Klassische Teilchen und Felder

Hausübung, Blatt 02

WS 08/09 Abgabetermin: 28.10.2008

Vorlesung: Luis Santos – Übungen: Garu Gebreyesus & Tobias Wirth

[H4] Raketengleichung

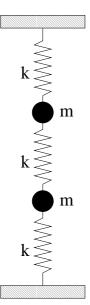
3 Punkte

Eine Rakete habe anfänglich eine Gesamtmassse m_0 . Sie setzt sich aus einer konstanten Leermasse m_u und der Masse des Treibstoffs $m_c(0)$ zusammen, so dass $m_0 = m_u + m_c(0)$ ist.

Die Rakete startet in vertikaler Richtung und während sie sich bewegt wird sie von dem ausgestoßenen Gas des verbrannten Treibstoffs angetrieben. Diese eindimensionale Bewegung wird durch die Gleichung

$$F = m(t)\frac{\mathrm{d}v}{\mathrm{d}t} + c\frac{\mathrm{d}m(t)}{\mathrm{d}t}$$

beschrieben. Hierbei ist $F=-m(t)\,g$ die Gravitationskraft der Erde, m(t) die zeitabhängige Masse der Rakete und c die relative Geschwindigkeit des ausgestoßenen Gases zu der Geschwindigkeit der Rakete.


Nehmen Sie eine konstante Rate $\dot{m}_c(t) = -\alpha$ der Treibstoffverbrennung der Rakete an.

- a) Zu welcher Zeit t_f ist der gesamte Treibstoffvorrat verbrannt?
- b) Wie groß ist die Geschwindigkeit der Rakete zu der Zeit $t=t_f$, wenn die anfängliche Geschwindigkeit der Rakete $v_0=0$ ist?

[H5] Gekoppelte Schwingungen im Schwerefeld

4 Punkte

Betrachten Sie zwei gleiche Massen m im Schwerefeld der Erde. Die Massen sind, wie in der Abbildung dargestellt, in einer vertikalen Anordnung untereinander und mit jeweils einer festen Wand über eine Feder mit Federkonstanten k verbunden.

- a) Berechnen Sie die zeitliche Entwicklung der Position der zwei Massen mit den Anfangsbedingungen $y_1 = \bar{y}_1$, $y_2 = \bar{y}_2$, wobei $y_j = x_j x_{j0}$ die Auslenkung aus der Ruhelage der Feder ist. (Die Ruhelage ist definiert, als derjenige Wert von x_j für den keine harmonische Kraft der Feder auftritt.)
- b) Berechnen Sie auch die Werte von y_1 und y_2 an denen alle Kräfte kompensiert werden, d.h. die neuen Ruhelagen unter dem Einfluss der Schwerkraft.

Hinweis: Einführen von Schwerpunkts- und Relativkoordinaten ist hilfreich.

[H6] Stehplätze und Scheinkräfte

3 Punkte

Eine Person steht in einem Bus. Der Bus fährt mit einer konstanten Geschwindigkeit v_1 auf einer geraden Bahn. Plötzlich verändert der Busfahrer die Geschwindigkeit gleichmäßig von v_1 auf v_2 über die Zeitspanne von t=0 bis $t=t_f$.

In welchem Winkel φ von der Vertikalen muss sich die Person neigen um ein Fallen zu verhindern?

Bitte geben Sie auf jeder Ausarbeitung der Hausübungen ihren Namen, Matrikelnummer und Studiengang an!

Abgabe der Ausarbeitungen der Hausübungen ist Dienstags <u>VOR</u> der Vorlesung, d.h. bis <u>08:15 Uhr</u>. Eine spätere Abgabe ist nicht möglich!

Übungsgruppen

Übungsleiter	Termin	Raum
Konrad Schwerdtfeger	Dienstag 10:00 - 12:00	267
Vladimir Schkolnik	Dienstag 10:00 - 12:00	268
Ingo Dreißigacker	Dienstag 10:00 - 12:00	269
Torsten Rahn	Dienstag 10:00 - 12:00	A410 (Hauptgebäude)
Johannes Eichholz	Dienstag 12:00 - 14:00	268
Arturo Argüelles	Mittwoch 10:00 - 12:00	269 (english)