. In this approach the exponent to first order in 1/S
is η = 2/(πŜ), Ŝ =

√
S(S + 1) for ∆ = 1 [50] and has also been obtai-

ned to second order in 1/S for chains with XY like exchange and single-ion
anisotropy [51].

The semiclassical approach clearly shows the essence of this singularity:
Many low-lying modes which are harmonic in simple angular variables φn, θn

add up to produce the singularity in the spin variable Sn ∝ exp iφn, whose
correlations are actually measured in S(q, ω). The finite temperature result
for S(q, ω) in this approach is identical to the result of bosonization [32] which
was then generalized to the exact Bethe ansatz result with exact values η = 1
for ∆ = 1 (HAF) and η = 1

2 for ∆ = 0 (XY). The physical understanding of
the excitation continuum as domain wall continuum was finally established
by Faddeev and Takhtajan [9].

The singular behavior of the dynamic structure factor was supported by
numerical calculations using complete diagonalization. Combined with exact
results, this lead to the formulation of the so-called Müller ansatz [49,52] for
the isotropic S = 1

2 chain:

S(q, ω) =
A√

ω2
1 − ω(q)2

Θ(ω − ω1(q))Θ(ω2(q)− ω), (1.31)
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with ω1(q) = (π/2)J | sin q| and ω2(q) = πJ | sin(q/2)|. This ansatz parametri-
zes the dynamic structure factor as in (1.29) and adds an upper limit cor-
responding to the maximum two spinon energy (note that for the isotropic
chain there is no divergence at the upper continuum boundary). This ansatz
is now frequently used for an interpretation of experimental data, neglecting
the presence of small but finite excitation strength above the upper thres-
hold frequency ω2(q) as confirmed by detailed numerical investigations (the
total intensity of the two spinon continuum has been determined as 72.89
% of the value 1/4, given by the sum rule (1.5) [53]). Experimental investi-
gations of the excitation continuum include the Heisenberg antiferromagnet
CuCl2·2NC5H5 (CPC) [15] and recent work on the HAF KCuF3 [54]. Beau-
tiful pictures of the spinon continuum are also available for the spin-Peierls
material CuGeO3 [55].

Temperature dependence and lineshapes of the dynamic structure factor
for q ≈ π have been investigated by bosonization techniques [47], conformal
field theory [13] and numerical approaches [56]. Numerical calculations of all
eigenvalues for chains with 16 spins [57] have shown the full picture of the
spinon continuum and its variation with temperature. The functional form of
the Müller ansatz found strong support when the dynamical structure factor
for the Haldane-Shastry chain (Heisenberg chain on a ring geometry with long
range interactions propertional to the inverse square of the distance [58]) was
calculated exactly [59] and was shown to take exactly the form of (1.31).

For XXZ chains close to the Ising limit with their spectrum determi-
ned by gapped solitons the dynamic response is different: At T = 0 both
Sxx(q, ω) and Szz(q, ω) are dominated by the two-domain wall or spin wave
continuum in the finite frequency range determined from (1.9) with no sin-
gularity at the edges [23] (there is just an asymmetry with a steepening at
the lower frequency threshold). Upon approach to the isotropic limit the in-
frared singularity develops gradually starting from wave vector π/2. At finite
temperature an additional central peak develops from energy transfer to a
single domain wall [24]. These continua have been observed in the material
CsCoCl3 [60–62]. The two-domain wall continuum has been shown to shift
its excitation strength towards the lower edge in frequency when a (ferroma-
gnetic) NNN interaction is added to the Hamiltonian [63].

1.2.6 Modified S=1/2 Chains

In this subsection we shortly discuss a number of modifications to the ideal
S = 1/2 XXZ chain which add interesting aspects to the theoretical picture
and are also relevant for some real materials.

A theoretically particularly important model is the isotropic Heisenberg
chain with nearest and next-nearest exchange

H = J
∑

n

(Sn · Sn+1 + αSn · Sn+2) (1.32)
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which for α > 0 exhibits the effects of frustration from competing interac-
tions. In the classical limit the system develops spiral order in the ground
state for α > 1/4 whereas for S = 1/2 a phase transition to a dimerized
state occurs at α = αc ≈ 0.2411.... This dimerized state is characterized by
a singlet ground state with doubled lattice constant and twofold degener-
acy and an excitation gap to the first excited states, a band of triplets. It
is thus one of the simple examples for the emergence of an energy gap in a
1D system with rotational symmetry by dynamical symmetry breaking. This
quantum phase transition was first found at α ≈ 1/6 from the bosonization
approach [64]. The phase transition has been located with high numerical ac-
curacy by Okamoto and Nomura [65] considering the crossover between the
singlet-singlet and singlet-triplet gaps, a criterion which has proven rather
effective also in related cases later.

For α = 1/2, one arrives at the Majumdar-Ghosh limit [66], where the
exact form of these singlet ground states |0〉I,II is known to be a product of
singlets (dimers):

|0〉I = |[1, 2] · · · [2p+ 1, 2p+ 2] · · · 〉 |0〉II = |[2, 3] · · · [2p, 2p+ 1] · · · 〉
(1.33)

with the representation of a singlet as

| [2p, 2p+ 1]〉 =
1√
2

∑

s,s′
χ2p(s) εs,s′

χ2p+1(s′) (1.34)

where χm(s) is the spin state at site m and ε is the antisymmetric tensor

ε =
(

0 1
−1 0

)
. (1.35)

in spin space s = (↑, ↓). This becomes easily clear by considering the following
Hamiltonian

H̃MG =
1
4
(S1 + S2 + S3)2 +

1
4
(S2 + S3 + S4)2 +

1
4
(S3 + S4 + S5)2 + . . .

for N spins and periodic boundary conditions. H̃MG is identical to HMG

apart from a constant:

H̃MG =
∑

n

Sn · Sn+1 +
1
2

∑

n

Sn · Sn+2 +
3
4

∑

n

S2
n = HMG +

9
16
N

Using

(Sn + Sn+1 + Sn+2)2 ≥ S(S + 1)|S= 1
2

=
3
4
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we obtain

Ẽ0 ≥
3
16
N.

The two ground states obtained by covering the chain completely with singlets
formed of two spins 1/2 have energy equal to this lower bound since each
contribution of the type (Sn + Sn+1 + Sn+2)2 contains two spins which are
coupled to a singlet and therefore reduces to S2 = 3

4 . The dimer product
states are therefore ground states of the Majumdar-Ghosh Hamiltonian with
energy per spin E0/N = −3/8. It is evident that this ground state is comple-
tely disordered, i.e. all two-spin correlation functions vanish identically. There
is however, perfect order of the singlets, expressed in the statement that the
Majumdar-Ghosh ground state forms a dimer crystal. Quantitatively this is
expressed in a finite value of the dimer-dimer (four spin) correlation function

I〈0|(S1 · S2)(S2p+1 · S2p+2)|0〉I . (1.36)

for arbitrary n (and the equivalent relation for |0〉II).
Another variant of the Heisenberg chain is obtained by adding dimeriza-

tion explicitly to the Hamiltonian, giving the alternating chain

H = J
∑

n

(1 + (−1)nδ) (Sn · Sn+1) (1.37)

This model was first investigated by Cross and Fisher [67]; with explicit
dimerization the ground state is unique and a gap opens up immediately,
Eg ∝ δ2/3 (apart from logarithmic corrections). The ground state prefers to
have singlets at the strong bonds and the lowest excitations are propagating
one-triplet states. These can be considered as bound domain wall states since
two domain walls of the type described above with singlets on the ’wrong’
sites between them feel an attractive interaction growing with distance. The
model with both NNN exchange and alternation is equivalent to a spin ladder
and will be discussed in more detail in Sect. 1.4.

Models with explicit or spontaneous dimerization are now frequently used
to describe spin-Peierls chains, i.e. spin chains which dimerize due to the spin
phonon interaction. This field was stimulated in particular by the discovery
of the inorganic spin-Peierls material CuGeO3 [16]. Whereas the adiabatic li-
mit when phonons follow spins without relaxation is not appropriate for this
material, the flow equation approach has been used to reduce the general
spin-phonon model to a spin only Hamiltonian [68, 69] and the spin Peierls
gap then results from the combined action of alternation and frustration.
Phonons, however, do introduce some features not covered by this simpli-
fication [70] and it is not clear at the moment whether the simplified spin
model captures the physics of real spin Peierls materials, in particular of the
inorganic compound CuGeO3 (for a review see [71]).

Another variant of the simple 1D chain are decorated chains, where more
complicated units are inserted in the 1D arrangement. As an example we
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mention the orthogonal-dimer spin chain with frustrated plaquettes inserted
in the chain [72,73], see Fig. 1.4. Depending on the strength of the competing
interactions, this chain can be in a dimer phase or in a plaquette phase with
interesting dynamic properties. Interest in this model is motivated by its
relation to the 2D orthogonal-dimer model which is realized in the compound
SrCu2(BO3)2.

Fig. 1.4. An example of decorated chains: orthogonal-dimer spin chain [72]

Interesting aspects are found in S = 1/2 chains with random couplings.
Using the real space renormalization group it has been shown that the ground
state of the random antiferromagnetic Heisenberg chain is the random singlet
state, i.e. spins form singlets randomly with distant partners [74]. Hida has
extended these studies to dimerized chains [75]. Heisenberg chains with a
random distribution of ferro- and antiferromagnetic exchange constants have
been shown to have a different type of ground state called the large spin
state [76, 77], characterized by a fixed point distribution not only of bond
strength, but also of spin magnitudes.

1.2.7 The XXZ Chain in an External Magnetic Field

An external magnetic field leads to qualitatively new phenomena in spin
chains when the Zeeman energy becomes comparable to the scale set by the
exchange energies. Contrary to other parameters in the Hamiltonian (e.g. che-
mical composition, exchange integrals) an external field is relatively easy to
vary experimentally. Therefore these effects deserve particular attention; ac-
tually experimental and theoretical investigations involving high magnetic
fields have developed into one of the most interesting topics in the field of
low-dimensional magnetism in the last few years.

The phase diagram of the XXZ model in an external magnetic field in z-
direction is shown in Fig. 1.5: The boundary between the ferromagnetic phase
and the XY phase is given by Hc = ±J(1 + ∆). For ∆ < 1 (XY symmetry)
the XY phase extends down to H = 0. In the fermion representation the
external field acts as chemical potential, and the fermion occupation number
changes from zero to saturation when the XY phase is crossed at constant
∆. For ∆ > 1 (Ising symmetry) there is a transition from the Néel phase to
the XY phase at H = Hc1 = Eg(∆), where Eg(∆) is the triplet gap. In the
S = 1

2 chain this transition is of the second order [78] and the magnetization
appears continuously as m ∝ (H −Hc)1/2, whereas for S > 1

2 it acquires the
features of the classical first-order spin-flop transition with a jump in m at
H = Hc1 [79].
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Fig. 1.5. Phase diagram of a XXZ Heisenberg S = 1
2 chain in magnetic field

The effect of the external field on the excitation spectrum is calculated
exactly for the XX model, i.e. in the free fermion case, with the result shown
in Fig. 1.6: The Fermi points shift from kF = ±π/2 to ±(π/2+δk) and gapless
excitations are found for wave vectors q = π±2δk, where δk is determined by
J cos(π/2+δk)+H = 0 and implies incommensurability in the ground state.
This result is representative for the XY-phase and the isotropic Heisenberg
antiferromagnet. It has been confirmed in neutron scattering experiments on
the S = 1

2 chain material Cu-Benzoate [80]. On the theoretical side, e.g., line
shapes for finite external field have been calculated from the Bethe ansatz [81].
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Fig. 1.6. Excitation spectrum of the spin- 1
2 XY chain in the Sz

tot = 0 subspace for
finite external field, gµBH/J = 0.3

For the Heisenberg antiferromagnet with general anisotropies a remarka-
ble curiosity has been found by Kurmann et al [82]: For any combination
of couplings and any field direction there exists a field strength HN which
renders the ground state very simple, namely factorizable, i.e. it essentially
becomes identical to the classical ground state. Simple examples are the XXZ
model with external field in z- resp. x-direction, where the corresponding field
values are

H
(z)
N = J(1 +∆), H

(x)
N = J

√
2(1 +∆). (1.38)
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An interesting situation can develop when a uniform external field via a
staggered g-factor and possibly a Dzyaloshinkii-Moriya interaction induces a
staggered field such as in Cu-Benzoate [80] and materials of related symmetry
[83,84]: Then a staggered field is induced which is proportional to the external
field and a gap opens up which for small fields behaves as [85,86]

Eg ∝
(
H

J

)2/3

ln1/6
(
J

H

)
. (1.39)

The magnetic chain in this situation is equivalent to a quantum sine-Gordon
chain carrying solitons and breathers (soliton-antisoliton bound states) as
excitations; these were identified in neutron scattering and ESR experiments
[87] and their contributions to the dynamical structure factor were calculated
from sine-Gordon field theory [88,89].

For an external transverse field the Ising model in a transverse field is the
best known example. It is solved as free fermion model [90] and serves as one
of the standard models of a quantum phase transition [91]. More interesting
and much more difficult is the case of an XY chain where a transverse field
breaks the rotational symmetry since in this case a simple free fermion limit
does not exist and also bosonization does not go beyond establishing the
existence of a gap. Such a system is of interest as the quantum analog of the
standard example for classical soliton bearing magnetic chains like CsNiF3
[18]. The phase diagram for the Heisenberg chain in a transverse field has
been discussed already in [82] and recently again for the XX model [56]
and for the XXZ model in mean-field approximation (MFA) [92] and MFA
with additional field theoretic input [93]. Recent experiments on the XY
spin chain Cs2CoCl4 in a transverse magnetic field [94] show an interesting
phase diagram including a quantum spin liquid phase which extends to zero
temperature and are presently stimulating theoretical investigations in this
field.

1.2.8 Effects of 3D Coupling

Since the isotropic spin-1
2 chain is gapless, even a weak 3D coupling between

the chains J ′ 
 J will lead to the emergence of the long-range staggered
order. The magnitude of this order as a function of J ′ can be calculated
within the mean-field or RPA approximation [95–98]: solving the problem
of an isolated chain in an external staggered field hst, one obtains for the
staggered magnetization mst the expression [86]

mst = c [(hst/J) ln(J/hst)]
1/3

, c � 0.387. (1.40)

This is then treated as a self-consistency equation for mst after assuming the
mean-field relation hst = J̃ ′(qB)mst, where J̃ ′(q) is the Fourier transform of
the interchain interaction and qB is the magnetic Bragg wave vector. This
yields mst � 0.29 [(J ′/J) ln(J/J ′)]1/2 [98], where J ′ ≡ J̃ ′(qB).
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The dynamical susceptibilities of an isolated chain in a staggered field
were calculated in [97]. Both the longitudinal and transverse (with res-
pect to the ordered moment) polarization channels contain quasiparticle
and continuum contributions. The transverse single mode has the gap ∆ �
0.842J ′ ln1/2(J/J ′) [98], and the gap of the longitudinal mode is ∆

√
3, while

the continuum in both channels starts at 2∆. The 3D dynamical susceptibility
χ3D(q, ω) can be obtained with the help of the RPA formula

χα
3D(q, ω) =

χα
1D(q‖, ω)

1− J̃ ′(q)χα
1D(q‖, ω)

, (1.41)

where α =‖,⊥ denotes the longitudinal or transverse direction with respect
to the ordered moment. This expression follows from the usual susceptibi-
lity definition m(q, ω) = χ(q, ω)h(q, ω) if one replaces h with the effective
mean field heff = h(q, ω) + J̃ ′(q)m(q, ω). Physical excitation frequencies are
determined as poles of the χ3D. An intrinsic flaw of this approach is that
both the transverse and longitudinal modes come out gapped, while it is
physically clear that there should be gapless Goldstone modes in the trans-
verse channel at q = qB . This can be fixed [96] by the renormalization
χ⊥

1D �→ Zχ⊥
1D, where the renormalization factor Z is determined from the

condition ZJ̃ ′(qB)χ⊥
1D(qB , 0) = 1. Within this approach, the longitudinal

mode remains a well-defined gapped excitation. Such a mode was succes-
sfully observed in KCuF3 [99], but it was argued it cannot be distinguished
from the continuum in another S = 1

2 -chain material BaCu2Si2O7 [98, 100].
Those results indicate that the lifetime of the longitudinal mode can be limi-
ted by the processes of decay into a pair of transverse modes with nearly zero
frequency [98], which cannot be analyzed in framework of the RPA approach.

1.3 Spin Chains with S > 1/2

Antiferromagnetic Heisenberg spin chains with integer and half-integer value
of spin S behave in a very different way, as was discovered by Haldane twenty
years ago [10]. He has shown that the ground state of an integer-S Heisenberg
AF chain should have a finite spectral gap, though exponentially small in the
large-S limit. This special disordered state of isotropic integer-S chains with
only short-range, exponentially decaying AF spin correlations has received
the name of the Haldane phase. The most thoroughly studied example is the
S = 1 chain.

1.3.1 S = 1 Haldane Chain

The isotropic S = 1 Heisenberg antiferromagnetic chain is the simplest exam-
ple of a system with the Haldane phase and is thus often called the Haldane
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chain. Following Haldane’s conjecture it was the subject of numerous inve-
stigations and although an exact solution of the proper S = 1 HAF has not
been found, many approximate and numerical approaches have established
a coherent picture characterized by the following properties [101, 102]: The
Haldane chain has the ground state energy per spin E � −1.40 and short-
range AF spin correlations 〈Sα

0 S
β
n〉 ∝ (−1)nδαβn

−1/2e−n/ξ characterized by
the correlation length ξ � 6.0. Its lowest excitations form a massive magnon
triplet, the excitation spectrum has a gap ∆ � 0.41J at wave vector q = π,
and the dispersion of the low-lying excitations with q close to π is well descri-
bed by the “relativistic” law ε(q) =

√
∆2 + v2(q − π)2, with the spin wave

velocity v � 2.46J . The single-particle energy grows fast as q moves away
from π, so that the spectrum around q = 0 is dominated by the two-particle
continuum whose lower boundary starts at approximately 2∆. The second
lowest excitation at q = π belongs to the three-soliton continuum and has
the energy ≈ 3∆, as shown in Fig. 1.7. The gap in the spectrum translates
into an activated behavior of magnetic specific heat and susceptibility, the
fingerprints of gapped systems in macroscopic properties.

