Exercise 1: Angular eigen-spinors

In the theory lecture we have introduced the eigenspinors of the angular act of the Dirac equation:

$$
\begin{array}{cc}
\rho_{j, m_{j}}^{(+)}=\binom{\sqrt{\frac{l+m_{j}+1 / 2}{2 l+1}} Y_{l, m_{j}-1 / 2}(\theta, \phi)}{\sqrt{\frac{l-m_{j}+1 / 2}{2 l+1}} Y_{l, m_{j}+1 / 2}(\theta, \phi)}, & l=j-1 / 2 \\
\rho_{j, m_{j}}^{(-)}=\binom{\sqrt{\frac{l-m_{j}+1 / 2}{2 l+1}} Y_{l, m_{j}+1 / 2}(\theta, \phi)}{-\sqrt{\frac{l+m_{j}+1 / 2}{2 l+1}} Y_{l, m_{j}-1 / 2}(\theta, \phi)}, & l=j+1 / 2
\end{array}
$$

In the lecture we employed the important property

$$
\begin{equation*}
(\vec{\sigma} \cdot \hat{x}) \rho_{j, m_{j}}^{(-)}=\rho_{j, m_{j}}^{(+)} . \tag{1}
\end{equation*}
$$

Show that this property is true. (Hint: to show this you will probably need to use the properties of the spherical harmonics and the Clebsch-Gordan coefficients.)

Exercise 2: Zitterbewegung in the Heisenberg picture

Consider the Dirac equation in free space

$$
H=c \vec{\alpha} \cdot \vec{p}+\beta m c^{2}
$$

We are interested here in having a look to the Zitterbewegung from the perspective of the Heisenberg picture, in which the dynamics of an operator $\hat{O}(t)$ is given by the corresponding Heisenberg equation

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \hat{O}(t)=\frac{-i}{\hbar}[\hat{O}(t), \hat{H}] .
$$

It should be clear that the momentum \vec{p} is conserved, and that $\frac{\mathrm{d} \vec{x}}{\mathrm{~d} t}=c \vec{\alpha}(t)$.
(a) Show that $\frac{\mathrm{d} \vec{\alpha}}{\mathrm{d} t}=\frac{-2 i}{\hbar}[c \vec{p}-H \vec{\alpha}(t)]$. (Hint: use the anticommutation properties of $\vec{\alpha}$ and β.
(b) Solve the equation for $\vec{\alpha}(t)$. If you do it right you should get

$$
\vec{\alpha}(t)=c \frac{\vec{p}}{H}+\mathrm{e}^{2 i H t / \hbar}\left[\vec{\alpha}(0)-c \frac{\vec{p}}{H}\right] .
$$

(Hint: as for usual ordinary differential equation, solve first the homogeneous equations, and then find a particular solution.)
(c) Solve for $\vec{x}(t)$. If you do it right you should get

$$
\vec{x}(t)=\vec{x}(0)-c^{2} \frac{\vec{p}}{H} t-\frac{i \hbar c}{2 H}\left(\mathrm{e}^{2 i H t / \hbar}-1\right)\left[\vec{\alpha}(0)-\frac{c \vec{p}}{H}\right]
$$

You see there the appearance of the Zitterbewegung. We will see now that indeed the Zitterbwegung results from the interference of solutions with positive and negative energy.
(d) Show that

$$
\begin{equation*}
(\vec{\alpha}(0)-c \vec{p} / H) H+(\vec{\alpha}(0)-c \vec{p} / H) H=0, \tag{2}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathrm{e}^{i H t / \hbar}(\vec{\alpha}(0)-c \vec{p} / H)=(\vec{\alpha}(0)-c \vec{p} / H) \mathrm{e}^{-i H t / \hbar} \tag{3}
\end{equation*}
$$

(Hint: from the form of H, how does $H \vec{\alpha}$ relate to $\vec{\alpha} H$?)
(e) We are interested in the average position

$$
\begin{equation*}
\langle\vec{x}(t)\rangle \equiv \int \Psi^{\dagger}(0, \vec{x}) \vec{x}(t) \Psi(0, \vec{x}) \mathrm{d}^{3} x \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi(0, \vec{x})=\int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3}} \mathrm{e}^{i \vec{p} \cdot \vec{x}}\left(\Phi_{+}(\vec{p})+\Phi_{-}(\vec{p})\right) \tag{5}
\end{equation*}
$$

is the wavepacket at $t=0$, and $\Phi_{ \pm}(\vec{p})$ are spinors with energy $\pm|E|$ and $|E(p)|=$ $\sqrt{p^{2} c^{2}+m^{2} c^{4}}$. From (c) one can see that

$$
\begin{equation*}
\langle\vec{x}(t)\rangle=\langle\vec{x}(0)\rangle+\left\langle\vec{x}_{e i n}(t)\right\rangle+\left\langle\vec{x}_{Z B}(t)\right\rangle, \tag{6}
\end{equation*}
$$

where $\left\langle\vec{x}_{e i n}(t)\right\rangle \propto t$, and $\left\langle\vec{x}_{Z B}(t)\right\rangle$ is the contribution Zitterbewegung.
Show that the Zitterbewegung term $\left\langle\vec{x}_{Z B}(t)\right\rangle$ results from interference terms between $\Phi_{+}(\vec{p})$ and $\Phi_{-}(\vec{p})$, i.e. in the integral only crossed terms with Φ_{+}and Φ_{-}occur.
(Hint: you will have to use at some point the result of (d).)

