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Hénon-Heiles System

The Hénon-Heiles Hamiltonian describes the motion of stars around the center of a
smooth cylindrically symmetric galaxy, assuming the motion is restricted to the xy plane
(we choose the mass m = 1):
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In 1964 the astronomers Michel Hénon and Carl Heiles discovered that this potential,
which also provides a simple model for a pair of nonlinearly coupled oscillators, yields
regular orbits for some initial conditions and irregular, chaotic orbits for other initial
conditions. This model is hence an excellent example to study the onset of chaos in
conservative systems.

• Plot the Hénon-Heiles potential V (x, y) in the vicinity of (0, 0). You may employ
in Mathematica the instruction ContourPlot or Plot3D. You will see that the
potential has a minimum at (0, 0), and that along the y direction there is an
energy maximum at (0, 1). You may easily see this by plotting V (0, y) using the
instruction Plot. What is the energy of this maximum? What is then the criterion
the system energy E must fulfill such that the orbits cannot escape the vicinity of
(0, 0)?

Using the Hamilton equations, one obtains two-coupled second-order differential equa-
tions for x and y:

ẍ = −x− 2xy,

ÿ = −y − x2 + y2.

Note that the energy E is a conserved quantity. In order to solve the equations above
one needs of course four initial conditions, namely x(0), y(0), ẋ(0), and ẏ(0). For a
fixed energy E these initial conditions are not independent from each other, since E =
1

2
(ẋ(0)2 + ẏ(0)2) + V (x(0), y(0)).

• Write a code to solve the Hénon-Heiles equations. This may be done exactly in the
same way as for the first computer exercise, i.e. employing NDSolve in Mathema-
tica, or using Runge-Kutta if you use FORTRAN or C.

Since the phase space is 4-dimensional it is very convenient to use the idea of Poincaré
section. One just plot the values of y and ẏ when x = 0. These points build a two-
dimensional plot, or Poincaré section.



• Plot the Poincaré section (for x = 0) for E = 1/8 and x(0) = 0, y(0) = 0, and
ẏ(0) = 0 (see the additional notes at the end). What can you say about the motion?
Is it regular (close elliptical curves) or chaotic (a mess of irregularly distributed
points)? What about x(0) = 0, y(0) = 0.2, and ẏ(0) = 0.2. Is the motion now
chaotic or regular?

For a fixed energyE, you may easily generate random initial conditions using the
code in the additional notes at the end. If one combines the results for different initial
conditions one may obtain a complete plot of the Poincaré section, which shows in
general regions of regular and chaotic motion.
(Note: One should use different initial conditions, since especially for low E if one is in

a regular region one cannot go out of it (you should have seen this in the previous point!)
and hence one cannot explore other regions of the Poincare section. With different initial
conditions this problem is avoided, and one can plot the whole Poincaré section.)

• Plot the Poincaré section for E = 1/12. You should see that there are four regions
with elliptical orbits. In the center of these regions one has an elliptical fixed point.
Can you determine approximately the fixed elliptical points?

• You should also find that in the frontier between the regular regions one has
hyperbolic points (e.g. one of the hyperbolic points lies along the line ẏ = 0).
Plot this hyperbolic region in detail, and convince yourself that this is indeed an
hyperbolic point.

• Plot now the Poincaré section for E = 1/8. Can you determine the regions of
chaotic and regular motion?

• Do the same with E = 1/6 (E cannot be larger than 1/6, and you should know
by now why). You should see the (almost complete) destruction of the regions of
regular orbits (can you see still some regular regions?)

Additional Notes

(i) You may easily evaluate with Mathematica the Poincaré section. You just first use
NDSolve to find the solution of the Hénon-Heiles equations from t = 0 to tmax. You may
then use:
vec = {};
For[t0 = 0, t0 <= tmax, t0 + = tmax/nmax,
{
x0 = (Evaluate[x[t] /. sol] /. t −> t0)[[1]];
If[Abs[x0] < ǫ,
{
y0 = (Evaluate[y[t] /. sol] /. t −> t0)[[1]];
y0p = (Evaluate[y’[t] /. sol] /. t −> t0)[[1]];
vec = Append[vec, {y0, y0p}];
}];

}];
In this code tmax is the maximal time calculated in NDSolve; nmax is the number of time



steps (we calculate the Poincaré section only in those times); ǫ is a very small number,
say 10−4; the vector vec stores the (y, ẏ) points of the Poincaré section. sol stores the
NDSolve solution, i.e.: sol=NDSolve[ ...] (recall the first computer exercise).
You may use the command ListPlot[vec] to plot the Poincaré section.

(ii) You may evaluate quite easily initial conditions, x(0) = 0, ẋ(0), y(0), and ẏ(0),
using the following Mathematica sub-code:
pyi = (RandomReal[]∗2 - 1.)∗Sqrt[2*En];
yi = (RandomReal[]∗2 - 1.)∗2∗Sqrt[2∗En];
check = 2∗En - pyi∧2 − yi∧2 + 2*yi∧3/3;
While[check < 0,
{
yi = (RandomReal[]∗2 − 1.)∗2∗Sqrt[2∗En];
check = 2∗En - pyi∧2 - yi∧2 + 2∗yi∧3/3;
}];

pxi=Sqrt[check];
where En is the system energy, pyi is ẏ(0), yi is y(0), and pxi is ẋ(0) (we demand
x(0) = 0). Note that in this code we demand that ẋ(0) =

√

2E − ẏ(0)2 − 2V (x(0), y(0))
is a real number.