Fig. 1.7. Spectrum of low-lying excitations in S = 1 Haldane chain, from the QMC
calculation of [103]

An important property of the S = 1 Haldane chain is the so-called string
order string order which is a nonlocal quantity defined as the limiting value
of the correlator

Oα
1 (n, n′) =

〈
−Sα

n eiπ
∑n′−1

j=n+1 Sα
j Sα

n′

〉
, α = x, y, z. (1.42)

at |n − n′| → ∞. Presence of this order means that the ground state of the
chain favors such spin states where the |+〉 and |−〉 spin-1 states alternate,
“diluted” with strings of |0〉 of arbitrary length. One speaks about a “diluted
AF order”. This “diluted AF order” reaches its maximal value, 1, in the
Néel state. In the Haldane phase, however, the Néel order vanishes, while the
string order persists, its value for a rotational invariant state being limited
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by 4/9 from above. For the Haldane chain the value of the string order is
somewhat lower, OHald

1 � 0.37 [104,105].
Hidden order was originally introduced in constructing an analogy to

surface phase transitions in solid-on-solid (SOS) models [106] and to the
fractional quantum Hall effect [107]. This leads to a very visual interpretation
of the hidden order: If we define a correspondence between |+〉 sites and a
positive ∆h = +1 step of the interface position, and respectively between
|−〉 sites and a ∆h = −1 step, then hidden order corresponds to the so-
called “disordered flat” (or “fluid flat”) phase. This preroughening phase is
characterized by a flat surface with a finite average fluctuation of the surface
height, but no order in the position of the ∆h = ±1 steps. As shown by
Kennedy and Tasaki [108], the hidden symmetry breaking by the string order
parameter can be transformed into an explicit breaking of a Z2×Z2 symmetry
by a nonlocal unitary transformation which characterizes the Haldane chain.

Importance of the string order is even more stressed by the fact that the
lowest excitations of the S = 1 Haldane chain can be interpreted as solitons
in the string order [109–112].

Experimentally the Haldane chain was most comprehensively studied via
inelastic neutron scattering in S = 1 chain material Ni(C2H8N2)2NO2(ClO4)
(NENP), confirming the theoretical predictions. For higher S the experi-
ments are scarce; the Haldane phase was reported to be found in the S = 2
AF chain material MnCl3(2, 2′ − bipyridine) on the basis of the magnetiza-
tion measurements [113]: under application of an external magnetic field, the
magnetization remained zero in a finite field range, indicating presence of a
gapped phase. We postpone to Sect. 1.6 the discussion of interesting phy-
sics which arises if one succeeds to close the gap by the magnetic field, and
concentrate here on the properties of the Haldane phase itself.

Anisotropic S = 1 Haldane Chain

An interesting phase diagram emerges if one considers a S = 1 chain with
anisotropies as described by the Hamiltonian

H =
∑

n

(Sx
nS

x
n+1 + Sy

nS
y
n+1) + JzSz

nS
z
n+1 +D(Sz

n)2 (1.43)

The effects of exchange anisotropy Jz and single-ion anisotropy D are
very different, and the system exhibits a rich phase diagram [47, 106] shown
in Fig. 1.8. To visualize the characteristic features of different phases, it is
sometimes convenient to resort to the language of “solid-on-solid” models of
surface phase transitions [106]. One identifies |±〉 spin-1 states with ∆h = ±1
steps of the interface (domain walls), and treats those domain walls as par-
ticles with an internal degree of freedom –“spin” ± 1

2 . Then one can interpret
the Néel phase as a “solid flat,” or “AF spin-ordered solid” one, i.e., a phase
where there is a long-range correlation of particle positions, and their “spins”
exhibit a long-range AF order. The gapped Haldane phase corresponds to the
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Fig. 1.8. Phase diagram of the S = 1 Heisenberg chain with exchange anisotropy
Jz and single-ion anisotropy D

“AF spin-ordered fluid” phase, characterized by the AF order in “spin” but
with no order in the position of particles. The AF order disappears along the
transition to the gapless XY 1 phase which is a “spin-disordered fluid”. Ano-
ther gapless phase, the XY 2 phase, can be described as a “spin-disordered
solid” with the restored order in the particle positions. The so-called large-
D phase large-D phase, which is achieved at sufficiently large values of the
single-ion anisotropy, can be characterized as a gas of bound pairs of particles
with opposite “spin”. Those pairs unbind when D is decreased, and this tran-
sition is of the first order if it is to the ferromagnetic or to the Néel phase, of
the Kosterlitz-Thouless (KT) type on the boundary to the XY1 phase, and
Gaussian along the boundary to the Haldane phase.

The phase diagram of the anisotropic S = 1 chain was studied numerically
[114, 115]. For purely exchange anisotropy (D = 0) the Haldane phase was
found to exist in the interval from Jz ≈ 0 Jz ≈ 1.2, while for purely single-ion
anisotropy (Jz = 1) it persists from D ≈ −0.2 to D ≈ 1.

The role of anisotropy was also investigated for a S = 1
2 chain with

alternating ferro- and antiferromagnetic exchange, and a rich phase diagram
was found [105]. In the limit of strong ferromagnetic bonds this system may
be viewed as another physical model of the S = 1 Haldane chain, with the
ferro exchange playing the role of the Hund coupling.

The phase diagram in the (D, Jz) space was analyzed by Schulz [47] for
general S in the bosonization approach, which is able to capture the topology
of the phase diagram. According to his results, the diagram of Fig. 1.8 should
be generic for integer S, while for half-integer S the Haldane and large-D
phases disappear, being replaced by the XY 1 phase. Numerical studies [116]
revealed that for S = 2 the XY 1 phase creeps in between the Haldane phase
and large-D one, squeezing the Haldane phase to a narrow region near the
boundary to the Néel phase.
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1.3.2 Integer vs Half-Odd-Integer S

The emergence of an energy gap in spite of rotational invariance comes as
a surprise, especially because the classical Heisenberg chain, as well as the
only exactly solvable quantum model of a Heisenberg spin chain, namely
the S = 1

2 one, are gapless. Classical intuition expects that a state arbitrarily
close in energy to the ground state can be created by infinitesimally changing
the angles between neighboring spins. For a quantum system whose ground
state is a global singlet (the total spin Stot = 0), however, this operation may
just reproduce the initial state and thus fail to demonstrate the existence of
gapless excitations.

Nonlinear σ-Model Description

Haldane’s prediction, which created a surge of interest to one-dimensional
magnets, was based on a large-S mapping to the continuum field theory, the
so-called nonlinear sigma model (NLSM) (see e.g. [117]) which we will briefly
review (for details, see the chapter by Cabra and Pujol).

Consider a spin-S antiferromagnetic Heisenberg chain described by the
Hamiltonian

H = J
∑

Sj · Sj+1 −H ·
∑

j

Sj , (1.44)

where we have included the external magnetic field H for the sake of genera-
lity. In the quasiclassical NLSM description one starts with introducing the
set of coherent states

|n〉 = eiSzϕeiSyθ|Sz = S〉, (1.45)

where n is the unit vector parameterizing the state and having the meaning
of the spin direction. The partition function Z = Tr(e−βH), where β = 1/T
is the inverse temperature, can be rewritten as a coherent state path integral
Z =

∫
Dne−AE/�, where AE =

∫ β�

0 dτLE is the Euclidean action and τ = it
is the imaginary time.

Breaking the spin variable n into the smooth and staggered parts, nj =
mj + (−1)jlj , one can pass from discrete variables to the continuum fields
m, l subject to the constraints ml = 0, l2 + m2 = 1. We assume that
the magnetization for the low-energy states of the antiferromagnet is small,
|m| 
 |l|, and therefore neglect higher than quadratic terms in m. Then one
can show that on the mean-field level m is a slave variable, which can be
excluded from the action,

m =
1

4JS
{
i�(l× ∂τ l) + H − l(H · l)

}
. (1.46)

In weak fields and at low energies m2 may be neglected in the constraint,
so that l can be regarded as a unit vector and one arrives at the following
effective Euclidean action depending on the unit vector l only:
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AE = AB +
�

2g

∫ β�c

0
dx0

∫
dx1

{
(∂0l +

i

�c
l×B)2 + (∂1l)2

}
, (1.47)

where x0 = cτ , x1 = x, c = 2JSa
�

, and g = 2/S. In absence of the magnetic
field the model is Lorentz invariant (c plays the role of the limiting velo-
city) and is known as the O(3) NLSM with topological term. The so-called
topological, or Berry term AB is given by

AB = i2π�SQ, Q =
1
4π

∫
d2x l · (∂0l× ∂1l), (1.48)

The integer-valued quantity Q is the so-called Pontryagin index indicating
how many times the vector l sweeps the unit sphere when x sweeps the two-
dimensional space-time.

Without the topological term, the T = 0 partition function of the quan-
tum AF spin-S chain is equivalent to that of a classical 2D ferromagnet at
the effective temperature Teff = g in the continuum approximation. For in-
teger spin S the topological term is ineffective since AB is always a multiple
of 2π�, and the properties of the 1D quantum antiferromagnet can be taken
over from the 2D classical ferromagnet. (This correspondence is in fact quite
general, connecting the behavior of a Lorentz invariant quantum system in
dimension d to that of its classical counterpart in dimension D = d+ 1, and
is often referred to as the quantum-classical correspondence).

At finite temperature the 2D classical ferromagnet is known [118,119] to
have a finite correlation length ξ ∝ e2π/Teff , which, in view of the Lorentz
invariance, corresponds in the original spin chain to a finite Haldane gap

∆Hald ∝ �c/ξ = JSe−πS .

Thus, the T = 0 ground state of the integer-S isotropic Heisenberg one-
dimensional (D = 1 + 1) antiferromagnet is disordered, and the spectrum of
elementary excitations has a gap. The degeneracy of the lowest excitations
is threefold (in contrast to only double degeneracy obtained in spin wave
approximation which is absent on the Néel state with broken symmetry).
Spin correlations in real space are given by the so-called Ornstein-Zernike
correlation function

〈l(x)l(0)〉 ∝ e−|x|/ξ

|x|(D−1)/2 , |x| → ∞. (1.49)

For half-odd-integer spins, the contribution of any field configuration into
the partition function carries a nontrivial phase factor e−i2πSQ, which leads
to the interference of configurations with different Q, and at the end to the
absence of a gap in Heisenberg spin-S chains with half-odd-integer S. There is
an argument due to Affleck [117] which connects this effect to the contribution
of merons – objects with the topological charge Q = ± 1

2 which may be
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thought of as elementary entities constituting a Q = 1 solution known as the
Belavin-Polyakov soliton [120].

Although in the NLSM formulation the presence of the topological term
renders the half-odd integer spin chain theoretically more complicated than
the integer-S one, the emergence of an energy gap in the latter in spite of
rotational invariance calls for a simple physical explanation. It is instructive
to see where the intuition goes wrong; this can be seen from the statement
known as the Lieb-Schultz-Mattis theorem [26] for spins 1

2 , generalized later
by Affleck and Lieb [121] to arbitrary half-odd-integer S and by Oshikawa et
al. to finite magnetization [122]:

Generalized Lieb-Schultz-Mattis Theorem

Assume that (i) we have a spin-S chain with short-range exchange interaction,
(ii) the Hamiltonian H is invariant with respect to a translation by l lattice
constants and (iii) H is invariant with respect to arbitrary rotation around
the z axis, so that the ground state has a definite Sz

tot = LM , where L is the
number of spins in the chain.

Then, if l(S −M) is a half-odd-integer, there system is either gapless in
the thermodynamic limit L → ∞, or the ground state is degenerate, with
spontaneously broken translational symmetry.

The proof runs as follows: let |ψ0〉 be the ground state with certain ma-
gnetization M per spin. Consider the unitary twist operator

Û = exp{i2π
L

L∑

j=1

jSz
j }

and construct a new state |ψ1〉 = Û |ψ0〉. Assume for definiteness that

H =
∑

nm

{1
2
Jnm(S+

n S
−
n+m + S−

n S
+
n+m) + Jz

nmS
z
nS

z
n+m

}
;

this exact form is not essential, the same course of derivation can be per-
formed assuming presence of any powers (S+

n S
−
n+m)k. Operator Sz remains

invariant under the unitary transformation, and U†S+
n U = ei2πn/LS+

n , so
that the energy difference between |ψ0〉 and |ψ1〉 is

∆E =
∑

nm

Jnmenm(cos
2πm
L

− 1), enm ≡ 〈ψ0|S+
n S

−
n+m|ψ0〉.

Denoting
∑L

n=1 Jnmenm = Lfm and taking the thermodynamic limit L→∞,
one obtains

∆E = E1 − E0 ∝
1
L

∑

m

m2fm,
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and, if the last sum is finite (which is true for Jnm being a reasonably fast
decaying function of the distance m), we come to the conclusion that the
energy E1 of the state |ψ1〉 tends to the ground state energy E0 in the ther-
modynamic limit.

Now consider the overlap of |ψ0〉 and |ψ1〉: if they are orthogonal, one can
be sure that E1 gives a variational upper bound of the energy of the true
eigenstate, otherwise no statement can be made.

Assume that the original translational symmetry of the Hamiltonian is
not broken, i.e. that Tl|ψ0〉 = |ψ0〉, where Tl is the operator of translation by
l lattice sites, TlSnT

−1
l = Sn+l. Then the overlap

z1 = 〈ψ0|ψ1〉 = 〈ψ0|TlUT
−1
l |ψ0〉.

The transformed twist operator can be rewritten as

TlUT
−1
l = exp{i2π

L

L∑

j=1

jSz
j+l} = exp

{
i
2π
L

L∑

j=1

(j − l)Sz
j + i2π

l∑

k=1

Sz
k

}
,

where we have used periodic boundary conditions Sz
L+n = Sz

n. It is easy
to see that ei2πSz

n |ψ〉 = ei2πS |ψ〉, since |ψ〉 contains only spin-S states, and
ei2πSz

yields ±1 depending on whether S is integer or half-integer. Thus, the
equation for the overlap takes the form

z1 = ei2πl(S−M)z1. (1.50)

From that equation it is clear that l(S−M) = integer is a necessary condition
for the overlap z1 to be nonzero. Thus, for l(S −M) = half-odd-integer the
system is either gapless, or our assumption that Tl|ψ0〉 = |ψ0〉 is wrong.

The spin-S Heisenberg chain in its ground state corresponds to l = 1 and
M = 0. From the above theorem it follows that, if a spontaneous breaking of
the translational symmetry is excluded, a spin-S Heisenberg chain can only be
gapped if S is integer. We will come back to this result later in Sect. 1.6 since
it establishes also a connection to the phenomenon known as magnetization
plateau; actually, the integer spin chain ground state with the Haldane gap
is the simplest example of a magnetization plateau at M = 0.

1.3.3 The AKLT Model and Valence Bond Solid States

Although the large-S NLSM description allows one to get some basic un-
derstanding for the S = 1 chain, chains with low integer S exhibit several
important features which go beyond the large-S limit. These deficiencies are
to some extent filled by the additional insight obtained from the so-called va-
lence bond solid (VBS) models. The prototype of these models was proposed
by Aflleck, Kennedy, Lieb, and Tasaki [123] and is thus known as the AKLT
model. In the following we introduce this model and use it as a starting point
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to discuss the matrix product representation and an approximate treatment
of excitations in the Haldane chain.

Let us introduce the projector operator P J=2
12 which projects the states of

two S = 1 spins S1, S2 onto the subspace with the total spin J = 2. Consider
the Hamiltonian defined in terms of this projector:

H =
1
12

∑

i

{P (J=2)
i,i+1 − 8} =

∑

i

SiSi+1 +
1
3
(SiSi+1)2. (1.51)

Obviously, the minimum energy is obtained for a state with the property that
the total spin of any two neighboring spins is never equal to 2. Such a state
can be constructed by regarding every S = 1 as a composite object consisting
of two symmetrized S = 1

2 spins, and linking each S = 1
2 spin to its neighbor

from the nearest site with a singlet bond, see Fig. 1.9a. Remarkably, uniform
VBS states can be constructed in the same way for any integer S (Fig. 1.9b),
while for half-integer S only dimerized VBS states are possible. For periodic
boundary conditions the ground state is unique and is a global singlet, while
for open boundary conditions there are two free 1

2 spins at the open ends of
the chain, so that the ground state is fourfold degenerate and consists of a
singlet and of the so-called Kennedy triplet [124].

(a) (b)

Fig. 1.9. Valence bond solid (VBS) wave functions: (a) the ground state (1.52) of
the S = 1 AKLT model (1.51); (b) S = 2 VBS state

The AKLT model (1.51), which can be obviously generalized for higher
S, serves as a good example visualizing the nature of the Haldane phase.

The S = 1 VBS state, taken as a variational trial wave function, yields
for the Haldane chain the ground state energy per spin E = − 4

3 , rather close
to the numerically obtained value E � −1.40 [102].

Though the construction looks simple, it seems to be rather a nontrivial
task to write down the VBS wave function in terms of the original spin
states. There exists, however, a simple and elegant representation of VBS
wavefunctions in the language of matrix product states [125,126]. The AKLT
wave function can be presented in the following form:

|Ψ〉 = Tr(g1g2 · · · gN ), gAKLT
n =

1√
3

(
−|0〉n −

√
2|−〉n√

2|+〉n |0〉n

)
, (1.52)

where |µ〉n denotes the state of the spin S = 1 at site n with Sz = µ.
Indeed, it is easy to show that a product of any two matrices g1g2 does

not contain states with the total spin J = 2, which is exactly the property
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of the AKLT wave function. The trace corresponds to periodic boundary
conditions, and the four matrix elements of Ω = g1g2 · · · gN are nothing but
the four degenerate ground states of the open chain. A similar representation
exists for higher-S VBS states [127].

