Exercise 1: Angular momentum (2 P)

Show that $\vec{J}=\vec{L} \mathbb{1}+\frac{\hbar}{2} \vec{\Sigma}$ commutes with the Hamilton-Dirac operator $H=-i \hbar c \vec{\alpha}$. $\vec{\nabla}+\beta m c+V(r)$.

Exercise 2: Landau levels (8 P)

The time-independent Dirac equation describing a spin- $1 / 2$ particle of mass m and charge e in a static magnetic field with vector potential \vec{A} is given by

$$
\begin{equation*}
E \Psi=\left\{c \vec{\alpha} \cdot(-i \hbar \vec{\nabla}-e \vec{A})+\beta m c^{2}\right\} \Psi \tag{1}
\end{equation*}
$$

(a) Verify that

$$
\begin{equation*}
[\vec{\alpha} \cdot(-i \hbar \vec{\nabla}-e \vec{A})]^{2}=(-i \hbar \vec{\nabla}-e \vec{A})^{2} \mathbb{1}-e \vec{\Sigma} \cdot \vec{B} \tag{2}
\end{equation*}
$$

where $\vec{B}=\vec{\nabla} \times \vec{A}$ and $\vec{\Sigma}=\left(\begin{array}{cc}\vec{\sigma} & 0 \\ 0 & \vec{\sigma}\end{array}\right) \cdot(2 \mathrm{P})$
(b) For the particular case $\vec{B}=(0, B x, 0)$ (Landau gauge), show, by considering solutions of the form

$$
\begin{equation*}
\Psi=\mathrm{e}^{i\left(p_{y} y+p_{z} z\right) / \hbar} u(x), \tag{3}
\end{equation*}
$$

that the energy eigenvalues E of a relativistic electron in a constant magnetic field $\vec{B}=$ $B \vec{e}_{z}$ are given by:

$$
\begin{equation*}
E_{n, \pm}^{2}=p_{z}^{2} c^{2}+m^{2} c^{4}+e \hbar B c^{2}(2 n+1 \pm 1) . \tag{4}
\end{equation*}
$$

These are the so-called Landau levels. (4 P)
[Hint: At some point you will find that part of the Hamiltonian looks like the Hamiltonian of an harmonic oscillator.]
(c) How is the non-relativistic limit? (2 P)

Exercise 3: Weyl equations (8 P)

Relativistivc quantum mechanics allows for the existence of massless particles. Here we will analyze massless spin- $1 / 2$ particles (applicable for the case of neutrinos). For this analysis it is useful to introduce a different representation of the Dirac matrices, the so-called Weyl representation

$$
\gamma^{0}=\left(\begin{array}{ll}
0 & \mathbb{1} \tag{5}\\
\mathbb{1} & 0
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & -\sigma_{k} \\
\sigma_{k} & 0
\end{array}\right) .
$$

(a) Show that this representation fulfills indeed the anticommutation criterion for the Dirac matrices. (2 P)
(b) For the massless case the Dirac equation becomes

$$
\begin{equation*}
i \hbar \partial_{t} \Psi(\vec{r}, t)=-i \hbar c \vec{\alpha} \cdot \vec{\nabla} \Psi(\vec{r}, t) \tag{6}
\end{equation*}
$$

Show that the Hamilton-Dirac operator $H=-i \hbar c \vec{\alpha} \cdot \vec{\nabla}$ commutes with $\gamma^{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$. (1 P)
(c) From (b) we know now that if $\Psi(\vec{r}, t)$ is a solution of the Dirac equation, also $\left(\frac{1 \pm \gamma^{5}}{2}\right) \Psi(\vec{r}, t)$ is a solution. Using this show that we may find solutions $\Psi_{L}=\binom{0}{\psi_{L}^{w}}$, $\Psi_{R}=\binom{\psi_{R}^{w}}{0}$ such that

$$
\begin{align*}
i \hbar \partial_{t} \psi_{L}^{w}(\vec{r}, t) & =i \hbar c \vec{\sigma} \cdot \vec{\nabla} \psi_{L}^{w}(\vec{r}, t) \tag{7}\\
i \hbar \partial_{t} \psi_{R}^{w}(\vec{r}, t) & =-i \hbar c \vec{\sigma} \cdot \vec{\nabla} \psi_{R}^{w}(\vec{r}, t) \tag{8}
\end{align*}
$$

These are the so-called Weyl equations. Note that the $\psi_{L, R}^{w}$ are spinors of 2-components. (2 P)
(d) Show that under parity (spatial inversion) the Ψ_{L} and Ψ_{R} solutions get interchanged. (1 P)
(e) Using that for $m=0, E=c|\vec{p}|$, and employing functions with well defined momentum

$$
\begin{align*}
\psi_{L}^{w, \vec{p} \vec{r}, t)} & =\mathrm{e}^{-i \vec{p} \cdot \vec{r} / \hbar} \mathrm{e}^{-i E t / \hbar} \chi, \tag{9}\\
\psi_{R}^{w, \vec{p}, \vec{r}, t)} & =\mathrm{e}^{i \vec{p} \cdot \vec{r} / \hbar} \mathrm{e}^{-i E t / \hbar} \chi, \tag{10}
\end{align*}
$$

show that

$$
\begin{align*}
S_{p} \Psi_{L} & =-\frac{\hbar}{2} \Psi_{L}, \tag{11}\\
S_{p} \Psi_{R} & =\frac{\hbar}{2} \Psi_{R}, \tag{12}
\end{align*}
$$

where $S_{p}=\frac{\hbar}{2|\vec{p}|}\left(\begin{array}{cc}\vec{\sigma} \cdot \vec{p} & 0 \\ 0 & \vec{\sigma} \cdot \vec{p}\end{array}\right)$ is the helicity operator. The particle with helicity $-\hbar / 2$ is the neutrino, and that with $+\hbar / 2$ is the antineutrino. (2 P)

