
Analytische Mechanik und spezielle Relativitätstheorie

1. Computerübung WS 14/15 Abgabetermin: 15.12.2014

Vorlesung: Luis Santos – Übungen: Andreas Deser – Computerübungen: Xiaolong Deng

Circular restricted three-body problem

Although a problem with two gravitationally interacting point masses is analytically
solvable, a system containing three gravitationally interacting point masses is in general
not analytically solvable. A rather simplified three-body problem occurs when one of
the masses is much smaller than the other two: m3 ≪ m1,m2. This may be e.g. the
case of a comet under the gravitational influence of Jupiter and the Sun. In that case,
whereas m3 is affected by the other two masses, the big masses are not affected by m3.
We may hence solve separately the two-body problem for masses m1 and m2, and then
study the evolution of m3 in the gravitational field of the other two masses. As a further
simplification we will assume that the two big masses execute circular orbits about their
center of mass. So formulated, this is the so-called circular restricted three-body problem.

rm1 m2

γ2

y

x

m3

γ1

Assuming for simplicity the (constant) relative diatance R = 1 as the unit of length,
andG(m1+m2) = 1 as the unit of mass, we may define γ1 = Gm1 and γ2 = Gm2 = 1−γ1,
and the positions ofm1,2 will be hence: ~r1 = −γ2(cos t, sin t, 0), and ~r2 = γ1(cos t, sin t, 0).
The third mass has a position ~r = (x, y, z). The equations of motion for ~r(t) will be

given by the gravitational force exerted by the other two masses. It is convinient to use
the non-inertial reference frame rotating with the big masses (with rotation frequency
~ω = ω~ez, with ω = 1). Recall that in the non-inertial frame we need to add the effect of
both the Coriolis and the centrifugal forces:

m3~̈r = ~F13(~r) + ~F23(~r)− 2m3~ω × ~̇r −m3~ω × (~ω × ~r)

where, for j = 1, 2, ~Fj3(~r) = −m3γj
(~r−~rj)

|~r−~rj |3 , with ~r1 = −γ2~ex and ~r2 = γ1~ex the position

of the two big masses in the rotating frame (see the figure).
We have hence three coupled second-order differential equations for x, y and z, which

demand six initial conditions given by ~r(0) and ~̇r(0).

• Write a program to solve these equations (see the additional notes at the end of
the exercise).

Once you have written the code, you may start investigating the dynamics of m3.

• Check that:
1

2
(ẋ2 + ẏ2 + ż2) + U(x, y, z) (1)

is a constant of motion, with U(x, y, z) = − γ1
|~r−~r1| −

γ2
|~r−~r2| −

1
2
(x2 + y2) the effective

potential resulting from the sum of the gravitational and the centrifugal potentials.

In order to analyse the dynamics it is convenient to visualize the trajectories. In
Mathematica it is particularly useful for this purpose the command ListAnimate (see
the additional notes at the end of the exercise). If you use C or FORTRAN codes you
may visualize the data files using e.g. gnuplot if you work under Linux.

• You may have a look on how sensitive are the orbits ofm3 with respect to the initial
conditions. Consider for example m1 = m2 and two very close initial conditions
for the position of m3. What happens with the trajectories after a sufficiently long
time? Explore it for different initial conditions.

Another important question is whether the particle m3 can scape from the gravitational
attraction of the big masses. Consider the case m1 ≫ m2 ≫ m3. This may be the case
of say the Sun (m1), Jupiter (m2), and a comet (m3). .

• Let us first consider a very small m2, e.g. m2 = 0.0001m1. Consider an initial
condition ~r0 = (x0, y0, 0). Investigate the trajectories for different values of r0 =
|~r0|. You should see that there is a critical value (r0)cr such that for r0 > (r0)cr the
comet scapes to infinity? Determine numerically that value.

• What happens if r0 < (r0)cr?

• Challenge: Can you guess actually why the system behaves like this? Hint: You
should have a look to the two-body problem m1 ≫ m3, and solve the Kepler
problem in the rotating frame. By doing that you may even get an analytical form
for (r0)cr that you may compare with the numerically found.

• Compare the case of a negligible m2 to a case in which m2 is non-negligible, but
still m2 ≪ m1, e.g. m2 = 0.01. You will see that the effect of m2 is especially
remarkable if r0 is in the vicinity of (r0)cr. What may happen in that case?

Finally, let us have a look to some peculiar points, known as Lagrange points, at which
(in the rotating frame) ~̇r = ~̈r = 0. There are five of them, traditionally denoted as
Lj=1,...,5. Let us assume γ2 ≪ γ1, which may be e.g. the case of the Sun and Earth.

a) L1 is located at y = z = 0, and x ≃ γ1 − α with α =
(

γ2
3γ1

)1/3

.

b) L2 is at at y = z = 0, and x ≃ γ1 + α.

c) L3 is at y = z = 0, and x ≃ γ1 − 2 + 7
4
α3.

d) L4 is at x = 1
2
− γ2, y =

√
3
2
, z = 0.

e) L5 is at x = 1
2
− γ2, y = −

√
3
2
, z = 0.

• By slightly departing from Lj=1,2,3, show that those Lagrange points are unstable.

• Doing the same, show that L4,5 are stable for γ2 < γcr. Find numerically γcr (Hint:
the value of γcr is rather small, less than 0.05; the difference between stable and
unstable regimes will be very clear from the evolution.)

Additonal Notes

• If you use Mathematica, you will find especially useful the command NDSolve,
which permits the solution of sets of differential equations. For example the follo-
wing Mathematica code solves the system of equations ẍ = aẋ− x, ÿ = −aẏ − by
for some initial conditions, and plots the resulting (x, y) trajectories in a movie:
tmax=5;

a=0.1;b=0.5;x0=0.5;y0=0.3;

sol = NDSolve[{x”[t] == -a*x’[t] - x[t], y”[t] == -a*y’[t] - b*y[t],

x[0] == x0, y[0] == y0, x’[0] == 0.0, y’[0] == 0.0},

{x[t],y[t], x’[t], y’[t]}, {t, 0, tmax}];

nfr= 200; Lmax = 1; tmax = 25;

ListAnimate[Table[ParametricPlot[Evaluate[{x[t], y[t]} /. sol], {t, 0, n*tmax/nfr},

PlotRange -> {{-Lmax, Lmax}, {-Lmax, Lmax}}], {n, 1, nfr}],

AnimationRunning -> False]

• If you use C or FORTRAN, you will have first to transform the set of equations
into a set of first-order differential equations, by simply introducing the velocities
(vx, vy, vz) =

d
dt
(x, y, z). Calling ~W = (x, y, z, vx, vy, vz), you may express the set of

6 coupled first-order differential equations in the form: d
dt
~W = ~F [~W]. If you know

the solution at time t, you may evolve to a time t+ dt by employing the so-called
4th order Runge-Kutta method:

~W [t+ dt] = ~W [t] +
dt

6
(k1 + 2k2 + 2k3 + k4) , (2)

with ~k1 = ~F [~W [t]], ~k2 = ~F [~W [t] + ~k1dt/2], ~k3 = ~F [~W [t] + ~k2dt/2], and ~k4 =
~F [~W [t] + ~k3dt]. You just need to start with the initial conditions ~W [0]. Note that
you should choose dt small enough to avoid numerical instability.