The matrix product (MP) formulation is remarkable since it allows to
write complicated states in a factorized (product) form. Technically, averages
over VBS states can be easily calculated using the transfer matrix technique
[127], e.g., for any operator L̂12 involving two neighboring spins one has

〈Ψ |L̂12|Ψ〉 = Tr(GN−2M12) ,

G = g∗
i ⊗ gi, M12 = (g1g2)∗ ⊗ L̂12(g1g2) , (1.53)

where ⊗ denotes the direct (tensor) product of matrices.
The correlation function of the AKLT model for an infinite chain is ex-

plicitly given by

〈Sα
nS

β
n′〉 = (−1)|n−n′|(4/3) e−|n−n′| ln 3δαβ ; (1.54)

for finite chains the free spins at the edges give an additional contribution
which also decays exponentially when moving away from the boundary [128].
All correlations decay purely exponentially, which is a peculiarity of the
AKLT model connected to the fact that it is a special disorder point where
the so-called dimensional reduction of the generic D = 2 Ornstein-Zernike
behavior (1.49) takes place [129]. The correlation length of the AKLT mo-
del ξ = 1/ ln 3 is very short in comparison with ξ � 6.0 in the Haldane
chain, [102]. This means, that despite the qualitative similarity to the gro-
und state of the S = 1 Haldane chain, quantitatively the AKLT state is
rather far from it. However, one may say that S = 1 Haldane chain and the
AKLT model are in the same phase, i.e., in any reasonable phase space the
points corresponding to those two models can be connected by a line which
does not cross any phase boundary. Respectively, those two models can be
said to belong to the same universality class in the sense that corresponding
quantum phase transitions caused by changing some parameter in the gene-
ral phase space occur at the same phase boundary and thus have the same
universal behavior.

The MP representation makes it easy to see the presence of the string or-
der in the VBS wave function. Since the elementary matrix gi can be rewritten
through the Pauli matrices σµ as

gAKLT
i = 1/

√
3(σ+|−〉i + σ−|+〉i − σ0|0〉i) , (1.55)

it is clear that, since (σ±)2 = 0 and σ+σ0 = −σ+, the ground state contains
only such spin states where the |+〉 must be followed by a |−〉, with an
arbitrary number of |0〉 in between. The “diluted AF order” is thus perfect
in the AKLT model. The AKLT state is rotationally invariant, and states |0〉,
|+〉 and |−〉 appear with the equal probability of 1/3. Nonzero contribution
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to the correlator (1.42) comes only from states with no |0〉 at sites n and n′,
so that the value OAKLT

1 = 4/9, which is the maximal value for a rotational
invariant state, to be compared with OHald

1 � 0.37 for the Haldane chain
[104].

The hidden order, together with the fourfold degeneracy of the ground
state for open chain, is a characteristic feature of the Haldane phase for S = 1
chains. This provides an elegant way of detecting the Haldane state [130]:
doping a S = 1 Haldane chain with Cu2+ ions having spin 1

2 , one breaks
it effectively into finite pieces, and effectively free S = 1

2 spins are created
at the edges adjacent to the impurity site. The resulting three spins 1

2 are
bound together by a weak host-impurity interaction, forming a loose cluster
practically decoupled from the bulk of the chain. In applied magnetic field,
resonant transitions between the cluster levels should be visible inside the
Haldane gap. Such a response was successfully observed in the ESR experi-
ment on Cu-doped NENP [130], confirming that the system is in the Haldane
phase.

Excitations in the AKLT Chain

The lowest excitation above the singlet ground state of the Haldane chain is
known to be a massive triplet with the total spin equal to 1. Creating such
an excitation may be visualized as replacing one of the singlet links in the
AKLT state by a triplet one. The resulting trial wave function for a triplet
excitation with Sz = µ at site n can be written down as follows:

|µ, n〉 = Tr{gAKLT
1 gAKLT

2 . . . gAKLT
n−1 (g1µ

n )gAKLT
n+1 . . . gAKLT

N }, (1.56)

where g(1µ) is in the most general case defined as

g(1µ) = aσµ · gAKLT + bgAKLT · σµ, (1.57)

the ratio a/b being a free parameter. States |µ, n〉 with different n are ge-
nerally not orthogonal. However, one may achieve such an orthogonality by
setting a/b = 3 [131].

Those states are in fact solitons in the string order [109–112]. One can
straightforwardly check that in the soliton state |r, n〉 the string order corre-
lators Or′

1 (l, l′) with r′ �= r change sign when n gets inside the (l, l′) interval,
while Or

1(l, l
′) remains insensitive to the presence of the soliton.The variatio-

nal dispersion relation for such a soliton takes an especially simple form for
the AKLT model [132]:

ε(k) =
10
27

(5 + 3 cos k). (1.58)

The one-particle gap ∆ = ε(k = π) is at k = π, and the overall structure of
excitation spectrum is qualitatively very similar to that of the Haldane chain.
Numerical analysis [103, 112] confirms that the above picture of excitations,
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constructed for the AKLT model, remains qualitatively correct in case of the
S = 1 Haldane chain as well, also in anisotropic case [133].

The difference between the ground states of the Haldane chain and of
the AKLT model may be visualized as follows: the Haldane chain contains a
finite number of bound pairs of solitons with opposite spin, which reduce the
hidden order and renormalize the excitation energy [134].

1.3.4 Spin Chains with Alternating and Frustrated Exchange

If the exchange integral is allowed to alternate along the chain, i.e., Jn =
J [1 + (−1)nδ], the NLSM analysis shows [135] that the topological term
(1.48) gets multiplied by (1 − δ). The theory is gapless if 2πS(1 − δ) = π
mod(2π), which yields 2S critical points if δ ∈ [−1; 1]. The same conclusion
is supported by the VBS approach which allows exactly 2S + 1 different
dimerized VBS states for a given S, so that there are 2S transitions between
them. Numerically, such transitions were observed in chains with S up to
2 [136].

Recently, a dimerized S = 1 VBS state was detected in the ESR expe-
riment on Zn-doped NTENP [137]. The idea of the experiment was similar
to that of detecting the Haldane state: due to the dimerized nature of the
ground state, effective free S = 1 spins emerge on doping at the edges ad-
jacent to the impurities, and the corresponding resonance response can be
measured.

If one adds a small frustrating next-nearest-neighbor interaction j, the 2S
critical points can be expected to continue as critical lines in the (j, δ) plane.
In the strong frustration region, however, little is known, except for the cases
S = 1

2 and S = 1.
In the S = 1

2 case there is a single critical line δc = 0 extending up to the
point j � 0.24, and continuing till j = ∞ as a first-order line [65]. For S = 1
there are two symmetrical lines δ = ±δc(j), with δc(0) � 0.25 [136], which,
according to the numerical results [138, 139], extend up to about j � 0.2
as second-order transition lines, continue afterwards as first-order ones and
cross the symmetry line δ = 0 at a finite j � 0.75. The symmetry line (i.e., a
frustrated chain without alternation) was studied in [131,140] and the point
jc � 0.75 was identified as that of the first-order “connectivity transition”
from the Haldane phase to the so-called “double Haldane” phase. The string
order (1.42) disappears discontinuously at j > jc [140], signaling a breakdown
of the Haldane phase (Fig. 1.10b).

The “double Haldane” phase at j > jc can be visualized (see Fig. 1.10a)
as a VBS state consisting of two interconnected AKLT chains [131]; the cor-
responding order parameter can be written as

Oα
2 (n, n′) =

〈
−Sα

n−1S
α
n eiπ

∑n′−1
l=n+1 Sα

l Sα
n′Sα

n′+1

〉
, α = x, y, z, (1.59)

and turns out to emerge discontinuously at j > jc (Fig. 1.10b). It is, however,
not clear at present how the “double Haldane” phase is connected to the
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Fig. 1.10. (a) visual interpretation of the “double-Haldane” phase; (b) behavior
of string order parameters (1.42) and (1.59) on the frustration j [131]

dimerized phase: the string order (1.59) was found to survive in the dimerized
phase as well [141].

1.3.5 Frustrated Chains with Anisotropy: Quantum Chiral Phases

In recent few years, the problem of possible nontrivial ordering in frustrated
quantum spin chains with easy-plane anisotropy has attracted considerable
attention [142–146]. The simplest model of this type is described by the Ha-
miltonian:

H = J
∑

n

{(SnSn+1)∆ + j(SnSn+2)∆} , (1.60)

where (S1S2)∆ ≡ Sx
1S

x
2 + Sy

1S
y
2 + ∆Sz

1S
z
2 , and 0 < ∆ < 1 is the anisotropy

parameter.
In the classical ground state of (1.60) spins always lie in the easy plane

(xy), i.e. in terms of angular variables θ, ϕ for the classical spins (Sx
n +

iSy
n = S sin θne

iϕn , Sz
n = cos θn) one has θ = π

2 . For j < 1
4 the alignment

of spins is antiferromagnetic, ϕn = ϕ0 + πn, and for j > 1
4 one obtains

an incommensurate helical structure with ϕn = ϕ0 ± (π − λ0)n, where λ0 =
arccos(1/4j), and the ± signs above correspond to the two possible chiralities
of the helix.

The classical isotropic (∆ = 1) system has for j > 1
4 three massless

modes with wave vectors q = 0, q = ±δ, where δ ≡ π − λ0 is the pitch
of the helix. The effective field theory for the isotropic case is the so-called
SO(3) nonlinear sigma model, with the order parameter described by the
local rotation matrix [148,149].

Quantum fluctuations make the long-range helical order impossible in one
dimension, since it would imply a spontaneous breaking of the continuous in-
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plane symmetry; in contrast to that, the existence of the finite vector chirality

κn = 〈(Sn × Sn+1)〉 (1.61)

is not prohibited by the Coleman theorem, as first noticed by Villain [151]. Po-
sitive (negative) chirality means, that spins on average prefer to rotate to the
left (right), respectively, thus the discrete symmetry between left and right
is spontaneously broken in the chiral phase. Nersesyan et al. [142] predicted
the existence of a gapless chiral phase for S = 1

2 in the j � 1 limit, using the
bosonization technique combined with a subsequent mean-field-type decou-
pling procedure. Except having the chiral order, this phase is characterized
by the power-law decaying incommensurate in-plane spin correlations of the
form 〈S+

0 S
−
n 〉 ∝ n−ηeiQn, where Q is very close to π in the limit j � 1, and

η = 1
4 for S = 1

2 [142].
Early attempts [143, 145] to find this chiral gapless phase in numerical

calculations for S = 1
2 were unsuccessful. At the same time, to much of

surprise, DMRG studies for frustrated S = 1 chain [145,146] have shown the
presence of two different types of chiral phases, gapped and gapless.

The model (1.60) was studied analytically in the large-S limit and for j
close to the classical Lifshitz point 1

4 by mapping it to a planar helimagnet
[147, 152]. This mapping is based on the fact that in presence of anisotropy
the modes with q = ±δ acquire a finite mass and can be integrated out. It
was shown that the existence of two types of chiral phases is not specific for
S = 1, but is a generic large-S feature for integer S [147]. The predicted large-
S phase diagram for integer S is shown in Fig. 1.11. Later large-S study [152]
has shown that the chiral gapped phase should be absent for half-integer S,
due to the effect of the topological term.

In subsequent works, chiral phases were numerically found for S = 1
2 ,

[150,153] as well as for S = 3
2 and S = 2 [150]; the resulting phase diagrams

jL j
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1

∆

Haldane

XY

chiral
gapless

?

gapless

ch
ir

al
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pe

d

KT

KT

Ising

Fig. 1.11. Predicted phase diagram of frustrated anisotropic chains with integer
S in the large-S approximation, according to [147]
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are shown in Fig. 1.12 and one can see that there is a qualitative agreement
with the predictions of the large-S theory. The predicted dependence of the
critical exponent η on j in the vicinity of the transition into a chiral phase, η ∝

1
S
√

j−1/4
→ 1

4 at j → jc, also agrees qualitatively with the numerical results

of [150]. However, the large-S theory is unable to describe the transition into
the dimerized phase for half-integer S.

0 0.5 1 1.5
0
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Dimer

gapless chiral
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∆
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Haldane Double Haldane
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gapped 
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∆
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j

∆
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chiral Haldane

Fig. 1.12. Phase diagrams of frustrated anisotropic chains with S = 1
2 , 1, 3

2 and
2, obtained by means of DMRG [150]

Another theoretical approach using bosonization [154] suggests that the
phase diagram for integer and half-integer S should be very similar, with the
only difference that the Haldane phase gets replaced by the dimerized phase
in the case of half-integer S. This is in contradiction with the recent numerical
results [150] indicating that the chiral gapped phase is absent for half-integer
S. On the other hand, the bosonization prediction of the asymptotic value of
the critical exponent, η → 1/(8S) at j →∞, agrees well with the numerical
data.

There are indications [155] that chiral order may have been found expe-
rimentally in the 1D molecular magnet Gd(hfac)3NITiPr.



1 One-Dimensional Magnetism 37

1.4 S = 1
2 Heisenberg Ladders

Spin ladders consist of two or more coupled spin chains and thus represent an
intermediate position between one- and two-dimensional systems. The pro-
totype of a spin ladder is shown in Fig. 1.13a and consists of two spin chains
(legs) with an additional exchange coupling between spins on equivalent po-
sitions on the upper and lower leg (i.e. on rungs). The interest in spin ladders
started with the observation that this ladder with standard geometry and
antiferromagnetic couplings is a spin liquid with a singlet ground state and a
Haldane type energy gap even for S = 1/2 [156]. More generally, spin ladders
with an arbitrary number of antiferromagnetically coupled chains and ar-
bitrary spin value S extend the class of spin liquids: For half-odd-integer spin
and an odd number of legs they are gapless, whereas they exhibit a Haldane
type energy gap otherwise (for a review of the early phase of spin ladder re-
search see [11] and for a review of experiments and materials see [157]). Spin
ladders are realized in a number of compounds and interest in these materials
was in particular stimulated by the hope to find a new class of high tempera-
ture superconductors. However, so far only two SrCuO spin ladder materials
were found which become superconducting under high pressure: Tc is about
10 K for Sr0.4Ca13.6Cu24O41 at 3 GPa pressure [158]. Nevertheless, theoreti-
cal interest continued to be strong since generalized spin ladder models cover
a wide range of interesting phenomena in quantum spin systems and on the
other hand allow to study in a reduced geometry interacting plaquettes of
quantum spins identical to the CuO2 plaquettes which are the basic building
blocks of HTSC’s. In this section we will concentrate on reviewing the pro-
perties of spin ladder models which connect seemingly disjunct quantum spin
models.

JR

JL n,2

n,1

(a) JL

J1 J2

n,2

n,1

(b)

Fig. 1.13. (a) generic spin ladder with only “leg” and “rung” exchange interactions
JL, JR; (b) zigzag spin ladder

1.4.1 Quantum Phases of Two-Leg S = 1/2 Ladders

The prototype of quantum spin ladders has the geometry shown in Fig. 1.13a
and is defined by the Hamiltonian

H =
∑

n

∑

α=1,2

JLSn,α · Sn+1,α +
∑

n

JR Sn,1 · Sn,2 (1.62)
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with exchange energies JL along the legs and JR on rungs. The ‘standard’
ladder results for equal antiferromagnetic exchange JL = JR = J > 0. Whe-
reas the corresponding classical system has an ordered ground state of the
Néel type the quantum system is a spin liquid with short range spin corre-
lations, ξ ≈ 3.2 (in units of the spacing between rungs) and an energy gap
∆ ≈ 0.5JR [159,160] at wave vector π. Regarding the similarity to the Hald-
ane chain indicated by these properties it was therefore tempting to speculate
that the ladder gap is nothing but the Haldane gap of a microscopically so-
mewhat more complicated system. In order to discuss this speculation we
consider the system of (1.62) with varying ratio JR/JL. In the strong cou-
pling limit with JR/JL positive and large, the ladder reduces to a system
of noninteracting dimers with the dimer excitation gap ∆dimer = JR. With
increasing JL the gap decreases to become ∆ ≈ 0.4JR in the weak coupling
limit [161,162]. On the other hand, for large negative values, the formation of
S = 1 units on rungs is favored and the system approaches an antiferroma-
gnetic S = 1 chain (with effective exchange 1

2JL). However, these two simple
and apparently similar limiting cases are separated by the origin, JR = 0,
corresponding to the gapless case of two independent S = 1/2 chains. The
relation between ladder gap and Haldane gap therefore does not become clear
by this simple procedure (see the early discussion by Hida [163]).

Before we approach this point in more detail, we shortly consider the
ladder Hamiltonian (1.62) for the alternative case of ferromagnetically inter-
acting legs, JL < 0: The classical ground state then is the state of two chains
with long range ferromagnetic order, oriented antiparallel to each other. One
would speculate that this ferromagnetic counterpart of the standard ladder is
less susceptible to quantum fluctuations since without rung interactions the
ground state for S = 1/2 is identical to the classical ground state. This is, ho-
wever, not the case: An arbitrarily small amount of (antiferromagnetic) rung
exchange leads to the opening up of a gap as shown by analytical [164–166]
and numerical [167] methods. The situation is somewhat more involved (and
interesting) when the exchange interactions are anisotropic: up to some fi-
nite rung coupling the classical ground state survives for an anisotropy of
the Ising-type in the leg interactions and a spin liquid ground state of the
Luttinger liquid type appears for leg anisotropy of the XY type [165,166].

