Exercise 1: Born approximation (6p)

Consider particles of incoming energy E that scatter from a spherically symmetric potential of the form:

$$
V(r)= \begin{cases}V_{0}, & \text { for } r<r_{0} \tag{1}\\ 0, & \text { for } r \geq r_{0}\end{cases}
$$

This problem is a reasonably good approximation for the scattering of microscopic particles from an atomic nucleus, where the radius r_{0} is called nuclear radius.
(a) Calculate the scattering amplitude $f(\theta)$ to the first order in the Born approximation.(4p)
(b) Obtain from (a) the differential cross section and discuss it for the case of small energies. What happens when $V_{0} \rightarrow \infty$? Is it correct? (2p)

Exercise 2: Partial wave expansion (6p)

Consider now the s-wave scattering ($l=0$ in the partial wave expansion) in the previous problem, for the case where the incoming energy satisfies $E<V_{0}$.
(a) Obtain the equation that determines the scattering phase δ_{0}. (Hint: solve for $r<r_{0}$ and for $r>r_{0}$, and then match both relations.) (4p)
(b) Calculate the phase shift δ_{0} and the scattering cross section σ_{0} in the limit $V_{0} \rightarrow \infty$, the so called Hard Sphere limit. (Hint: you should recover the results dicussed in the theory lecture.) (2p)

Exercise 3: Indistinguishable and distinguishable particles (2p)

Consider the case of spin- $1 / 2$ fermions with random orientation interacting via a Yukawa potential (recall the Präsenzübungen). Calculate in the 1st Born approximation the back-scattering $(\theta=\pi)$ differential cross section, and compare it to the case of distinguishable particles. (2p)

