Exercise 10-1: Spin-orbit-coupling (6 points)

A spin- $\frac{1}{2}$ particle is in an orbit of angular momentum $l=1$. The spin of the electron is coupled with the orbital angular momentum via $\hat{H}=\gamma \hat{\vec{L}} \cdot \hat{\vec{S}}$.

1. Write down the eigenenergies and eigenfunctions of \hat{H} in the basis $|l, s ; J, M\rangle \equiv$ $|J, M\rangle$ of the operators $\left\{\hat{\vec{L}}^{2}, \hat{\vec{S}}^{2}, \hat{\vec{J}}^{2}, \hat{J}_{z}\right\}$, where $\hat{\vec{J}}=\hat{\vec{L}}+\hat{\hat{S}}$. Express the eigenfunction with the help of the Clebsch-Gordan coefficients in the eigenbasis $\left|l, s ; m_{l}, m_{s}\right\rangle \equiv$ $\left|m_{l}, m_{s}\right\rangle$ of the operators $\left\{\hat{\vec{L}}^{2}, \hat{\vec{S}}^{2}, \hat{L}_{z}, \hat{S}_{z}\right\}$.

Hint: The Clebsch-Gordan coefficients can be found at
http://en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_coefficients\#Formulation, for instance. They are normaly given for $M \geq 0$ only. Here the following identity is useful: $\left\langle j_{1}, j_{2} ; m_{1}, m_{2} \mid j_{1}, j_{2} ; J, M\right\rangle=$ $(-1)^{J-j_{1}-j_{2}}\left\langle j_{1}, j_{2} ;-m_{1},-m_{2} \mid j_{1}, j_{2} ; J,-M\right\rangle$.
2. Let $|\psi(t=0)\rangle=\sum_{m_{l}, m_{s}} \alpha_{m_{l}, m_{s}}\left|m_{l}, m_{s}\right\rangle$. Assume that the coupling coefficient γ is time dependent, $\gamma(t<0)=0, \gamma\left(t \in\left[0, t_{0}\right]\right)=1$, and $\gamma\left(t>t_{0}=0\right)$.
(a) Calculate the probability that the system is in a state $\left|m_{l}, m_{s}\right\rangle$ at $t>t_{0}$, formally expressed with the Clebsch-Gordan coefficients $\left\langle m_{l}, m_{s} \mid J, M\right\rangle$. (1.5 points)
(b) If at $t=0$ the coefficient $\alpha_{0,1 / 2}$ is nonvanishing only, what is the probability that the system is still in this state at $t>t_{0}$? Write down your answer as a function of γ and t.
(1.5 points)

Exercise: Tensor-force (4 points)

The so-called tensor force between two spin- $\frac{1}{2}$ particles, which emerges from a dipole-dipole interaction, for instance, is given in position representation by an interaction energy of the form $\hat{V}(\vec{r})=U(r) \hat{T}_{12}$, where

$$
\hat{T}_{12}=\frac{\left(\hat{\vec{\sigma}}_{1} \cdot \vec{r}\right)\left(\hat{\vec{\sigma}}_{2} \cdot \vec{r}\right)}{r^{2}}-\frac{1}{3}\left(\hat{\vec{\sigma}}_{1} \cdot \hat{\vec{\sigma}}_{2}\right) .
$$

Here $\hat{\vec{\sigma}}$ is the vector of Pauli-Matrices, and the indices 1,2 indicate the particle on which the matrices act. Let $\hat{\vec{J}}=\hat{\vec{S}}_{1}+\hat{\vec{S}}_{2}$ with eigenstates $\left|\frac{1}{2}, \frac{1}{2} ; J, M\right\rangle \equiv|J, M\rangle$, then $|0,0\rangle$ is the singlet state and $|1, M\rangle$ with $M=0, \pm 1$ are the triplet states..
Show that \hat{T}_{12} can be written in the basis $\{|0,0\rangle,|1,0\rangle,|1,1\rangle,|1,-1\rangle\}$ as

$$
N \cdot\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -2 Y_{2,0} & -\sqrt{3} Y_{2,1} & -\sqrt{3} Y_{2,-1} \\
0 & \sqrt{3} Y_{2,-1} & Y_{2,0} & \sqrt{6} Y_{2,-2} \\
0 & \sqrt{3} Y_{2,1} & \sqrt{6} Y_{2,2} & Y_{2,0}
\end{array}\right)
$$

with the spherical harmonics $Y_{l, m}$ and where $N=\frac{2}{3} \sqrt{\frac{4 \pi}{5}}$.