The relation between Haldane and ladder gap can be clarified when the
somewhat generalized model for a S = 1/2 ladder shown in Fig. 1.13b, with
the Hamiltonian

H =
∑

n

∑

α=1,2

JLSn,α · Sn+1,α +
∑

n

(J1 Sn,1 · Sn,2 + J2 Sn,2 · Sn+1,1)

(1.63)

is studied. This model is mostly known under the name of zigzag ladder, i.e.
two Heisenberg chains with zigzag interactions, but it can be viewed alterna-
tively as a chain with alternating exchange J1, J2 and NNN interactions JL. If
either J1 or J2 vanishes the Hamiltonian reduces to the ladder geometry with
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two legs and rungs. For J1 = J2, the model reduces to the Heisenberg chain
with NNN interactions already discussed in Sect. 1.2, including the quantum
phase transition from the Heisenberg chain universality class to the (twofold
degenerate and gapped) dimer crystal ground state at J1 = J2 = α−1

c JL
(with αc � 0.2411) and the Majumdar-Ghosh point J1 = J2 = 2JL with two
degenerate ground states, see Sect. 1.2.6 above. Upon including alternation,
J1 �= J2, the Majumdar-Ghosh point extends into two Shastry-Sutherland
lines [168], J2 = 1

2 for J1 > 1
2 and J1 = 1

2 for J2 > 1
2 : If the exchange

coupling along the chain alternates between J1 on even bonds and J2 < J1
on odd bonds, |0I〉 continues to be the ground state for J2 = 1

2 as long as
J2 > −1.

It is instructive to study this more general model introduced by White
[169], for several reasons: The ground state phase diagram for various com-
binations of the variables J1, J2, JL allows to discuss the relations between
a number of seemingly different models by continuous deformation of the
interaction parameters [169–171] and it serves as an instructive example for
quantum phase transitions depending on the parameters in interaction space.
Moreover it allows to make contact to real quasi 1D materials by showing
the position in this diagram in rough correspondence to their interaction
parameters.

In the following we present and discuss three ground state phase diagrams,
in order to cover (partly overlapping) the full phase space in the variables
J1, J2, JL. Evidently the phase diagrams are symmetric under exchange of J1
and J2 and we will discuss only one of the two possible cases.

(a) Figure 1.14a shows the phase diagram J2 vs J1, assuming a finite value
of JL > 0 as energy unit. It has been established by various methods that
the only phase transition lines occur at J2 = −2J1/(2+J1) (transition to the
ferromagnetically ordered ground state) and along the line J1 = J2 > −4.
This line is a line of first order quantum phase transitions for 0 < J1 = J2 <
α−1

c and of second order quantum phase transitions for J1 = J2 > α−1
c (in

the following we use finite value of JL > 0 as energy unit and restrict to the
J1 > J2 half of the plane).

The origin J1 = J2 = 0 corresponds to the gapless case of two nonin-
teracting Heisenberg chains, whereas on the line J1 = J2 > 0 one has one
S = 1/2 Heisenberg chain with NNN interaction. This line separates two
distinct gapped regimes, each containing the limit of noninteracting dimers
J1 →∞ resp. J2 →∞, the standard ladder, an effective S = 1 chain and the
Shastry-Sutherland (SS) line.

The concept of string order can be extended to ladders [172, 173] intro-
ducing two complementary string order parameters in the J1 − J2 phase
diagram:

Oα
lad,1(n,m) =
〈
− (Sα

n,1 + Sα
n,2) e

iπ
∑m−1

j=n (Sα
j,1+Sα

j,2) (Sα
m,1 + Sα

m,2)
〉
, (1.64)
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Fig. 1.14. Phase diagrams of the S = 1
2 zigzag ladder: (a) JL = 1, (b) J1 = 1,

(c) J1 = −1. Solid (dashed) lines correspond to the second (first) order transitions,
respectively

Oα
lad,2(n,m) =
〈
− (Sα

n,1 + Sα
n+1,2) e

iπ
∑m−1

j=n (Sα
j,1+Sα

j+1,2) (Sα
m,1 + Sα

m+1,2)
〉
. (1.65)

For J1 > J2 (phase D2) singlets are found preferably on the rungs and the
remaining antiferromagnetic leg exchange then leads to a tendency towards
triplets, i.e. S = 1 units on diagonals. This implies a vanishing value for
Olad,1 whereas a finite string order parameter Olad,2 develops. This type of
string order characterizes the standard ladder (J1 = 1, J2 = 0) and becomes
identical with the S = 1 chain string order parameter for J2 → −∞. The
complementary situation is true for J1 < J2: rungs and diagonals as well as
Olad,1 and Olad,2 exchange their roles. In the field theoretic representation of
the generalized ladder [13,174,175]Olad,1 and Olad,2 correspond to Ising order
resp. disorder parameters. Both order parameters become zero on the line
J1 = J2 for J1 = J2 > α−1

c (gapless line) whereas they change discontinuously



1 One-Dimensional Magnetism 41

following the discontinuous change in ground state when the line J1 = J2 for
J1 = J2 < α−1

c (line with two degenerate ground states) is crossed.
Thus it is possible to deform various gapped models, noninteracting di-

mers, the standard ladder and the S = 1 Haldane chain, continuously into
each other without closing the gap if one stays on the same side of the line
J1 = J2. Then the ladder gap evolves into the dimer gap when the rung
coupling increases to infinity and the dimer gap evolves into the Haldane
gap when two dimers on neighboring rungs interact ferromagnetically via J2,
forming S = 1 units on diagonals. However, when the standard ladder is de-
formed into a S = 1 chain by changing rung dimers from antiferromagnetic
to strongly ferromagnetic, one moves to a different symmetry class since the
line J1 = J2 is crossed.

For ferromagnetic couplings J1, J2 < 0 there is a regime of disorder due
to competing interactions before ferromagnetic order sets in. This applies
in particular to the limit −4 < J1 = J2 < 0, a ferromagnetic chain with
AF NNN exchange. It is usually taken for granted that the corresponding
ground state of this frustrated chain is in an incommensurate phase and
gapless; however, a recent interesting speculation [176] suggests the presence
of a tiny but finite gap on some part of this line.

(b) In Fig. 1.14b the phase diagram in the variables J2 vs JL is presented,
assuming a finite value of J1 > 0 as energy unit. This choice of variables
displays most clearly the neighborhood of the dimer point (the origin in this
presentation) and the situation when ferromagnetic coupling is considered on
the legs and on one type of inter-leg connections. The dividing line between
the two dimer/Haldane phases D1 and D2 appears now as the line J2 = 1
with the end of the gapless phase at JL = αc and the Majumdar-Ghosh
point at JL = 1

2 . The gap on this line starts exponentially small from zero
at the Kosterlitz Thouless transition at JL = αc, goes through a maximum
at JL ≈ 0.6 and drops to zero exponentially for JL → ∞ (two decoupled
chains) [149,177].

The Shastry-Sutherland (SS) lines JL = 1
2J2 (in D2) resp. JL = 1

2 in
D1 are to be considered as disorder lines where spin-spin correlations in
real space become incommensurate [178, 179]. The precise properties in the
incommensurate regime beyond these lines have not been fully investigated
up to now. The SS line extends into the range of ferromagnetic couplings
and (in D2) ends at JL = 1

2J2 = −1. This point lies on the boundary of
the ferromagnetic phase, J2 = −2JL/(1 + 2JL). This boundary is obtained
from the instability of the ferromagnetic state against spin wave formation.
There are indications that ground states on this line are highly degenerate:
states with energies identical to the ferromagnetic ground state are explicitly
known for J1 = JL = −1 (end of the SS line, dimers on J1 bonds), for
J1 = JL = − 3

2 (a matrix product ground state, see Sect. 1.4.2) and for a
family of states which exhibit double chiral order as studied in ref. [180].

As mentioned before, the ladder is gapless on the line J2 = 1, JL < 0
(antiferromagnetic Heisenberg chain with ferromagnetic NNN exchange), but
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an infinitesimal alternation, J2 �= 1 drives it into the gapless phase, smoothly
connected to the Haldane/dimer phase. At strongly negative values of J1 the
phase diagram of Fig. 1.14b shows the second order phase transition from
the ferromagnetic to the antiferromagnetic S = 1 chain at JL = − 1

2 .
(c) In Fig. 1.14c the phase diagram in the same variables J2 vs JL is shown,

but assuming a finite ferromagnetic value of |J1| = −J1 > 0 as energy unit.
This choice of variables allows to discuss the situation for two ferromagnetic
couplings. The origin is identified as the limit of noninteracting spins 1 and
the neighborhood of the origin covers both the ferro- as the antiferromagnetic
S = 1 chain, depending on the direction in parameter space.

1.4.2 Matrix Product Representation
for the Two Leg S = 1/2 Ladder

The matrix product representation introduced for the S = 1 chain above can
be extended to ladders and is found to be a powerful approach to describe
spin ladder ground states in the regime covered by the J1-J2 phase space of
the model of (1.63). It formulates possible singlet ground states as a product
of matrices gn referring to a single rung n, |..〉 =

∏
n gn. Matrices gn as used

in Sect. 1.3.3 are generalized to include the possibility of singlets on a rung
and read [170]:

gn(u) = u1̂ |s〉n + v(
1√
2
σ−|t−〉n −

1√
2
σ+|t+〉n + σz|t0〉n)

=
(
u|s〉+ v|t0〉 −

√
2v|t+〉√

2v|t−〉 u|s〉 − v|t0〉

)
. (1.66)

(Note that the triplet part of (1.66) is equivalent to (1.55) up to a unitary
transformation; here we keep the original nonation of [170].) We now show
that the ground states of the Majumdar-Ghosh chain can be written in the
form of a matrix product. This is trivially true for |0〉II which is obtained for
u = 1, v = 0. It is also true for the state |0〉I if it is formulated in terms of
the complementary spin pairs [2, 3], [4, 5] . . . used in |0II〉: We start from the
representation of a singlet as in (1.34, 1.35) and write

|0〉I =
1

2N/2

∑

{..s,s′,t,...}
· · ·χ2p−1(s) εs,s′

χ2p(s′)

× χ2p+1(t) εt,t
′
χ2p+2(t′) χ2p+3(r) εr,r′

χ2p+4(r′) · · · = Tr
(∏

p

gp

)

after defining the matrix with state valued elements

gp(s, t) :=
1√
2

∑

s′
χ2p(s) χ2p+1(s′) εs

′,t
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to replace the singlet, (1.34) as new unit. The explicit form for g is

1√
2




| ↑, ↓〉 −| ↑, ↑〉

| ↓, ↓〉 −| ↓, ↑〉





which is identical to (1.66) with u = v = 1/
√

2.

1.4.3 Matrix Product States: General Formulation

The above construction of the matrix product ansatz for S = 1
2 ladders can be

generalized for arbitrary 1D spin systems [181]. Let {|γSµ〉} be the complete
set of the spin states of the elementary cell of a given 1D spin system, classified
according to the total spin S, its z-projection µ and an (arbitrary) additional
quantum number γ. Define the object g as follows:

g(jm) =
∑

λq,Sµ

cγ 〈jm|λq, Sµ〉 T̂λq|γSµ〉 , (1.67)

where 〈jm|λq, Sµ〉 are the standard Clebsch-Gordan coefficients, cγ are free
c-number parameters, and T̂λq are irreducible tensor operators acting in some
auxiliary space, which transform under rotations according to the Dλ repre-
sentation. Then it is clear that g transforms according to Dj and thus can be
assigned “hyperspin” quantum numbers jm. Then, building on those elemen-
tary objects gi (where i denotes the i-th unit cell) one can construct wave
functions with certain total spin almost in the same way as from usual spin
states. For instance, for a quantum 1D ferrimagnet with the excess spin j per
unit cell the state with the total spin and its z-projection both equal to Nj
would have the form

|ΨNj,Nj〉 = TrM(ΩN ), ΩN = g
(jj)
1 · g(jj)

2 · · · g(jj)
N , (1.68)

where the trace sign denotes an appropriate trace taken over the auxiliary
space. The choice of the auxiliary space M determines the specific matrix
representation of the operators Tλq; the space M can be always chosen in a
form of a suitable decomposition into multipletsM =

∑
αJ ⊕MαJ , and then

the structure of the matrix representation is dictated by the Wigner-Eckart
theorem:

〈αJM |Tλq|α′J ′M ′〉 = T̃λ,αJ,α′J′ 〈JM |λq, J ′M ′〉 . (1.69)

The reduced matrix elements T̃λ,αJ,α′J′ and the coefficients cγ are free para-
meters.

Matrix product states (MPS) are particularly remarkable because the ma-
trices g1g2, g1g2g3, etc. all have the same structure (1.67) if they are construc-
ted from the “highest weight” components g(j,m=j). This self-similarity is ac-
tually an indication of the deep connection of singlet MPS and the density-
matrix renormalization group technique, as first pointed out by Ostlund and
Römmer [182] and developed later in works of Sierra et al. [183–185].
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A Few Examples

In the simplest case of a two-dimensional M = {|J = 1
2 ,M〉}, the allowed

values of λ are 0 and 1, and T 1q are just proportional to the usual Pauli
matrices σq, and T 00 is proportional to the unit matrix. If one wants the
wavefunction to be a global singlet, the simplest way to achieve that is to
have the construction (1.68) with j = 0. Then, for the case of S = 1 chain
with one spin in a unit cell, one obtains exactly the formula (1.55), with no
free parameters.

Higher-S AKLT-type VBS states can be also easily represented in the
matrix product form. In this case one has to choose M = {|S/2,M〉}, then
the only possible value of λ is S, and, taking into account that 〈00|Sq, Sµ〉 =
δq,−µ(−1)S−µ, we obtain

gS =
∑

µ

(−1)S−µTS,−µ|S, µ〉.

For a generic quantum ferrimagnet, i.e., a chain of alternating spins 1 and
1
2 , coupled by antiferromagnetic nearest-neighbor exchange, the elementary
unit contains now two spins. The ground state has the total spin 1

2 per unit
cell, then one would want to construct the elementary matrix g1/2,1/2. If M
is still two-dimensional, the elementary matrix has according to (1.67) the
following form:

g =
(

(u− v)|↑〉 − |12 〉
√

3| 32 〉
−2v|↓〉 − | − 1

2 〉 (u+ v)|↑〉+ | 12 〉

)
, (1.70)

where |↑〉, |↓〉 and | ± 1
2 〉, | ±

3
2 〉 are the cell states with the total spin λ = 1

2
and λ = 3

2 , respectively.

1.4.4 Excitations in Two-Leg S=1/2 Ladders

The excitation spectrum in this simplest ladder type spin liquid is similar to
that of a Haldane chain: The lowest excitation is a triplet band with mini-
mum energy at q = π and a continuum at q = 0. Since the ground state is
a disordered singlet, a spin wave approach (which would result in a gapless
spectrum) is inappropriate. In different regimes of the space of coupling con-
stants, different methods have been developed to deal approximately with
the low-lying excitations:

Weak Coupling Regime

In the weak coupling regime, close to two independent chains, the bosoniza-
tion approach can be applied to decide whether the excitation is gapless or
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gapped. The standard situation is that the coupling between legs is relevant
and a gap develops for arbitrarily small coupling. Some examples are: an-
tiferromagnetic interactions in the standard rung geometry [177] (the gap
is linear in JR, the numerical result is ∆ ≈ 0.4JR [162]), antiferromagnetic
interactions in the zigzag geometry [186], and antiferromagnetic interactions
for isotropic ferromagnetic legs [165]. The gapless (Luttinger liquid) regime
of the decoupled chains can survive, e.g. for ferromagnetic legs with XY-type
anisotropy and antiferromagnetic coupling [166].

Strong Coupling Regime

In the strong coupling regime, close to the dimer limit the lowest elementary
excitation develops from the excited triplet state of a dimer localized on one
of the rungs which starts propagating due to the residual interactions. For
the Hamiltonian of (1.63) the dispersion to first order is (we choose J1 � J2
to be the strong dimer interaction)

ω(q) = J1 +
(
JL −

1
2
J2

)
cos q + J1

(3
4
(αL −

1
2
α2)2

+−1
4
α2

2(1 + cos q)− 1
4
(αL −

1
2
α2)2 cos 2q . . .

)
(1.71)

with αL = JL/J1 and α2 = J2/J1. The excitation gap is at either q = 0 (for
J2 > 2JL in the lowest order, alternating AF chain type spectrum) or q = π
(J2 < 2JL, ladder type spectrum). For a finite regime in the space of coupling
constants an expansion in the dimer-dimer couplings leads to converging
expressions for the low-energy frequencies. Expansions have now been carried
out up to 14th order by the methods of cluster expansion [68, 187, 188] and
are convergent even close to the isotropic point.

We note two curiosities: In a small but finite transition regime, the mi-
nimum of the dispersion curve changes continuously from q = 0 to q = π
[187,189]; on the Shastry-Sutherland line, αL = α2/2 the energy of the mode
at q = π is known exactly, ω(q = π) = J1.

For nearly Heisenberg chains with NNN interaction and small alternation
dimer series expansions have been used extensively to investigate further
details of the spectra in e.g. CuGeO3 [68]. Bound states for the standard spin
ladder have been calculated to high order [190] and used to describe optically
observed two-magnon states in (La,Ca)14Cu24O41 [191].

The strong coupling approach has also been applied to describe interacting
dimer materials such as KCuCl3, TlCuCl3 [192,193] with 3D interactions and
(C4H12N2)Cu2Cl6 (= PHCC) [194] with 2D interactions. These interactions
are quantitatively important but not strong enough to close the spin gap
and to drive the system into the 3D ordered state. The dimer expansions are
much more demanding than in 1D, but nevertheless were done successfully
up to 6th order [195,196].
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Bond Boson Operator Approach

This approach makes use of the representation of spin operators in terms of
the so-called bond bosons [197]. On each ladder rung, one may introduce four
bosonic operators s, ta (a ∈ (x, y, z)) which correspond to creation of the
singlet state |s〉 and three triplet states |ta〉 given by

|s〉 =
1√
2

(
| ↑↓〉 − | ↓↑〉

)
, |tz〉 =

1√
2

(
| ↑↓〉+ | ↓↑〉

)
, (1.72)

|tx〉 = − 1√
2

(
| ↑↑〉 − | ↓↓〉

)
, |ty〉 =

i√
2

(
| ↑↑〉+ | ↓↓〉

)
,

Then the rung spin-1
2 operators S1,2 can be expressed through the bond

bosons as

S1,2 = ±1
2
(s†t + t†s)− 1

2
i(t† × t). (1.73)

One may check that the above representation satisfies all necessary commu-
tation relations, if the following local constraint is assumed to hold:

s†s+ t† · t = 1, (1.74)

which implies that the bond bosons are ‘hardcore’ (no two bosons are allowed
to occupy one bond), and, moreover, exactly one boson must be present at
each bond/rung. The constraint is easy to handle formally (e.g. in the path
integral formulation), but practically one can do that only at the mean-
field level [198], replacing the local constraint by a global one, i.e., (1.74) is
assumed to be true only on average, which introduces rather uncontrollable
approximations.

