Exercise 1: The coherent state

Show that the expression of the coherent state $|\alpha\rangle$ (recall the exercise in the Präsenzbungen) in terms of the number state $|n\rangle$ is given by

$$
\begin{equation*}
|\alpha\rangle=\mathrm{e}^{-|\alpha|^{2} / 2} \sum_{\mathrm{n}=0}^{\infty} \frac{\alpha^{\mathrm{n}}}{\sqrt{\mathrm{n}!}}|\mathrm{n}\rangle . \tag{1}
\end{equation*}
$$

Exercise 2: Number operator and Hamiltonian

Show, for bosons and fermions, that the particle-number operator $\hat{N}=\sum_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i}$ commutes with the Hamiltonian

$$
\begin{equation*}
\hat{H}=\sum_{i, j} \hat{a}_{i}^{\dagger}\langle i| \hat{T}|j\rangle \hat{a}_{j}+\frac{1}{2} \sum_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger}\langle i j| \hat{V}|k l\rangle \hat{a}_{l} \hat{a}_{k} . \tag{2}
\end{equation*}
$$

What is the physical meaning of $[\hat{N}, \hat{H}]=0$?

Exercise 3: The Hubbard model

Consider electrons on a lattice with the single-particle wave function localized at the lattice point \mathbf{R}_{i} given by $\varphi_{i \sigma}(\mathbf{x})=\chi_{\sigma} \varphi_{i}(\mathbf{x})$ with $\varphi_{i}(\mathbf{x})=\phi\left(\mathbf{x}-\mathbf{R}_{i}\right)$. A Hamiltonian, $\hat{H}=\hat{T}+\hat{V}$, consisting of a spin-independent single-particle operator $\hat{T}=\sum_{\alpha=1}^{N} t_{\alpha}$ and a two-particle operator $\hat{V}=\frac{1}{2} \sum_{\alpha \neq \beta} V^{(2)}\left(\mathbf{x}_{\alpha}, \mathbf{x}_{\beta}\right)$ can be represented in the basis $\left\{\varphi_{i \sigma}\right\}$ by

$$
\begin{equation*}
\hat{H}=\sum_{i, j} \sum_{\sigma} t_{i j} \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \sigma}+\frac{1}{2} \sum_{i, j, k, l} \sum_{\sigma, \sigma^{\prime}} V_{i j k l} \hat{a}_{i \sigma}^{\dagger} \hat{a}_{j \sigma^{\prime}}^{\dagger} \hat{a}_{l \sigma^{\prime}} \hat{a}_{k \sigma}, \tag{3}
\end{equation*}
$$

where the matrix elements are given by $t_{i j}=\langle i| t|j\rangle$ and $V_{i j k l}=\langle i j| V^{(2)}|k l\rangle$. If one assumes that the overlap of the wave functions $\varphi_{i}(\mathbf{x})$ at different lattice points is negligible, one can make the following approximations:

$$
\begin{gather*}
t_{i j}= \begin{cases}w & \text { for } i=j, \\
t & \text { for i and } \mathrm{j} \text { adjacent sites, } \\
0 & \text { otherwise }\end{cases} \tag{4}\\
V_{i j k l}=V_{i j} \delta_{i l} \delta_{j k} \quad \text { with } V_{i j}=\int \mathrm{d}^{3} x \int \mathrm{~d}^{3} y\left|\varphi_{i}(\mathbf{x})\right|^{2} V^{(2)}(\mathbf{x}, \mathbf{y})\left|\varphi_{j}(\mathbf{y})\right|^{2} . \tag{5}
\end{gather*}
$$

(a) Determine the matrix elements $V_{i j}$ for a contact potential

$$
\begin{equation*}
V=\frac{\lambda}{2} \sum_{\alpha \neq \beta} \delta\left(\mathrm{x}_{\alpha}-\mathrm{x}_{\beta}\right) \tag{6}
\end{equation*}
$$

between the electrons for the following cases: (i) on-site interaction $i=j$, and (ii) nearestneighbor interaction, i.e., i and j adjacent lattice points. Assume a square lattice with lattice constant a and wave functions that are Gaussians $\varphi(\mathrm{x})=\frac{1}{\Delta^{3 / 2} \pi^{3 / 4}} \exp \left\{-\mathrm{x}^{2} / 2 \Delta^{2}\right\}$.
(b) In the limit $\Delta \ll a$, the on-site interaction $U=V_{i i}$ is the dominant contribution. Determine for this limiting case the form of the Hamiltonian in second quantization. The model thereby obtained is known as the Hubbard model.

Exercise 4: The Bose-Hubbard model

Consider the Hubbard model for bosons

$$
\begin{equation*}
\hat{H}=-t \sum_{\langle i, j\rangle} \hat{a}_{i}^{\dagger} \hat{a}_{j}+\frac{U}{2} \sum_{i=1}^{N_{s i t e}} \hat{n}_{i}\left(\hat{n}_{i}-1\right) . \tag{7}
\end{equation*}
$$

(a) Show that the N-particle state

$$
\begin{equation*}
\left|\Psi_{U=0}\right\rangle=\frac{1}{\sqrt{N}}\left(\frac{1}{\sqrt{N_{\text {site }}}} \sum_{i=1}^{N_{\text {site }}} \hat{a}_{i}^{\dagger}\right)^{N}|0\rangle \tag{8}
\end{equation*}
$$

for $U=0$ is an eigenstate of \hat{H}. How is the energy of this state? What is the physical meaning of $\frac{1}{\sqrt{N_{\text {site }}}} \sum_{i=1}^{N_{\text {site }}} \hat{a}_{i}^{\dagger}$?(Hint: Think in momentum space.)
(b) Show that the state

$$
\begin{equation*}
\left|\Psi_{t=0}\right\rangle=\prod_{i=1}^{N_{\text {site }}} \hat{a}_{i}^{\dagger}|0\rangle \tag{9}
\end{equation*}
$$

for $t=0$ is an eigenstate of \hat{H}. How is the energy of this state?

