Vorlesung: Luis Santos – Übungen: Garu Gebreyesus & Tobias Wirth

[P4] coupled oscillations

Consider two masses m_1 and m_2 . The masses are coupled to each other and fixed to a wall by strings with spring constants k_1, k_{12} and k_2 – see figure below. The movement is hence one-dimensional.

- a) Determine the equations of motion for $y_{j=1,2} \equiv x_j x_{j0}$, where x_{j0} is the rest position of mass m_j .
- b) Look for solutions of this equations of the form $y_i = \alpha_i \cos \omega t$ and derive the possible values of ω .
- c) Consider the symmetric system, i.e. $m=m_1=m_2$ and $k=k_1=k_2$, and determine the possible values of ω and the corresponding vectors $\vec{\alpha}=(\alpha_1,\alpha_2)$. What motions correspond to the normal modes found above?

[P5] Scattering of hard spheres

Consider two hard spheres of Radius A and masses m_1 and m_2 . The sphere can move frictionless. Initially sphere 2 is at rest (in the laboratory frame) whereas sphere 1 moves with momentum $\vec{p_1} = p_1 \vec{e_x}$ ($p_1 > 0$). The trajectory of the center of sphere 1 is parallel to the x axis at a distance A to it. The center of sphere 2 lies directly on the x axis.

- Consider the collision between the two spheres. In particular, what is the angle between the outgoing trajectory of sphere 1 and the x axis after the collision? What about sphere 2? Do the calculations in the laboratory frame.
- Express the outgoing momenta of the spheres in the center of mass frame.

Hint: The momentum transfer in the collision occurs due to the contact of the two spheres. So only the component of the momentum along the direction joining the centers is modified (\perp direction in the figure).

Abgabe der Ausarbeitungen der Hausübungen ist Dienstags <u>VOR</u> der Vorlesung, d.h. bis <u>08:15 Uhr</u>. Eine spätere Abgabe ist nicht möglich!