In a slightly different version of the bond boson approach [199], the va-
cuum state is introduced as corresponding to the state with fully condensed
s bosons. Then for spin operators one obtains the formulae of the form (1.73)
with s replaced by 1, and instead of the constraint (1.74) one has just a usual
hardcore constraint t† · t = 0, 1. This version is most useful in the limit of
weakly coupled dimers (e.g., J1 � J2, JL). Passing to the momentum repre-
sentation, one obtains on the quadratic level the effective Hamiltonian of the
form

Heff =
∑

ka

Akt
†
k,atk,a +

1
2
Bk(t†k,at

†
k,a + h.c.), (1.75)

where the amplitudes Ak, Bk are given by the expressions

Bk = (JL − J2/2) cos(k), Ak = J1 +B(k). (1.76)

Thus, neglecting the boson interaction, one obtains for the excitation energy
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ω(k) =

√

J2
1 + 2 J1

(
JL −

1
2
J2

)
cos k , (1.77)

which coincides with the corresponding RPA expression. Upon comparison
to the full systematic series of the perturbation theory, one can see that
(1.77) contains only the leading contributions at each cosine term cos(nk) of
the complete series and misses the remaining terms starting in the second
order [187].

The Hamiltonian (1.75) does not take into account any interaction bet-
ween the bosons. One may argue that the most important contribution to the
interaction comes from the hardcore constraint, which is effectively equivalent
to the infinite on-site repulsion U .

The effect of the local hardcore constraint can be handled using the so-
called Brueckner approximation as proposed by Kotov et al. [199]. In this
approach, one neglects the contribution of anomalous Green’s functions and
obtains in the limit U →∞ the vertex function Γaa′,ss′ = Γ (k, ω)(δasδa′s′ +
δas′δa′s), where k and �ω are respectively the total momentum and energy
of the incoming particles, with

1
Γ (k, ω)

= − 1
N

∑

q

ZqZk−qu
2
qu

2
k−q

ω −Ωq −Ωk−q
. (1.78)

The corresponding normal self-energy Σ(k, ω) is

Σ(k, ω) = (4/N)
∑

q

Zqv
2
qΓ (k + q, ω −Ωq) (1.79)

Here Ωk is the renormalized spectrum, which is found as a pole of the normal
Green function

G(k, ω) =
ω +Ak +Σ(−k,−ω)

(ω −Σ−)2 − (Ak +Σ+)2 +B2
k

, (1.80)

where Σ± ≡ 1
2

{
Σ(k, ω)±Σ(−k,−ω)

}
. The quasiparticle contribution to the

above Green function is given by

G(k, ω) =
Zku

2
k

ω −Ωk + iε
− Zkv

2
k

ω +Ωk − iε
(1.81)

which defines the renormalization factors Zk, the Bogoliubov coefficients uk,
vk and the spectrum Ωk as follows [131]:

Ωk = Σ− + Ek, Ek = {(Ak +Σ+)2 −B2
k}1/2,

u2
k =

1
2
{
1 + (Ak +Σ+)/Ek

}
, v2

k = u2
k − 1,

1
Zk

= 1− ∂Σ−
∂ω

− (Ak +Σ+)
Ek

∂Σ+

∂ω
(1.82)
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where Σ± and their derivatives are understood to be taken at ω = Ωk. The
system of equations (1.78), (1.79), (1.82) has to be solved self-consistently
with respect to Z and Σ. This approach is valid as long as the boson density
ρ = 3

N

∑
q Zqv

2
q remains small, ensuring that the contribution of anomalous

Green’s functions is irrelevant [199].
It should be remarked that the original expressions of Kotov et al. [199]

can be obtained from (1.82) as a particular case, assuming that Σ(k, ω) is
almost linear in ω in the frequency interval (−Ωk, Ωk); however, this lat-
ter assumption fails if one is far away from the phase transition, i.e. if the
resulting frequency ω is not small comparing to J1.

The above way of handling the hardcore constraint is quite general and
can be used in other problems as well, e.g., one can apply it to improve the
results of using the variational soliton-type ansatz (1.56), (1.57) for the S = 1
Haldane chain [131].

Bound Domain Wall Approach

The low-lying excited states in spin ladders in the dimer phase can be di-
scussed in a domain wall representation qualitatively rather similar to the
antiferromagnetic Ising chain in Sect. 2.3. In the limit of a twofold degene-
rate ground state (i.e. on the line J1 = J2 = J < α−1

c JL), excitations can
be discussed in terms of pairs of domain walls, mediating between these two
states [168].

Moving away from this line into the regime J1 �= J2 where bond strengths
alternate, a pair of domain walls feels a potential energy linear in the di-
stance between them since the two dimer configurations now have different
energies. As a consequence, all domain walls become bound with well defi-
ned dispersion ω(q). The frequency is lowest for the state originating from
the simplest pair of domain walls, obtained by exciting one dimer leading
to a triplet state. Thus one makes connection with the strong coupling limit
and establishes that the free domain wall continuum upon binding develops
into the sharp triplet excitation (‘magnon’) of the Haldane type. For a more
quantitative description of the transition between bound and unbound limits,
several variational formulations have been developed [189, 200, 201]. Of par-
ticular interest is the limit of JL � J1, i.e. weakly coupled gapless chains
which can be studied by bosonization techniques [186]. The zigzag structure
is responsible for a ”twist” interaction which induces incommensurabilities
in the spin correlations.

A particular simple example for a system with unbound domain walls
is the Majumdar-Ghosh state (J1 = J2 = 2JL = J in (1.63)); a domain
wall here means a transition from dimers on even bonds to dimers on odd
bonds or vice versa and implies the existence of a free spin 1/2, justifying
the name spinons for these excitations. For each free spin 1/2 the binding
energy of half a dimer bond is lost, producing an energy gap J/2 which
is lowered to a minimum value of J/4 at q = 0. For a chain with periodic
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boundary conditions the excitation spectrum consists of pairs of these spinons
which, owing to isotropy, bind into 4 degenerate states, a triplet and a singlet.
Because of the degeneracy of the two ground states these spinons can move
independently (completely analogous to the domain walls of the Ising chain
with small transverse interactions of Sect. 2.3), their energies therefore simply
add and lead to an excitation continuum. For a finite range of wave vectors
centered around q = π bound states with lower energies exist [168, 200].
The excited state with lowest energy, however, remains the triplet/singlet at
q = 0.

Moving away from the Majumdar-Ghosh point on the line with two de-
generate ground states towards the quantum phase transition at JL = Jαc,
the energy of the spinons diminishes until they become gapless at the phase
transition. Similar in spirit to the approach from the antiferromagnetic Ising
phase, this is another way to approach the gapless excitation spectrum of the
Heisenberg chain [202]. Since it preserves isotropy in spin space at each stage,
it nicely demonstrates the fourfold degeneracy of the spinon spectrum with
one triplet and one singlet, originating from the two independent spins 1/2.

1.4.5 Multileg Ladders

A natural generalization of the two-leg AF ladder is a general n-leg S = 1
2

ladder model with all antiferromagnetic rung and leg couplings. Except being
an interesting theoretical concept representing a system “in between” one
and two dimensions, this model is realized in strontium copper oxides of the
Srn−1Cun+1O2n family [11]. It turns out that the analogy between the regular
two-leg S = 1

2 ladder and the S = 1 Haldane chain can be pursued further,
and n-leg ladders with odd n are gapless, while ladders with even n exhibit a
nonzero spectral gap ∆ [203,204]. One may think of this effect as cancellation
of the topological terms coming from single S = 1

2 chains [174, 204–206].
The problem can be mapped to the nonlinear sigma model [206] with the
topological angle θ = πn and coupling constant g ∝ n−1, so that there is a
similarity between the n-leg S = 1

2 ladder and a single chain with S = n/2.
The gap ∆ ∝ e−2π/g vanishes exponentially in the limit n → ∞, recovering
the proper two-dimensional behavior.

Instructive numerical results are available for systems of up to 6 coupled
chains: improving earlier DMRG studies [159], calculations for standard n-
leg ladders using loop cluster algorithms [161,162] clearly show the decrease
of the gap for n even (from 0.502 J for n = 2 to 0.160 J for n = 4 and
0.055 J for n = 6). Further detailed results by this method were obtained for
correlation lengths and susceptibilities [162,207].
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1.5 Modified Spin Chains and Ladders

Until now, we have considered only models with purely Heisenberg (bilinear)
spin exchange. One should remember, however, that the Heisenberg Hamil-
tonian is only an approximation, and generally for S > 1/2 one has also
“non-Heisenberg” terms such as (Sl · Sl′)m,m = 2, . . . , 2S whose strength
depends on the Hund’s rule coupling. For S = 1

2 , exchange terms involving
four or more spins emerge in higher orders of the perturbation theory in the
Hubbard model. Those non-Heisenberg terms are interesting since they lead
to a rather rich behavior, and even small admixture of such interactions may
drive the system in the vicinity of a phase transition.

1.5.1 S = 1
2 Ladders with Four-Spin Interaction

In case of a two-leg spin- 1
2 ladder the general form of the isotropic trans-

lationally invariant spin ladder Hamiltonian with exchange interaction only
between spins on plaquettes formed by neighboring rungs reads as

H =
∑

i JRS1,i · S2,i + JLS1,i · S1,i+1 + J ′
LS2,i · S2,i+1 (1.83)

+ JDS1,i · S2,i+1 + J ′
DS2,i · S1,i+1 + VLL(S1,i · S1,i+1)(S2,i · S2,i+1)

+ VDD(S1,i · S2,i+1)(S2,i · S1,i+1) + VRR(S1,i · S2,i)(S1,i+1 · S2,i+1),

where the indices 1 and 2 distinguish lower and upper legs, and i labels rungs.
The model is schematically represented in Fig. 1.15.

JD JD
/

JL
/

JLS1,i S1,i+1

S2,i+1S2,i

JR

+VLL ⊗

+VDD ⊗

+VRR ⊗

Fig. 1.15. A generalized ladder model with four-spin interactions

There is an obvious symmetry with respect to interchanging S1 and S2
on every other rung and simultaneously interchanging JL, VLL with JD, VDD.
Less obvious is a symmetry corresponding to the so-called spin-chirality dual
transformation [208]. This transformation introduces on every rung a pair of
new spin- 1

2 operators σ, τ , which are connected to the ‘old’ operators S1,2
through

S1,2 =
1
2
(σ + τ )± (σ × τ ). (1.84)
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Applying this transformation to the generalized ladder (1.83) generally yields
new terms containing mixed products of three neighboring spins; however, in
case of a symmetric ladder with JL,D = J ′

L,D those terms vanish and one
obtains the model of the same form (1.83) with new parameters

J̃L = JL/2 + JD/2 + VLL/8− VDD/8

J̃D = JL/2 + JD/2− VLL/8 + VDD/8

J̃R = JR, ṼRR = VRR (1.85)

ṼLL = 2JL − 2JD + VLL/2 + VDD/2

ṼDD = −2JL + 2JD + VLL/2 + VDD/2

It is an interesting fact that all models having the product of singlet dimers on
the rungs as their exact ground state are self-dual with respect to the above
transformation, because the necessary condition for having the rung-dimer
ground state is [209]

JL − JD =
1
4
(VLL − VDD). (1.86)

It is worthwhile to remark that there are several families of generalized
S = 1

2 ladder models which allow an exact solution. First Bethe-ansatz solva-
ble ladder models were those including three-spin terms explicitly violating
the time reversal and parity symmetries (see the review [210] and referen-
ces therein). Known solvable models with four-spin interaction include those
constructed from the composite spin representation of the S = 1 chain [211],
models solvable by the matrix product technique [209], and some special mo-
dels amenable to the Bethe ansatz solution [212–214]. Among the models
solvable by the matrix product technique, there exist families which connect
smoothly the dimer and AKLT limits [215]. This proves that these limiting
cases are in the same phase.

There are several physical mechanisms which may lead to the appearance
of the four-spin interaction terms in (1.83). The most important mechanism
is the so-called ring (four-spin) exchange. In the standard derivation based
on the Hubbard model at half-filling, in the limit of small ratio of hopping t
and on-site Coulomb repulsion U , the magnitude of standard (two-spin) Hei-
senberg exchange is J ∝ t2/U . Terms of the fourth order in t/U yield, except
bilinear exchange interactions beyond the nearest neighbors, also exchange
terms containing a product of four or more spin operators [216–218]. Those
higher-order terms were routinely neglected up to recent times, when it was
realized that they can be important for a correct description of many physi-
cal systems. Four-spin terms of the VLL type can arise due to the spin-lattice
interaction [219], but most naturally they appear in the so-called spin-orbital
models, where orbital degeneracy is for some reason not lifted [220].
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Ring Exchange

Ring exchange was introduced first to describe the magnetic properties of so-
lid 3He [221]. Recently it was suggested that ring exchange is non-negligible
in some strongly correlated electron systems like spin ladders [222, 223] and
cuprates [224,225]. The analysis of the low-lying excitation spectrum of the p-
d-model shows that the Hamiltonian describing CuO2 planes should contain
a finite value of ring exchange [224,225]. The search for ring exchange in cu-
prates was additionally motivated by inelastic neutron scattering experiments
[226] and NMR experiments [227–229] on Sr14Cu24O41 and Ca8La6Cu24O41.
These materials contain spin ladders built of Cu atoms. The attempts to fit
the experimental data with standard exchange terms yielded an unnaturally
large ratio of JL/JR ≈ 2 which is expected neither from the geometrical
structure of the ladder nor from electronic structure calculations [230]. It
can be shown that inclusion of other types of interactions, e.g., additional
diagonal exchange, does not help to solve this discrepancy [223].

The ring exchange interaction corresponds to a special structure of the
four-spin terms in (1.83), namely VLL = VRR = −VDD = 2Jring. Except ad-
ding the four-spin terms, ring exchange renormalizes the “bare” values of the
bilinear exchange constants as well: JL,L′ → JL,L′ + 1

2Jring, JD,D′ → JD,D′ +
1
2Jring, JR → JR+Jring. Thus, an interesting and physically motivated special
case of (1.83) is that of a regular ladder with rung exchange J1, leg exchange
coupling J2, and with added ring exchange term, i.e., JR = J1 + Jring,
JL = J ′

L = J2 + 1
2Jring, JD = J ′

D = 1
2Jring, VLL = VRR = −VDD = 2Jring.

It turns out that the line Jring = J2 belongs to the general family of mo-
dels (1.86) with two remarkable properties [209]: (i) on this line the product
of singlets on the rungs is the ground state for Jring < J1/4 and (ii) a pro-
pagating triplet is an exact excitation which softens at Jring = J1/4 [222].
Thus, on this line there is an exactly known phase transition point and one
knows also the exact excitation responsible for the transition. The transition
at Jring = J2 = J1/4 is from the rung-singlet phase (dominant J1) to the
phase with a checkerboard-type long range dimer order along the ladder legs
(see Fig. 1.18). In the (Jring, J1) plane, there is a transition boundary sepa-
rating the rung singlet and dimerized phase [222,231], and arguments based
on bosonization suggest that in the limit Jring, J1 → 0 this boundary is a
straight line Jring = const · J1. In the vicinity of this line, even a small value
of Jring can strongly decrease the gap. For higher values of Jring, according
to recent numerical studies [208, 232], additional phases appear in the phase
diagram (see Fig. 1.16): one phase is characterized by the long-range scalar
chiral order defined as mixed product of three spins on two neighboring ladder
rungs, and another phase has dominating short-range correlations of vector
chirality (1.61). Actually, under the dual transformation (1.84) staggered ma-
gnetization maps onto vector chirality, and checkerboard-type dimerizations
is connected with the scalar chirality, so that the two additional phases may
be viewed as duals of the Haldane and dimerized phase.
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Ferromagnetic

Rung

Singlet

Dominant

Collinear Spin

K

J

Dimer LRO
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Vector Chirality

θ

Scalar Chiral LRO

Fig. 1.16. Phase diagram of the S = 1
2 ladder with equal rung and leg exchange

JL = JR = J and ring exchange Jring = K (from [232], LRO stands for long range
order)

It is now believed [223] that inclusion of ring exchange is necessary for a
consistent description of the excitation spectrum in the spin ladder material
La6Ca8Cu24O41. This substance turns out to be close to the transition line
to the dimerized phase, and therefore has an unusually small gap. Since the
measured value of the energy gap sets the scale for the determination of the
exchange parameters, this implies that actual values of these parameters are
considerably higher compared to an analysis neglecting ring exchange. This
solves the long-standing puzzle of apparently different exchange strength on
the Cu-O-Cu bonds in ladders and 2D cuprates. Stimulated by infrared ab-
sorption results [233] and neutron scattering results on zone boundary ma-
gnons in pure La2CuO4 [234], ring exchange is now also believed to be relevant
in 2D cuprates with large exchange energy. In the following we shortly discuss
this related question:

In 2D magnetic materials with CuO2-planes the basic plaquette is the
same as in the ladder material discussed above. The signature of cyclic
exchange in the 2D Heisenberg model which is usually assumed for materials
with CuO2−planes is a nonzero difference in the energies of two elementary
excitations at the boundary of the Brillouin zone,

∆ = ω(qx = π, qy = 0)− ω(qx =
π

2
, qy =

π

2
).

