Homeexercises Sheet 11 Quantenmechanik I (SS08) Prof. Dr. Luis Santos
Hand in until 15.07.08 in the lecture.
Please state name and sheet number!

This is the last sheet of homeexercises. All exercises concern time-independent perturbation theory.

Exercise 11-1: Box-potential with linear perturbation (3 points)

We consider a box-potential with infinitely high walls,

$$
\hat{H}_{0}=\frac{p^{2}}{2 m}+V_{0}(x), \quad \text { where } \quad V_{0}(x)=\left\{\begin{array}{c}
0 \text { für }|x|<a, \\
\infty \text { für }|x| \geq a .
\end{array}\right.
$$

We add a small perturbation of the form $\hat{H}_{1}=F x$, where $F a \ll \frac{\pi^{2} \hbar^{2}}{2 m a^{2}}$.

1. Calculate the first non-vanishing correction to the groundstate energy of the Hamilton operator \hat{H}_{0}. Hint: $\sum_{n=1}^{\infty} \frac{n^{2}}{\left(4 n^{2}-1\right)^{5}}=\frac{\pi^{2}}{2^{12}}\left(5-\frac{\pi^{2}}{3}\right)$.

Exercise 11-2: Perturbed rigid rotator (3 points)

The Hamilton operator of a rigid rotator in a homogeneous magnetic field $\vec{B}=B \hat{z}$ is given by

$$
\hat{H}_{0}=\frac{1}{2 \theta} \hat{\vec{L}}^{2}+g B \hat{L}_{z} \equiv \frac{\alpha}{\hbar^{2}} \hat{\vec{L}}^{2}+\frac{\beta}{\hbar} \hat{L}_{z},
$$

where θ is the moment of inertia and g is the gyromagnetic ratio. A second homogeneous magnetic field $\vec{B}^{\prime}=B^{\prime} \hat{x}$ is applied, where $\gamma=g \hbar B^{\prime} \ll \beta$ is assumed to hold. This corresponds to a perturbation $\hat{V}=\frac{\gamma}{\hbar} \hat{L}_{x}$.

1. Calculate the corrections to the energies of the unperturbed eigenstates $|l, m\rangle$ up to second order in γ.
(1 point)
2. Obtain the exact eigenenergies of the perturbed Hamiltonian for $l=1$. (1.5 points)
3. Develop the exact eigenenergies in $\epsilon \equiv \frac{\gamma}{\sqrt{2} \beta}$ up to the order ϵ^{2} and compare the result with the one of the first part of the exercise.
(0.5 points)

Exercise 11-3: Anharmonic oscillator (4 points)

The Hamilton operator of the 1d harmonic oscillator is

$$
\hat{H}_{0}=\frac{p^{2}}{2 m}+\frac{m \omega}{2} x^{2} .
$$

Consider the perturbation $\hat{H}_{1}=\mu\left(x^{3}+x^{4}\right)$ with small μ.

1. Calculate the corrections of the energy levels up to first order.
2. Find the expression for $\langle\hat{x}\rangle_{n}$ to first order, i.e., you have to calculate the expectation values with respect to the perturbed $n-$ th eigenstate of the harmonic oscillator.
