Exercise 1: Properties of the γ -matrices

(a) Show that $\Delta \tau = \frac{-i}{4} \sigma_{\mu\nu} \Delta \omega^{\mu\nu}$ with $\sigma_{\mu\nu} = \frac{i}{2} [\gamma_{\mu}, \gamma_{\nu}]$ fulfills

$$[\gamma^{\mu}, \Delta \tau] = \Delta \omega^{\mu}_{\nu} \gamma^{\nu}, \qquad (1)$$

$$Tr\Delta\tau = 0 \tag{2}$$

where $\Delta \omega_{\mu\nu} = -\Delta \omega_{\nu\mu}$.

(b) Show that $(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0}$.

Exercise 2: Plane wave solutions

(a) Show $p \cdot p = m^2 c^2$.

(b) Let
$$\begin{cases} \Psi_r^+(x) = u_r(p)e^{-ipx/\hbar} \\ \Psi_r^-(x) = v_r(p)e^{ipx/\hbar} \end{cases}$$
 show that
$$(\not p - mc)u_r(p) = 0$$

$$(\not p + mc)v_r(p) = 0 \tag{4}$$

(3)

(c) Show that

$$u_r(p) = N(\not p + mc)u_r(0), \tag{5}$$

$$v_r(p) = N(\not p - mc)v_r(0), \tag{6}$$

where N is a normalization constant, $u_r(0) = \begin{pmatrix} \chi_r \\ 0 \end{pmatrix}$, $v_r(0) = \begin{pmatrix} 0 \\ \chi_r \end{pmatrix}$, and $\chi_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\chi_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. (d) Calculate $(\not p + mc)u_r(0)$ and $(\not p - mc)v_r(0)$.

(e) Impose $\bar{u}_r(p)u_r(p) = 1$; $\bar{v}_r(p)v_r(p) = 1$, and find the normalization constant N.

Exercise 3: Density

Calculate the density $\rho = j^0/c$ for the solutions of the Dirac equation in free space. Why is it not Lorentz invariant? Relate it to the idea of Lorentz contraction.

Exercise 4: Equivalent representations of the γ -matrices

Let M be an arbitrary non-singular matrix. Show that $M\gamma^{\mu}M^{-1}$ is also a possible representation of the γ -matrices, i.e. it fulfills $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}\mathbb{1}$.