For the 2D Heisenberg antiferromagnet with its LRO, elementary excitati-
ons are described to lowest order in the Holstein-Primakoff (HP) spin wave
approximation. In this approximation ∆ ∝ Jring results, i.e. ∆ vanishes for
the Heisenberg model with only bilinear exchange. Higher order corrections
to the HP result as calculated in [235, 236] lead to ∆ ≈ −1.4 · 10−2J . This
theoretical prediction is in agreement with the experimental result in cop-
per deuteroformate tetradeuterate (CFTD), another 2D Heisenberg magnet,
but differs from the value ∆ ≈ +3 · 10−2J found from neutron scattering
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experiments in pure La2CuO4. In this latter material, diagonal, i.e. NNN in-
teractions would have to be ferromagnetic to account for the discrepancy and
can therefore be excluded, but a finite amount of ring exchange, Jring ∼ 0.1 J ,
is in agreement with observations.

CFTD and La2CuO4 appear to differ in nothing but their energy scale
(J ≈ 1400K for La2CuO4 and J ≈ 70K for CFTD) and experimental results
would be contradictory when bilinear and biquadratic exchange scale with
the same factor. This is, however, not the case: In terms of the basic Hubbard
model with hopping amplitude t and on-site Coulomb energy U one has J ∝
|t|2/U and Jring ∝ |t|4/U3. Thus, the relative strength of the ring exchange
Jring/J ∝ J/U is material-dependent. In two materials with the same ions
and therefore identical single-ion Coulomb energies, any differences result
from different hopping rates. Thus in materials with high energy scale J such
as La2CuO4 the relative importance of cyclic exchange is enhanced and it
is therefore observable whereas cyclic exchange goes unnoticed in materials
with low energy scale such as CFTD.

Spin-Orbital Models

Modified ladder models (1.83) arise also in one-dimensional systems with
coupled spin and orbital degrees of freedom which can be described by a two-
band orbitally degenerate Hubbard model at quarter filling (Fig. 17). In this
case orbital degrees of freedom may be viewed as pseudospin- 1

2 variables: one
of the ladder legs can be interpreted as carrying the real spins S1,i ≡ Si and
the other one corresponds to the pseudospins S2,i ≡ τ i. The corresponding
effective Hamiltonian for the two-band Hubbard model was first derived by
Kugel and Khomskii [220]. In addition to the spin exchange JS and effective
orbital exchange Jτ , its characteristic feature is the presence of strong spin-
orbital interaction terms of the form (Si ·Si+1)(τ i ·τ i+1), which is equivalent
to the four-spin interaction of the VLL type in (1.83).

Sz=+1/2
τz=+1/2 τz =−1/2
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Fig. 1.17. Pseudospin variables τ describe two degenerate orbital states of the
magnetic ion

Generally, the above Hamiltonian has an SU(2) symmetry in the spin
sector, but only U(1) or lower symmetry in the orbital sector. Under certain
simplifying assumptions (neglecting Hund’s rule coupling, nearest neighbor
hopping between the same type of orbitals only, and only one Coulomb on-site
repulsion constant) one obtains a Hamiltonian of the form
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H =
∑

i

JS(Si · Si+1) + Jτ (τ i · τ i+1) +K(Si · Si+1)(τ i · τ i+1) (1.87)

with JS = Jτ = J and K = 1
4J , which possesses hidden SU(4) symmetry

[212,237]. At this special point, the model is Bethe ansatz solvable [238] and
gapless. This high symmetry can be broken in several ways depending on
the microscopic details of the interaction, e.g., finite Hund’s rule coupling
and existence of more than one Coulomb repulsion constant makes the three
parameters JS , Jτ and K independent, reducing the symmetry to SU(2) ×
SU(2), and further breaking to SU(2)×U(1) is achieved through local crystal
fields which can induce considerable anisotropy in the orbital sector.

The phase diagram of the model (1.87) is extensively studied analyti-
cally [239–241] as well as numerically [240,242,243]. The SU(4) point lies on
the boundary of a critical phase which occupies a finite region of the phase
diagram. Moving off the SU(4) point towards larger JS , Jτ , one runs into the
spontaneously dimerized phase with a finite gap and twofold degenerate gro-
und state. The weak coupling region JS = Jτ � |K| of the dimerized phase
is a realization of the so-called non-Haldane spin liquid [219] where magnons
become incoherent excitations since they are unstable against the decay into
soliton-antisoliton pairs. At the special point JS = Jτ = 3

4K the exact ground
state [244] is a checkerboard-type singlet dimer product shown in Fig. 1.18a,
which provides a visual interpretation of the dimerized phase for K > 0. So-
litons can be understood as domain walls connecting two degenerate ground
states, see Fig. 1.18b, and magnons may be viewed as soliton-antisoliton bo-
und states, in a close analogy to the situation at the Majumdar-Ghosh point
for the frustrated spin-1

2 chain [168]. Numerical and variational studies [245]
show that solitons remain the dominating low-energy excitations in the finite
region around the point JS = Jτ = 3

4K, but as one moves from it towards
the SU(4) point, magnon branch separates from the soliton continuum and
magnons quickly become the lowest excitations.

= Orbitals
One Ion

= SpinsS

τ
(a) (b)

Fig. 1.18. Schematic representation of the spin-orbital model: (a) checkerboard-
type dimerized ground state of (1.87) at JS = Jτ = 3

4K; (b) a soliton connecting
two equivalent dimerized states

For weak negative K one also expects a spontaneously dimerized phase
[219], but now instead of a checkerboard dimer order one has spin and orbital
singlets placed on the same links. A representative exactly solvable point
inside this phase is JS = Jτ = J = − 1

4K, K < 0, which turns out to
be equivalent to the 16-state Potts model. At this point, the model has a
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large gap of about 0.78J and its ground state can be shown to be twofold
degenerate [214].

1.5.2 S = 1 Bilinear-Biquadratic Chain

The isotropic Heisenberg spin-1 AF chain is a generic example of a system in
the Haldane phase. However, the most general isotropic exchange interaction
for spin S = 1 includes biquadratic terms as well, which naturally leads to
the model described by the following Hamiltonian:

H =
∑

n

cos θ (Sn · Sn+1) + sin θ (Sn · Sn+1)2. (1.88)

The AKLT model considered in Sect. 1.3 is a particular case of the above Ha-
miltonian with tan θ = 1

3 . There are indications [246] that strong biquadratic
exchange is present in the quasi-one-dimensional compound LiVGe2O6. The
points θ = π and θ = 0 correspond to the Heisenberg ferro- and antiferroma-
gnet, respectively. The bilinear-biquadratic chain (1.88) has been studied rat-
her extensively, and a number of analytical and numerical results for several
particular cases are available (Fig. 19). It is firmly established that the Hald-
ane phase with a finite spectral gap occupies the interval −π/4 < θ < π/4,
and the ferromagnetic state is stable for π/2 < θ < 5π/4, while θ = 5π/4 is
an SU(3) symmetric point with highly degenerate ground state [247].

nematic?
KBB

TB

HAF

AKLT

ULS

θ
gapless

Ferro
Haldane

Dimer

Fig. 1.19. Phase diagram of the S = 1 bilinear-biquadratic chain (1.88)

An exact solution is available [238] for the Uimin-Lai-Sutherland (ULS)
point θ = π/4 which has SU(3) symmetry. The ULS point was shown [248] to
mark the Berezinskii-Kosterlitz-Thouless (BKT) transition from the massive
Haldane phase into a massless phase occupying the interval π/4 < θ < π/2
between the Haldane and ferromagnetic phase; this is supported by numerical
studies [249].

The properties of the remaining region between the Haldane and fer-
romagnetic phase are more controversial. The other Haldane phase bound-
ary θ = −π/4 corresponds to the exactly solvable Takhtajan-Babujian mo-
del [250]; the transition at θ = −π/4 is of the Ising type and the ground
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state at θ < −π/4 is spontaneously dimerized with a finite gap to the lowest
excitations [249, 251–256]. The dimerized phase extends at least up to and
over the point θ = −π/2 which has a twofold degenerate ground state and
finite gap [257–259].

Chubukov [260] used the Holstein-Primakoff-type bosonic representation
of spin-1 operators [261] based on the quadrupolar ordered “spin nematic”
reference state with 〈S〉 = 0, 〈S2

x,y〉 = 1, 〈S2
z = 0〉, and suggested, on the basis

of the renormalization group arguments, that the region with θ ∈ [5π/4, θc],
where 5π

4 θc <
3π
2 , is a disordered nematic phase. Early numerical studies [262]

have apparently ruled out this possibility, forming a common belief [263,264]
that the dimerized phase extends all the way up to the ferromagnetic phase,
i.e., that it exists in the entire interval 5π/4 < θ < 7π/4. However, recent
numerical results [265,266] indicate that the dimerized phase ends at certain
θc > 5π/4, casting doubt on the conclusions reached nearly a decade ago.

Using special coherent states for S = 1,

|u,v〉 =
∑

j

(uj + ivj)|tj〉, |±〉 = ∓ 1√
2
(|tx〉 ± i|ty〉), |0〉 = |tz〉, (1.89)

subject to the normalization condition u2+v2 = 1 and gauge-fixing constraint
u · v = 0, one can show [267] that for θ slightly above 5π

4 the effective low-
energy physics of the problem can be described by the nonlinear sigma model
of the form (1.47). The topological term is absent and the coupling constant
is given by

g = (1− ctg θ)1/2 
 1 (1.90)

(note that in this case smallness of g is not connected to the large-S approxi-
mation). By the analogy with the Haldane phase, this mapping suggests that
for θ > 5π/4 the system is in a disordered state with a short-range nematic
order and exponentially small gap ∆ ∝ e−π/g. The antiferromagnetism unit
vector l gets replaced by the unit director u and the opposite vectors u and
−u correspond to the same physical state, which makes the model live in the
RP 2 space instead of O(3). The main difference from the usual O(3) NLSM
is that the RP 2 space is doubly connected, which supports the existence of
disclinations – excitations with a nontrivial π1 topological charge. However,
the characteristic action of a disclination is of the order of sin θ and thus the
low-energy physics on the characteristic scale of ∆ should not be affected by
the disclinations.

1.5.3 Mixed Spin Chains: Ferrimagnet

In the last decade there has been much interest in ‘mixed’ 1d models involving
spins of different magnitude S. The simplest system of this type is actually of
a fundamental importance since it represents the generic model of a quantum
ferrimagnet described by the Hamiltonian
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H =
∑

n

(Snτn + τnSn+1) (1.91)

where Sn and τn are respectively spin-1 and spin-1
2 operators at the n-

th elementary magnetic cell (with Sz eigenstates denoted in the following
as (+, 0,−) and (↑, ↓), respectively). An experimental realization of such a
system is the molecular magnet NiCu(pba)(D2O)3 ·D2O [268].

According to the Lieb-Mattis theorem [269], the ground state of the sy-
stem has the total spin Stot = L/2, where L is the number of unit cells.
There are two types of magnons [270, 271]: a gapless “acoustical” branch
with Sz = L/2− 1, and a gapped “optical” branch with Sz = L/2 + 1. The
energy of the “acoustical” branch rises with field, and in strong fields those
excitations can be neglected, while the “optical” magnon gap closes at the
critical field.

A good quantitative description of the ferrimagnetic chain can be achieved
with the help of the variational matrix product states (MPS) approach [34,
181]. The MP approach is especially well suited to this problem since the
fluctuations are extremely short-ranged, with the correlation radius smaller
than one unit cell length [181,270,271]. The ground state properties, including
correlation functions, are within a few percent accuracy described by the MPS
|Ψ0〉 = Tr(g1g2 · · · gL), where the elementary matrix has the form (1.70) and
the variational parameters u, v are determined from the energy minimization.
The variational energy per unit cell is Evar = −1.449, to be compared with
the numerical value Eg.s. � 1.454 [139, 181]. According to (1.67), the above
matrix has the “hyperspin” quantum numbers (1

2 ,
1
2 ), which in turn ensures

that the variational state |Ψ0〉 has correct Stot = Sz
tot = L/2.

The MPS approach works also very well for the excited states [34]. The
dispersion of optical magnons can be reproduced within a few percent by
using the MPS ansatz |n〉 = Tr(g1g2 · · · gn−1g̃ngn+1 · · · gL) with one of the
ground state matrices gn replaced by the matrix

g̃n =
f − 1√

2
gn σ

+1 − f + 1√
2

σ+1 gn + w̃ σ+1 ψ 1
2 , 1

2
, (1.92)

which carries the “hyperspin” (3
2 ,

3
2 ) and contains two free parameters f , w .

Generally the states |n〉 are orthogonal to Ψ0, but are not orthogonal to each
other. Since the states with a certain momentum |k〉 =

∑
n e

ikn|n〉 obviously
depend only on w̃, one parameter in (1.92) is redundant and can be fixed
by requiring that one-magnon states {|n〉} become mutually orthogonal [34].
The resulting variational dispersion for the optical magnon is in excellent ag-
reement with the exact diagonalization data [34]; the variational value for the
optical magnon gap is ∆var � 1.754 J , to be compared with the numerically
exact value ∆opt = 1.759 J [139,270].

Several other mixed-spin systems were studied, particularly mixed-spin
ladders which may exhibit either ferrimagnetic or singlet ground states de-
pending on the ladder type [272,273].
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1.6 Gapped 1D Systems in High Magnetic Field

The presence of an external magnetic field brings in a number of new fea-
tures. In gapped low-dimensional spin systems, the gap will be closed by a
sufficiently strong external magnetic field H = Hc, and a finite magnetization
will appear above Hc [274]. For a system with high (at least axial) symmetry
the high-field phase at H > Hc is critical [275–277] and the low-energy res-
ponse is dominated by a two-particle continuum [278–280]. When the field is
further increased, the system may stay in this critical phase up to the satu-
ration field Hs, above which the system is in a saturated ferromagnetic state.
Under certain conditions, however, the excitations in this high-field phase
may again acquire a gap, making the magnetization per spin m “locked”
in some field range; this phenomenon is known as a magnetization plateau
and has been receiving much attention from both theoretical and experimen-
tal side [122, 203, 281–291]. Other singularities of the m(H) dependence, the
so-called magnetization cusps [292, 293], may arise in frustrated systems. In
anisotropic systems with no axial symmetry the high-field phase has long-
range order and the response is of the quasi-particle type [275,276].

1.6.1 The Critical Phase and Gapped (Plateau) Phase

In a one-dimensional spin chain with the spin S, a necessary condition for
the existence of a plateau is given by the generalized Lieb-Schulz-Mattis theo-
rem [122] discussed in Sect. 1.3.2 as the requirement that lS(1 −M) is an
integer number, where l is the number of spins in the magnetic unit cell,
and M = m/S is the magnetization per spin in units of saturation. This
condition ensures that the system is allowed to have a spectral gap at finite
magnetization, so that one needs to increase the magnetic field by a finite
value to overcome the gap and make the magnetization grow. It yields the
allowed values of M at which plateaux may exist, but it does not guarantee
their existence. For a mixed spin system with ions having different spins Si

the quantity lS in the above condition would be replaced by the sum of spin
values over the unit cell

∑
i Si. The number l may differ from that dictated by

the Hamiltonian in case of a spontaneous translational symmetry breaking.
A trivial plateau at M = 0 is obviously possible for any integer-S spin chain,
which is just another way to say that the ground state has a finite gap to
magnetic excitations.

As an intuitively clear example of a magnetization plateau one can con-
sider the S = 3

2 chain with large easy-plane single-ion anisotropy described
by the Hamiltonian

H =
∑

l

JSl · Sl+1 +D(Sz
l )2 −HSz

l . (1.93)

If D � J , the spins are effectively suppressed to have Sz = ±1/2, and with
increasing field to H ∼ J one gets first to the polarized m = 1/2 (M = 1/3)
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(a) (b)

Fig. 1.20. VBS states visualizing (a) M = 1/3 plateau in the large-D S = 3
2 chain

(1.93); (b) M = 1/2 plateau in the bond-alternated S = 1 chain

state (see Fig. 1.20a), and the magnetization remains locked at m = 1/2 up
to a much larger field H ∼ D, where it gets finally switched to m = 3/2 [122].

An experimentally more relevant example is a S = 1 chain with alter-
nating bond strength, where l = 2 and a nontrivial plateau at M = 1

2 is
allowed. In the strong alternation regime (weakly coupled S = 1 dimers) this
plateau can be easily visulaized as the state with all dimers excited to S = 1,
Sz = +1 (see Fig. 1.20b). The M = 1/2 plateau was experimentally observed
in magnetization measurements up to 70 T in NTENP [294].

Very distinct magnetization plateaux at M = 1
4 and M = 3

4 were ob-
served in NH4CuCl3 [295], a material which contains weakly coupled S = 1

2
dimers. The nature of those plateaux is, however, most probably connected to
three-dimensional interactions in combination with an additional structural
transition which produces three different dimer types [296].

Plateaux and Critical Phase in an Alternated S = 1
2 Zigzag Chain

Another simple example illustrating the occurrence of a plateau and the
physics of a high-field critical phase is a strongly alternating S = 1

2 zigzag
chain, which can be also viewed as a ladder in the regime of weakly coupled
dimers, as shown in Fig. 1.21. For a single dimer in the field, the energy of
the Sz = +1 triplet state |t+〉 becomes lower than that of the singlet |s〉
at H = J . If the dimers were completely decoupled, then there would be
just one critical field H

(0)
c = J and the magnetization M would jump from

zero to one at H = H
(0)
c . A finite weak interdimer coupling will split the

point H = Hc into a small but finite field region [Hc, Hs]. Assuming that the
coupling is small and thus Hc and Hs are close to J , one can neglect for each
dimer all states except the two lowest ones, |s〉 and |t+〉 [289,290]. The Hilbert
space is reduced to two states per dimer, and one may introduce pseudospin-
1
2 variables, identifying |s〉 with |↓̃〉 and |t+〉 with |↑̃〉. The effective spin- 1

2
Hamiltonian in the reduced Hilbert space takes the form

H =
∑

n

J̃xy(S̃x
nS̃

x
n+1 + S̃y

nS̃
y
n+1) + J̃zS̃

z
nS̃

z
n+1 − h̃S̃z

n, (1.94)

where the effective coupling constants are given by

J̃xy = α− β/2, J̃z = α/2 + β/4, h̃ = H − J − α/2− β/4. (1.95)
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At h̃ = 0, depending on the value of the parameter ε = J̃z/|J̃xy|, the effective
spin- 1

2 chain can be in three different phases: the Néel ordered, gapped phase
for ε > 1, gapless XY phase for −1 < ε < 1, and ferromagnetic phase for
ε < −1. Boundaries between the phases are lines β = 6α and β = 2α/3, as
shown in Fig. 1.21.

