$\underline{\text { Exercise 1: Properties of the } \gamma \text {-matrices }}$

(a) Show that $\Delta \tau=\frac{-i}{4} \sigma_{\mu \nu} \Delta \omega^{\mu \nu}$ with $\sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$ fulfills

$$
\begin{align*}
{\left[\gamma^{\mu}, \Delta \tau\right] } & =\Delta \omega_{\nu}^{\mu} \gamma^{\nu}, \tag{1}\\
\operatorname{Tr} \Delta \tau & =0 \tag{2}
\end{align*}
$$

where $\Delta \omega_{\mu \nu}=-\Delta \omega_{\nu \mu}$.
(b) Show that $\left(\gamma^{\mu}\right)^{\dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$.

Exercise 2: Plane wave solutions
(a) Show $\not p \cdot \not p=m^{2} c^{2}$.
(b) Let $\left\{\begin{array}{c}\Psi_{r}^{+}(x)=u_{r}(p) e^{-i p x / \hbar} \\ \Psi_{r}^{-}(x)=v_{r}(p) e^{i p x / \hbar}\end{array} \quad\right.$ show that

$$
\begin{align*}
(\not p-m c) u_{r}(p) & =0 \tag{3}\\
(\not p+m c) v_{r}(p) & =0 \tag{4}
\end{align*}
$$

(c) Show that

$$
\begin{gather*}
u_{r}(p)=N(\not p+m c) u_{r}(0), \tag{5}\\
v_{r}(p)=N(\not p-m c) v_{r}(0), \tag{6}
\end{gather*}
$$

where N is a normalization constant, $u_{r}(0)=\binom{\chi_{r}}{0}, v_{r}(0)=\binom{0}{\chi_{r}}$, and $\chi_{1}=\binom{1}{0}$, $\chi_{2}=\binom{0}{1}$.
(d) Calculate $(\not p+m c) u_{r}(0)$ and $(\not p-m c) v_{r}(0)$.
(e) Impose $\bar{u}_{r}(p) u_{r}(p)=1 ; \bar{v}_{r}(p) v_{r}(p)=1$, and find the normalization constant N.

Exercise 3: Density

Calculate the density $\rho=j^{0} / c$ for the solutions of the Dirac equation in free space. Why is it not Lorentz invariant? Relate it to the idea of Lorentz contraction.

Exercise 4: Equivalent representations of the γ-matrices

Let M be an arbitrary non-singular matrix. Show that $M \gamma^{\mu} M^{-1}$ is also a possible representation of the γ-matrices, i.e. it fulfills $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1}$.

