Exercise 1: Bogoliubov transformation for two modes (8 P)

Consider two different types of bosonic particles, \mathbf{a} and \mathbf{b}, which interact by a contact interaction with each other but not between themselves. The Hamiltonian is then given by
$H=\int \mathrm{d}^{3} r\left\{\Psi^{\dagger}(\vec{r})\left(\frac{-\hbar^{2} \nabla^{2}}{2 m_{a}}\right) \Psi(\vec{r})+\Phi^{\dagger}(\vec{r})\left(-\frac{\hbar^{2} \nabla^{2}}{2 m_{b}}\right) \Phi(\vec{r})\right\}+U_{0} \int \mathrm{~d}^{3} r \Psi^{\dagger}(\vec{r}) \Phi^{\dagger}(\vec{r}) \Phi(\vec{r}) \Psi(\vec{r})$,
with $\Psi(\vec{r})$ and $\Phi(\vec{r})$ the field operators for the particles a and \mathbf{b}, respectively.
(a) Write the Hamiltonian in momentum space. (1 P)
(b) Assuming that without interactions both components are condensed (in $\vec{k}=0$) and are characterized by an overall density n_{a} and n_{b}, write (neglecting constant terms) the Hamiltonian to the first non-vanishing order in perturbation theory. (2 P)
(c) Diagonalize the Hamiltonian using a proper Bogoliubov transformation. (4P)
(Hint: Note that now there will be two Bogoliubov modes. If you did it right, you should get two different types of excitations

$$
\epsilon_{k}^{\alpha, \beta}= \pm \frac{U_{0} \Delta n}{2}+\sqrt{\frac{\hbar^{2} k^{2}}{2 m}\left(\frac{\hbar^{2} k^{2}}{2 m}+2 U_{0} n\right)+\frac{U_{0}^{2}(\Delta n)^{2}}{4}}
$$

when $m_{a}=m_{b}=m, n_{a}=n+\Delta n / 2$ and $n_{b}=n-\Delta n / 2$.)
(d) What happens when $k \rightarrow 0$? Show that the spectrum for $\Delta n \neq 0$ is not linear for $k \rightarrow 0$ (i.e. the spectrum is not phonon-like), but quadratic with an effective mass $m^{*}=m \frac{\Delta n}{2 n}$, i.e. the spectrum for both excitations at low k is of the form constant $+\frac{\hbar^{2} k^{2}}{2 m^{*}}$. (1 P)

Exercise 2: Klein-Gordon equation in Schrödinger form (8 P)

In the theory lecture we have seen that the Klein-Gordon equation $\left[\square+\left(\frac{m c}{\hbar}\right)^{2}\right] \Phi=0$ is of 2 nd order in time. We can however transform the Klein-Gordon equation into a first-order equation in time, by defining the vector $\Psi=\binom{\varphi}{\chi}$, such that

$$
\begin{array}{r}
\Phi=\varphi+\chi, \\
\frac{\partial \Phi}{\partial t}=\frac{-i m c^{2}}{\hbar}(\varphi-\chi) .
\end{array}
$$

(a) Show that the system of coupled equations

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t} \varphi & =\frac{-\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)+m c^{2} \varphi \\
i \hbar \frac{\partial}{\partial t} \chi & =\frac{+\hbar^{2}}{2 m} \nabla^{2}(\varphi+\chi)-m c^{2} \chi
\end{aligned}
$$

is equivalent to the KG-equation. (1 P)
(b) Express the coupled equations in a compact form

$$
i \hbar \frac{\partial}{\partial t} \Psi=H_{f} \Psi
$$

Express H_{f} using the Pauli matrices. (2 P)
(c) Express the density $\rho=\frac{i \hbar}{2 m c^{2}}\left(\Phi^{*} \frac{\partial \Phi}{\partial t}-\Phi \frac{\partial \Phi^{*}}{\partial t}\right)$ as a function of φ and $\chi \cdot(1 \mathrm{P})$
(d) Let's consider free particles in the representation $\Psi=A\binom{\varphi_{0}}{\chi_{0}} \mathrm{e}^{\frac{i}{\hbar}(\vec{p} \cdot \vec{x}-E t)}$ where A is a normalization constant. Find the dispersion $E(p)$, and the components. φ_{0} and χ_{0}. (2 P)
(Hint: you should have solutions with $E>0$ and solutions with $E<0$.)
(e) What happens with the solutions in the non-relativistic limit? Have a look to the density ρ for the solutions with $E>0$ and for those with $E<0$. In one case you should get ρ positive and in the other negative. The density must be interpreted accordingly as charge density. (2 P)