Hc Hs H

1/2

M

Hc Hs

1
M

H

β

αJ
β

α

α

(a) (b)

(c)

Ferro
XY

XY

(plateau)
Neel

Fig. 1.21. (a) alternating zigzag chain in the strong coupling limit α, β � J ; (b)
its phase diagram in the high-field regime h̃ � 0 (see (1.95)); (c) the magnetization
behavior in the XY and Néel phases

It is easy to understand what the magnetization curve looks like in diffe-
rent phases. In the XY phase the magnetization per spin of the effective chain
m̃(h̃) reaches its saturation value 1

2 at h̃ = ±hc, where hc = |J̃xy|+ J̃z. Point
h̃ = −hc can be identified with the first critical field H = Hc, and h̃ = +hc

corresponds to the saturation field Hs. The symmetry h̃ �→ −h̃ corresponds
to the symmetry against the middle point H = (Hc +Hs)/2. This symmetry
is only valid in the first order in the couplings α, β and is a consequence of
our reduction of the Hilbert space. The magnetization M = m̃ + 1

2 of the
original chain has only trivial plateaux at M = 0 and M = 1, as shown in
Fig. 1.21c.

Near the first critical field Hc the magnetization behaves as (H −Hc)1/2.
This behavior is easy to understand for the purely XY point J̃z = 0. At
this point the model can be mapped to free fermions with the dispersion
E(k) = J̃xy cos k− h̃ which is quadratic at its bottom. The magnetization M
is connected to the Fermi momentum kF via M = 1−kF /π, which yields the
square root behavior. Further, if the fermions are interacting, this interaction



62 H.-J. Mikeska and A.K. Kolezhuk

can be neglected in the immediate vicinity of Hc where the particle density is
low, so that the square root behavior is universal in one dimension (it can be
violated only at special points where the fermion dispersion is not quadratic,
or in presence of anisotropy which breaks the axial symmetry).

In the Néel phase there is a finite gap ∆, and m̃ stays zero up to h̃ = ∆,
so that in the language of the original chain there is a nontrivial plateau at
M = 1

2 whose width is 2∆ (Fig. 1.21c).

A Few Other Examples

A similar mapping to an effective S = 1
2 chain can be sometimes achieved

for systems with no obvious small parameter. An instructive example is the
AKLT chain (1.51) in strong magnetic field H [297, 298]. The zero-field gap
of the AKLT model is known to be ∆ � 0.70 [111], and we are interested in
the high-field regime H > Hc ≡ ∆ where the gap closes. One may use the
matrix product soliton ansatz (1.56), (1.57) to describe the triplet excitation
with µ = +1. States |µ, n〉 with different n can be orthogonalized by putting
in (1.57) a/b = 3 [131]. Further, one may introduce effective spin-1

2 states
|αn〉 = | ↑〉, | ↓〉 at each site, making the identification

|α1α2 · · ·αL〉 = Tr(g1g2 · · · gL), (1.96)

where the matrix gn is either the ground state matrix (1.55) if |αn〉 = | ↑〉, or
the matrix (1.57) corresponding to the lowest Sz = +1 triplet if |αn〉 = | ↓〉,
respectively. Then the desired mapping is achieved by restricting the Hilbert
space to the states of the above form (1.96). The resulting effective S = 1

2
chain is described by the Hamiltonian

HS=1/2 =
∑

n

J̃xy

(
S̃x

nS̃
x
n+1 + S̃y

nS̃
y
n+1

)
− h̃S̃z

n +
∑

n,m

VmS̃
z
nS̃

z
n+m, (1.97)

where J̃xy = 10
9 , h̃ � (H − 1.796), and the interaction constants Vm are

exponentially decaying with m and always very small, V1 = −0.017, V2 =
−0.047, V3 = 0.013, V4 = −0.0046, etc. [297, 298] Thus, if one neglects the
small interaction Vm, then in the vicinity of Hc the AKLT chain is effectively
described by the XY model, i.e. by noninteracting hardcore bosons.

The critical phase appears also in a ferrimagnet (1.91): in an applied field
the ferromagnetic magnon branch acquires a gap which increases with the
field, while the optical branch goes down and its gap closes at H = ∆opt �
1.76 J . A mapping to a S = 1

2 chain can be performed can be performed [34]
in a way very similar to the one described above for the AKLT model, using
the MP ansatz with the elementary matrices (1.70) and (1.92). Restricting
all effective interactions to nearest neighbors only, one obtains the effective
Hamiltonian of the form (1.94), where J̃xy � 0.52, J̃z � 0.12, he � (H−2.44)
are determined by the numerical values of the optimal variational parameters



1 One-Dimensional Magnetism 63

in the matrices (1.70) and (1.92) [34]. Similarly to (1.97), the complete effec-
tive Hamiltonian contains exchange interactions exponentially decaying with
distance, but this decay is very rapid, e.g., the next-nearest neigbor exchange
constants J̃ (2)

xy � 0.04, J̃ (2)
z � 0.02, so that one may safely use the reduced

nearest-neighbor Hamiltonian.
For both the ladder and the ferrimagnet, in the critical phase the tempe-

rature dependence of the low-temperature part of the specific heat C exhibits
a rather peculiar behavior [34, 299, 300]. With the increase of the field H, a
single well-pronounced low-T peak pops up when H is in the middle between
Hc and Hs. When H is shifted towards Hc or Hs, the peak becomes flat
and develops a shoulder with another weakly pronounced peak at very low
temperature. This phenomenon can be fully explained within the effective
S = 1

2 chain model [34] and results from unequal bandwidth of particle-type
and hole-type excitations in the effective spin- 1

2 chain [301]: In zero field the
contributions into the specific heat from particles and holes are equal; with
increasing field, the hole bandwidth grows up, while the particle bandwidth
decreases, and the average band energies do not coincide. This leads to the
presence of two peaks in C(T ): holes yield a strong, round peak moving to-
wards higher temperatures with increasing the field, and the other peak (due
to the particles) is weak, sharp, and moves to zero when h̃ tends to ±hc.

1.6.2 Magnetization Cusp Singularities

Cusp singularities were first discovered in integrable models of spin chains
[302], but later were found to be a generic feature of frustrated spin systems
where the dispersion of elementary excitations has a minimum at an incom-
mensurate value of the wave vector [292,293]. The physics of this phenomenon
can be most easily understood on the example of a frustrated S = 1

2 chain
described by the isotropic version of (1.60) with ∆ = 1 and j > 1

4 . Assume
we are above the saturation field, so that the ground state is fully polarized.
The magnon dispersion

ε(k) = H − 1− j + cos k + j cos(2k)

has a minimum at k = k0 = π± arccos(1/4j). The gap at k = k0 closes if the
field H is reduced below the saturation value Hs = 1 + 2j + 1/(8j). If one
treats magnons as hardcore bosons, they are in one dimension equivalent to
fermions, and in the vicinity of Hs, when the density of those fermions is low,
they can be treated as free particles. If Hcusp < H < Hs, where Hcusp = 2
corresponds to the point where ε(k = π) = 0, there are two Fermi seas (four
Fermi points), and if H is reduced below Hcusp they join into a single Fermi
sea. It is easy to show that the magnetization m behaves as

m(H)−m(Hcusp) ∝
{

(H −Hcusp)1/2 , H > Hcusp

H −Hcusp , H < Hcusp
,

so that there is indeed a cusp at H = Hcusp, see Fig. 1.22.
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Fig. 1.22. Schematic explanation of cusp singularities: two Fermi seas join at
H = Hcusp (left) leading to a cusp in the magnetization curve (right)

1.6.3 Response Functions in the High-Field Phase

The description of the critical phase in terms of an effective S = 1
2 chain

is equivalent to neglecting certain high-energy degrees of freedom, e.g., two
of the three rung triplet states in case of the strongly coupled spin ladder.
Those neglected states, however, form excitation branches which contribute
to the response functions at higher energies, and this contribution is gene-
rally easier to see experimentally than the highly dispersed low-energy con-
tinuum of the particle-hole (“spinon”) excitations coming from the effective
S = 1

2 chain. In case of an axially anisotropic system, the continuum will
collapse into a delta-function, and weights of low- and high-energy branches
will be approximately equal. Those high-energy branches were found to exhi-
bit interesting behavior in electron spin resonance (ESR) and inelastic neu-
tron scattering (INS) experiments in two quasi-one-dimensional materials,
Ni(C2H8N2)2Ni(CN)4 (known as NENC) [303] and Ni(C5H14N2)2N3(PF6)
(abbreviated NDMAP) [304].

As mentioned before, the physics of the high-field phase depends strongly
on whether the field is applied along a symmetry axis or not.

Response in an Axially Symmetric Model

Let us consider the main features of the response in the critical phase of the
axially symmetric system using the example of the strongly coupled ladder
addressed in the previous subsection. In order to include the neglected |t−〉
and |t0〉 states, it is convenient to use the hardcore boson language. One
may argue [298,305] that the most important part of interaction between the
bosons is incorporated in the hardcore constraint. Neglecting all interactions
except the constraint, one arrives at the simplified effective model of the type

Heff =
∑

nµ

εµb
†
n,µbn,µ + t(b†n,µbn+1,µ + h.c.), (1.98)

where µ = 0,±1 numbers three boson species (triplet components with Sz =
µ), t = α − β/2 is the hopping amplitude which is equal for all species, and
εµ = J − µH.



1 One-Dimensional Magnetism 65

The ground state at H > Hc contains a “condensate” (Fermi sea) of
b+1 bosons. Thus, at low temperatures for calculating the response it suf-
fices to take into account only processes involving states with at most one
b0 or b−1 particle: (A) creation/annihilation of a low-energy b+1 boson; (B)
creation/annihilation of one high-energy (b−1 or b0) particle, and (C) trans-
formation of a b+1 particle into b0 one.

The processes of the type (A) can be considered completely within the
model of an effective S = 1

2 chain, for which analytical results are available
[306–308]. For example, the transversal dynamical susceptibility χxx(q, ω) =
χyy(q, ω) for q close to the antiferromagnetic wave number π is given by the
expression

χxx(π + k, ω) = Ax(H)
sin(πη

2 )Γ 2(1− η
2 )u1−η

(2πT )2−η

×
Γ
(

η
4 − iω−vk

4πT

)
Γ
(

η
4 − iω+vk

4πT

)

Γ
(
1− η

4 − iω−vk
4πT

)
Γ
(
1− η

4 − iω+vk
4πT

) . (1.99)

Here Ax(H) is the non-universal amplitude which is known numerically [309],
v is the Fermi velocity, and η = 1− 1

π arccos(J̃z/J̃xy) (neglecting interaction
between b+1 bosons corresponds to J̃z = 0). This contribution describes a low-
energy “spinon” continuum, and the response function has an edge singularity
at its lower boundary. A similar expression is available for the longitudinal
susceptibility [306]; for the longitudinal DSF of the XY chain in case of zero
temperature a closed exact expression is available as well [49], and for T �= 0
the exact longitudinal DSF can be calculated numerically [56]. Applying the
well-known relation Sαα(q, ω) = 1

π
1

1−e−ω/T Imχαα(q, ω), one obtains in this
way the contribution IA(q, ω) of the (A) processes to the dynamic structure
factor. The processes of (B) and (C) types, which correspond to excitations
with higher energies, cannot be analyzed in the language of the S = 1

2 chain.
Consider first the zero temperature case for (B)-type processes. The model

(1.98) with just one high-energy particle present is equivalent to the problem
of a single mobile impurity in the hardcore boson system. The hopping am-
plitudes for the impurity and for particles are equal, and in this case the
model can be solved exactly [310]. Creation of the impurity leads to the or-
thogonality catastrophe [311] and to the corresponding edge-type singularity
in the response.

In absence of the impurity, the eigenstates of the hardcore boson Hamil-
tonian (1.98) can be represented in the form of a Slater determinant con-
structed of the free plane waves ψi(x) = 1√

L
eikix (L is the system length),

with an additional antisymmetric sign factor attached to the determinant,
which ensures symmetry of the wave function under permutations of ki (this
construction points to the equivalence between fermions and hardcore bosons
which is a peculiarity of dimension one).

Let us assume for definiteness that the total number of b+1 particles in the
ground state N is even. The allowed values of momenta ki are then given by



66 H.-J. Mikeska and A.K. Kolezhuk

ki = π + (2π/L)Ii, i = 1, . . . , N (1.100)

where the numbers Ii should be all different and half-integer. The ground
state |g.s.〉 is given by the Fermi sea configuration with the momenta filling
the [kF , 2π − kF ] interval, the Fermi momentum being defined as

kF = π(1−N/L). (1.101)

The energy of is E =
∑N

i=1(ε+1 + 2t cos ki), and the total momentum P =∑
i ki of the ground state is zero (mod2π).
Since the hopping amplitudes for “particles” and “impurities” are equal,

it is easy to realize that the above picture of the distribution of wave vectors
remains true when some of the particles are replaced by the impurities: they
form a single “large” Fermi sea.

The excited configuration |(µ, λ)k′
1...k′

N
〉 with a single impurity boson bµ

having the momentum λ can be also exactly represented in the determinantal
form [310] with determinants containing wave functions ϕi(x) which become
asymptotically equivalent to the free scattering states 1√

L
ei(k′

ix+δi) in the
thermodynamic limit; for noninteracting hardcore particles the phase shifts
δi = −π/2. The total momentum of the excited state is P ′ =

∑N
i=1 k

′
i + λ,

and its energy is given by E′ =
∑N

i=1(ε+1 +2t cos k′
i)+εµ +2t cosλ. Here the

allowed wave vectors k′
i and λ are determined by the same formula (1.100),

but since the total number of particles has changed by one, the numbers Ii

are now integer.
The matrix element 〈(µ, λ)k′

1...k′
N
|b†µ(q)|g.s.〉, which determines the con-

tribution to the response from the (B)-type processes, is nonzero only if the
selection rules λ = q, P ′ = P +q are satisfied [298], and is proportional to the
determinant Mfi = det{〈ϕi|ψj〉} of the overlap matrix. Due to the orthogo-
nality catastrophe (OC), the overlap determinant is generally algebraically
vanishing in the thermodynamic limit, |Mfi|2 ∝ L−β . The response is, ho-
wever, nonzero and even singular because there is a macroscopic number of
“shake-up” configurations with nearly the same energy.

The OC exponent β can be calculated using the results of boundary con-
formal field theory (BCFT) [312]. For this purpose it is necessary to calculate
the energy difference ∆Ef between the ground state and the excited state
|f〉, including the 1/L corrections. Then in case of open boundary conditions
the OC exponent β, according to BCFT, can be obtained as

β =
2L∆̃Ef

πvF
≡ 2̃∆Ef

∆Emin
. (1.102)

Here vF = 2t sin kF is the Fermi velocity, so that ∆Emin = πvF /L is the
lowest possible excitation energy, and ∆̃Ef is the O(1/L) part of ∆Ef (i.e.,
with the bulk contribution subtracted). In this last form this formula should
be also valid for the periodic boundary conditions, then ∆Emin should be
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replaced by 2πvF /L. For noninteracting hardcore bosons one obtains β = 1
2 .

It is worthwhile to note that this value for the OC exponent coincides with
the one obtained earlier for the regime of weak coupling [313] by means of
the bosonization technique.

The value of the OC exponent is connected to another exponent α = 1−β
which determines the character of the singularity in the response,

SB(q, ω) ∝ 1
(ω − ωµ(q))α

, (1.103)

where ωµ(q) is the minimum energy difference between the ground state and
the excited configuration. For example, at q = π, where the strongest response
is expected, the lowest energy excited configuration is symmetric about k = π
and is given by λ = π, k′

j = π ± 2π
L j, j = 1, . . . , N/2, so that

ωµ(q = π) = εµ + 2t cos kF = (1− µ)H. (1.104)

Note that the quantity ωµ(π), which determines the position of the peak
in the response, and in an inelastic neutron scattering experiment would be
interpreted as the energy of the corresponding mode with Sz = µ, has a
counter-intuitive dependence on the magnetic field: one would rather expect
that it behaves as −µH. The resulting picture of modes which should be seen
e.g. in the INS experiment is schematically shown in Fig. 1.23.
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Fig. 1.23. The schematic dependence of “resonance” lines (peaks in the dynamic
structure factor at q = π, shown as solid lines) on the magnetic field in an axially
symmetric system. The dashed areas represent continua. The processes responsible
for the transitions are indicated near the corresponding lines, e.g. v → −1 denotes
the (B)-type process of creating one boson with Sz = −1 from the vacuum, etc.
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As q moves further from π, λ must follow q, and in order to satisfy the
selection rules one has to create an additional particle-hole pair to compensate
the unwanted change of momentum. Away from q = π this configuration does
not necessarily have the lowest energy, and there are other configurations with
generally large number of umklapp-type of particle-hole pairs, whose energy
may be lower, but, as discussed in [305], their contribution to the response
can be neglected because the corresponding OC exponent is larger than 1 for
this type of configurations.

