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Exercise 1: Bogoliubov transformation for two modes (8 P)

Consider two different types of bosonic particles, a and b, which interact by a contact
interaction with each other but not between themselves. The Hamiltonian is then given
by
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with Ψ(~r) and Φ(~r) the field operators for the particles a and b, respectively.

(a) Write the Hamiltonian in momentum space. (1 P)

(b) Assuming that without interactions both components are condensed (in ~k = 0)
and are characterized by an overall density na and nb, write (neglecting constant terms)
the Hamiltonian to the first non-vanishing order in perturbation theory. (2 P)

(c) Diagonalize the Hamiltonian using a proper Bogoliubov transformation. (4P)

(Hint: Note that now there will be two Bogoliubov modes. If you did it right, you
should get two different types of excitations
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when ma = mb = m, na = n + ∆n/2 and nb = n − ∆n/2.)

(d) What happens when k → 0? Show that the spectrum for ∆n 6= 0 is not linear
for k → 0 (i.e. the spectrum is not phonon-like), but quadratic with an effective mass
m∗ = m∆n

2n
, i.e. the spectrum for both excitations at low k is of the form constant + ~
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(1 P)

Exercise 2: Klein-Gordon equation in Schrödinger form (8 P)

In the theory lecture we have seen that the Klein-Gordon equation
[
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Φ = 0
is of 2nd order in time. We can however transform the Klein-Gordon equation into a

first-order equation in time, by defining the vector Ψ =

(
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)

, such that

Φ = ϕ + χ,
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(a) Show that the system of coupled equations
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is equivalent to the KG-equation. (1 P)

(b) Express the coupled equations in a compact form

i~
∂

∂t
Ψ = HfΨ.

Express Hf using the Pauli matrices. (2 P)

(c) Express the density ρ = i~
2mc2

(
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∂t

− Φ∂Φ∗

∂t

)

as a function of ϕ and χ. (1 P)

(d) Let’s consider free particles in the representation Ψ = A

(
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)

e
i

~
(~p·~x−Et) where A

is a normalization constant. Find the dispersion E(p), and the components. ϕ0 and χ0.
(2 P)
(Hint: you should have solutions with E > 0 and solutions with E < 0.)

(e) What happens with the solutions in the non-relativistic limit? Have a look to the
density ρ for the solutions with E > 0 and for those with E < 0. In one case you should
get ρ positive and in the other negative. The density must be interpreted accordingly as
charge density. (2 P)


