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Exercise 1: Angular momentum (2 P)

Show that ~J = ~L1 + ~

2
~Σ commutes with the Hamilton-Dirac operator H = −i~c~α ·

~∇ + βmc+ V (r).

Exercise 2: Landau levels (8 P)

The time-independent Dirac equation describing a spin-1/2 particle of mass m and

charge e in a static magnetic field with vector potential ~A is given by

EΨ =
{

c~α ·
(

−i~~∇− e ~A
)

+ βmc2
}

Ψ. (1)

(a) Verify that

[

~α ·
(

−i~~∇− e ~A
)]2

=
(

−i~~∇− e ~A
)2

1− e~Σ · ~B, (2)

where ~B = ~∇× ~A and ~Σ =

(

~σ 0
0 ~σ

)

. (2 P)

(b) For the particular case ~B = (0, Bx, 0) (Landau gauge), show, by considering
solutions of the form

Ψ = ei(pyy+pzz)/~u(x), (3)

that the energy eigenvalues E of a relativistic electron in a constant magnetic field ~B =
B~ez are given by:

E2
n,± = p2

zc
2 +m2c4 + e~Bc2(2n+ 1 ± 1). (4)

These are the so-called Landau levels. (4 P)
[Hint: At some point you will find that part of the Hamiltonian looks like the Hamiltonian of an

harmonic oscillator.]

(c) How is the non-relativistic limit? (2 P)

Exercise 3: Weyl equations (8 P)

Relativistivc quantum mechanics allows for the existence of massless particles. Here
we will analyze massless spin-1/2 particles (applicable for the case of neutrinos). For
this analysis it is useful to introduce a different representation of the Dirac matrices, the
so-called Weyl representation

γ0 =

(

0 1

1 0

)

, γk =

(

0 −σk

σk 0

)

. (5)

(a) Show that this representation fulfills indeed the anticommutation criterion for the
Dirac matrices. (2 P)



(b) For the massless case the Dirac equation becomes

i~∂tΨ(~r, t) = −i~c~α · ~∇Ψ(~r, t). (6)

Show that the Hamilton-Dirac operator H = −i~c~α · ~∇ commutes with γ5 ≡ iγ0γ1γ2γ3.
(1 P)

(c) From (b) we know now that if Ψ(~r, t) is a solution of the Dirac equation, also
(

1±γ5

2

)

Ψ(~r, t) is a solution. Using this show that we may find solutions ΨL =

(

0
ψw

L

)

,

ΨR =

(

ψw
R

0

)

such that

i~∂tψ
w
L (~r, t) = i~c~σ · ~∇ψw

L (~r, t), (7)

i~∂tψ
w
R(~r, t) = −i~c~σ · ~∇ψw

R(~r, t) (8)

These are the so-called Weyl equations. Note that the ψw
L,R are spinors of 2-components.

(2 P)

(d) Show that under parity (spatial inversion) the ΨL and ΨR solutions get interchan-
ged. (1 P)

(e) Using that for m = 0, E = c|~p|, and employing functions with well defined mo-
mentum

ψ
w,~p(~r,t)
L = e−i~p·~r/~e−iEt/~χ, (9)

ψ
w,~p(~r,t)
R = ei~p·~r/~e−iEt/~χ, (10)

show that

SpΨL = −
~

2
ΨL, (11)

SpΨR =
~

2
ΨR, (12)

where Sp = ~

2|~p|

(

~σ · ~p 0
0 ~σ · ~p

)

is the helicity operator. The particle with helicity −~/2

is the neutrino, and that with +~/2 is the antineutrino. (2 P)