At finite temperature T �= 0 the singularity gets damped. The contribu-
tion of B-type processes to the dynamical susceptibility χ(q, ω) is proportio-
nal to the following integral:

χ(q, ω) ∝
∫ ∞

0
dteiΩt

( πT

sinhπTt

)β

,

where Ω ≡ ω−ωµ(q) is the deviation from the edge. Then for the dynamical
structure factor S(q, ω) one obtains

SB(q, ω) ∝ cos(πβ/2)
1− e−ω/T

sinh
(
Ω

2T

)
T β−1

∣∣∣Γ
(β

2
+ i

Ω

2πT

)∣∣∣
2
. (1.105)

From (1.105) one recovers the edge singularity behavior (1.103) at T = 0.
For H > Hc there will be also a contribution from C-type transitions

corresponding to the transformation of b+1 bosons into b0 ones. Those pro-
cesses do not change the total number of particles and thus do not disturb
the allowed values of the wave vector, so that there is no OC in this case. The
problem of calculating the response is equivalent to that for the 1D Fermi
gas, with the only difference that we have to take into account the additional
change in energy ε0−ε+1 which takes place in the transition. The well-known
formula for the susceptibility of a Fermi gas yields the contribution of C-type
processes into the response:

SC(q, ω) =
1

1− e−ω/T

π − kF

2π2 (1.106)

×
∫

dk
[
n+1(k)− n0(k + q)

]
δ
(
ω − ε0(k + q) + ε+1(k)

)
,

where εµ(k) = εµ +2t cos k, and nµ = (eεµ/T +1)−1 is the Fermi distribution
function. This contribution contains a square-root singularity, whose edge is
located at

ω = ε0 − ε+1 + 2t
√

2(1− cos q) (1.107)

and which survives even for a finite temperature.
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Role of Weak 3D Coupling in the Axially Symmetric Case:
Bose-Einstein Condensation of Magnons

In the axially symmetric case, the high-field phase is gapless and thus is
extremely sensitive to even a small 3D interaction. If one views the process
of formation of the high-field phase as an accumulation of hardcore bosonic
particles (magnons) in the ground state, then the most important effect is that
in a 3D system those bosons can undergo the Bose-Einstein Condensation
(BEC) transition. In one dimension there is no difference between hardcore
bosons and fermions, and instead of BEC one obtains, as we have seen, a
Fermi sea.

In 3D coupled system, increasing the field beyond Hc leads to the for-
mation of the Bose-Einstein condensate of magnons. The U(1) symmetry
gets spontaneously broken, and the condensate wave function picks a certain
phase which is physically equivalent to the transverse (with respect to the
field) staggered magnetization.

The idea of field-induced BEC was discussed theoretically several ti-
mes [275, 278, 280], but only recently such a transition was observed [314]
in TlCuCl3, which can be viewed as a system of weakly coupled S = 1

2
dimers. The observed behavior of magnon density (longitudinal magnetiza-
tion) n as a function of temperature T was in a qualitative agreement with
the predictions of the BEC theory: with increasing T from zero to the critical
temperature Tc the magnetization decreases, and then starts to increase, so
that the minimum of n occurs at T = Tc. There was, however, some discre-
pancy between the predicted and observed field dependence of the critical
temperature: according to the BEC theory, Tc ∝ (H − Hc)φ with φ = 2/3,
while the experiment yields rather φ ≈ 1/2 [314, 315]. The reason for this
discrepancy seems to be clarified in the recent work [316]: since in TlCuCl3
experiments the critical temperature Tc becomes comparable with the ma-
gnon gap ∆, one has to take into account the “relativistic” nature of the
magnon dispersion ε(q) =

√
∆2 + v2k2, which modifies the theoretical Tc(H)

curves and brings them in a good agreement with the experiment. The BEC
exponent φ = 2/3 is recovered only in a very narrow interval of fields close
to Hc [317].

Due to the spontaneous symmetry breaking the elementary excitations
in the ordered (BEC) phase become of a quasiparticle type, i.e., edge-type
singularities characteristic for the purely 1D axially symmetric system (with
unbroken symmetry) are replaced by delta functions. The response in the
3D-ordered (BEC) phase of TlCuCl3 was measured in INS experiments of
Rüegg et al. [318,319] and was successfully described within the bond-boson
mean-field theory [320]. The observed field dependence of gaps resembles the
1D picture of Fig. 1.23, with a characteristic change of slope at H = Hc

where the long-range 3D order appears.
To understand the main features of the dynamics in the 3D ordered high-

field phase of a weakly coupled dimer system, it is instructive to consider an
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effective dimer field theory which is in fact a continuum version of the very
successful bond boson calculation of [320]. The theory can be constructed
using dimer coherent states [321]

|A,B〉 = (1−A2 −B2)1/2|s〉+
∑

j

(Aj + iBj)|tj〉, (1.108)

where the singlet state |s〉 and three triplet states |tj〉, j = (x, y, z) are
given by (1.72), and A, B are real vectors which are in a simple manner
connected with the magnetization M = 〈S1 + S2〉, sublattice magnetization
L = 〈S1 − S2〉, and vector chirality κ = (S1 × S2) of the spin dimer:

M = 2(A×B) , L = 2A
√

1−A2 −B2 , κ = 2B
√

1−A2 −B2.
(1.109)

We will assume that we are not too far above the critical field, so that the
magnitude of the triplet components is small, A,B 
 1. Assuming further
that all exchange interactions are isotropic, one gets the following effective
Lagrangian density in the continuum limit:

L = �(A · ∂tB −B · ∂tA)− 1
2
βa2(∇A)2 − (mA2 + m̃B2)

+ 2H · (A×B)− λ0(A2)2 − λ1(A2B2)− λ2(A ·B)2. (1.110)

Here a plays the role of the lattice constant, (∇A)2 ≡ (∂kA)(∂kA), and the
energy constants β, m, m̃, λ0,1,2 depend on the details of interaction between
the dimers. For example, in case of purely bilinear exchange only between
neighboring dimers of the type shown in Fig. 1.15, they are given by

α = JL + J ′
L + JD + J ′

D, β = |JL + J ′
L + JD + J ′

D|
m̃ = J, m = m̃− βZ/2, (1.111)
λ0 = βZ, λ1 = (α+ β)Z/2, λ2 = −αZ/2

The spatial derivatives of B are omitted in (1.110) because they appear only
in terms which are of the fourth order in A, B. Generally, we can assume that
spatial derivatives are small (small wave vectors), but we shall not assume
that the time derivatives (frequencies) are small since we are going to describe
high-frequency modes as well.

The vector B can be integrated out, and under the assumption A
 1 it
can be expressed through A as follows:

B = Q̂F , F = −�∂tA + (H ×A)
Qij = (1/m̃) δij − (λ2/m̃

2)AiAj . (1.112)

After substituting this expression back into (1.110) one obtains the effective
Lagrangian depending on A only:
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L =
�

2

m̃

{
(∂tA)2 − v2(∇A)2

}
− 2�

m̃
(H ×A) · ∂tA− U2 − U4, (1.113)

where v is the magnon velocity, v2 = 1
2 (βm̃a2/�2), and the quadratic and

quartic parts of the potential are given by

U2(A) = mA2 − 1
m̃

(H ×A)2, (1.114)

U4(A, ∂tA) = λ0(A2)2 +
λ1

m̃2 A2F 2 +
λ2

m̃2 (A · F )2

Note that the cubic in A term in (1.112) must be kept since it contributes
to the U4 potential.

Now it is easy to calculate the excitation spectrum in the whole range
of the applied field H which we assume do be directed along the z axis. At
zero field, there is a triplet of magnons with the gap ∆ =

√
mm̃, which gets

trivially split by fields below the critical field Hc = ∆, so that there are three
distinct modes with the energies Eµ = ∆+µH, µ = Sz = 0,±1. For H > Hc

the potential energy minimum is achieved at a finite A = A0,

A2
0 =

(H2 −∆2)m̃
2(λm̃2 + λ1H2)

.

All orientations of A0 in the plane perpendicular to H are degenerate. This
U(1) symmetry is spontaneously broken, so that A0 chooses a certain direc-
tion, let us say A0 ‖ x. Then above Hc the Bose-condensed ground state is
to leading order a product of single-dimer wavefunctions of the type (1.108),
which mix three states: a singlet |s〉 and two triplets | ↑↑〉, | ↓↓〉. From this,
it is clear that this BEC transition cannot be correctly described within an
approach based on the reduced Hilbert space with only two states |s〉, | ↑↑〉
per dimer.

The spectrum at H > Hc can be obtained in a straightforward way. One
of the modes always remains gapless (the Goldstone boson), while the two
other modes have finite gaps given by

∆2
z = (1− γ1)−1{∆2 + 2γ0m̃

2 + γ1H
2} (1.115)

∆2
xy = [(1− γ1 − γ2)(1− γ1)]−1{2(H2 −∆2) + 4H2(1− 2γ1)2,

}

where the coefficients γν ≡ λν(H2−∆2)/[2(λ0m̃
2 + λ1H

2)]. In the limit of a
simplified interaction with λ1,2 = 0 the gaps do not depend on the interaction
parameters and acquire the compact form ∆z = H, ∆xy =

√
6H2 −∆2,

which compares rather well with the INS data [318, 319] on TlCuCl3. It is
worthwhile to note a certain similarity in the field dependence of the spectra
in 3D and 1D case: the quasiparticle modes in the 3D case behave roughly in
the same way as the edges of continua in the 1D case.
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Response in an Anisotropic System

Typically, quasi-one-dimensional materials are not completely isotropic. For
example, up to our knowledge there is no experimental realization of the
isotropic S = 1 Haldane chain, and in real materials like NENP or NDMAP
the single-ion anisotropy leads to splitting of the Haldane triplet into three
distinctive components. When the axial symmetry is explicitly broken, the
system behavior changes drastically: the high-field phase is no more critical
and acquires a long-range order even in the purely 1D case.

We will illustrate the general features of the behavior of a gapped ani-
sotropic 1D system in magnetic field by using the example of the strongly
alternated anisotropic S = 1

2 chain described by the Hamiltonian

H =
∑

nα

JαS
α
2n−1S

α
2n +

∑

n

{J ′(S2n · S2n+1)−H · Sn}, J ′ 
 J.

(1.116)

Since this system consists of weakly coupled anisotropic dimers, one may
again use a mapping to the dimer field theory as considered above for 3D
coupling. One again obtains a Lagrangian of the form similar to (1.110), but
the quadratic part of the potential energy gets distorted by the anisotropy:
instead of (mA2+m̃B2) one now has

∑
j{mjA

2
j +m̃jB

2
j }. For the alternated

chain (1.116) the Lagrangian parameters are given by mi = m̃i − J ′, m̃i =
1
4

∑
jn |εijn|(Jj + Jn), λ0 = J ′, λ1 = 2J ′, λ2 = −J ′, β = J ′. Due to this

“distortion”, the effective Lagrangian obtained after integrating out B takes
a somewhat more complicated form

L =
�

2

m̃i

{
(∂tAi)2 − v2

i (∂xAi)2
}
− 2

�

m̃i
(H ×A)i∂tAi − U2 − U4, (1.117)

where v2
i = 1

2J
′m̃ia

2/�2, and

U2(A) = miA
2
i −

1
m̃i

(H ×A)2i ,

U4(A,
∂A

∂t
) = λ(A2)2 + λ1A

2 1
m̃2

i

F 2
i + λ2

AiAj

m̃im̃j
FiFj , (1.118)

with F defined in (1.112).
Having in mind that the alternated S = 1

2 chain, the Haldane chain, and
S = 1

2 ladder belong to the same universality class, one may now conjecture
that in the form (1.117-1.118) the above theory can be also applied to a
variety of other anisotropic gapped 1D systems, with the velocities vi and
interaction constants mi, m̃i, λi treated as phenomenological parameters.

Several phenomenological field-theoretical description of the strong-field
regime in the anisotropic case were proposed in the early 90s [275, 276, 322].
One can show that the Lagrangian (1.117) contains theories of Affleck [275]
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and Mitra and Halperin [322] as particular cases: after restricting the inter-
action to the simplified form with λ1,2 = 0 and assuming isotropic velocities
vi = v, Affleck’s Lagrangian corresponds to the isotropic B-stiffness m̃i = m̃,
while another choice m̃i = mi yields the theory of Mitra and Halperin.

For illustration, let us assume that H ‖ ẑ. Then the quadratic part of the
potential takes the form

U2 = (mx −
H2

m̃y
)A2

x + (my −
H2

m̃x
)A2

y +mzA
2
z, (1.119)

and the critical field is obviously Hc = min{(mxm̃y)1/2, (mym̃x)1/2}. At zero
field the three triplet gaps are given by ∆i = (mim̃i)1/2. Below Hc the energy
gap for the mode polarized along the field stays constant Ez = ∆z, while the
gaps for the other two modes are given by

(E±
xy)2 =

1
2
(∆2

x +∆2
y) +H2 (1.120)

±
[
(∆2

x −∆2
y)2 +H2(mx +my)(m̃x + m̃y)

]1/2
.

Below Hc the mode energies do not depend on the interaction constants
λi, while the behavior of gaps at H > Hc is sensitive to the details of the
interaction potential.

It is easy to see that in the special case mi = m̃i, the above expression
transforms into

E±
xy =

1
2
(∆x +∆y)±

[1
4
(∆x −∆y)2 +H2

]1/2
, (1.121)

Fig. 1.24. Measured field dependence of the gap energies in NDMAP at T = 30 mK
and H applied along the crystallographic a axis (open symbols). Dashed and dash-
dot lines are predictions of the theoretical models proposed in [275] and [276],
respectively. The solid lines are the best fit to the data using the alternative model
(1.117). (From [304])
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which exactly coincides with the formulas obtained in the approach of Tsvelik
[276], as well as with the perturbative formulas of [323, 324] and with the
results of modified bosonic theory of Mitra and Halperin [322] who postulated
a bosonic Lagrangian to match Tsvelik’s results for the field dependence of
the gaps below Hc.

The present approach was applied to the description of the INS [304] and
ESR [325] experiments on the S = 1 Haldane material NDMAP and yielded
a very good agreement with the experimental data, see Fig. 1.24. It turns
out that for a satisfactory quantitative description the inclusion of λ1,2 is
important, as well as having unequal stiffness constants mi �= m̃i.

References

1. W. Lenz: Z. Physik 21, 613 (1920); E. Ising: Z. Physik 31, 253 (1925)
2. H. Bethe: Z. Physik 71, 205 (1931)
3. W. Heisenberg: Z. Physik 49, 619 (1928)
4. T. D. Schulz, D. C. Mattis, E. H. Lieb: Rev. Mod. Phys. 36, 856 (1964)
5. R. J. Baxter: Phys. Rev. Lett. 26, 834 (1971); Ann. Phys. (N.Y.) 70, 323

(1971)
6. N.D. Mermin, H. Wagner: Phys. Rev. Lett. 17, 1133 (1966)
7. S. Coleman: Commun. Math. Phys. 31, 259 (1973)
8. M. T. Hutchings, G. Shirane, R. J. Birgeneau, S. L. Holt: Phys. Rev. B 5,

1999 (1972)
9. L.D. Faddeev, L.A. Takhtajan: Phys. Lett. 85A, 375 (1981)

10. F. D. M. Haldane: Phys. Lett. A 93, 464 (1983); Phys. Rev. Lett. 50, 1153
(1983)

11. E. Dagotto and T. M. Rice: Science 271, 618 (1996)
12. E. Fradkin: Field Theories of Condensed Matter Systems (Addison-Wesley,

Reading, 1991)
13. A.M. Tsvelik: Quantum Field Theory in Condensed Matter Physics (Cam-

bridge University Press, 1995); A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik:
Bosonization and Strongly Correlated Systems (Cambridge University Press,
1999)

14. A. Auerbach: Interacting Electrons and Quantum Magnetism (Springer-
Verlag, 1994)

15. I.U. Heilmann, G. Shirane, Y. Endoh, R.J. Birgeneau, S.L. Holt: Phys. Rev.
B 18, 3530 (1978)

16. M. Hase, I. Terasaki, K. Uchinokura: Phys. Rev. Lett. 70, 3651 (1993)
17. M. Steiner, J. Villain, C.G. Windsor: Adv. Phys. 25, 87 (1976)
18. H.-J. Mikeska and M. Steiner: Adv. Phys. 40, 191 (1991)
19. D.C. Mattis: The Theory of Magnetism I, Springer Series in Solid State Scien-

ces, vol. 17 (1981)
20. F.C. Alcaraz, S.R. Salinas, W.F. Wreszinski: Phys. Rev. Lett. 75, 930 (1995)
21. T. Koma, B. Nachtergaele: Lett. Math. Phys. 40, 1 (1996)
22. R. Coldea, D.A. Tennant. A.M. Tsvelik, Z. Tylczynski: Phys. Rev. Lett. 86,

1335 (2001)
23. N. Ishimura, H. Shiba: Progr. Theor. Phys. 63, 743 (1980)



1 One-Dimensional Magnetism 75

24. J. Villain: Physica B 79, 1 (1975)
25. P. Jordan, E. Wigner: Z. Phys. 47, 631 (1928)
26. E. Lieb, T. D. Schultz, D. C. Mattis: Ann. Phys. (NY) 16, 407 (1961)
27. B. M. McCoy: Phys. Rev. 173, 531 (1968)
28. T. Tonegawa: Solid State Comm. 40, 983 (1981)
29. H.-J. Mikeska, W. Pesch: Z. Phys. B 26, 351 (1977)
30. B. McCoy, J. H. H. Perk, R. E. Shrock: Nucl. Phys. 220, 35 (1983); Nucl.

Phys. 220, 269 (1983)
31. F. Colomo, A. G. Izergin, V. E. Korepin, V. Tognetti: Theor. Mat. Phys. 94,

11 (1993); A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, Phys. Rev.
Lett. 70, 1704 (1993)

32. A. Luther, I. Peschel: Phys. Rev. B 9, 2911 (1974); Phys. Rev. B 12, 3908
(1975)

33. S. Tomonaga: Prog. Theor. Phys. 5, 544 (1950); J. M. Luttinger: J. Math.
Phys. 4, 1154 (1963); F. D. M. Haldane: J. Phys. C 14, 2585 (1981)

34. A. K. Kolezhuk, H.-J. Mikeska, K. Maisinger, U. Schollwöck: Phys. Rev. B 59
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