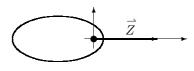
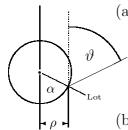
- 55) Der Schnellweg zur Kepler-Ellipse
- (a) bedarf einer Vorbereitung. Es ist nachzuweisen, daß sich der Lenz-Vektor $\vec{Z} := \vec{v} \times \vec{\ell} \gamma M \frac{\vec{r}}{r}$



zeitlich nicht ändert. Hierin ist $\vec{\ell} := \vec{r} \times \vec{v}$ nur eine Abkürzung. Bei Untersuchung von $\partial_t \vec{Z}$ wird die Bewegungsgleichung $\dot{\vec{v}} = \dots$ von m benötigt.

- (b) Aber nun. Wir wissen, daß es sich bei $\ell^2 = \vec{\ell} \cdot (\vec{r} \times \vec{v})$ um eine Konstante handelt. Wird rechts der Lenz-Vektor \vec{Z} ins Spiel gebracht, so steht auf einmal $r = \frac{p}{1 + \epsilon \cos(\varphi)}$ auf dem Papier nämlich zu p = ? und $\epsilon = ?$
- (c) Auch der Fall $\gamma=0$ darf noch als Kepler–Problem gesehen werden. Dann wird die Bewegung zu $\vec{r}(t)=(r_0\,,\,v_0t\,,\,0)$ und $\vec{v}=?$ $\vec{\ell}=?$ $\vec{Z}=?$ Z=? $\ell=?$ Wird auch obiger $r-\varphi$ –Zusammenhang zur Polarkoord.–Darstellung der Bahn?
- (d) Bekanntlich ist die Bahn $\varphi(r)$ auch allgemein aus einem Integral erhältlich. Wir werten es im Falle $V \equiv 0$ zur Situation von (c) aus und erhalten die dortige Geraden–Darstellung erneut.

56) Streuquerschnitt

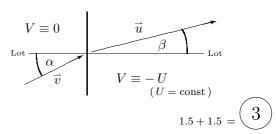


(a) Bei Streuung an einer harten Kugel ($V(r) = V_0 \theta(R - r)$, $V_0 > \frac{m}{2}v^2$) kann die Funktion $\rho(\vartheta)$ bequem ermittelt werden. Welchen differentiellen Streuquerschnitt $\sigma(\vartheta)$ hat also dieses Problem?

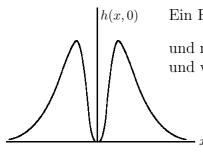
(Fragt da doch glatt noch einer, ob hier das Reflexions,,gesetz" erlaubt sei. — Sklavenseele! In einem winzigen Bereich an der Kugel wirkt fast-homogene Kraft in Richtung ... Und der Freie Fall in diesem Bereich hat das Lot als Symmetrieachse, klar?!!)

(b) Ist $V_0 < 0$, so bewegen sich Teilchen mit $\rho < R$ mit veränderter Richtung durch die Kugel, und $\sigma(\vartheta)$ auszurechnen wird bereits recht unangenehm. Wir begnügen uns daher hier mit dem Detail der *Brechung*:

Ein Teilchen (m) fliegt mit bekannter Geschwindigkeit $\vec{v} = (v_1, v_2)$ von links kommend durch $V(x,y) = -U \theta(x)$. Welche Geschwindigkeit \vec{u} hat es im rechten Halbraum? Der Brechungsindex ist durch $n := \sin(\alpha)/\sin(\beta)$ definiert. Wie drückt sich n durch allein U und T aus? $(T := mv^2/2)$



57) Dolomiten



Ein Felsmassiv habe das Höhenprofil $h = \frac{h_0}{\operatorname{ch}(f + \frac{2}{f})}$ mit $f = \frac{r^2}{2ax}$

und natürlich $r^2=x^2+y^2$. Welcher Gleichung folgen die Äqui-h-Linien und wie (Handskizze) liegen sie in der xy-Ebene?

Wir bilden den 2D Gradienten von h und interessieren uns dann der Einfachheit halber nur für seinen Einheitsvektor $\vec{e}_{grad} = ?$ Drachengleiter möchten erfahren, an welchen Stellen \vec{e}_{grad} nach Norden (y-Richtung) zeigt. Auf welchen Kurvenstücken (y(x)

von, bis) ist dies der Fall. Auch wenn wir ∇ in Polarkoordinaten aufschreiben (tun!) und auf $h(r,\varphi)$ anwenden, sollte sich \vec{e}_{grad} ergeben. Sind die beiden \vec{e} 's wirklich gleich?