Vorlesung: Luis Santos – Übungen: Garu Gebreyesus & Tobias Wirth

[P12] Lorentzkraft – Verallgemeinerte Potentiale

Wir werden später in dieser Vorlesungsreihe sehen, dass auf ein Teilchen, welches sich mit Geschwindigkeit \vec{v} in einem elektromagnetischen Feld bewegt, die so genannte Lorentzkraft

$$\vec{F} = Q(\vec{E} + \vec{v} \times \vec{B})$$

wirkt, wobei \vec{E} dem elektrische Feld und \vec{B} der magnetischen Induktion entspricht. Wir werden auch sehen, dass man \vec{E} und \vec{B} als

$$\vec{B} = \vec{\nabla} \times \vec{A}$$

$$\vec{E} = -\vec{\nabla}\phi - \frac{\partial}{\partial t}\vec{A}$$

schreiben kann, wobei \vec{A} ein Vektorpotential und ϕ ein Skalarpotential ist.

a) Zeigen Sie, dass

$$F_{x_j} = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial x_j} U - \frac{\partial}{\partial x_j} U \quad \text{mit } x_{j=1,2,3} = x, y, z$$

wobei $U = Q(\phi - \vec{v} \cdot \vec{A}).$

b) Zeigen Sie, dass (trotz der Tatsache, dass $\vec{F} \neq -\vec{\nabla}U$,) das D'Alembertsche Prinzip $\frac{d}{dt} \frac{\partial T}{\partial \dot{x}_j} - \frac{\partial T}{\partial x_j} = F_{x_j}$ auch diesmal von der Form $\frac{d}{dt} \frac{\partial L}{\partial \dot{x}_j} - \frac{\partial L}{\partial x_j} = 0$ ist. U ist ein so genanntes verallgemeinertes Potential und L ist nun eine verallgemeinerte Lagrange-Funktion.

[P13] Reibung

Wir betrachten ein System mit holonomen Zwangsbedingungen. Es gibt konservative Kräfte (mit assoziierten Potential V) aber auch Reibung (mit generalisierter Kraft $Q_j^{(R)}$). Wie sie wissen, ist die Reibung keine konservative Kraft, eine typische Form ist $Q_j^{(R)} = -\sum_{j=1}^s \beta_{jl}\dot{q}_l$.

a) Zeigen Sie, dass für dieses System

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}_j} - \frac{\partial L}{\partial q_j} + \frac{\partial D}{\partial \dot{q}_j} = 0$$

gilt, wobei D die so genannte Dissipationsfunktion ist, welche Sie zu bestimmen haben.

b) Leiten Sie $\frac{d}{dt}E = -2D$ her, wobei E = T + V die Gesamtenergie ist.

Meldungszeitraum für Bachelorstudiengang beachten: 12.-28. November